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Front Matter Preface

Preface

This document is a work-in-progress. Please see the
content outline in chapter 1 for a list of material I intend
to cover.
TO DO:

• Reformat all of Analysis I to use theorem environments.

• Add glossary/list of notation. (Done for MVC alone due to MVC notation gore, and for some of
topology.)

• Write chapter on introductory calculus.

• Write new full chapter on set theory.

• Finish chapter on number theory.

• Finish chapter on combinatorics.

• Finish chapter on the lambda calculus.

• Finish chapters on homology/cohomology.

This document is intended to cover a wide variety of topics useful for beginning to study mathematics.
As with many things in maths, there are many different perspectives with which various topics can be
viewed. In fact, that is one of the things that makes maths so powerful – the ability to use axioms as
interfaces between various theories. But, if something here is confusing or just doesn’t quite click for
you, I encourage you to research further on the topic.

Even if you don’t fully understand something, just having seen it at all will make it easier the second time
around. Rather than it being some new mysterious concept to learn from scratch, it’ll be a familiar face
(even if only vaguely so). The more broadly you research, the more often you’ll run into these collisions,
and the more tightly everything will connect together.

Everything here is probably more detail than you probably need, in particular the chapter(s) on foun-
dations, which is probably only useful to a select few logicians and category/set theorists. However, it is
helpful to at least see how the foundations of mathematics are built (as well as alternative foundations to
traditional material set theory). It is not expected that you will understand everything on first reading.

Additionally, topics less favoured by the author (i.e., analysis, calculus) have much less prose, and are
generally a curated list of theorems and examples, while others, like abstract algebra and category theory,
are almost entirely prose and discussions.

This document has been written in such a way that the chapters are intended to be read in order, like
a book. However, wherever important definitions have been buried deep within previous chapters, they
will be repeated if highly relevant to the current content. Additionally, topics in mathematics are not
linear, and chapters will often refer to each other. Because of this, the table of contents above, and any
inline references are all hyperlinked for your convenience. Additionally, if a term is unfamiliar to you,
take a quick look through the index at the back, which is also hyperlinked.

Disclaimer: I make absolutely no guarantee that this document is complete nor without error. Any
opinions expressed in this document are my own and do not necessarily represent the views of any other
individual or insitution.
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Notes on Formatting

New terminology will be introduced in italics when used for the first time. Named theorems will also be
introduced in italics. Important points will be bold or will be underlined.

Where relevant, differing notational conventions will be brought up in the sections they are used.
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Chapter 1

Introduction

“If you want to build a ship, don’t drum up people to collect wood, and don’t assign
them tasks and work, but rather, teach them to long for the endless immensity of
the sea.”

— Antoine de Saint-Exupéry

1.1 Motivation

Why should you study mathematics?

The hope is that, given that you’re reading this already, and are probably already enrolled into or are
applying for a mathematics course, you will have your own personal answer to this. However, if you’ll
spare me some time to ramble, I’ll offer you a short discussion of my own perspective on this.

To begin with, I’d like to start with people’s view of maths. A perspective I’d seen a lot in the tutorials
that I’d run, and I’m sure that any teachers reading this can agree, is that a lot of students perceive
maths to be; here’s a bunch of problems; solve them; and getting the correct answer is the only thing
that matters. Or alternatively, that maths is “completely useless” in the real world.

And that’s as far as many students go, in terms of learning more about maths. It’s not about forming
connections between different aspects of maths. Or even as anything more than a tool to help calculate
prices. I mean, why would anyone need to solve a quadratic outside of a maths exam?

Should we stop forcing students to learn about quadratics and trig and whatnot?

I’m going to say something that might surprise you; I think that sounds like a reasonable idea. However,
before you send me an angry email, let me finish; I’ll explain in due course.

Now, maths. The stuff we do in primary or most of secondary education isn’t really what I’m talking
about, and it’s not like I’ll be going into the specifics of advanced abstract algebra or category theory or
whatever, because that’s not the point either, as much as I like those topics.

To be honest, I find that modern education, at least up to secondary level or so (and at least, in my own
personal experience), is really good at making maths boring. It’s the cycle of just solving more things
over and over again. But, it’s only boring for the same reason that learning an alphabet would be boring
to a fifteen year old.

The stuff we do in school for maths is basically learning the alphabet in order for you to write. The
difference is, we learn the alphabet when we’re four or five, and we don’t find it boring then, because
we’re dumb four or five year olds and don’t know any better.
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Specifically, the problem with maths is that we’re bad at it. Numbers and computation are things we
can’t see or touch, and our brains aren’t optimised to deal with them. Rather than learning the proper
foundations of modern maths at four or five, we have to delay it by a decade, and that’s one of the
reasons we find it boring; it’s just the foundations, and we’re taught it at such an older age. It’s basic
stuff. And I mean basic in the foundational meaning there, not “easy” – because it isn’t. I mean, consider
what it’s like learning the Greek alphabet or Japanese syllabaries with an English background; that’s
certainly not easy, but it’s basic in the same sense. It’s the boring stuff like learning how to write your
letters properly before you can truly manipulate the language. In the same way, you have to know how to
manipulate formulae instinctively before you do anything else more advanced, much like how you don’t
actually have to think about every single letter every time you write or type something down.

When people see someone who’s good at maths, they sometimes assume that they must just be incredibly
intelligent or some kind of natural genius. Maybe it does come easier to some people than others, and
maybe it doesn’t, but that’s not the point. Someone who decides to pursue maths, no matter the level,
doesn’t necessarily find it easy – they just enjoy how difficult it is; the puzzle solving aspect of it. They
enjoy the moment of understanding when it all clicks in place; whether that’s a six year old spotting
patterns in multiplication tables, or a sixteen year old just finally getting how the chain rule works.

People who do programming will identify with this well – I mean, if you program on any kind of regular
basis, you’ll know exactly what I mean. Once in the past, I’d spent six hours debugging a program I was
working on before realising the problem was that I missed a colon somewhere in the five thousand odd
lines of code.∗ And, just like working on a maths problem and not getting the answer, I was frustrated
and irritated. I’d like to say that I’d learnt from that mistake, and I haven’t done it again since, but
that’d just be a sad lie. But after the dust settled, and everything was finished; the feeling of satisfaction
once the program was finally working is hard to describe. Rather than the empty satisfaction from
spending five seconds on an easy problem, I chose to continue working away at this one thing. And in
the end, it did what I wanted.

And I’d like to think that this is why people do this kind of thing. I mean, the easiest way to put a
football† into the goal, is probably to pick it up and throw it. But we don’t do that. We follow rules
that make life hard for ourselves – because it’s more fun that way. It’s not about scoring the goal, or
getting the question right the first time. It’s the experience you go through. But just as playing sports
well requires a certain level of physical proficiency, doing maths requires a certain level of perseverance,
and of course, the background knowledge required in the first place. Also, that’s all the sports you’re
getting from me for the rest of this book.

So, I said that people are not good at maths, and that’s true. People aren’t inherently good at manipu-
lating abstract ideas like they are with languages. We’re subject to all sorts of biases as fallacies; because
they’re what worked for us to survive in the past.

Let’s do a few examples. Let’s say that I bet you £10 on a fair coin flip; if it’s heads, I get your £10,
and if it’s tails, you get my £10. Most people won’t take that bet. Fair enough, given that the expected
value is zero.

But what about my £11 against your £10? Most people still won’t take that bet, despite it having a
positive expected value. Even if I offer £20 against your £10, a lot of people will still not take that bet,
despite the expected value of the bet now being £10 in their favour.

This particular fallacy is called loss aversion. People tend to weigh losses about twice as highly as gains.
And this makes some sense from an evolutionary standpoint. If you’re in a forest, and you have some
amount of food, it does make sense that you’d value having that food much higher over, say, using it as
bait in the hopes of getting more in return. A prehistoric human willing to take that bet, probably ends

∗ More realistically, the problem was that I needed a better linter that would point out simple missing colons in the first
place.

† “Soccer” to any North American readers.
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up hungrier on certain days than someone not taking that risk and having a more consistent supply of
food. That consistency is more valuable, so, we’re risk averse.

Now, what if I offered that £11 against your £10 again, but we play the game a hundred times instead
(or any other choice of large number). People are seemingly even less willing to play this version, but
mathematically, you are effectively guaranteed to gain money this time around.∗

It’s not just probability either; another example where our cognitive biases lead us astray would be how
people tend to put a lot of effort into getting £5 off of a £10 purchase, but not a lot into getting £5 off
of a £1,000 purchase. It’s £5 saved either way, but people tend to think proportionally; £5 from £10 is
50% off, while £5 from £1,000 is basically nothing. But in both situations, it’s the same amount saved.
And again, this makes sense – the question “is there one lion over there, or two?” is very different than,
“are there 101 lions or 102?”. Proportions matter for much of our prehistoric lives, and it’s hard to fight
against it, despite it not mattering in modern matters like money.

Moreover, maths is in some senses even more abstract than language, which was essential for every person
to learn for survival. Being unable to keep track of exactly how much food you had, etc. – probably
made life harder. Being unable to communicate – killed. Mathematical reasoning wasn’t particularly at
the top of the importance tree for much of our history. Note, I’m not an evolutionary anthropologist, so
take all of this with a grain of salt, but you get my point.

However, in our modern technological world, it’s become increasingly important that the average person
is able to do maths – having a good foothold in logical thinking is increasingly becoming a necessity.

So, when we teach children about quadratics and trigonometry, it’s not really about the x squareds or
the triangles and circles. Mathematics isn’t about the numbers – not really. It’s about the ways we
eliminate bias and logical fallacies; and the methodical thinking and the approach you take to solving
problems – and not just random problems on an exam either. One of the greatest tools one learns from
mathematics is the ability to abstract away unimportant details and process information in a logical
manner. Once you learn to think mathematically, you’ll have a different perspective on everything, and
not just numbers or shapes.

That doesn’t mean you won’t get it wrong sometimes. You’ll run into dead ends – getting the occasional
answer wrong, or still screwing up with missing colons in code – but you shouldn’t stop because of that.
As a mathematician, you’ll probably get it wrong than most people, but hopefully only because you’re
asking more questions and trying more problems than most. But you shouldn’t fear those dead ends,
because they’re what you learn the most from. I see people afraid to do maths, because they’re scared
that they’ll do it incorrectly. And, yes, that’s a fair point when you’re staring down the barrels of a scary
exam paper. I get it. But that doesn’t mean you shouldn’t try. Everybody starts somewhere.

When you reduce the discussion to “nobody actually uses quadratics”, removing that level of maths from
the curriculum might sound like a good idea.

When I said that sounds like a reasonable idea, I mean it. It sounds reasonable – just like many other
ideas that sound reasonable when you only explore the surface details. But if you look deeper at what
mathematics actually teaches, you can see what a terrible loss that would be.

1.2 Mathematics is Hard

As mentioned above, the human brain is not at all optimised to perform formal mathematical reasoning,
which is why most of mathematics has only been developed relatively recently, and why even basic
arithmetic, or even counting, takes years of studying.

However, mathematical reasoning is very similar to legal and social reasoning, which we are often much
happier to do.

∗ See the weak law of large numbers, or Chebyshev’s inequality.
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Say you are presented with these four cards:

3 8

Each card has a number on one side, and a colour on the other. Which card(s) must be turned over to
verify the proposition that if a card shows an even number on one face, then its opposite face is green?

Take a moment to consider this problem∗ before continuing on.

The statement says that if a card shows an even number on one side, then the opposite face is green.
The statement does not make any claims about what happens when a card has an odd number on it,
nor does it make any restrictions on what other cards may bear the green colour. This means that the
3 card and the green card do not need to be checked, because the rule is not relevant in these cases.

The only way for the proposition to be false is if there is a card with both an even number and a red
face; so, we need to check the 8 card to see if it has a red face, and also the red card to check if its other
face is not even.

If that seemed somewhat confusing, consider this next problem:

Each of the following cards has an age on one side, and a beverage on the other.

25 12

Which card(s) must be turned over to verify the proposition that if if you are drinking alcohol, then you
must be over 18?

This time, the problem is easy; make sure the person under 18 isn’t drinking anything alcoholic, and
check that person drinking beer isn’t under 18. The 25 year old can drink anything, and the soda can
be drank by anyone.

We intuitively understand that while under-18s can only drink non-alcoholic beverages, they aren’t the
only ones who can drink them, and similarly, while over-18s can drink alcoholic beverages, they don’t
have to.

Formally, these two problems are identical: there are two possible states for the front and back of each
card, and the proposition to be verified relates the two in equivalent ways. The difference is that the
latter problem is based on a real life situation, while the first is much more abstract, making the logical
structure more difficult to understand for most people. Various other similar alternative formulations

∗ This problem is known as the Wason selection task or the four-card problem, and is a famous puzzle in deductive
reasoning.
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of this problem into other situations about policing a social rule are answered overwhelmingly correctly
when compared to the abstract problem, which was answered correctly less than 10% of the time in
study it was originally posed in.

Similarly, there is very little structural difference between the two sentences,

• x ∈ S → x+ 1 ∈ S – if x is in S, then x+ 1 is in S.

• If x is of royal blood, then x’s child is of royal blood.

Because the first is about boring numbers and sets, while the second is about an interesting and histori-
cally important social construct, most people have a much easier time when deducing that to show that
someone is a royal, we need to start from some known royal, then follow the line of descendents, than
they have when deducing that to show a number is part of a set S, we need to start with some known
element of S, then repeatedly add 1, despite the underlying logic being identical.

These kinds of questions tend to produce correct responses when posed in the context of social relations,
particularly when it’s about a social rule about exchange, involving benefits or restrictions that only
certain people can claim, such as alcoholic beverages and being of sufficient age.

Part of this difference may be due to familiarity: we are taught all of these social constructs from a young
age. In mathematics, this familiarity comes from practice, but importantly, also from constant exposure
to different areas of mathematics. The wider your breadth of knowledge, the more likely it is that a new
piece of information will correlate with something you already know, making it easier to retain.

But another reason, is that we’re hardwired to understand social rules, given our history of highly
structured social hierarchies, especially when compared to other animals.∗ As shown above, we are
generally very good at policing these rules, given the right context.

There are two main things you need in order to become good at mathematics. That is, the creative kind
of mathematics that involves logical connections and writing proofs, rather than kind that involves the
mechanical application of rules and methods, as is generally the form that is taught in schools. One of
them is mathematical maturity – which, among other things, is the ability to read and write the brief but
concise language that mathematicians use to communicate information. Importantly, this includes the
usage of clear notation when useful, and its omission when not. That is, use words, and don’t “symbol
spaghetti” unnecessarily. Again, this is learned through practice and exposure.

The other, is to learn how to activate the parts of your brain responsible for policing social and legal rules
– the parts that make the second formulations of the problems above much easier to answer. To do this,
it may be helpful to get a little angry, and imagine that finishing that annoying proof, or finally learning
that damned definition is the only thing that that will prevent your worst enemy from unfairly taking –
stealing – some prize or reward that you rightfully deserve. Every time you’re stuck on a problem, curse
this enemy, then show how much better and cleverer than them you are by finishing it off. If you do not
have an arch-nemesis, I am happy to serve as such† until you find a suitable person yourself. However
you choose to do this, this part of your brain can certainly become a powerful tool for computation and
logical thinking.

1.3 Exercising

In some sense, university mathematics follows on from college/school, simply continuing the topics cov-
ered there. On the other hand, university mathematics diverges heavily in style, with a much larger
focus on abstraction and rigourous proofs, rather than just mechanically applying rules in sequence.

Whatever your reason, you need to be fully engaged with whatever you’re studying. Your brain, optimised
to save as much cognitive effort as possible, is smart enough to know when you don’t really care about

∗ Again, I’m not an evolutionary anthropologist.
† As your arch-nemesis, I will act the part by ignoring any emails sent my way.
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something, and will begin to think about other things if you are not engaged with your work. If you find
this happening, go and do something else for a while – forcing yourself to work isn’t helpful – you won’t
get anything done now, you likely won’t be productive later on, and you’ll probably trick yourself into
thinking that you spent your time well, making you more likely to skip working later.

For this reason, there are exercises throughout this text. As much as we all hate “the proof is left as an
exercise to the reader”, this is to prompt you to actually practise the material being taught. The best
time for practice is just after being taught – not the day or week after. If you at least start working on
something right now, it makes it far easier to pick back up when you inevitably forget it later than if you
never practised at all. It is recommended to do, or at least start to attempt, the exercises promptly upon
reaching them, as they are generally placed immediately following the material required to answer them,
and will act as a self-check that you actually understood the section, rather than passively consuming the
text, then assuming you’ve properly internalised everything. Mathematics, as they say, is not a spectator
sport.

An additional section of exercises is also included at the end of each chapter, with these questions generally
covering the entire chapter, or otherwise requiring application of knowledge from various sections at once.
Some questions will require additional research, outside of this document. This is again to encourage
you to develop a wide breadth of knowledge.

This document is an introduction to various mathematical topics, but is not a study guide. You need to
find the best way for you to study, yourself.

1.4 Prerequisites

Ideally, I’d like anyone at any level of mathematical education to be able to pick up something from
this document, but, as you and I both have finite time of existence, a line has to be drawn somewhere.
Unfortunately, for most of the later topics covered in this document, that line happens to lie roughly
somewhere past the level of basic fluency with complex numbers.

Of course, most of the symbolic logic in the first chapter is highly foundational in nature, and therefore
requires little prior knowledge. For these sections, only some mathematical maturity and concentration
is required.

However, to comfortably read through everything in this document, the following is a list of loose
prerequisites. But again, it should be emphasised that it is not expected that you should understand
everything on first reading.

Foundations.

• Basic propositional logic: if... then..., simple converse, negation, contrapositive, etc.

• Competence with reading symbolic predicate logic.

• Competence with routine algebraic manipulations; completing the square, partial fractions, etc.

• Definition of basic structures: sets, relations, functions, images, etc.

• Familiarity with basic proof techniques; direct proof, contradiction, contrapositive, construction,
etc.

• Basic set operations and proofs.

• Circular and hyperbolic trigonometric functions.

• Common theorems and results in analysis, such as the factor/remainder theorems, intermediate
value theorem, Cauchy-Schwarz inequality, etc.
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• Taylor’s theorem (without error bounding) for functions of single real variables.

• Simple and strong induction.

• Polar, spherical, and cylindrical coordinates.

• Complex numbers.

– Complex arithmetic.

– Geometry of complex numbers. (Interpretation of complex multiplication as rotation.)

– Euler’s identity.

• Parametrisation of simple 2D curves, vector lines, planes and half-spaces.

Calculus.

• Standard differentiation techniques.

• Standard integration techniques.

• Finding critical and stationary points.

• Solving first and second order linear ODEs.

• Solving coupled first-order ODEs.

• Familiarity with recurrence relations.

• Some familiarity with local phase portraits.

Linear Algebra.

• Matrix-vector and matrix-matrix multiplication. (We will rederive definitions these from geometric
principles, so not a strict prerequisite per se, but having prior computational experience is certainly
helpful.)

• Dot and cross products.

• Determinants and inverses.

• Interpretation of matrix columns as basis vectors.

Statistics.

• Venn and Euler diagrams.

• Naïve set theory.

• Common probability distributions, such as binomial, normal, and poisson.

Mechanics.

• Vectors and vector calculus.

Discrete.

• Reasonable competence with common programming patterns, including recursion and iteration,
but not of more advanced techniques like dynamic programming/memoization or anything to do
with functional programming (if you know what a monad is, please get in touch).

• Knowledge of imperative paradigms, such as procedural and basic object-oriented programming,
but not of declarative paradigms, such as functional or logic programming.

• Familiarity with programming concepts, such as control flow, local/global scoping, variable binding,
etc. (these last two notions are particularly applicable in mathematics.)
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• Simple data structures, such as stacks, queues, linked lists, etc.

• Basic combinatorics.

• Simple algorithms on graphs and networks.

• Basic familiarity with concepts in asymptotic analysis.

1.5 Content Outlines

The author heavily prefers abstract algebra, topology, symbolic logic, foundations, and theoretical com-
puter science over physics, mechanics, statistics, analysis, or calculus. Because of this, not much of
those topics outside of the very basics is covered, and as a side effect, almost no applied mathematics is
included outside of examples.

The following are not necessarily in order, pedagogical or otherwise.

1.5.1 Mathematical Logic
The basic building blocks of mathematics. If axioms are syntax and grammar, then these are words,
which which we build up the rich language of mathematics.

• Symbolic logic.

• Propositional logic.

• Predicate logic.

• Axioms, theories, and models.

• Proofs.

• Provability.

1.5.2 Set Theory
The most common choice for the foundations of mathematics. As we will learn, everything in mathematics
is really a set. Even numbers, whether natural, real or complex. Functions are sets too. Really.

• Naïve set theory.

• Predicates and sets.

• Set operations.

• Algebra of sets.

• Set comprehension.

• Axiomatic set theory.

• Countable and uncountable sets.

• Constructing all of mathematics from sets.

• The von Neumann hierarchy of sets
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1.5.3 Relations
The first step towards building a function out of sets. Also massively useful in every part of mathematics
in the form of equivalence relations. Also helpful for defining the real numbers, as well as ordinal numbers
for those of us wanting to work with transfinite values.

• Equivalence relations.

• Equivalence classes.

• Orders: total orders, partial orders, lattices, well-orders, order-types, and ordinals.

1.5.4 Functions
Ubiquitous throughout maths. Sets are much more dull without them. In some axiomatisations (see
chapter on category theory), they’re more fundamental than sets themselves.

• Functions as sets.

• Injectivity, surjectivity and bijectivity.

• Cardinality: countable and uncountable sets.

1.5.5 Iterated Notation
Generalising binary operations to arbitrary arity.

• Formal Definitions.

• Indexing and scoping.

• Double summations.

• Closed forms and standard results.

• Products.

• Set operations.

• Logical operations.

1.5.6 Induction
Taking advantage of the recursive definition of the natural numbers to prove statements indexed over
the naturals.

• Simple induction.

– Base cases.

– Multiple counters.

• Strong induction.

• Backward-forward induction.

• Transfinite induction.

1.5.7 Number Theory
The study of integers and integer-valued functions.

• Modular arithmetic.
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• Primes and divsibility.

• (Extended) Euclid’s algorithm and inverses.

• Chinese Remainder Theorem.

• Fermat’s Little Theorem.

• Euler’s Theorem.

• Galois Fields.

• Induction and recursion.

1.5.8 Abstract Algebra
Analysing the structure of sets and operations themselves, with less focus on the specifics. The impor-
tance of the concept of an isomorphism cannot be understated.

• Groups.

• Rings.

• Fields.

• Field extensions.

• Galois Theory.

• Categories.

1.5.9 Linear Algebra
Applicable everywhere we have a notion of adding two things together to get a third, or scaling them.
A sub-branch of abstract algebra.

• Vectors.

• Cross and dot products.

• Linear Maps.

• Scalars and fields.

• Vector spaces.

• Change of basis.

• Abstract vector spaces.

1.5.10 Real Analysis
Formalising the definition of limits, convergence, differentiability and integrability.

• General and real inequality axioms.

• Sequences and limits.

• Completeness.

• Boundedness.

• Axioms of the real numbers.

• Bolzano-Weierstrass theorem.
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• Cauchy Completeness.

• Alternating and general series.

• Riemann’s Rearrangement theorem.

• Intermediate Value Theorem.

• Extreme Value Theorem.

• Mean Value Theorem.

• Power series.

• Limits of functions.

• Derivatives.

• L’Hôpital’s rule.

• Cauchy’s Mean Value Theorem.

• Taylor’s Theorem.

1.5.11 Advanced Real Analysis
More and stronger forms of continuity. Formalising the Riemann integral.

• Riemann integration.

• Improper integration.

• Pointwise convergence.

• Uniform convergence.

• Series of functions.

• Space filling curves.

We will not cover any material on functional analysis, harmonic analysis, Fourier analysis, variational
analysis, integral operators, Banach spaces, or Hilbert spaces.

1.5.12 Topology
The study of continuity and continuous maps. The foundations of analysis.

• Normed spaces.

• Metric spaces.

• Lebesgue spaces.

• Open and closed sets.

• Topological spaces.

• Closures, interiors and boundaries.

• The Hausdorff property.

• Continuity and homeomorphisms.

• Uniform and Lipschitz continuity.

• Open covers and compactness.
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• Tychonov’s theorem.

• Heine–Borel theorem.

• The fundamental group.

• Path-connectedness.

• Connectedness.

• Completeness.

• Quotient and product topologies.

• Retractions.

• Liftings.

• Homotopy.

• Brouwer’s fixed point theorem.

• Borsuk-Ulam theorem.

1.5.13 Algebraic Topology
Studying topological spaces with algebraic invariants. Now we’re getting somewhere.

• Seifert-van Kampen theorem.

• Projective spaces.

• CW complexes.

• Homology theory.

• ∆-complexes and simplicial homology.

• Chain complexes.

• Singular homology.

• Jordan curve theorem.

• Manifolds.

• Homology and orientation.

• Cellular homology.

• Cohomology.

• Poincaré duality.

1.5.14 Calculus
Seeing how sensitive functions are to nudges in their inputs. Very helpful for physics, particularly in the
form of differential equations.

• Geometric and physical intuitions.

• Derivative notations.

• Differentiation from first principles.

• Implicit differentiation.
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• Power, Chain and Product rules.

• Fundamental theorem of calculus.

1.5.15 Differential Equations
Seeing how sensitive functions are to nudges in their inputs. Very helpful for physics, particularly in the
form of differential equations.

• Differential Equations.

• Existence and Uniqueness of solutions.

• Recurrence Relations.

• Systems of Linear ODEs.

• Variation of Parameters.

• Laplace transformations.

1.5.16 Vector Calculus
Calculus, but now with more dimensions and with strange new quantities and matrices.

• Curves and Parametrisations.

• Parametric surfaces.

• Vector Calculus.

• Frenet-Serret frame.

• Multivariable scalar-valued functions.

• Double and triple integration.

• Change of coordinate systems.

• Vector fields.

– Divergence and curl.

– Surface integrals.

– Divergence theorem.

– Line integrals.

– Circulation and Stokes’ theorem

– Green’s theorem.

1.5.17 Complex analysis
Despite the name, most of these functions are simpler and far more well-behaved than their real coun-
terparts.

• Complex differentiability.

• Analytic functions.

• Holomorphic functions.

• Meromorphic functions.
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• Cauchy-Riemann conditions.

• Picard’s theorem.

• Cauchy’s integral theorem.

• Contour integration.

• Laurent series.

• Liouville’s theorem.

1.5.18 Combinatorics
Counting things, but formalised. Very useful for... everything really; “One starts out in life trying to do
mathematics, and winds up doing combinatorics.” — Ian Macdonald.

• Pigeonhole principle.

• Enumerative combinatorics.

• The twelvefold way.

• The inclusion-exclusion principle.

• Boole’s inequality.

• Bell numbers.

• Stirling numbers.

• Catalan numbers.

• Young diagrams.

• Recurrence relations.

• Generating functions.

• Graph theory.

• Ramsey theory.

1.5.19 Complexity Analysis
Very helpful for computer scientists and logicians. Allows us to quantify how bad and inefficient all of
our algorithms are. Not to be confused with complex analysis.

• Landau symbols (big O notation, and related).

• Master Theorem.

• Complexity classes.

• Polynomial time solvability.

• Boolean satisfiability.

1.5.20 Combinatorial Optimisation
Attempting to find an optimal solution when the search space for a problem is so large that exhaustive
searches and optimal algorithms are intractable.

• Graph theory.
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• Optimisation.

– Linear programming.

– Simplex algorithm.

– Critical path analysis.

– Transportation and allocation.

• Independence systems and matroids.

• Approximation algorithms.

• Lovász local lemma.

1.5.21 Graph Theory
The study of abstract structures known as graphs. The basis of many data structures in computer
science. Helpful in the same way that abstract algebra is.

• Definitions: graphs, paths, circuits.

• Searching algorithms.

• Route inspection.

• Edge matchings.

• Vertex covers.

• Hall’s condition.

• Ramsey theory.

• Travelling salesman problem.

• Network flow.

1.5.22 Probability & Statistics
Makes you a better gambler.

• Sample Spaces.

• Conditional Probability.

• Independence.

• Law of Total Probability.

• Bayes’ Theorem.

• Expected Value.

• Variance.

• Probability Distributions.

• Probability Mass Functions and Probability Density Functions.

• Binomial, Poisson, Normal, Negative Binomial and Geometric distributions.

• Law of Large Numbers.

• Central Limit Theorem.
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• Binomial approximations.

• Probabilistic inequalities.

– Markov’s Inequality.

– Chebychev’s Inequality.

– Chernoff bounds.

• Jointly distributed random variables.

• Game theory.

• Decision Analysis.

1.5.23 Lambda Calculus
If you think functions are cooler than sets. Closely related to type theory and category theory.

• Prefix notation.

• Lambda terms.

• Free and bound variables.

• Data types.

• Church numerals.

• Recursion.

• Combinators.

• Simply-typed lambda calculus.

• Type theory.

1.5.24 Category Theory
If your abstract and universal algebras aren’t abstract or universal enough.

• Categories.

• Duality.

• Commutative diagrams.

• Categorical isomorphisms.

• Functors.

– Covariance and contravariace.

– Full and faithful functors.

– Adjoint functors.

– Hom functors.

– Representable functors.

• Natural transformations.

– Vertical and horizontal compositions.

– Interchange law.
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– Equivalence of categories.

• The Yoneda lemma.

• Universal properties.

• Universal elements.

• Cones and cocones over a diagram.

– Limits and colimits as universal cones.

– Products and coproducts.

– Pullbacks and pushouts.

– Limit representations.

– Functoriality of limits.

• Completeness.

• Adjunctions.

– Units and counits.

– Limits and colimits as adjoints.

– Calculus of adjunctions.

• Ends and coends.

• Monads.

– Monadic adjunctions.

– Monadic functors.

– Free algebras.

• Subobjects and power objects.

• Monoidal categories.

• Cartesian and cocartesian monoidal categories.

• Internalisation.

– Internal homs.

– Monoidal closed and cartesian closed categories.

– Internal categories.

• Topoi.

– The Elementary Theory of the Category of Sets.

– Internal logics.

– Intuitionistic higher-order theories.

– Categorical semantics and type theories.

– Sheaves and Grothendieck topoi.

• Higher category theory.

– 2-categories.

Notes on Mathematics | 17



Introduction Content Outlines

– Infinity categories.

– Groupoids.

• All Concepts are Kan Extensions
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Chapter 2

Mathematical Logic

“Contrariwise, if it was so, it might be; and if it were so, it would be; but as it isn’t,
it ain’t. That’s logic.”

— Lewis Carroll, Through the Looking-Glass

Reality is messy and complicated, but we need a way to be able to talk about it. In particular, numbers
are strange abstract things we can’t see or touch, and can even be infinite in size, depending on the
computation in question.

So, we need a language that allows us to reason and manipulate these things that we can’t really
comprehend, but we also want this language to follow strict well-defined rules that everyone can agree
on. Two different people using the same set of rules should always come to the same conclusions, given
the same starting information.

We could create a new framework for every new problem we encounter, but modern mathematics has
mostly settled into using one set of standard rules, and, taking inspiration from the first great virtue∗ of
a programmer, we are going to steal their code.

2.1 Symbolic Logic

Concept Model Theory
piles of rocks
herds of sheep → N = {0,1,2, . . .} → ∀x, ∃y : y = x+ 1
tally marks

We want to model a concept or something we see with something simpler that encapsulates the important
part, and only the important parts, of whatever is being modelled. In the example above, the central
concept to be modelled is counting – the things actually being counted doesn’t matter, so that information
is not included in our model. The problem is, if the model is very big or complex, such as, say, every
single model used in modern maths, how do we know that what we say is valid?

2.1.1 Axioms, Models and Inference Rules
The most commonly used approach is to create a list of statements called axioms which we define to be
true, and a list of inference rules that let us derive new statements from existing statements. Together,
axioms and inference rules generate a theory consisting of all the statements that can be constructed

∗ Laziness, Impatience, Hubris

http://wiki.c2.com/?LazinessImpatienceHubris
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from the axioms by applying the inference rules. All the statements within a theory that are not axioms
are called theorems.

Example.

• All men are mortal (axiom);

• Socrates is a man (axiom);

• If “all A are B” and “C is A”, then “C is B” (inference rule);

• Therefore, Socrates is mortal (theorem).

△

We can’t do anything further with these axioms with our inference rule, so these three statements form
our entire theory about Socrates, men and mortality.

Theories describe models, collections of objects and relations between those objects. For any given theory,
there may be many models that are consistent with it. For example, a model that includes both mortal
Socrates and an immortal Hyperion is consistent with the theory above, because the theory doesn’t say
anything about Hyperion or things that are not men.

If we define too many axioms, we can start to get inconsistencies: “All men are mortal; all gods are not
mortal; all gods are men; Socrates is a man.” immediately leads to a contradiction between the axioms.
Obviously, this example is rather simple, but for a different set of axioms, it may take a while for the
inconsistencies to start showing up. Thus, we try to use as few axioms as possible.

On the other hand, insufficiently many axioms underconstrains the model. To try construct the natural
numbers, we might say that 0 is a number, and that any number x has a “successor”, denoted S(x).
While the natural numbers satisfy these axioms, it isn’t the only model that works. Our model could
just consist of 0, with S(0) = 0. This obviously is not what we want, so our next axiom could be that
∀x (S(x) ̸= 0), but we could get stuck with S(0) = 1 = S(1). Adding in S(x) = S(y) if and only if x = y,
then we get the natural numbers as desired, but also some extras, say α, S(α) = β, S(β) = α.

One thing to note is that an axiom we come up with isn’t more likely to be true if it better explains or
predicts what we observe in some physical universe. Axioms are true because we say they are, and their
consequences and the theories we build on top of them just become what we observe. For example, while
the axioms above include extra numbers as well as what we usually mean by naturals, there’s nothing
inherently wrong with having the extra numbers. We could build a new branch of maths around this
new theory.

We don’t have to fit our theories to a physical universe, whose behaviours and underlying laws would
be the same whether we were here or not. When we define a set of axioms, we create a new universe,
ourselves. If the axioms we declare to be true lead us to contradictions or paradoxes, we can tweak the
axioms, write new ones, or just drop them entirely – or, we could just refuse to allow ourselves to do the
things that cause the paradoxes; in a lot of contexts, we don’t allow ourselves to divide by zero.

2.1.2 Standard Axiom Systems and Models
That being said, there are certain properties that we like our axiomatic systems to have. Since most
of modern mathematics is built around one axiomatic system, it’s useful to prove your results in that
system, or at least, in an equivalent axiomatic system, rather than some arbitrary system of your own,
so that other people can apply your results to their own theories.

One such property is consistency . A theory is consistent if it cannot simultaneously prove P and not-P
for all P . An inconsistent theory can prove anything to be true,∗ given that P and not-P are true, so

∗ This is called the principle of explosion: P,¬P ⊢ Q: if P and not-P are true, then the statement P ∨ ¬P → Q, or “If
P or not-P , then Q”, says that Q is true.
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consistency is basically a required property for a theory to be of any use.∗

As we saw above, it is rather tricky to exactly nail down the right axioms to do what we want. We didn’t
even manage to define the naturals properly, and we haven’t even discussed what inference rules we use.

Fortunately, mathematicians and logicians have been working on this for a very long time, and they’ve
managed to define most thing we care about in ways that are both consistent and useful to work with.
So, rather than defining our own axiom systems and models from the ground up, we’ll copy and paste
their axiom systems.

Almost all of modern mathematics fits within one of the following models:

• The natural numbers N, defined using the Peano axioms. If all you want to do is count, add or
multiply, this is generally sufficient.

• The integers, Z. The naturals, but now we can subtract. Division is still problematic.

• The rational numbers Q. Now we can divide. But what about
√
2?

• The real numbers R. Now we have
√
2. But what about

√
−1?

• The complex numbers C. We are pretty much done here.

• There are further extensions to these number systems, such as the hyperreals, hyperbolic numbers,
hypercomplex numbers (of which Hamilton’s quaternions are an example), p-adic numbers, trans-
finite numbers, and more, but we’ll draw the line here, as these number systems are too specialised
for an introductory document such as this one. At most, we may have a peek at some of these
later.

• The von Neumann universe of sets. Defined using the axioms of set theory, the universe of sets
contains a rich variety of sets, which include, among a lot of other things, structures equivalent to
all of the above systems.

This is generally what is used in modern mathematics, the idea being that we start with sets, and
define everything else in terms of sets. If we have a good set of axioms that we trust are consistent
with sets, then everything we construct from sets should also be consistent. The only problem is
in doing the construction; we’ve already seen how nuanced and difficult this can be – if not careful,
the structures we create may not be what we think they are, like our “natural numbers” from before
including a bunch of extra numbers.

• We also have completely alternative systems to set theory, such as second-order or higher-order
logics, lambda calculus or (topoi) category theory, but these won’t be covered in detail here, as,
while they provide interesting alternative ways to look at structures, to the end user who just wants
to use those structures, they generally don’t allow you to do anything that you couldn’t already
do with sets.

Lambda calculus is, however, very important for the study and implementation of computation
theory and functional programming, and category theory is an extension and unification of all
abstract algebras, and more. Category theory and the lambda calculus have their own dedicated
chapters, §51 and §50, respectively.

The two main systems we will discuss are propositional logic, and predicate logic. Propositional logic is
concerned with models that contain statements which are either true or false called propositions. We can

∗ Some systems actually do allow for statements to be both true and false. This is usually not useful due to the principle
of explosion mentioned previously, but some devious logicians have managed to create axioms for systems that allow for
statements to be both true and false, while also preventing logical explosions. Such systems are called paraconsistent logics.
One reason as to why such a thing is helpful is in the resolution of certain paradoxes. For example, [This proposition is
false] (the Liar’s paradox), or [“yields falsehood when preceded by its quotation” yields falsehood when preceded by its
quotation] (Quine’s paradox) aren’t problematic propositions in paraconsistent logics.
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connect propositions together and write a few equations, but for this most part, there isn’t much else to
do here.

Predicate logic, on the other hand, allows us to use constants which represent object in our model, and
predicates, which is a kind of function that takes an object, and returns true or false, but can also be
thought of as properties that objects can have or not have.

Alternative names for propositional and predicate logics are zeroth-order and first-order logics, and
of course, there are higher-order logics as well, which allow us to be even more expressive with our
statements. However, for most of modern mathematics, first-order logic is sufficient.

2.2 Propositional Logic

In propositional logic or zeroth-order logic, we deal with statements called propositions and logical con-
nectives between them. Propositions cannot contain variables, and are therefore either always true, or
always false. We also use the symbols, ⊤ and ⊥, or 1 and 0, for true and false, respectively.

Propositions:

• 2 + 2 = 4 (always true).

• 2 + 2 = 5 (always false).

• “Socrates is a man” (always true).

• “Socrates is a dog” (always false).

Non-propositions:

• x+ 2 = 4 (either true or false, depending on the value of x).

• 0x = 0 (always true, but not a proposition because it contains a variable).

• 0x = 1 (always false, but still not a proposition).

• “Socrates” (this is an object and doesn’t have a truth value by itself).

Notably, in propositional logic, the proposition “Socrates is a man” is an indivisible atom of truth or
falsity that says nothing about “Socrates” or “[being] a man” individually. Because it is an indivisible
statement, we can represent the whole proposition with a single letter, for example, p. We cannot,
however, represent either individual part alone.

Such an indivisible proposition is called an atom, an atomic formula or a literal . Literals can also be
divided into positive and negative polarities, where a negative literal is the negation of a positive literal;
i.e., “p” is a positive literal, and “¬p” is a negative literal. Positive and negative literals are also called
each other’s complementary literals.

2.2.1 Logical Connectives
Propositions in isolation are not very interesting. So much so that we often don’t even consider specific
propositions, and just refer to general ones with letters, often p and q. We can make these propositions
slightly more interesting by combining them with logical connectives into compound propositions.

• Negation or NOT – the negation of p is written as ¬p or sometimes p̄. It is false when p is true,
and true when p is false. This is pretty much the same as in normal conversation.

• (Inclusive) Disjunction, Join or OR – the disjunction of p and q is written p ∨ q, and is true if at
least one of p and q is true.
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Note that this is different than how we often use “or” in normal conversation: if I were to, completely
truthfully, say “You will give me your wallet, or I will stab you with this rusty kitchen knife”, you
would be understandably quite upset if you handed me your wallet and still get stabbed. However,
to a logician mugger, this would be entirely justified, as the first part of a true inclusive disjunction
being true doesn’t preclude the second from also being true.

• Exclusive Disjunction or XOR – the exclusive disjunction of p and q is written as p ⊻ q or p ⊕ q,
and is true if exactly one of p or q is true. Exclusive disjunction is not often used in classical logic,
but has many important applications, particularly in computing and finite field algebra.

To indicate exclusive disjunction, we sometimes use the wording, “either p or q”, to distinguish it
from inclusive disjunction. Now, if you are ever being mugged by a logician, you know what to ask
to clarify your chances of being stabbed.

• Conjunction, Meet or AND – the and of p and q is written as p ∧ q, and is true when both p is
true and q is true. This one is generally the same as in common speech.

• Material Implication or Material Conditional – This is perhaps the most important connective for
proofs, corresponding to the “If... then...” pattern of speech. The implication of p and q is written
p → q or p ⇒ q. p is called the antecedent or premise, and q the consequent of the implication.
The implication is true when (p is true and q is true), or when p is false. In fact, the only way for
p→ q to be false is if p is true, but q is false, so another way to write this is ¬p ∨ q.

p → q being true when p is false but q is true often causes some surprise; after all, if p is false,
then how can it claim any credit for q being true? Both statements being false also leading to the
compound being true also seems somewhat suspect.

This surprise might be because in ordinary language, we usually aren’t interested in implications
where the first proposition is known to be false, so we don’t usually think to assign them any truth
values. However, one reason why it’s nice to define the truth values in this way is that we often
use the implication symbol in this way. For example, we should all agree that the proposition,

∀x ∈ Z : (x > 1)→ (x2 > 2)

is true. (We haven’t met the mysterious symbol, ∀, yet, but here, it means “For all integers x, the
proposition ... holds.”. It isn’t a valid symbol within propositional logic, but we’ll soon move onto
predicate logic, where we will encounter it frequently.)

The statement contains infinitely many implications – one for each integer – so included within
it is the statement 0 > 1 → 02 > 2, where the antecedent and consequent are both clearly false,
but we still say that the proposition is true overall. Because of this, we define p → q to be true
whenever p is false, regardless of the value of q.

Implication can also be thought of as a promise “if you do p, then I will do q”. If you fail to do p,
then regardless of whether I do q or not, I will not have broken my promise – so an implication is
always true if the antecedent is false.

In ordinary language, we often interpret “if... then...” to be the much stronger biconditional where
it otherwise carries connotations of causality. This is another reason why we define our terms so
stringently in mathematics and logic, due to natural language being rife with hidden rules and
assumptions.∗

I could once again, entirely truthfully, say, “If the moon is made of green cheese, then the world
will end at midnight”. It may sound like I know of some mechanism by which a green-cheese moon
will cause the end of the world, but I am simply making a trivially true statement by starting with
a false premise and violating the implicit assumption that a statement in a conversation should
mean something and not just be an exercise in logic.

∗ Search up “Grice’s maxims” or “the cooperative principle” for an interesting discussion on this topic.
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Conditional propositions like this where the antecedent is false, are called vacuous truths, because
the proposition is true while not really saying anything meaningful – in particular, we can’t infer
anything about the truth value of the consequent from a vacuous truth. These can sometimes
cause seemingly incoherent statements to be true. For example, the proposition “All the lights in
the room are turned on and turned off” is true, if there are no lights in the room to begin with. In
the equation above, the proposition as a whole is considered to be true non-vacuously, since some
integers are indeed greater than 1 and the proposition still holds for them, but we would say that
the cases where x < 1 are vacuously true.

Alternative wordings to “if p then q” include; “p is sufficient for q”, because knowing p is true is
sufficient information to tell us that q is true; or “q is necessary for p”, because q being true is
guaranteed by p being true (or equivalently, it is impossible to have p be true without q also being
true). We will generally use the “if... then...” pattern in this document, but sufficient and necessary
are commonly used in other fields.

• Material Equivalence, material biconditional or XNOR – If both p→ q and q → p, such that p and
q always share the same truth values, then we write p ↔ q or p ⇔ q, and say p holds if and only
if q holds.

Again, however, this is purely a logical proposition, and no causality between p and q has to be
enforced. For example, the compound proposition, “The moon is made of green cheese if and only
if 2+ 2 = 5” is true, despite the lack of connection between green-cheesiness and faulty arithmetic,
purely because both sub-propositions are false.

Alternatives to “p if and only if q” include; “q is necessary and sufficient for p”, which is a combina-
tion of the two alternative wordings for material implication; “p precisely/exactly when q”; or the
abbreviation, “p iff q”. This last alternative, “iff”, is sometimes regarded as unsuitable for formal
writing, so a style guide should be consulted before it is used in such a setting. We will continue
to use “if and only if” in this document.

Given that there are sixteen possible ways to associate two Boolean inputs to four binary outputs, you
might think we’ve skipped over a few in the list above. But, it turn out that a lot of logical connectives
are equivalent, just with swapped arguments, or other similar redundancies.

In fact, every logical connective can be expressed purely in terms of NAND (a logical connective that’s
basically a NOT gate glued to the output of an AND gate), and this is actually how most computer
hardware is built, since it’s a lot cheaper to make a lot of one gate, than fewer distinct gates. If a set of
logical connectives can express all possible logical connectives, the set is functionally complete.

While it would be possible for us to continue using only NAND operations, or with also including the
other unlisted binary connectives, it’s a lot more human readable if we just stick with a few common
connectives, particularly if those connectives have close analogues in ordinary language.

The list above is just of what is commonly used, but other logical connectives certainly are available.

2.2.1.1 Precedence

Now, a short sidenote should be made about precedence. Just as with arithmetic operations, we like to
reduce the number of brackets necessary to disambiguate an expression, and we do so by introducing
precedence rules, or perhaps more familarly, order of operations.

In many programming languages and compilers, the order is ¬, ∧, (⊻), ∨, →, ↔. There is good reason
for this; some notations for ∧ (conjunction) are multiplicative, while ∨ (disjunction) is additive, corre-
sponding to how probabilities of events are calculated,∗ and assigning a higher precedence to conjunction

∗ The probability of the events A and B both happening is equal to the product of the probabilities, while the sum
represents the probability that A or B happens, assuming A and B are disjoint.
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is analogous to multiplication having higher precedence than addition in ordinary arithmetic, making
logic statements easier to parse.

However, this is not a universal convention. Particularly in mathematics, we often assign ∧ and ∨ the
same precedence, due to something called duality,∗ which effectively says that ∧ and ∨ are symmetric
under certain transformations. Assigning the two the same precedence emphasises this symmetry, and
is particularly nice to use when studying logic symbols as an algebraic structure.

There isn’t a commonly agreed upon standard convention for the precedence of XOR in both program-
ming and symbolic logic, since it is not as often used, so it is safest to just use some extra brackets to
clarify formulae using it.

Both disjunction and conjunction are associative, so p∨ q ∨ r is the same as p∨ (q ∨ r) and as (p∨ q)∨ r,
and similarly, p ∧ q ∧ r is the same as p ∧ (q ∧ r) and as (p ∧ q) ∧ r.

Implication, however, is not associative, the convention being that the operation binds to the right or is
right-associative† such that p→ q → r is read as p→ (q → r).

As with everything in mathematics, any convention can be used, as long as it is clearly stated and doesn’t
annoy the target audience too much. If you are writing a programming manual, you might want to stick
with the order given above. In this document, we will use the mathematics convention of assigning ∧
and ∨ the same precedence, and clarifying with brackets.

2.2.2 Truth Tables
To fully specify the function of logical connectives, we give truth tables, in which every combination of
truth values for inputs is assigned a truth value as an output.

Here is the truth table for negation:

p ¬p
0 1
1 0

and a table for the rest of the binary connectives:

p q p ∨ q p ⊻ q p ∧ q p→ q p↔ q

0 0 0 0 0 1 1
0 1 1 1 0 1 0
1 0 1 1 0 0 0
1 1 1 0 1 1 1

∗ Informally, there is nothing inherently more correct about our choice of symbols in Boolean algebra than any other.
We could just as easily have named what we call 0 and 1 to say, α and β, and, as long as we do so consistently, our working
would still be valid Boolean algebra, albeit with some cosmetic differences.

However, suppose we renamed 0 to 1, and 1 to 0. We would be operating on the same values, since we still only have
0’s and 1’s, but this relabelled Boolean algebra would not be identical to the original, as we now find that ∧ in the new
system behaves like how ∨ did in the original; there is a discernable difference between the new and old systems, despite
both operating on 0’s and 1’s. If we also interchange ∧ and ∨, then the new system is indistinguishable from the original,
the only difference being that rows in truth tables may swap place.

When values or operations can be paired up in such a way that they can be exchanged and leave the structure of the
algebra unchanged, we call them dual, so 0 and 1 are dual, as are ∧ and ∨. The De Morgan duality principle asserts that
Boolean algebra is unchanged when all dual pairs are interchanged.

More generally, the principle of duality is a statement about partially ordered sets and has connections to many other
branches of maths, in particular, order and category theory. For instance, the De Morgan duality can be explained as a
group of automorphisms, swapping certain Boolean functions around.

As another note, if we replace ∧ with ∩, ∨ with ∪, ¬ with C , 0 with ∅, and 1 with U , we get set algebra, and it behaves
in completely the same way as logic statements – it turns out that the algebra of sets and boolean logic are isomorphic
algebraic structures.

† Note that while associativity is a property of an operation that can be proved, being left-associative or right-associative
is a notational definition. Our convention could just as equally define implication to be left-associative.
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We note that there are 22 = 4 different combinations of the truth values of p and q, so this table has 4
rows. In general, there will be 2n rows for propositions with n literals. For example,

(p→ r) ∨ (q → r)↔ (p ∧ q)→ r

(p → r) ∨ (q → r) ↔ (p ∧ q) → r

0 1 0 1 0 1 0 1 0 0 0 1 0
0 1 1 1 0 1 1 1 0 0 0 1 1
0 1 0 1 1 0 0 1 0 0 1 1 0
0 1 1 1 1 1 1 1 0 0 1 1 1
1 0 0 1 0 1 0 1 1 0 0 1 0
1 1 1 1 0 1 1 1 1 0 0 1 1
1 0 0 0 1 0 0 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 2 0 1 0 3 0 1 0 2 0

The different typefaces are purely for visual contrast, and the additional row at the bottom shows the
order in which the columns would be filled in if the table were to be drawn by hand. The columns
labelled 0 contain the truth assignments, given to p, q and r, then the columns labelled 1 are calculated
from the 0 columns, then 2 from 1, and so on.

You may also notice that we appear to assign truth values to connectives, which is slightly cursed, but
this is just a shorthand for assigning truth values to entire expressions, including arguments; i.e., the 1 in
the second column doesn’t mean that the connective “→” is true, it means that the proposition “0→ 0”
is true. This just saves us from having to draw a new table every layer up.

In propositional logic, we can think of each row of a truth table as a model for the proposition, since the
only things we can describe in propositional logic is whether a proposition is true or not. Constructing
a truth table then corresponds to generating all possible models.

Checking if a particular proposition is true in this way is a simple version of model checking : running
through all possible models for a proposition, and seeing if the statement we want to prove holds in all
models. This works well in propositional logic because the list of models is just the list of combinations
of truth values for p, q, r, etc., and we can easily fill in further columns using the simple rules for each
logical connective.

For predicate logic, this becomes much more difficult as typical predicate systems contain infinitely many
models, many of which are also infinitely large. Here, we rely on proofs constructed using inference rules.

Because the central column consists entirely of 1’s, we conclude that the proposition always holds, so
the left and right side are equivalent.

A compound proposition that is true like this regardless of the truth values of the propositions it contains
is called a tautology . Similarly, if the compound proposition is always false, it’s a contradiction. These
two concepts are negations of each other.

One useful class of tautologies are logical equivalences, which are tautologies of the form P ↔ Q, where
P and Q are compound propositions. In this case, we write P ≡ Q.

Note that logical equivalences are distinct from material equivalences. The material equivalence of
propositions p and q, p ↔ q is itself another proposition within the same object language – within the
same axiom system – as p and q individually. In particular, the truth value of p↔ q may differ between
models. The logical equivalence of p and q, however, is a statement in metalanguage. p and q are logically
equivalent if and only if they share the same truth value in every model.

Whenever two propositions are logically equivalent, they may be exchanged within a logic statement.
This is useful because logical equivalence in Boolean formulae is functionally the same as equality in
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algebraic formulae. For example, if we know p ∧ ¬p ≡ 0 and 0 ∧ q ≡ 0, then we can immediately
transform (p ∧ ¬p) ∧ q ≡ 0 ∧ q ≡ 0 without having to do any real work.

To prove that two statements P and Q are logically equivalent, we either construct a truth table, or we
transform P to Q using previously obtained logical equivalences.

For example,

p ¬p p ∧ ¬p 0
0 1 0 0
1 0 0 0

The last two columns are the same for all choices of p, so we know that p ∧ ¬p ≡ 0.

Similarly,

q 0 0 ∧ q
0 0 0
1 0 0

the second and third columns shows that 0 ∧ q ≡ 0.

2.2.3 Logical Equivalences
Many commonly used logical equivalences have been given names, some of which have been listed below:∗

¬¬p ≡ p Double negation or involution law

p ∧ q ≡ q ∧ p
p ∨ q ≡ q ∨ p

Commutativity laws

p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r
p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r

Associativity laws

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (q ∧ r)
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)

Distributive laws

p ∧ 1 ≡ p
p ∨ 0 ≡ p

Identity laws

p ∨ 1 ≡ 1

p ∧ 0 ≡ 0
Domination laws

p ∨ p ≡ p
p ∧ p ≡ p

Idempotency laws

∗ You’ll notice that almost all of these come in pairs. This is due to the principle of duality discussed in a previous
footnote. The main thing to remember is that, given a true statement, interchanging 0 with 1 and ∧ with ∨ returns another
true statement.
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p ∨ ¬p ≡ 1

p ∧ ¬p ≡ 0
Negation laws

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

De Morgan’s laws

p ∨ (p ∧ q) ≡ p
p ∧ (p ∨ q) ≡ p

p↔ 0 ≡ ¬p
p↔ 1 ≡ p
p ⊻ 0 ≡ p
p ⊻ 1 ≡ ¬p
p→ 0 ≡ ¬p
p→ 1 ≡ 1

0→ p ≡ 1

1→ p ≡ p

Absorption laws

p→ q ≡ ¬p ∨ q Equivalence of implication and disjunction
p→ q ≡ ¬q → ¬p Contraposition
p↔ q ≡ (p→ q) ∧ (q → p) Expansion of material equivalence
p↔ q ≡ ¬p↔ ¬q Inverse of material equivalence
p↔ q ≡ q ↔ p Commutativity of material equivalence

Some of these deserve some special mention – in particular, the contrapositive.

For any conditional statement p → q, say, “If it is raining, then I wear a coat.” we have four related
propositions:

• Negation (the logical complement): ¬(p→ q)

“It is not the case that if it is raining then I wear a coat”, or “If it is raining, then sometimes I do
not wear a coat.”

The truth value of the negation is always the opposite of the original statement. If the negation is
true, then the original statement is false, and vice versa.

• Contraposition (the contrapositive): ¬q → ¬p

“If I don’t wear a coat, then it is not raining.”

The truth value of the contrapositive is the same as the original proposition; a statement is equiv-
alent to its contrapositive.

• Inversion (the inverse): ¬p→ ¬q:

“If it is not raining, then I do not wear a coat.”

The truth value of the inverse is unrelated to the original proposition, as demonstrated by the
example – the original statement merely states that I wear a coat if it is raining, and makes no
claims as to what I wear when it is not raining.

• Conversion (the converse): q → p
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“If I wear a coat, then it is raining.”

The converse of a statement is actually the contrapositive of the inverse, and so shares the same
truth value as the inverse (which is again, unrelated to the truth value of the original statement)
– the original statement only asserts that I wear a coat when it is raining, not that I only wear a
coat when it is raining.

The negation laws p ∨ ¬p ≡ 1 and p ∧ ¬p ≡ 0 are also known as the law of the excluded middle and
the law of non-contradiction, respectively. The law of the excluded middle states that at least one of a
statement and its negation is true, while the law of non-contradiction states that a statement and its
negation cannot both be true. Together, they imply that for every proposition, either the proposition or
its negation is true, but not both (that is to say, that p ⊻ ¬p is a tautology). This is not to be confused
with the stronger law of bivalence, which states that every proposition is either true or false.∗

These two laws are what allow us to do case analysis, where we prove that Q holds by proving both
P → Q and ¬P → Q.

For example, we can prove that there exists irrational numbers a and b such that ab is rational. We know
that

√
2 is irrational, so consider the number,

√
2

√
2

By the law of the excluded middle, we know that this number is either rational or irrational. If it is
rational, then the proof is complete, and

a =
√
2 and b =

√
2

Otherwise, let a =
√
2
√
2
, and b =

√
2 such that,

ab =

(√
2

√
2
)√

2

=
√
2
(
√
2
2
)

=
√
2
2

= 2

∈ Q

and we are done.

With all of these logical equivalences in mind, instead of the massive unwieldy table from before, we
could prove (p→ r) ∨ (q → r) ≡ (p ∧ q)→ r using,

(p→ r) ∨ (q → r) ≡ (¬p ∨ r) ∨ (¬q ∨ r) Equivalence of material implication and disjunction
≡ ¬p ∨ ¬q ∨ r ∨ r Associativity and commutativity of ∨
≡ ¬p ∨ ¬q ∨ r Absorption law
≡ ¬(p ∧ q) ∨ r De Morgan’s law
≡ (p ∧ q)→ r Equivalence of material implication and disjunction

∗ We also have to be careful about vague predicates. For example, consider a red and green striped shirt. Is the
proposition, “the shirt is red”, true? The truth value depends on what we mean by “is”. If by “is”, we mean, “contains parts
that are coloured”, then the proposition is true. If “is” means “is completely coloured...” then the proposition is false.
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2.2.4 Exercises
1. Let p be the proposition “x is a human”, q be the proposition “x is mortal”, and r be the proposition

“x is Socrates”. Formalise the following statements into propositonal logic:

(a) If x is Socrates, then x is a human.

(b) x being human is a sufficient condition for x being mortal.

(c) x being mortal is a necessary condition for x being Socrates.

(d) Either x is human and x is mortal or neither x is human nor x is mortal.

2. Identify whether each of the following statements are propositions or not.

(a) 25 = 25.

(b) x2 ≥ 0.

(c) π.

(d) 2 < 1.

(e) p→ q.

(f) ∧.

(g) 3 + x2 = 4.

(h) “The proposition p is true.”

(i) “Either it will rain tomorrow, or it will rain today.”

(j) a2 + b2 = c2.

3. Negate the statement, “Every proposition is either true or false.”

4. Socrates says, “If I am guilty, I must be punished. I am not guilty, therefore I must not be punished.”
Is this argument logically sound?

5. Compute the truth table of
(
(p ∨ q)→ r

)
→ ¬(q ∧ p ∧ ¬r).

6. Compute the truth table of (p ∨ q) ∧ ¬(p ∧ q) and identify which common logical connective this
formula represents.

7. Draw a truth table to verify that the distributive law (p∨(q∧r))↔ ((p∨q)∧(p∨r)) is a tautology.

8. Verify that the rule of inference (p ∧ (p → q)) → q (“modus ponens”) is a tautology using logical
equivalences.

9. Construct the contrapositive of the statement, “It is not the case that if it will rain today, then I
will wear a coat.”

2.3 Predicate Logic

This isn’t of too much interest to us, so we move on to predicate logic or first-order logic. While
propositional logic deals with simple declarative proposition, predicate logic additionally covers predicates
and quantification. A predicate takes an object as an argument, and evaluates to true or false.

For example, consider the statements “Socrates is a philosopher” and “Plato is a philosopher”. These
are both valid propositions in both propositional and predicate logic, but in propositional logic they
are completely unrelated statements, and could be reduced down to the atoms p and q. However,
the predicate “is a philosopher” appears in both statements, sharing the common structure of “x is a
philosopher”, and we could denote this as P (x) (sometimes, for single letter predicates, we drop the
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brackets and simply write Px). The variable x is instantiated as “Socrates” in the first statement, and
“Plato” in the second. Note that x is a free variable – x by itself doesn’t represent anything, and is
simply a placeholder variable for the predicate to take.

While the predicate above only takes a single variable, in general, they can take several. For example,
Q(x,y) = “x is the teacher of y” and R(x,y,z) = “x+y+z = 0” are valid predicates. A predicate without
a specific variable is not a proposition, as it does not have a fixed truth value, so P (x), Q(x,y), and
R(x,y,z) are not propositions. If specific values are given for all the variables, then it is a proposition
again, and we can talk about that proposition being true (P (Socrates) and Q(Socrates,Plato) are true)
or false (R(1,2,3) is false).

Statements involving predicates can also be connected using logical connectives in predicate logic. For
example, the predicate, S(x)=“x is a scholar”, could be connected to P (x) in the first-order formula,
P (x)→ S(x), or, “If x is a philosopher, then x is a scholar.”. The truth of this formula depends both on
x, and on the interpretation of the predicates “is a scholar” and “is a philosopher”.

2.3.1 Quantification
Rather than talking about specific values of variables, we also want to be able to say when a proposition
is true for several different values of their arguments. For this, we bind the variables with quantifiers.
The two main quantifiers we use are the universal quantifiers and existential quantifiers.

In quantifying a proposition, the free variable becomes bound . For example, in the statement ∀x∃y :
Q(x,y,z), x and y are bound, while z is free: the truth value of the proposition depends entirely on z.

2.3.1.1 Universal Quantification

The universal quantifier, ∀ (“For all” or “For every”), states that a statement is true for all values of
the bound argument, within some universe of discourse.∗ For example, we could apply the universal
quantifier to x in the previous formula to get, ∀a : P (x)→ S(x), or, “For every x, if x is a philosopher,
then x is a scholar”. Here, the universe not specified, but due to the predicates implicitly being statements
that apply to people, the universe could be, for example, the set of all people.

The proposition ∀x : (x ̸= 1)→ (x2 ̸= 1) is ambiguous, however, if no universe is identified. If the universe
is the set of real numbers, then the proposition is false, with x = −1 being a counterexample. On the
other hand, if the universe is the set of natural numbers, then the proposition is true. We can explicitly
define the universe of discourse with set membership notation, for example ∀x ∈ N : (x ̸= 1)→ (x2 ̸= 1).
This is really shorthand for ∀x : x ∈ N → (x ̸= 1 → x2 ̸= 1) or ∀x : (x ∈ N ∧ x ̸= 1) → x2 ̸= 1, but
the short form makes it clearer that the intent of x ∈ N is to restrict the domain of x. This is a form of
syntactic sugar – notation to make things easier to express and read (“sweeter” for human use).

Universal quantification is equivalent to an infinite conjunction over the entire universe. For example,
∀x ∈ N : P (x) is the same thing as P (0) ∧ P (1) ∧ P (2) ∧ · · · . While infinite expressions like this are not
allowed in predicate logic, it’s a helpful reminder that universal quantifiers require every value of the
bound variable to be true, not just some or most of them.

2.3.1.2 Existential Quantification

We can also use the existential quantifier ∃, (“There exists... such that...”), which asserts that a statement
is true for at least one value of the variable. Returning to the example from before, ∃xP (x) means “There
exists (at least one) x such that x is a scholar”. This quantified proposition is true, as demonstrated
by the existence of Socrates. As with universal quantification, we can explicitly identify the universe of
discourse with set membership.

∗ If you are wondering why we need a universe of discourse, it is to prevent certain paradoxes from occuring, among
other reasons. This is discussed in more depth in §4.2.1.
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Existential quantification is equivalent to an infinite disjunction over the entire universe. For example,
∃x ∈ NP (x) is the same thing as P (0) ∨ P (1) ∨ P (2) ∨ · · · . Again, no infinite expressions allowed, but
it’s another helpful reminder of what the symbol means.

2.3.1.3 Unique Existential Quantification

The unique existential or uniqueness quantifier, ∃! (“There exists exactly one... such that...”), functions
almost exactly identically to the existential quantifier, but only allows for a single value of the bound
variable to be true. So, ∃!x : P (x) means “there exists exactly one x such that x is a philosopher”, which
is false, as Socrates and Plato are both philosophers.

To prove unique existence, we not only have to show that a proposition holds for some x, but that it
also doesn’t hold for every other x.

Unique existential quantification can also be expressed in terms of universal and existential quantifica-
tions:

∃!x : P (x) ≡ ∃x : P (x) ∧ (¬∃y : P (y) ∧ (y ̸= x))

≡ ∃x : P (x) ∧ (∀y : P (y)→ (y = x))

Another definition that neatly separates the notions of existence and uniqueness into two clauses at the
expense of brevity is,

≡ ∃x : P (x) ∧ ∀y∀z[(P (y) ∧ P (z))→ (y = z)]

Unique existential quantification is equivalent to an infinite XOR over the entire universe, so ∃!x ∈ N :
P (x) is the same thing as P (0) ⊻ P (1) ⊻ P (2) ⊻ · · · .

Unique existential quantification is rarely used, compared to universal and existential quantification.

2.3.1.4 Scope of Quantifiers

As well as being restricted the a universe of discourse, we can further restrict the scope of a quantifier
with more general predicates using implications or conjunctions. For example, given that the universe of
discourse has already been specified to be the natural numbers, the statement ∀x > 1 : x2 > 2 is short for
∀x : (x > 1)→ (x2 > 2). Similarly, the statement ∃x > 0 : x2 = 4 is short for ∃x : x > 0 ∧ x2 = 4. Note
that restrictions on universal quantifiers are expressed with implications, while restrictions on existential
quantifiers are expressed with conjunctions.

2.3.1.5 Negation of Quantifiers

¬∀xP (x) ≡ ∃x¬P (x)
¬∃xP (x) ≡ ∀x¬P (x)

These are effectively the quantification versions of De Morgan’s laws.

For example, if you want to prove that not all men are mortal (¬∀h : Mortal(h)), you only need to
find one man that is not mortal (∃h : ¬Mortal(h)), but if you want to prove that no man is mortal
(¬∃h : Mortal(h)), you need to show that all men are not mortal (∀h : ¬Mortal(h)).

2.3.1.6 Nested Quantifiers

The statements bound by a quantifier itself can contain quantifiers. For example, the statement “there
is no largest prime number” could be written as,

¬∃x : Prime(x) ∧ (∀y : y > x→ ¬Prime(y))

Notes on Mathematics | 32



Mathematical Logic Predicate Logic

or, “There does not exist an x such that x is prime and that all y’s greater than x are not prime.” Or,
shorter still (but not equivalently),

∀x∃y : Prime(y) ∧ (y > x)

or, “For any x, there is a greater y that is prime.”

Note that order matters for nesting quantifiers. Let the universe of discourse be the set of real numbers.
Then,

∀x∃y : y > x

or, “For all numbers x, there exists a number y greater than x” is true: for any x, we can certainly find
a y that is greater than it. In contrast,

∃y∀x : y > x

or, “There exists a number y such that every x is less than y.” clearly isn’t true (at least, not over the
set of real numbers).

The first statement says that ∃y : y > x is true, regardless of what x is, while the second says that there
is some y such that ∀x : y > x is true.

One way to think about nested quantification is like a game between two players, alternating turns
picking values for the quantified variables, with the adversary starting. Additionally, we assume that the
adversary plays perfectly, picking the worse possible values for us, if relevant. It’s no use trying to prove
∃y∀x : y > x if we pick y = 1 and our adversary nicely picks x = 0. We want our adversary to be a smug
smartass, picking whatever value doesn’t work for us, in this example, say, x = 2.

If we can always win the game, then the statement is true. For example, to prove ∀x∃y : y > x, we
let our adversary pick some real x, and we have to try pick a y such that y is greater than x. Picking
y = x + 1 (our choice of value is allowed to depend on what has already been picked, as they are now
fixed from the perspective of the inner statements) works, regardless of what x is, so the statement is
true.

Of course, we can nest quantifiers deeper than 2 layers. One definition we will see later on in the real
analysis section is the definition of convergence for a sequence, (an):[

(an)→ a
]
:=
[
∀ε > 0 : ∃N > 0 : ∀n > N : |an − a| < ε

]
Now we can interpret nested quantifiers, we can easily unravel what the right hand side means:

• The adversary picks a value for ε greater than 0;

• We pick a value of N ;

• They pick a value of n greater than N ;

• If |an − a| < ε, we win.

So, if we wanted to prove that the sequence an = 1
n converges to 0, we,

• Choose ε > 0;

• Let N > 1
ε ;

• Let n > N ;

• an = 1
n <

1
N < ε, so |an − 0| < ε, as required.

Exercises.

• Prove that the sequence an = 1√
n

converges to 0.

• Prove that the sequence an = n does not converge.
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2.3.1.7 Higher-Order Logics

In first-order logic, variables always refer to things and never to predicates. One effect of this is that
predicates cannot be quantified over in first-order logic. For example, the variable in Cube(a) = “a is a
cube” could be quantified in first-order logic as ∃x,Cube(x).

However, we cannot quantify predicates; “∃P : P (b)” is not a valid sentence of first-order logic, but it is
a valid sentence of second-order logic. Here, P is a predicate variable and represents the set of objects
with property P .

In first-order logic, there is no way to identify the set of all objects that satisfy some given predicates, but
this is possible in second-order logic. For example, the set of all objects that are cubes or tetrahedrons
could be represented in second-order logic as,

∃P∀x : Px↔ (Cube(x) ∨ Tetra(x))

We can also assert properties about this set in second-order logic. For instance, the following says that
this set of cubes and tetrahedrons does not contain any spheres.

∀P∀x : (Px↔ (Cube(x) ∨ Tetra(x)))→ ¬∃x : Px ∧ Sphere(x)

We can’t however, have variables for predicates of predicates. For example, we can’t say that there
is a property Shape(P ) that is true for the predicates P : Cube, Tetra and Sphere. Doing so requires
third-order logic.

As well as higher-order logics, other completely different alternative models such as lambda calculus or
topoi category theory exist, but first-order logic is sufficient machinery for most of modern mathematics.

2.3.2 Function Symbols
A function symbol looks a lot like a predicate, but instead of returning a truth value, it returns another
object. Function symbols may take any number of arguments. The number of arguments a function
symbol takes is called its arity . A zero-arity function symbol is also called a constant . For example, in
the formula, “2+2=5”, there are three constants, “2”, “2” and “5”, a two-arity function, “+”, and a very
special predicate, “=”.

Function symbols allow us to populate our universe without having to include various axioms about
things existing. The convention is that anything we can name exists. An example is the construction of
the natural numbers with the Peano axioms.

We start with a single axiom, stating that the constant function symbol 0 exists. Then, we apply the
successor function, S to obtain 0, S(0), S(S(0)), S(S(S(0))), . . . (which we often relabel with the usual,
0,1,2,3, . . .), and now our universe has an entire infinity of natural numbers without us ever having to
define a new axiom for each next number.

Note that two objects constructed in different ways aren’t guaranteed to be distinct. To check whether
two objects are the same, we use the equality predicate.

2.3.3 Equality
The equality predicate, =, is typically included as a standard part of predicate logic. If x = y, then x
and y represent the same element in the universe of discourse.

The equality predicate satisfies,

• the reflexivity axiom: ∀x : x = x;

Notes on Mathematics | 34



Mathematical Logic Predicate Logic

• the substitution axiom schema∗: ∀x∀y : (x = y)→ (Px↔ Py), where P is any predicate;

• the symmetry property : ∀x∀y : x = y → y = x;

• the transitivity property : ∀x∀y∀z : x = y ∧ y = z → x = y.

The last two properties are not axioms, as they can be proved from the first two, but are listed as they are
useful in proofs, and, together, they classify equality as a type of equivalence relation, which is discussed
in §4.4.2.

The substitution axiom schema also immediately gives a substitution rule which states that x = y,Px ⊢
Py†, or “Given x = y and Px, we can deduce Py.” Almost every proof you will have previously seen in
elementary algebra will have consisted purely of repeated applications of this rule.

Exercise. Prove the symmetry and transitivity properties of equality from the reflexivity axiom and
substitution axiom schema.

2.3.4 Formal Languages & Structures
It is helpful to distinguish between the symbols we write from the ideas we bind to those symbols.

A formal language is a list of symbols called an alphabet that concatenate into strings called sentences
or formulae according to some grammar or syntax rules. If a formula is part of a formal language, it is
well-formed .

A theory of any particular logic system (the set of all possible formulae) forms a formal language. A
formal language by itself only specifies the syntax of formulae, and not their semantics.

As an example, the following list of rules describes a formal language, L, over the alphabet, Σ =
{0,1,2,3,4,5,6,7,8,9,+ , =}:

• Every non-empty string that does not contain “+” or “=” and does not start with “0” is in L.

• The string “0” is in L.

• A string containing “=” is in L if and only if there is exactly one “=”, and it separates two valid
strings of L.

• A string containing “+” but not “=” is in L if and only if every “+” in the string separates two
valid strings of L.

• No string is in L unless implied by the previous rules.

The string “12 + 34 = 5678” is in L, but the string “+ = 12 =” is not. This formal language expresses
natural numbers, well-formed additions and well-formed addition equalities, but it only expresses what
they look like (syntax), and not what they mean (semantics). For example, the rules do not indicate
that the symbol “0” represents the number zero, the symbol “+” means addition, “12 + 34 = 5678” is
false, etc.

To assign semantics to a formal language, we use an interpretation function.

In propositional logic, an interpretation function assigns a truth value to each propositional symbol. But,
as it turns out, every language in propositional logic is equivalent, since the only differences between
different propositional logics is in what propositions we assign to each letter, i.e., “p” might represent
“Socrates is a philosopher” in one logic, but “The moon is made of green cheese” in another, but they

∗ An axiom schema is the generalisation of an axiom – an axiom only contains variables representing objects, but an
axiom schema can contain variables representing formulae. An axiom schema represents an infinite number of regular
axioms – in this case, the axiom schema is equivalent to having an individual axiom for each possible predicate that P
could represent.

† We will discuss the mysterious symbol ⊢ in more detail soon.

Notes on Mathematics | 35



Mathematical Logic Predicate Logic

function identically as a symbol – the only difference would be what truth value it is assigned by the
interpretation function, which is not part of the formal language. Another way to say this is that there
is only one zeroth-order language.

More generally, the alphabet of a formal language is further partitioned into logical and non-logical
symbols. A logical symbol is a symbol that is agreed to always have the same meaning. For example, ∀
always means “For all...” and ∧ always means conjunction. In contrast, non-logical symbols are things
like predicate symbols and function symbols that only have meaning when assigned one.

A signature lists the non-logical symbols of an alphabet, alongside some syntactic information about
those symbols. For each non-logical symbol, the signature identifies the symbol as a constant symbol, a
function symbol, or a predicate symbol. In the latter two cases, the signature also identifies the arity of
the symbol (we can also define constants as zero-arity functions and combine the two sets together).

In predicte logic, an interpretation function further provides the extension of formulae in a language – the
list of (ordered) arguments that make the formula true. For instance, an interpretation function could
take the predicate symbol Pa (for “a is a philosopher”) and assign it the extension {s} (for “Socrates”),
indicating that Ps is true. Note, however, that this is all the interpretation function does; it assigns the
extension {s} to the non-logical predicate symbol Pa, and says nothing about what the predicate symbol
Pa or constant symbol s actually stand for, because the underlying logic doesn’t care. The interpretation
also does not have anything to say about logical connectives, such as ∧, or any other logical symbol.

Unlike in propositional logic, there are many distinct first-order languages, each defined by its signature.
Given a signature, σ, we call the corresponding formal language the set of σ-formulae.

To assign a value to all the sentences of a first-order language, the following information is needed:

• A non-empty universe of discourse, D.

• For every constant symbol, an element of D as its interpretation.

• For every n-ary function symbol, a function Dn → D as its interpretation.

• For every n-ary predicate symbol, a subset of Dn as its extension.

or in other words, a universe of discourse, an interpretation function and a signature. These things
together form a structure (of signature-σ), or a σ-structure.

A structure with an interpretation in which all the sentences of a particular theory is true is called a
model.

In general, we can’t hope to find all possible models of a given theory as there are usually infinitely
many, but they are still useful to us: if we can find a model of a particular theory, then the existence of
the model demonstrates that the theory is consistent; and if we can find a model of the theory in which
some additional statement outside the theory, S, doesn’t hold, then we can demonstrate that S is not
provable from the theory (if T is the list of axioms that define the theory, then ¬(T ⊢ S).)

2.3.4.1 Examples

The theory defined by the sole axiom ¬∃x has exactly one model – it’s empty. Now, consider the theory
defined by the sole axiom ∃!x, or, ∃x∀y : y = x. It also has exactly one model, but now with a single
element. We can also force a model to have exactly k elements using a single axiom. For example, k = 3
is given by ∃x1∃x2∃x3∀y : y = x1 ∨ y = x2 ∨ y = x3 ∧ x1 ̸= x2 ∧ x2 ̸= x3 ∧ x3 ̸= x1. These elements are
indistinguishable, so there is again exactly one model, with 3 indistinguishable elements.

Suppose we have a predicate, P , and include the axiom ∃x : P (x). Now, we have infinitely many models:
take any non-empty model, and include at least one of its elements in the extension of P . If we have a
model with two elements, x and y with Px and ¬Py, we see that ∀x : Px does not hold, so ∃x : Px is
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not sufficient to prove ∀x : Px, since we have an example of a model where ∃x : Px holds but ∀x : Px
doesn’t. On the other hand, an empty model satisfies ∀x : Px ≡ ¬∃x : Px, but not ∃x : Px.

Now, suppose we have a function symbol S and constant symbol 0, and the single Peano axiom, ∀x∀y :
Sx = Sy → x = y. The natural numbers, N, and the integers, Z, are both models for this system, but so
is the set of integers modn, Zn, for all n. In each of the models, every element has a unique predecessor
as demanded by the axiom. Adding in the next Peano axiom, ∀x : Sx ̸= 0 eliminates Z and Zn, as those
sets contain elements that have 0 as a successor. But we don’t eliminate a model that consists of two or
three copies of N sitting next to each other, but only one contains the “official” 0 as a symbol, or even a
model that consists of a single copy of N, along with any number of copies of N, Z and Zn.

2.4 Proofs

A proof is a way to derive statements from other statements; we begin with axioms, theorems or lem-
mata∗, and premises or antecedents P , and use inference rules to derive the conclusion or consequent ,
Q. Anything not proven within a proof is called a hypothesis.

When we can prove a conclusion Q from premises P1,P2, . . ., we say that Q is deducible or provable
from P1,P2, . . ., and we write P1,P2, . . . ⊢ Q, using the turnstile symbol, ⊢. If Q is provable using only
inference rules without premises, we can write ⊢ Q. Note not all the premises need be required to prove
the conclusion; the list of premises merely needs to be sufficient to do so, as extra premises can always
remain unused. Alternative wording to “Q is provable from P ” include; “P (logically) entails Q”; “Q is
(logically) entailed by P ”; and “P yields Q”.

Note that provability, ⊢, is quite distinct from implication, →: if our inference rules are not sufficiently
strong, it may be true that P → Q is true, but Q is not provable from P . On the other hand, if our
inference rule are too strong (for example, strong enough to prove even false things), then we could have
P ⊢ Q, but P → Q be false.

We use ⊢ when we want to talk about whether a proof can exist in some logical system, while → is a
logical connective. Because ⊢ discusses the provability, which is outside the scope of a theory, it is a
metalogical symbol, while → is inside, making it a symbol in the object language of the logical system.

There are a couple properties of formal systems of interest:

• Decidability – a theory, T , is decidable if there exists a finite terminating procedure to determine
whether T ⊢ φ, where φ is any formula in the language.

• Syntactic Completeness – T is syntactically complete if every formula φ in the language of T is
either provable or disprovable: at least one of T ⊢ φ and T ⊢ ¬φ holds.

• Semantic Completeness – T is semantically complete if every true statement is provable.

• Consistency – T is consistent if there is no formula φ such that both φ and ¬φ are provable. Using
our new terminology, we can also say that T is consistent if it has a model.

Gödel’s completeness theorem shows a correspondence between semantic truths and syntactic provability
in predicate logic; that is, every consistent first-order theory has a model and is therefore semantically
complete.

However, we also have Gödel’s incompleteness theorems, a pair of theorems which put other limitations on
what logic systems can do. The first incompleteness theorem states that any axiom system for predicate
logic that is consistent and is also powerful enough to represent arithmetic is syntactically incomplete:
there are true statements, ST , that cannot be proven within T . The second incompleteness theorem

∗ A lemma (plural lemmata) is a theorem that is intended not as an end result, but as a tool to prove another theorem.
For this reason, they are also sometimes called helping theorems or auxiliary theorems. While on the topic, a corollary is
a theorem, often of less importance, that can be immediately deduced from a prior, more notable theorem.
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extends this result by showing that ST can be the sentence that expresses the consistency of T – so any
axiom system we choose for a first-order system will always be incomplete and cannot prove its own
consistency. Turing later showed that such an axiom system is also undecidable.

Fortunately, logicians have come up with a standard list of inference rules that are just strong enough
to prove everything we want and are not any stronger.

A proof is valid if and only if its conclusion is true whenever the premises are true.

For example, the proof,

• All men are mortal.

• Socrates is a man.

• Therefore, Socrates is mortal.

is valid, not because it has a true conclusion and premises, but because the conclusion is true whenever
the premises are true.

The proof,

• All fish can fly.

• Socrates is a fish.

• Therefore, Socrates can fly.

is equally valid, despite having false premises and a false conclusions.

In contrast, the proofs,

• All men are immortal.

• Socrates is a man,

• Therefore, Socrates is mortal.

and

• All apples are plants.

• All fruits are plants.

• Therefore, all apples are fruits.

despite having true conclusions, are invalid , because their conclusions are not logically deduced from
the premises. In the second invalid proof, both the premises and conclusion happen to be true in our
universe, but still is not a valid argument as the conclusion does not follow from the premises.

Validity is not to do with truth values, per se, but is to do with logical deduction. Another way to phrase
validity, is that the formula as a whole holds in all possible structures.

If a valid proof also has true premises, then it is sound : P ⊢ Q implies that P → Q is a tautology.
Conversely, if a logic system has every tautology as a theorem, it is (semantically) complete: P → Q
implies that P ⊢ Q.

If every sentence in a formal system is sound/complete, then the system itself is said to be sound/com-
plete.

2.4.1 Inference Rules
Our main source of inference rules is based off of tautologies of the form S1 ∧ S2 ∧ · · · → Q. Given such
a tautology, there is a corresponding inference rule that allows us to assert Q given that S1,S2 . . . all
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hold. We can do so by showing that Sn is an axiom/theorem/premise, or by proving them from other
axioms/theorems/premises.

The most important inference rule, modus ponens, is of this form, based on the tautology, (p ∧ (p →
q))→ q. This is what we use to prove,

1. If it is raining, then I wear a coat. (We assert p→ q is true)

2. It is raining. (And also that p is true)

3. Therefore, I wear a coat. (So modus ponens applied to 1 and 2 gives us q)

As well as horizontally with the turnstile symbol, inference rules can be given in the form,

Premise 1
Premise 2
Premise 3
· · ·

Conclusion
or

Premise 1 Premise 2 Premise 3 · · ·
Conclusion

with the horizontal line acting like a higher order version of ⊢: it lets us combine proofs into bigger
proofs.

Many important inference rules in classical propositional logic have been given names. Some of these
have been listed below.

p ⊢ p ∨ q Addition or disjunction introduction
p→ q, r → q,p ∨ r ⊢ q Disjunction elimination

p,q ⊢ p ∧ q Conjunction introduction
p ∧ q ⊢ p Simplification or conjunction elimination

p,p→ q ⊢ q Modus ponens
¬q,p→ q ⊢ ¬p Modus tollens

p→ q,r → s,p ∨ r ⊢ q ∨ s Constructive dilemma
p→ q,r → s,¬q ∨ ¬s ⊢ ¬p ∨ ¬r Destructive dilemma

p→ q ⊢ p→ (p ∧ q) Absorption
p→ q,p→ ¬q ⊢ ¬p Negation introduction
p→ q,q → r ⊢ p→ r Hypothetical syllogism

p ∨ q,¬p ⊢ q Modus tollendo ponens or disjunctive syllogism
p,¬(p ∧ q) ⊢ ¬q Modus ponendo tollens

p ∨ q,¬p ∨ r ⊢ q ∨ r Resolution

It isn’t really necessary to remember all the names, except perhaps modus ponens. Most of the other
rules can be derived from modus ponens combined with some tautologies or logical equivalences anyway.
For instance, the addition inference rule is just modus ponens applied to p and the tautology p→ (p∨q).

The first four just let us pack and unpack variables from various connectives. Modus ponens and modus
tollens let us apply implications. They are contrapositives of each other, so only one has to be memorised.
Constructive and destructive dilemma allows us to replace the variables in conjunctive statements given
certain implications. Absorption allows us to introduce conjunctions to proofs. Hypothetical syllogism
just states that implication is transitive, while disjunctive syllogism allows us to replace disjunctions if
we know one of the premises is false. Disjunctive syllogism is another rule that can be written in terms
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of modus ponens, this time through the logical equivalence, p∨ q ≡ ¬p→ q. For resolution to be useful,
we first have to discuss normal forms.

2.4.1.1 Conjunctive Normal Forms

A compound proposition is in conjunctive normal form or CNF if it is a conjunction of one or more
clauses, where a clause is a disjunction of atoms; it is an AND of OR statements. A compound proposition
is similarly in disjunctive normal form or DNF if it is the disjunction of one or more clauses, where a
clause is a conjunction of atoms; it is an OR of AND statements.

Propositions in CNF:

• p

• (p ∨ ¬q) ∧ r

• (p ∨ q) ∧ (¬p ∨ r) ∧ q ∧ (¬q ∨ ¬r)

• p ∧ ¬q ∧ r ∧ t ∧ ¬u ∧ v

Propositions not in CNF:

• (p ∧ q) ∧ (q ∨ r)

• (p ∨ q) ∧ (q→¬r) ∧ (¬p ∨ r)

• (p ∨ (q ∧ r)) ∧ (p ∨ ¬r)

Interchanging ∧ and ∨ above gives examples of clauses in and not in DNF.

Using the equivalence of material implication and disjunction, along with De Morgan’s laws and the
distributive laws, it is possible to rewrite any compound proposition in a normal form. However, applying
these laws blindly does not necessarily produce the simplest normal form for a compound proposition.

For example,

(P → Q) ∧ (¬P → Q) ≡ (¬P ∨Q) ∧ (P ∨Q)

≡ (¬P ∧ P ) ∨ (¬P ∧Q) ∨ (Q ∧ P ) ∨ (Q ∧Q)

≡ 0 ∨ (¬P ∧Q) ∨ (Q ∧ P ) ∨Q
≡ (¬P ∧Q) ∨ (Q ∧ P ) ∨Q

Inspecting the clauses closer, we see that Q controls the value of the entire expression, so a simpler CNF
for the proposition is just Q.

≡ Q

We should really draw out a truth table to prove this formally, but it should be clear enough that this
is true.

The CNF in particular is useful because it supports resolution well. We can construct proofs from CNF
formulae by looking at occurences of some proposition and its negation and resolving them, generating
a new clause called a resolvent . For example,

(P ∨Q) ∧ (P ∨ ¬R) ∧ (¬P ∨Q) ∧ (¬Q ∨R)
⊢(P ∨Q) ∧ (P ∨ ¬R) ∧ (¬P ∨Q) ∧ (¬Q ∨R) ∧Q
⊢(P ∨Q) ∧ (P ∨ ¬R) ∧ (¬P ∨Q) ∧ (¬Q ∨R) ∧Q ∧R
⊢(P ∨Q) ∧ (P ∨ ¬R) ∧ (¬P ∨Q) ∧ (¬Q ∨R) ∧Q ∧R ∧ P
⊢P,Q,R
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Resolution is not as useful for humans, but, due to its mechanical simplicity, is very popular with
computer theorem provers. This topic is covered in more detail in a later chapter on automated theorem
proving and program verification.

2.4.2 Implication and Natural Deduction
As discussed earlier, provability and implication are distinct, the former being metalogical in nature, and
the latter being a logical statement within the logical system.

However, due to our choice of premade inference rules stolen from other clever logicians, these two notions
often coincide.

For example, suppose that P → Q is provable without any assumptions, so we can write,

⊢ P → Q

Because extraneous premises are allowed, we may also write,

P ⊢ P → Q

P ⊢ P,P → Q

And, apply modus ponens to the right hand side, we get,

P ⊢ Q

so we can go from ⊢ P → Q to P ⊢ Q. In this sense, provability is weaker than implication: assuming
modus ponens, provability holds whenever implication does. This fact isn’t used much, since we are
generally more interested in implication, but can we go the other way?

2.4.2.1 The Deduction Theorem

A proof normally shows that, given a set of axioms, Γ, if a set of premises, P1,P2, . . . ,Pn holds, then
the conclusion, Q, holds. To use this result later, it’s useful to be able to package the proof up as the
implication, P1 ∧ P2 ∧ · · · ∧ Pn → Q.

In other words, we want to go from Γ,P1,P2, . . . ,Pn ⊢ Q to Γ ⊢ (P1 ∧ P2 ∧ · · · ∧ Pn)→ Q.

The deduction theorem is a metatheorem – a theorem about the logical system itself – that says exactly
that: if Q is deducible from a set of premises, Γ,P1,P2, . . . ,Pn, then the implication (P1∧P2∧· · ·∧Pn)→ Q
is deducible from Γ alone.

In the special case that Γ is the empty set, then the deduction theorem says that P ⊢ Q implies ⊢ P → Q.

The proof of the deduction theorem depends on the logic system and the set of inference rules we start
with, and is already rather complex just for propositional logic, so it is omitted. The main idea is that
there is an efficient algorithm that extracts a proof of the desired implication given the proof of Q given
the premises.

The deduction theorem does not apply if any of the premises contain free variables. Fortunately, for
most of the things we like to work with, this is usually not the case.

2.4.2.2 Natural Deduction

In practice, we don’t refer to the deduction theorem directly, instead adding a new inference rule,

Γ,P ⊢ Q
Γ ⊢ P → Q
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which says that, if we can prove Q with premises Γ and P , then we can prove P → Q with premise Γ.

This type of inference rule where we track the assumptions behind every particular result is called natural
deduction, and was invented to make inference rules function more like how actual mathematical proofs
do, as opposed to the modus-ponens-only method that modern logicians had previously been using.

The rule above, in particular, is called implication introduction. The corresponding implication elimina-
tion is just modus ponens,

Γ ⊢ P → Q Γ ⊢ P
Γ ⊢ Q

We can also rewrite the list from above like this, (also further explaining the introduction and elimination
names), as well as some extras:

Introduction Rules Elimination Rules

Γ,P ⊢ Q Γ,P ⊢ ¬Q
Γ ⊢ ¬P

(¬I)
Γ,¬P ⊢ Q Γ,¬P ⊢ ¬Q

Γ ⊢ P
(¬E)

Γ ⊢ P
Γ ⊢ ¬¬P

(¬¬I)
Γ ⊢ ¬¬P
Γ ⊢ P

(¬¬E)

Γ ⊢ P Γ ⊢ Q
Γ ⊢ P ∧Q

(∧I)
Γ ⊢ P ∧Q
Γ ⊢ P

(∧EL)
Γ ⊢ P ∧Q
Γ ⊢ Q

(∧ER)

Γ ⊢ P
Γ ⊢ P ∨Q

(∨IL)
Γ ⊢ Q

Γ ⊢ P ∨Q
(∨IR)

Γ ⊢ P ∨Q Γ ⊢ ¬Q
Γ ⊢ P

(∨EL)
Γ ⊢ P ∨Q Γ ⊢ ¬P

Γ ⊢ Q
(∨ER)

Γ ⊢ P → Q Γ ⊢ R→ Q Γ ⊢ P ∨R
Γ ⊢ Q

(∨E)

Γ ⊢ ⊤
(⊤I) No ⊤ elimination

No ⊥ introduction
Γ ⊢ ⊥
Γ ⊢ Q

(⊥E)∗

Γ,P ⊢ Q
Γ ⊢ P → Q

(→ I)
Γ ⊢ P → Q Γ ⊢ P

Γ ⊢ Q
(→ EL)

Γ ⊢ P → Q Γ ⊢ ¬Q
Γ ⊢ ¬P

(→ ER)

Γ ⊢ P → Q Γ ⊢ Q→ P

Γ ⊢ P ↔ Q
(↔ I)

Γ ⊢ P ↔ Q

Γ ⊢ P → Q
(↔ EL)

Γ ⊢ P ↔ Q

Γ ⊢ Q→ P
(↔ ER)

Γ ⊢ Py
Γ ⊢ ∀x : Px

(∀I) Γ ⊢ ∀x : Px

Γ ⊢ Py
(∀E)

Γ ⊢ Py
Γ ⊢ ∃x : Px

(∃I) Γ ⊢ ∃x : Px

Γ ⊢ Py
(∃E)

2.4.3 Inference Rules for Equality
The equality predicate is special in that it allows for the substitution inference rule,

x = y,Px ⊢ Py

and we can also assert x = x directly:
⊢ x = x

∗ The Q here is not a mistake: it’s saying that if you can prove ⊥ from Γ, then you can prove any statement you want
– this is the principle of explosion written out in the language of natural deduction.
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If we didn’t want to include the substitution rule as an inference rule, we could instead represent it as
an axiom schema,

∀x∀y : (x = y ∧ Px)→ Py

2.4.4 Inference Rules for Quantified Propositions
In terms of natural deduction, these rules are the introduction and elimination rules for ∀ ad ∃.

2.4.4.1 Universal Generalisation

If y is an arbitrarily selected variable in the universe of discourse, then

Γ ⊢ Py
Γ ⊢ ∀x : Px

which is to say, if we know that Py is true, and we have assumed nothing about y, then Px is true for
all x.

2.4.4.2 Unversal Instantiation

Conversely, we have,
∀x : Qx ⊢ Qc

which says that a specific statement about c is provable from a general statement about all possible
values x, that is, if P holds for all elements in the universe of discourse, and c is an element of the
universe of discourse, then Pc holds.

For example, “Given that all humans are mortal, it follows that the human called Socrates is mortal.”

2.4.4.3 Existential Generalisation

Essentially the opposite of universal instantiation,

Pc ⊢ ∃x : Px

this says that, if we want to show that Px holds for at least one x, and we know that Pc holds, then we
can use c as our example of x. This style of proof is proof by construction or proof by example.

For instance, if we are asked to prove that there exists an even prime number, we can produce the
example 2, and this is sufficient.

Despite the name, these proofs are not always constructive. For example, earlier (§2.2.3) we proved that
there exists two irrational numbers a and b such that ab is rational, but we only did so by producing
two candidates for ab and proving that at least one of them is rational – we never actually identified one
single object which makes the statement true.∗

Constructive proofs are generally more useful than non-constructive proofs, because the constructed
example often has additional useful properties, or is helpful in other contexts. In some schools of thought
and logic systems, non-constructive proofs aren’t even considered proofs.

One particular example of this is intuitionistic logic. In this system, the law of the excluded middle also
does not hold, nor does double negation: a proposition is only true when directly proved to be so. Rather
than preserving truth-values, operations in intuitionistic logic instead preserve justification with respect
to evidence.

∗ It turns out that not only is
√
2
√
2 irrational, it is also trancendental. The proof of this is, however, non-trivial – see the

Gelfond-Schneider theorem. Fortunately, picking a =
√
2 and b = log2 9 gives us an easy constructive proof with ab = 3.
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Intuitionistic logic is often objected to due to this lack of law of excluded middle and double negation
elimination – two central rules of classical logic. Hibert himself wrote, “Taking the principle of excluded
middle from the mathematician would be the same, say, as proscribing the telescope to the astronomer
or to the boxer the use of his fists. To prohibit existence statements and the principle of excluded middle
is tantamount to relinquishing the science of mathematics altogether.”

However, intuitionistic logic does have applications. It has been proven that, given a constructive proof
that an object exists, an algorithm for generating examples can be constructed from the proof – con-
structive proof systems and computation models are really the same type of mathematical objects. See
the Curry-Howard correspondence for more.

2.4.4.4 Existential Instantiation

∃x : Px ⊢ Pc

with the restriction that the symbol c has not been used previously.

This says that because we know that P holds for at least one element of the universe, we can give it a
name, say, c.

We do this whenever we say “Let x be some number such that... holds...”, assuming we know that
whatever is supposed to hold does indeed have values that work.

2.4.5 Proof Techniques
A proof technique is a framework to guide you along proving certain types of statements. This doesn’t
mean you don’t have to think about what you’re doing, but it’ll give you a idea of what you should be
trying.

The following table gives techniques to try for proving A→ B, mostly classified by the structure of B.

To prove A↔ B, prove A→ B and B → A separately.
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Name When Assume Conclude Description
Direct proof First strategy

to try.
A B Apply inference rules and work from A

to B. May be helpful to work backwards
from B at the same time and meet in the
middle.

Contraposition B = ¬Q ¬B ¬A Apply any other strategy to show ¬B →
¬A, then use the contraposition rule.

Contradiction B = ¬Q A ∧ ¬B ⊥ Apply any other strategy to prove both
P and ¬P for any P and invoke the law
of non-contradiction to conclude that the
premise must therefore be false.

Construction B = ∃x : Px A Pc Pick a c and use any other strategy to
prove Pc holds.

Counterexample B = ¬∀x : Px A ¬Pc Pick a c and use any other strategy to
prove ¬Pc holds. This is identical to proof
by construction, except we’ve applied De
Morgan’s laws to the quantifiers.

Universal Gen-
eralisation

B = ∀x : Px→
Qx

A,Pc Qc Assume A and Pc hold for some arbitrary
c. Apply any other strategy to prove that
Qc holds, but do not assume any extra
information about c outside of what Pc
gives you. For example, if Pc is “c is
even”, you can use the fact that 2 divides
c evenly, but not the assumption that, for
example, c is positive or that c is compos-
ite, because Pc doesn’t give you enough
information to deduce that.

Universal In-
stantiation

A = ∀x : Px A B Pick a specific c and use any other strat-
egy to prove Pc → B. Because A holds
for all x, this time, we’re allowed to pick
a specific c and use all its properties.

Case Analysis A = C ∨D C,D B Assume C and prove B. Then, assume D
and prove B. Effectively, A tells you that
at least one of C and D is true. If both in-
dividually imply B, then A certainly does
too.

Induction B = ∀x ∈ N :
Px

A P (n)
and
∀n ∈
N :
P (n) →
P (n+1)

Discussed in §5.
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2.4.6 An Example
Real proofs that humans write are usually written as a combination of natural language and formal
logical notation. However, it should be possible to translate any natural language proof into a purely
logical one. There is little reason to do so, but as mathematicians, that has never stopped us.∗

2.4.6.1 Axioms for Even Numbers

Using the Peano axiom convention of writing numbers in terms of the successor function, we can define
even numbers using the following axioms:

A1: ∀x : Ex↔ (x = 0 ∨ (∃y : Ey ∧ x = SSy));

A2: ∀x : 0 ̸= Sx;

A3: ∀x∀y : Sx = Sy → x = y.

where we interpret Ex to mean that x is even. The first axiom concerns even numbers, while the last
two are extra properties about S which will be required later.

2.4.6.2 A Theorem

Theorem 2.4.1. The following propositions are true;

1. E0;

2. ¬E(S0);

3. E(SS0);

4. ¬E(SSS0);

5. E(SSSS0);

Proof.

1. Directly true from axiom A1.

2. We prove this statement through contradiction. Suppose E(S0) holds, so either S0 = 0, or S0 =
SSy for some y such that Ey holds. The first case contradicts A2, while applying A3 to the second
case gives S0 = SSy → 0 = Sy which again contradicts A2. It follows that the original assumption
that E(S0) is true does not hold.

3. We prove this through existential instantiation. SS0 = 0 contradicts A2, so, from A1, E(SS0)
holds only if there exists y such that Ey holds and SS0 = SSy. Let y = 0. Ey then holds from
A1, and SS0 = SSy as desired, so the statement holds.

4. From A2, we know SSS0 = 0 does not hold, so E(SSS0) holds only if there exists y with Ey and
SSS0 = SSy. Applying A3 twice gives SSS0 = SSy ↔ S0 = y, but we already know ¬E(S0), so
¬E(SSS0).

5. Since E(SS0) and SSSS0 = SS(SS0), E(SSSS0).

■

We can do these proofs again but in formal logic notation, explicitly writing down our inference rules.
Because it takes so much space, we do this only for the proof of ¬E(S0).

∗ Please do not actually do this. “Symbol spaghetti” is considered bad form exactly because it’s so unreadable.
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The goal of the proof is to show A1,A2,A3 ⊢ ¬E(S0). Because they’ll come up together every line, we’ll
group up the axioms into Γ = {A1,A2,A3}. Our strategy is to show Γ ⊢ E(S0) → Q for some Q such
that Γ ⊢ ¬Q, then apply modus tollens to get the desired Γ ⊢ ¬E(S0).

Proof.

Γ ⊢ E(S0)↔ (S0 = 0 ∨ ∃y : Ey ∧ S0 = SSy) ∀E applied to A1

Γ ⊢ E(S0)→ (S0 = 0 ∨ ∃y : Ey ∧ S0 = SSy) ↔ E and ∧E.
Γ,E(S0) ⊢ S0 = 0 ∨ ∃y : Ey ∧ S0 = SSy → E
Γ,E(S0) ⊢ ¬(S0 = 0) ∀E applied to A2

Γ,E(S0) ⊢ ∃y : Ey ∧ S0 = SSy Combine previous two steps with ∨EL

Γ,E(S0) ⊢ Ez ∧ S0 = SSz ∃E
Γ,E(S0) ⊢ S0 = SSz ∧EL

Γ,E(S0) ⊢ S0 = SSz ↔ 0 = Sz ∀E applied to A3

Γ,E(S0) ⊢ S0 = SSz → 0 = Sz ↔ E and ∧E.
Γ,E(S0) ⊢ 0 = Sz → EL applied to S0 = SSz and S0 = SSz → 0 = Sz

Γ ⊢ E(S0)→ 0 = Sz → I
Γ ⊢ ¬(0 = Sz) ∀E and A2

Γ ⊢ ¬E(S0) → ER

■

One thing of note is how E(S0) moves in front of the turnstile in the middle of the proof. This is a
common technique, and is what is happening behind the scenes whenever a natural language proof says
“Suppose P holds...”.

Using P , or specifically in this case, E(S0), as an assumption saves us from repeatedly writing “if P ,
then...”, and is what allows us to separate out the variables from P → Q and apply inference rules to Q.

2.4.6.3 A More General Theorem

So far, we have only proved results about a few specific numbers, but we can prove some results about
infinitely many numbers.

Theorem 2.4.2. ∀x : Ex→ E(SSSSx): for all x, if x is even, then SSSSx is also even.

We write the proof with inference rules again, combining or omitting some less interesting steps.

Proof.

Γ,Ex ⊢ (∃y : Ey ∧ SSx = SSy)→ E(SSx) A1, ∀E, ∨EL

Γ,Ex ⊢ Ex Any premise is provable
Γ,Ex ⊢ SSx = SSx Reflexivity of =
Γ,Ex ⊢ Ex ∧ SSx = SSx ∧I applied to previous two steps
Γ,Ex ⊢ ∃y : Ey ∧ SSy = SSx Let y = x

Γ,Ex ⊢ E(SSx) Modus ponens
We have shown Ex→ E(SSx).
Now do all of this again to show E(SSx)→ E(SSSSx) (omitted).
Γ ⊢ E(SSSSx) → I
Γ ⊢ Ex→ E(SSSSx) → I
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Γ ⊢ ∀x : Ex→ E(SSSSx) ∀I

■

If we were to write out the skipped parts, it might make sense to first prove a lemma ∀x : Ex→ E(SSx),
then just apply it to x twice.

The assertion that an even x exists (Ex is to the left of ⊢ for most of the proof) does a lot for us: it both
introduces a new symbol x which we use for universal generalisation (∀E), and the assumption that it is
even allows us to use the deduction theorem (→ E). Note that we can’t apply universal generalisation
until Ex is no longer an assumption (it is moved to the right of ⊢), because universal generalisation only
works if x is not used in the assumptions.

2.4.6.4 Another Claim

Something we know about the natural numbers is that, if x is even, then x + 1 is odd, and vice versa.
Formally, this is written as,

Claim. ∀x : Ex↔ ¬E(Sx): for all x, x is even if and only if Sx is not even.

Unfortunately, our axiom system is not sufficiently strong to prove this claim.

Here is a model that satisfies the axioms, but for which the claim fails:

• Include the natural numbers in our model, 0, S0, SS0, etc.

• Include an extra unnatural number, u, such that u = Su and Eu.

Including this extra number doesn’t violate any axioms. A1 is satisfied since Eu↔ E(SSu) holds, since
both u and SSu are even; A2 is satisifed, since 0 ̸= Su = u; and A3 is satisfied since Sx = Sy ↔ x = y
holds whenever x and y are both natural or both unnatural, and also if one is natural and the other is
not, since x ̸= y and Sx ̸= Sy would both then hold.

But, Eu holds and E(Su) = Eu, which also holds, contradicting our claim. So, if we want the successor
of any even number to be odd, we need a stronger set of axioms.

What we are really missing here is the axiom schema of induction, which says that (P (0)∧ ∀x : P (x)→
P (Sx))→ ∀x : P (x): if a proposition holds for 0, and P (x) implies that P (Sx) also holds, then P holds
for all x.

Notes on Mathematics | 48



Chapter 3

Iterated Notation

“A problem well stated is a problem half-solved.”
— Charles Kettering

Almost all of the operations we have been working with are binary, and only take two arguments. In
maths, it is not uncommon for us to chain, or iterate, these operations together.

If f is a general binary operation, and x1,x2, . . . xn is a sequence of valid arguments, then we write
f/(x1,x2, . . . xn) to indicate the iteration of f over that sequence.†

For some special binary operations, however, we have some more common standard notation.

3.1 Summation

Perhaps the most commonly iterated binary operation is addition. Given a sequence, x1,x2, . . . xn, its
sum, x1 + x2 + · · ·+ xn is written as the summation,

b∑
i=a

xi

or, written inline as,
∑b
i=a xi. The large symbol is an elongated capital Greek letter sigma, for sum. The

variable i is the index (of summation), a is the lower bound or lower limit, and b is the upper bound or
upper limit. In this expression, i is a bound variable, while a and b are free (§2.3.1).

This is essentially the mathematical notation for a for loop; we loop through all values of i between a
and b, including both endpoints, summing up the body of the summation for each value of i. That is,
the expression,

b∑
i=a

f(i)

means, set i equal to a, then substitute it into the expression f to obtain f(a), increment i by 1, then
repeat until i is equal to b, so,

b∑
i=a

f(i) = f(a) + f(a+ 1) + f(a+ 2) + · · ·+ f(b− 1) + f(b)

† You may recognise this notation as the second-order function, fold or reduce in computer science.
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If b < a, then the summation evaluates to zero. For instance,

1∑
i=2

sin (ζ(−i)) erf(exp i)
Γ ( i
√
π)

= 0

This rule doesn’t generally matter, and only really comes up as a boundary case for more general formulae.
For example, the sum of the first n naturals can be given by,

n∑
i=1

i =
n(n+ 1)

2

This formula still holds if n = 0, returning zero due to this rule. The equality still holds for n = −1 as
well, but not for n ≤ −2. The proof of this formula is commonly done by weak induction (§5.1).

Summation notation is used both to save space – it is easier to write
∑100
i=1 i

2 than to write 1 + 4 +
9 + 16 + · · · + 100 000 – and also for clarity – note that the reader had to assume what the · · · symbol
indicated, while in summation notation, the expression is unambiguously interpreted as the sum of the
first 100 square numbers.

3.1.1 Formal Definition
A summation is more formally defined as the recurrence,

b∑
i=a

f(i) =

{
0 b < a

f(a) +
∑b
i=a+1 +f(i) b ≥ a

So, we recursively compute a summation by repeated extracting the bottom value out from the summa-
tion. For example, we would evaluate this summation as,

3∑
i=0

i2 = 02 +

3∑
i=1

i2

= 02 + 12 +

3∑
i=2

i2

= 02 + 12 + 22 +

3∑
i=3

i2

= 02 + 12 + 22 + 32 +

3∑
i=4

i2

= 02 + 12 + 22 + 32 + 0

= 14

This definition readily applies to negative integer bounds,

1∑
i=−2

i2 = (−2)2 +
1∑

i=−1

i2

= (−2)2 + (−1)2 +
1∑
i=0

i2

= (−2)2 + (−1)2 + 02 +

1∑
i=1

i2
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= (−2)2 + (−1)2 + 02 + 12 +

1∑
i=2

i2

= (−2)2 + (−1)2 + 02 + 12 + 0

= 6

This definition of a summation is also technically defined for non-integer bounds as well,

9
4∑

i=− 1
2

i2 =

(
−1

2

)2

+

9
4∑

i= 1
2

=

(
−1

2

)2

+

(
1

2

)2

+

9
4∑

i= 3
2

=

(
−1

2

)2

+

(
1

2

)2

+

(
3

2

)2

+

9
4∑

i= 5
2

=

(
−1

2

)2

+

(
1

2

)2

+

(
3

2

)2

+ 0

=
11

4

but this is confusing, and very uncommon. In particular, the lower bound is almost always an integer
value. However, the upper bound will occasionally be a division, or some other expression that doesn’t
return a round integer. For instance, you could imagine that we might want to sum up all the natural
numbers less than half of some variable, which we would write as,

n
2∑
i=0

i

and the b < a returning 0 handles the possibly non-integer upper bound. However, we often include a
floor or ceiling function (§34) to clarify where the summation should terminate.

If b − a is an integer, then we can also evaluate a summation by extracting terms from the top if it is
more convenient.

Lemma. If b− a is an integer, then,

b∑
i=a

f(i) =

{
0 b < a

f(a) +
∑b−1
i=a +f(i) b ≥ a

Proof. If b < a, then the summation returns a zero, as before. Otherwise, b ≥ a. We induct (§5.2) on
b− a.

If b− a = 0, then,

b∑
i=a

f(i) = f(a)

= f(b)

= f(b) +

b−1∑
i=a

f(i)
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Else, if b− a > 0, then b− a > b− a− 1 = b− (a+ 1), and,

b∑
i=a

f(i) = f(a) +

b∑
i=a+1

f(i)

= f(a) + f(b) +

b−1∑
i=a+1

f(i)

= f(b) +

b−1∑
i=a

f(i)

where the first and last equality hold by the recursive definition of summation, and the middle equality
holds by the strong induction hypothesis. ■

Again, while this lemma holds for non-integer bounds as long as they have an integer difference, in
practice, we will generally only encounter summations where both bounds are integers.

3.1.2 Scope

3.1.3 Linearity

3.1.4 Index Variables

3.1.5 Indexing Sets

3.1.6 Series

3.1.7 Double Sums

3.1.8 Closed Forms

3.1.9 Standard Sums

3.2 Products

3.3 Sets

3.4 Intersections

3.5 Unions

3.6 Logical Connectives
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Chapter 4

Introduction to Set Theory

“The Axiom of Choice is necessary to select a set from an infinite number of pairs
of socks, but not an infinite number of pairs of shoes.”

— Bertrand Russell, Introduction to mathematical philosophy

This chapter is intended as a brief and informal introduction to set theory, with a focus on concepts that
appear frequently in other fields of mathematics. For a more in-depth and formalised treatment of the
subject, see the following chapter, §6.

4.1 Introduction

Set theory is the branch of mathematical logic that studies sets, which are, informally, “collections of
other objects”. Set theory is the most common choice for the foundational system of mathematics, the
idea being, if you can write everything else in terms of sets – numbers, relations, functions – and you
have a consistent theory about sets, then you can be sure that everything built from sets also behaves
consistently. If symbolic logics are the syntax of mathematics, then set theory forms its alphabet.

One nice thing about set theory is that it only requires one additional predicate over the standard ones
packaged with predicate logic – the membership or element predicate, ∈, where x ∈ S means that x is
an element of the set S. S can also be completely identified by a list of all x that satisfies x ∈ S, and
every other predicate in set theory can be defined in terms of ∈ and logical connectives.

We begin with naïve set theory , a non-formalised theory discussed in natural language. In ordinary naïve
set theory, any collection of objects can form a set. Unfortunately, not restricting the definition of a set
in this way causes some paradoxes, which are not ideal for something we want to use as the foundation
of mathematics, so we use axiomatic set theory instead, where we only use sets which we can prove to
exist from the axioms. There are several consistent∗ and completely incompatible ways to axiomatise
set theory, but the most popular choice is Zermelo-Fraenkel set theory with Choice, or ZFC .

4.2 Naïve Set Theory

Naïve set theory is the informal version of set theory that uses natural language to describe sets and
operations on them.

∗ Again, Gödel’s incompleteness theorem means that any sufficiently complicated first-order logic system (this includes
almost all axiomatic set theories) cannot be proved consistent from within the theory itself, but it is generally believed
that the most common axiomatic systems are consistent, as they do exclude some paradoxes.
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A set is a well-defined collection of objects called elements or members.

Notice, however, that this definition of a set doesn’t actually tell us how sets are formed, and what
operations on a set will produce another set.

As previously mentioned, several paradoxes occur if we do not restrict the definition of a set, which we
do with axioms in axiomatic set theory. However, naïve set theory is not necessarily inconsistent either,
if it specifies the sets allowed to be considered with definitions. Unfortunately, “well-defined” by itself
doesn’t sufficiently and unambiguously guarantee what does and does not constitute a set.

For this section, “well-defined” is interpreted as an intention to rule out inconsistencies: the paradoxes of
naïve set theory only occur in specific contexts, and is usually irrelevant to the usually simpler context
in which we’re working.

Throughout this section, we will point out some problems in naïve set theory and name the axioms in
ZFC which resolve them, but will not discuss them yet.

4.2.1 Specifying Sets
The simplest way to specify a set of objects is to list them between curly brackets – this is known as
defining a set extensionally . For instance, 2 is in the set {1,2,3} – the set containing 1, 2 and 3 – and
is also in the set of even integers. The set of even integers is clearly infinite, so there is no requirement
that sets need be finite in size. Sets can also be empty – there is a unique set with no elements called
the empty set , denoted ∅, but we could also write the empty set as {}.

This notation can also be informally abused by writing something like, {dogs} to indicate “the set of
all dogs” with the word itself acting as a descriptor, but this set, as written, could be interpreted by
mathematicians to be “the set containing the single element “dogs”.”

We also have the universe of discourse, denoted U , which is the set of everything relevant for whatever
we’re working on. We use the symbol ∈ to denote membership and ̸∈ for its negation, so we could
write 2 ∈ {1,2,3}, or 4 ̸∈ {1,2,3}. We can also reverse the symbol and write ∋ for “has an element”, so
{1,2,3} ∋ 2.

In principle, elements can be anything we want. For instance, this is a (somewhat unusual and not very
prototypical) set containing a wide variety of elements:

{512,{e},dogs,{1,2},{36,{{5,3},{1,cats},8},∅,{7}}}

But, we usually just care about only having mathematical objects as elements, such as numbers, or even
other sets, which themselves will contain other elements. For instance, the set above contains {1,2} and
{36,{{5,3},{1,cats},8},∅,{7}} which are sets, the latter of which contains even more sets. An element of
a set which is not itself a set is called a urelement , so 512 and “dogs” are urelements in the set above. In
contrast, a hereditary or pure set, is a set whose elements are hereditary sets – that is, all elements of a
hereditary set are themselves sets, and all elements of elements are sets, and so on.

Note that ∈ only represents direct membership, so the set {{1}} is “the set containing the set containing
1”, but doesn’t contain 1 itself, so {1} ∈ {{1}} but 1 ̸∈ {{1}}. That is, membership is not transitive.
There is also no standard notation for being an element of an element, or other nested memberships.

Two sets, A and B are equal when the contain precisely the same elements (in axiomatic set theory, this
is the axiom of extensionality) – that is, every element of A is an element of B, and every element of B
is an element of A. This means that a set is completely determined by its elements, not its description,
so the set with elements 2, 3 and 5 is equal to the set of all prime numbers less than 6. If A is equal to
B, then we write A = B as you might expect.

Another side effect of this definition of equality is that sets are unordered and elements are unique, which
means that we don’t care about the order of the objects, and we don’t care about duplicates, so, these

Notes on Mathematics | 54



Introduction to Set Theory Naïve Set Theory

sets are all equal:
{1,2,3} = {3,2,1} = {1,1,1,3,1,3,2,3,3,2}

As well as defining sets extensionally, we can define them intensionally by writing {x : P (x)} or some-
times, {x | P (x)}∗ which denotes the set containing all objects for which the condition P holds. This
notation is called set-builder notation or set comprehension, particularly in the context of functional
programming.† Some variants of this notation include,

• {x ∈ A : P (x)}: the set of all x that are members of A such that P holds. For example, {x ∈
Z : x is even} is the set of all even integers. In axiomatic set theory, this is justified by the axiom
schema of specification.

• {F (x) : x ∈ A}: the set of all objects obtained by putting the members of the set A into the
formula F . For example, {2x : x ∈ Z} is also the set of even integers. In axiomatic set theory, this
is justified by the axiom of replacement.

• {F (x) : P (x)}: the most general form of set-builder notation, denoting the set of objects obtained
by putting the members of the set of all objects such that P holds into the formula F .

So if we wanted to write down the set of all dogs, we should really write {x : x is a dog}.

The idea that any predicate P generates a set is called unrestricted comprehension. Unfortunately, this
seemingly reasonable idea happens to be too strong, and directly leads to contradictions. For example,
Russell’s paradox : if R = {x : x ̸∈ x}, then R ∈ R ↔ R ̸∈ R.‡ In axiomatic set theory, this problem
is solved by the axiom schema of specification (which is alternatively known as the axiom schema of
restricted comprehension for this reason).

Sometimes, it is useful to be able to refer to multiple sets at once. We call a collection of sets a family
of sets. A family isn’t necessarily a set, because it may contain duplicates which we care about.

4.2.2 Set Operations
The union of two sets A and B is the set of all objects which are elements of A or of B, or or both
(axiom of union), and is denoted A ∪B. Unions are the set-theoretic version of ∧.

The intersection of A and B is the set of all objects which are both in A and in B, denoted A ∩ B.
Intersections correspond to ∨.

The relative complement of B relative to A or the set-theoretic difference of A and B (note the different
order), is the set of all objects that are in A but not in B, written as A \B or sometimes as A−B.§

∗ This latter notation can cause issues when P includes absolute values, norms, or other similar notations. For example,
{x : ∥x∥ > 0} is slightly clearer than {x | ∥x∥ > 0}.

On the other hand, if our predicate or elements were functions and we needed to write down the domain and codomain
within the set (this happens if, for example, we are indexing by the domain or codomain in some way), then {ι : A ↪→ X |
A ⊆ X} is clearer than {ι : A ↪→ X : A ⊆ X}.

One other problem with : is that sometimes quantifiers (and type annotators) are separated with :. However, quantifiers
essentially never appear on the left side of a set written in set-builder notation, and are moreover always on the right side
of a ∀ or ∃ symbol, so ambigous cases are effectively non-existent.

In any case, both notations are very popular, so either is acceptable, but we will generally use the former.
† Some high-level programming languages, such as Haskell (which is a purely functional language) and Python have

similar built-in methods called list comprehension, which is almost the same thing as set comprehension, except that order
does matter for lists, and duplicates can be included. In maths, we call ordered sets that can contain duplicate elements
tuples, and sets which can contain just duplicate elements multisets. Note, however, that “tuple” in Python refers to an
unmodifiable list, which is a very different data structure. Tuples in mathematics must also have finite cardinality. In
computer science, this also happens to be the case, but is less of a design decision than a limitation of our physical reality.

‡ Other related problems include the barber paradox and the Grelling-Nelson paradox , which can both be rephrased in
terms of set-theory and Russell’s paradox.

§ We highly discourage this latter notation because A − B could refer to {a − b : a ∈ A,b ∈ B} (the Minkowski
difference or geometric difference of A and B), and similarly, we don’t write A+B for A ∪B, because this could refer to
{a + b : a ∈ A,b ∈ B} (the Minkowski sum or dilation of A and B). A \ B, on the other hand, has far fewer notational
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In contrast to the relative complement, we also have the absolute complement of A, which is the set of
objects that are not in A, corresponding to the notion of negation. There are various notations for this,
including AC , A′ and Ā. Note that the set of objects being considered must implicitly belong to the
universe set, so another way to write this is U \A.

The symmetric difference of A and B is the set of all objects which are in A or in B, but not both,
written as A△B. Symmetric differences correspond to ⊻.

Given two sets, A and B, A is a (non-strict) subset of B if every element of A is also an element of B,
and is written A ⊆ B. Note that if A = B, this still holds, so every set is a subset of itself. If A ̸= B but
A ⊆ B, we say that A is a proper or strict subset, denoted as A ⊂ B. As with ∈, we can reverse these
symbols to represent supersets.∗ Subsets are the set-theoretic version of →.

Note that in natural language, there are two ways for a set to be “in” another set: A ∈ B and A ⊆ B.
These two notions of being inside another set do not always coincide – it is possible for one of these to
be true, and the other false.

For example,

• A = {1}, B = {{1}}. A ∈ B, but A ̸⊆ B, because the set {1} is in B, but 1 is not, so A contains
elements that are not in B.

• A = {1}, B = {1,2,3}. A ⊆ B (and A ⊂ B as well), but A ̸∈ B, because B doesn’t contain an
element {1}.

We will try use the wording “is in” for ∈ and “is contained in” for ⊆ in natural language definitions and
discussions, but it is safest to refer any the symbolic definitions included.

The power set of a set A is the set of all subsets of A, and is written P(A).

The cardinality of a set A is the number of elements in A, and is written |A|. The cardinality of the
power set of A is |P(A)| = 2|A|. This is because every subset either contains or doesn’t contain any
particular element, so each element is a binary choice, and there are 2|A| possible ways to include or not
include the |A| elements, with each selection of inclusions giving a different unique subset.

If the intersection of two sets is the empty set, the two sets are disjoint . If a family of sets are all pairwise
disjoint, they are mutually exclusive. If the union of two sets A and B is equal to a set C, then we say
A and B cover or exhaust C. If the sets A,B,C, . . . are mutually exclusive and cover a set, S, then they
form a partition of S and we say that S is partitioned by A,B,C, . . ..

We can write all of these set operations and relations in terms of logical connectives in set-builder
notation:

• A ∪B = {x : x ∈ A ∨ x ∈ B};

• A ∩B = {x : x ∈ A ∧ x ∈ B};

• A \B = {x : x ∈ A ∧ x ̸∈ B} or {x ∈ A : x ̸∈ B};

• A△B = {x : x ∈ A ⊻ x ∈ B};

collisions.
∗ There are other different and incompatible notations, the most popular of which are listed below

• A ⊆ B for (non-strict) subset, and A ⊂ B for strict subset (this what we are using).

• A ⊂ B for (non-strict) subset, and A ⊊ B for strict subset.
However, there is good reason to use the convention we have selected for this document: ⊆ and ⊂ as we have defined them
correspond nicely with the inequality symbols ≤ and <, respectively.

For example, x ≤ y means that x may or may not equal y, but x < y means that x certainly does not equal y. Similarly,
X ⊆ Y means that X may or may not equal Y , but X ⊂ Y means that X certainly does not equal Y .

Additionally, as we will see later in §4.5, our choice of convention matches up very nicely with certain set-theoretic
constructions of the natural numbers.

These notations are not universal, however, so any convention can be used as long as it is clearly stated.
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• A ⊆ B ↔ ∀x : x ∈ A→ x ∈ B;

• A′ = AC = Ā = U \A = {x ∈ U : x ̸∈ A} or {x : x ̸∈ A}.

and we can see some similarities between the symbols ∩ and ∪ and ∧ and ∨. This is not a coincidence.

4.2.3 Proofs with Sets
So far, we only really have three things we can prove about sets – given S and T , show:

• S ∈ T ;

• S ⊆ T ;

• S = T

and their negatives. We can also show S ⊂ T , but this is just the same as showing S ⊆ T and S ̸= T .

Showing S ∈ T requires unwrapping the structure of T and seeing what conditions are required for
something to be an element of T . Showing S ⊆ T is the same as showing an element is in T , but now
we prove it for every element of S. Showing S = T is generally done by showing S ⊆ T and T ⊆ S.
The former says ∀x : x ∈ S → x ∈ T , while the latter says ∀x : x ∈ T → x ∈ S, which together imply
∀x : x ∈ S ↔ x ∈ T , which satisfies the definition of equality.

Because S ̸⊆ T and S ̸= T are existential statements, rather than universal ones, they generally have
simpler proofs. For example, disproving S ⊆ T only requires a counterexample: pick an element of S
and show it isn’t in T .

There are a couple of useful standard results, which are helpful in other proofs, so we’ll package them
together as a lemma:

Lemma 4.2.1. The following statements hold for all sets S and T and predicates P :

1. S ⊇ S ∩ T ;

2. S ⊆ S ∪ T ;

3. S ⊇ {x ∈ S : P (x)};

4. S = (S ∩ T ) ∪ (S \ T ).

Proof.

1. Let x be in S ∩ T . Then, x ∈ S and x ∈ T by the definition of S ∩ T , so we have x ∈ S. As the
choice of x was arbitrary, by ∀I, ∀x ∈ S ∩ T , we have x ∈ S, so S ⊇ S ∩ T , as required.

2. Let x ∈ S, so x ∈ S ∨ x ∈ T holds, satisfying the definition of S ∪ T .

3. Let x be in {x ∈ S : P (x)}. Then, by the definition of set comprehension, x ∈ S ∧ Px holds. By
∧EL, we have x ∈ S.

4. To show equality, we need to show that each side is a subset of each.

First, let x ∈ S. If x ∈ T , then x ∈ (S ∩ T ); if x ̸∈ T , then x ∈ (S \ T ). By the law of the excluded
middle, we know at least one of these is the case, so x ∈ (S∩T )∪ (S \T ). Because x was arbitrary,
S ⊆ (S ∩ T ) ∪ (S \ T ).

Now, let x ∈ (S ∩ T ) ∪ (S \ T ). If x ∈ (S \ T ), then x ∈ S and x ̸∈ T ; if x ∈ (S ∩ T ), then x ∈ S
and x ∈ T . In either case, x ∈ S. As x was arbitrary, (S ∩ T ) ∪ (S \ T ) ⊆ S.

Because both S ⊆ (S ∩ T )∪ (S \ T ) and (S ∩ T )∪ (S \ T ) ⊆ S, S = (S ∩ T )∪ (S \ T ), as required.

■
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Using similar arguments, we can translate across the other properties of ∧ and ∨.

(AC)C = A Double negation or involution law

A ∪B = B ∪A
A ∩B = B ∩A

Commutativity laws

(A ∪B) ∪ C = A ∪ (B ∪ C)
(A ∩B) ∩ C = A ∩ (B ∩ C)

Associativity laws

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

Distributive laws

A ∪∅ = A

A ∩ U = A
Identity laws

A ∪ U = U

A ∩∅ = ∅
Domination laws

A ∪A = A

A ∩A = A
Idempotency laws

A ∩AC = ∅
A ∪AC = U

Negation laws

(A ∪B)C = AC ∩BC

(A ∩B)C = AC ∪BC
De Morgan’s laws

A ∪ (A ∩B) = A

A ∩ (A ∪B) = A
Absorption laws

∅C = U

UC = ∅
Complement laws

Compare and contrast with §2.2.3.

4.3 Axiomatic Set Theory

As we saw earlier, there are problems with allowing anything to be an element of sets. To resolve this,
we define axioms, and only use sets we can prove to exist from those axioms.

Unless you are a logician or a set theorist working at this foundational level, knowing the axioms com-
prehensively is very much unnecessary. In practice, you just need to know what sets you can construct,
and the things you can do to existing sets to get other sets.

For most use cases, the following axioms are sufficient:
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• Axiom of extensionality : every set is determined by its elements.

• Axiom of pairing : if a and b are objects, then there exists a set containing only a and b.

• Axiom schema of separation: the elements of a set which satisfy a predicate is also a set.

• Axiom of the power set : the set of all subsets of a set is itself a set.

• Axiom of the union: for every set, T , there is another set, ∪T that contains as elements precisely
all the elements of the elements of T .

• Axiom of infinity : there exists an infinite set.

These axioms form Zermelo set theory,∗ denoted Z−. The language of Z− includes the membership
relation ∈, the equality relation =, and an extra unary predicate that identifies whether an object is a
set or a urelement.

Most of these axioms translate fairly closely into Zermelo-Fraenkel axiomatisation, or ZF. Fraenkel’s
contribution to ZF was the axiom of replacement , and von Neumann later added the axiom of regularity .

As we will see later, without replacement, certain infinite sets cannot be constructed. Virtually all
results in all branches in mathematics hold in the absence of regularity, but including it makes working
with ordinal numbers easier, and it allows you to do induction in infinite sets larger than the naturals.
Regularity also prevents sets from being elements of themselves, as well as infinitely descending chains
of sets.

Finally, the axiom of choice is added to ZF to form Zermelo-Fraenkel set theory with Choice, or ZFC . The
exact phrasing of the axioms included with ZFC depend on the author, but these different axiomatisations
will all be equivalent. For example, the axiom of regularity is sometimes replaced with the axiom of
induction, the axiom schema of replacement with the axiom schema of collection, and more. Some of
these also depend on the choice of underlying logic as well – for instance, the regularity and induction
axioms are equivalent under ordinary first-order logic, but are not under intuitionistic logic. There is
a vast variety of axiomatisations that may or may not be equivalent depending on logic systems and
various other factors, leading to a rich collection of internally consistent but incompatible theories. These
different systems will not be discussed here, and we will continue with ZFC with classical first-order logic.

All formulations of ZFC imply that at least one set exists, but some authors also include an extra axiom
that more directly asserts the existence of a set, for instance, the axiom of the empty set , ∃x∀y : y ̸∈ x
which implies that the empty set exists. However, these kinds of axioms are now often excluded because,
in the semantics of first-order logic, the universe of discourse must be non-empty, so it is already a
theorem of first-order logic that something exists (this is usually expressed as ∃x : x = x), and because
everything in ZFC is a set, this therefore implies that a set exists. Furthermore, the axiom of infinity
asserts that an infinite set exists, again implying that a set exists, so an additional axiom of existence is
unnecessary.

4.3.1 Axiom of Extensionality
Two sets are equal (are the same set) if they have the same elements:

∀x∀y[∀z(z ∈ x↔ z ∈ y)→ x = y]

That is, a set is determined uniquely by its members.

4.3.2 Axiom of Regularity (or Foundation)
Every non-empty set, x, contains a member y such that x and y are disjoint:

∀x[∃a(a ∈ x)→ ∃y(y ∈ x ∧ ¬∃(z ∈ y ∧ z ∈ x))]
∗ Mostly. Some of these axioms have been shortened and rephrased to be easier to explain.
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Once we have proven the existence of the empty set (either by defining it to exist, depending on the
system, or through the use of the axiom schema of specification), we can rewrite this as,

∀x(x ̸= ∅→ ∃y(y ∈ x ∧ y ∩ x = ∅))

This axiom, along with the axiom of pairing, implies that no set is an element of itself.

Another notable consequence of this axiom is that there are no urelements in ZF: every object in the
universe of discourse is a set – and specifically, a hereditary set. You might think that is rather strange
for something we use as the foundations of maths given that things like 1 or π exist, and they don’t look
like sets, but it turns out that we can define numbers, and everything else, in terms of sets. We do so
under the axiom of infinity, and later in §4.5.

4.3.3 Axiom Schema of Specification (or Separation/Restricted Comprehen-
sion)

The subset of a set z obeying a formula φ(x) with a free variable x, {x ∈ z : φ(x)}, always exists.
Formally, if φ is a formula in the language of ZF, x,z,w1,w2, . . . ,wn are free variables, and y is not free
in φ, then:

∀z∀w1∀w2 . . . ∀wn∃y∀x[x ∈ y ↔ (x ∈ z ∧ φ(x,w1,w2, . . . ,wn,z))]

This axiom is what resolves Russell’s paradox: we can only construct subsets that obey formulae, so
objects like {x : φ(x)} are not sets.

This axiom is redundant in some other axiomatisations of ZF that include an existence axiom, in that,
it follows from the axiom schema of replacement combined with the axiom of the empty set. On the
other hand, the axiom schema of specification can be used to prove the existence of the empty set, once
at least one set is known to exist, which we do know from the axiom of infinity.

We do this by using a property φ which no set has. For example, if w is any existing set, then the empty
set can be constructed as,

∅ = {u ∈ w : u ∈ u ∧ ¬(u ∈ u)}

So the axiom of the empty set is implied by this set of axioms. Furthermore, the axiom of extensionality
implies that the empty set is unique.

The main alternative logic to first-order logic is type theory , which corresponds closely to data types in
computer science. Rather than restricting what sets can exist with axioms, type theory modifies the
underlying logic so that self-referential sets are not problematic – in particular, ZFC is defined both
by the rules of first-order logic, and its own axioms. Type theories, however, do not have axioms, and
are defined entirely by their rules of inference. For instance, in ZFC, Russell’s paradox is axiomatically
resolved as above, while in type theory, the predicate x ̸∈ x itself is disallowed by inference rules down
at the logic level. The axiom of specification and axiom of choice, in particular, are theorems (they can
be proven) in type theory.

4.3.4 Axiom of Pairing
If x and y are sets, then there exists a set that contains exactly x and y as elements.

∀x∀y∃z∀w[w ∈ z ↔ (w = x ∨ w = y)]

The axiom of pairing is actually redundant in ZF because it follows from the axiom schema of replacement,
given that we already have a set with at least two elements, which is assured by either the axiom of
infinity, or the axiom schema of specification combined with the axiom of the power set applied twice to
any set.
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4.3.5 Axiom of Union
The union of the elements of the elements of a set exists. That is, for any set of sets F , there exists a
set A containing every element that is a member of some member of F :

∀F∃A∀Y ∀x[(x ∈ Y ∧ Y ∈ F)→ x ∈ A]

Although this doesn’t directly assert the existence of ∩F , we can construct it from A using the axiom
schema of specification.

Additionally, combined with the axiom of pairing, this implies that, for any two sets, there is a set (called
the union) that contains exactly the elements of the two sets.

4.3.6 Axiom Schema of Replacement
The image of any set under any definable mapping is also a set – replacing every member of a set with
something else gives another set.

Formally, let φ be any formula in the language of ZF, x,y,A,w1,w2, . . . ,wn are free variables, and B is
not free in φ, then:

∀w1 . . . ∀wn∀A([∀x ∈ A∃!yφ(x,y,w1, . . . ,wn,A)]→ ∃B∀y[y ∈ B ↔ ∃x ∈ Aφ(x,y,w1, . . . ,wn,A)])

or, if φ represents a definable function f , A represents its domain, and f(x) is a set for every x ∈ A,
then the image of f is a subset of some set B.

4.3.7 Axiom of Infinity
Let S(w) abbreviate w ∪ {w}, where w is a set ({w} is a valid set, obtainable by applying the axiom of
pairing with x = y = w to obtain z = {w}). Then, there exists a set X such that the empty set is a
member of X, and whenever a set y is a member of X, then S(y) is also a member of X. That is, there
exists a set X with infinitely many members.

∃X[∃e(∀z¬(z ∈ e)) ∧ e ∈ X ∧ ∀y(y ∈ X → S(y) ∈ X)]

The above definition includes a clause to define the empty set. If the empty set has been constructed in
another way, such as with the axiom schema of replacement, the axiom of infinity can instead be stated
as,

∃X[∅ ∈ X ∧ ∀x ∈ X(S(x) ∈ X)]

The axiom of regularity is also required to show that all the members of X are distinct. Otherwise, X
could be a finite cycle of sets, much like our attempted construction of the naturals from before.

In fact, this axiom is very closely related to the von Neumann construction of the natural numbers, and
also looks rather similar to the Peano construction of the naturals. We give a brief overview of this now:

We first define 0 to be the empty set, then define each natural number to be S applied to the number
before it.

Abbreviating {} as ∅, we have,

• 0 = ∅;

• 1 = 0 ∪ {0} = {0} = {∅};

• 2 = 1 ∪ {1} = {0,1} = {∅,{∅}};

• 3 = 2 ∪ {2} = {0,1,2} = {∅,{∅},{∅,{∅}}};

• 4 = 3 ∪ {3} = {0,1,2,3} = {∅,{∅},{∅,{∅}},{∅,{∅},{∅,{∅}}}};
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• n = (n− 1) ∪ {n− 1} = {0,1, . . .} = a mess of nested brackets

This representation is useful because the cardinality of each set coincides with the number it represents.
We also have n ≤ m if and only if n ⊆ m, and n < m if and only if n ⊂ m (or n ∈ m).

This construction of natural numbers using sets can then be extended to integers, rationals, reals and
beyond with various even more complicated nested set structures, with usual arithmetic operations
defined in terms of set operations. We discuss this in §4.5.

There are actually many sets that satisfy the requirements for X. The minimal such set is the transfinite
von Neumann ordinal, ω, which is a superset of the natural numbers as defined above. The axiom
schema of specification can be applied to remove extra elements, and this set is also unique by the axiom
of extensionality.

Some finitist theories reject the axiom of infinity, accepting only finite cardinals. However, the axiom of
infinity (alongside other strong cardinal axioms) is generally accepted in modern mathematics.

4.3.8 Axiom of the Power Set
For any set x, there exists a set y that contains every subset of x.

∀x∃y∀z[∀w(w ∈ z → w ∈ x)→ z ∈ y]

or,
∀x∃y∀z[z ⊆ x→ z ∈ y]

The axiom of power set appears in most axiomatisations of set theory, and is generally considered
uncontroversial.

4.3.9 Axiom of Choice
This axiom turns ZF into ZFC.

For any set X of non-empty sets, there exists a choice function f that is defined on X and maps
each set of X to an element of the set. That is, given a collection of non-empty sets, it is possible to
construct another set by arbitrarily choosing one object from each set, even if the collection is infinite,
or equivalently, the Cartesian product (§4.4.1) of a collection of non-empty sets is non-empty.

∀X[∅ ̸∈ X → ∃f : X →
⋃
X ∀A ∈ X(f(A) ∈ A)]

For example, given the collection of sets of natural numbers, {3,5,9}, {2,5,7}, {4,5,9}, {1,2,8}, we could
construct a new set by say, picking the smallest number from each set, to get {3,2,4,1}. In this case,
“select the smallest number” is acting as our choice function. Even if we had infinitely many sets, the
choice function will still work, and we will still get a set.

However, for certain collections (notably, the power set of the reals), no choice function is known, so we
must invoke the axiom of choice to construct sets from those collections. Because of this, the axiom of
choice has historically been controversial, because it doesn’t actually tell you what the choice function is,
only that it exists. The axiom of choice is now generally accepted in most axiomatisations of mathematics,
as there are many important and core theorems that rely on its use.

4.4 Ordered pairs

Because of the axiom of extensionality, sets are unordered and elements are unique. However, there
are often times when we would prefer this to not be the case. We call ordered sets that can contain
duplicates tuples, and sets which can just contain duplicate elements multisets. Tuples must have finite
cardinality, but there is no restriction on the size of multisets.
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For now, we will only be considering tuples as they are used far more frequently, but multisets are useful
in combinatorics, where we might need repeated elements, but not care about order.

Because everything in ZFC is a set, we need to define some kind of set structure to represent tuples.
There are many different ways to do this, some more suited for some logics, but the most commonly
accepted way is to represent the ordered pair (a,b), also written as ⟨a,b⟩, as the structure {{a},{a,b}}
(this is the Kuratowski construction). We can prove that this representation satisfies all the properties
we would want an ordered pair to have. We also call the elements of ordered pairs the first and second
coordinates, components, or entries, or the left and right projections of the pair, to distinguish them from
elements of ordinary sets.

4.4.1 Cartesian Products
With ordered pairs, we can define a new operation: the Cartesian product of two sets, A and B, written
as A × B, is the set {(x,y) : x ∈ A ∧ y ∈ B}, or, the set of ordered pairs where the first coordinate is
from A and the second is from B.

If |A| = n and |B| = m, then |A × B| = nm. If A and B are von Neumann ordinals, this is how we
actually define multiplication.

Given our selected encoding of ordered pairs, we can prove the existence of the Cartesian product using
the axiom of the power set. P(A ∪ B) contains all the sets of {x} and {x,y} we need, so P(P(A ∪ B))
contains all the pairs {{x},{x,y}} required. It also includes many other sets we don’t care about, but
they can be removed with the axiom of specification.

Because the result of the Cartesian product is a set of ordered pairs, the Cartesian product is not
commutative. Strictly speaking, the Cartesian product as we have defined it is also never associative
unless one of the involved sets is empty. For instance, if A = {a}, then (A × A) × A =

{
((a,a),a)

}
̸={

(a,(a,a))
}
= A× (A×A). However, it is extremely convenient if we can treat this element as the triple

(a,a,a), in which case the Cartesian product would be associative.

The main reason we can do this in practice is because the sets resulting from a string of Cartesian
products being evaluated in any order are all equivalent in a “natural” manner – that is, that there are
functions between these different orderings that compose “coherently”. (For a precise meaning of the
word natural, see §52.2.5; and for coherence, see §52.7.)

Informally, this coherence allows us to treat the elements of an n-fold Cartesian product as n-tuples
rather than as sequences of nested pairs. Because of this, outside of set theory, the Cartesian product
effectively is associative.

This also makes the following notation sensible: if we take the Cartesian product of a set with itself,
say A× A, we also write A2, and continue similarly for repeated Cartesian products, A3,A4, . . . – with-
out associativity, these expressions are not well-defined unless we stipulate an additional ordering of
multiplication.

4.4.2 Relations
A (binary or dyadic) relation associates elements of one set, the domain, with elements of another set,
the codomain. We represent a binary relation from the set X to Y as a set of ordered pairs (x,y) with
x ∈ X and y ∈ Y , and we say that an element a ∈ X is related to an element b ∈ Y if and only if the
pair (a,b) is in the set of ordered pairs that define the relation. In this way, a relation from X to Y can
be seen as a subset of X × Y , or equivalently, as an element in P(X × Y ). If two elements, a and b are
related by a relation, R, we use infix notation and write aRb.

Two elements, x and y of a set X are comparable with respect to a binary relation R if at least one of
xRy or yRx is true. For example, if R is “divides”, then 2R4 holds, because 2 divides 4 is true, so 2
and 4 are comparable. However, neither 3R4 and 4R3 hold, so 3 and 4 are incomparable under R. If
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two elements x and y are comparable under a relation, we express this using the rather hilarious looking
x ⪋ y. Similarly, if they are incomparable, we write x

�
�⪋y.

If the domain and codomain of a relation are the same set, the relation is called a homogeneous relation
or an endorelation. One example of a (homogeneous) relation is the identity relation over a set X, which
is the set IdX = {(n,n) ∈ X2 : n ∈ X}, where every element is related only to itself. Equality = is a
type of identity relation. Another example is the relation ≤, which is the set {(n,m) ∈ N : n ⊆ m}.

There are many properties of interest that relations can have. For a general binary relation R over sets
X and Y , the relation can be:

• Injective or left-unique: ∀x,z ∈ X ∀y ∈ Y : xRy ∧ zRy → x = y – an element of the codomain is
related to at most one element in the domain. Note that this does not require any element of the
codomain to actually be related to something, only that, if it is related to something, it is to at
most one thing.

• Functional or right-unique: ∀x ∈ X ∀y,z ∈ Y : xRy ∧ xRz → y = z – an element of the domain is
related to at most one element in the codomain. This has a similar caveat to the above.

• One-to-one: injective and functional.

• One-to-many : injective and non-functional.

• Many-to-one: functional and non-injective.

• Many-to-many : neither functional nor injective.

• Total or left-total : ∀x ∈ X ∃y ∈ Y : xRy – for all x ∈ X – every element of the domain is related
to at least one element in the codomain.

• Surjective or right-total : ∀y ∈ Y ∃x ∈ Y : xRy – every element of the codomain is related to at
least one element in the domain.

Injectivity and totality can be seen as inverse properties, as can functionality and surjectivity, as they
swap values if the domain and codomain are interchanged.

There are more properties of interest for endorelations, but these are discussed later in §4.4.9.

4.4.3 Operations on Binary Relations
If R and S are binary relations over sets X and Y , then R∪S = {(x,y) : xRy∨xSy} is the union relation
of R and S over sets X and Y . That is, the union relation of R and S is the relation that contains pairs
that are satisfied by either R or S.

Similarly, R∩S = {(x,y) : xRy∧xSy} is the intersection relation, which contains pairs that are satisfied
by both R and S.

If R is a binary relation over sets X and Y , and S is a binary relation over Y and Z, we can compose R
and S into S ◦ R = {(x,y) : ∃y ∈ Y : xRy ∧ ySz}, the composition relation of R and S over sets X and
Z.

If R is a binary relation over sets X and Y , then R⊤ = {(y,x) : xRy} is the converse relation of R over
Y and X. A binary relation is equal to its converse if and only if it is symmetric.

If R is a binary relation over sets X and Y , then R̄ = ¬R = {(x,y) : ¬xRy} is the complementary
relation of R over X and Y .

4.4.4 Functions
A function is a binary relation which is both functional and total (§4.4.2) – so every element of the
domain is related to some element in the codomain, and is related to at most one such element. To
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distinguish a function from an ordinary relation, we write f : X → Y , where X and Y are the domain
and codomain of the function, respectively, and for each x ∈ X, we write f(x) to represent the unique
y ∈ Y that satisfies xfy, or equivalently, the unique y ∈ Y such that (x,y) ∈ f .

The set of all functions from X to Y is written Y X . This is a subset of P(X × Y ), so this exists
by specification. When the domains are finite, we can uniquely determine a function just by listing its
values, but when the domains are infinite, almost all functions cannot be written down. We cannot list its
values, as such a list would be infinitely long, and we can’t write down some formula to generate its values,
because such a formula would almost always be infinitely long for an arbitrary function. However, this
generally isn’t a problem, because, for all practical purposes, we are usually only interested in functions
with enough structure that they can be defined by a formula. For most of the functions we use, we define
them not by listing an infinite set of ordered pairs, but by giving a formula to compute f(x) from x. We
can also define an anonymous function by writing the formula in terms of the elements of X, and not
giving a name to the function at all. For example, the named function f(x) = x2 can be written as the
anonymous function x 7→ x2. We often think of functions as mapping values in X to values in Y , so we
could also say that in the function above, x is mapped to x2.

4.4.4.1 Surjections, Injections and Bijections

For a function f : X → Y , we have another set of interest: its image. This is the set {f(x) : x ∈ X}, or,
the subset of Y that has some element in X that is related to it.

A function that is additionally surjective or right-total, is a surjection. That is, every element of the
codomain of a surjection has a source element in the domain that maps to it under the surjection.
Another way to phrase surjectivity is that a function is surjective if its image is equal to its codomain.

For example, the function f : N→ N, x 7→ x+1 is not surjective, because the element 0 in the codomain
does not have a source element that maps to it: that is, 0 is in the domain of f , but not in the image.
However, f : Z → Z, x 7→ x + 1 is surjective, because for every element in the codomain has a source
element in the domain.

A function that is additionally injective, or left-unique, is a injection. That is, unique elements in the
domain are mapped to unique elements in the codomain – the function is one-to-one.

For example, the function f : N → N, x 7→ x2 is injective, because unique elements in the domain are
mapped to unique elements in the codomain. However, f : Z→ Z, x 7→ x2 is not injective, because some
distinct elements in the domain are mapped to the same elements in the codomain, for instance, 1 and
−1 are both mapped to 1.

A function that is both surjective and injective is bijective, or is a bijection. We also call bijections
one-to-one correspondences, which is not to be confused with one-to-one, which just means injective and
functional.

4.4.4.2 n-ary Functions

If f : X × Y → Z, then we can just write f(x,y) for f((x,y)). In general, a function can have any arity,
including zero. A function of arity n is just a function with domain X1×X2×· · ·×Xn to some codomain
Y , and we similarly drop additional brackets and just write f(x1,x2, . . . ,xn).

4.4.4.3 Function Composition

The operations on relations as listed in §4.4.3 all translate over to functions, so we can similarly find
compositions of functions.

Two functions, f : X → Y and g : Y → Z can be composed to give a new function from X to Z called a
composition, written as g ◦ f . We define (g ◦ f)(x) = g(f(x)).
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There are some special cases of interest. If the composition function of two functions f and g is the identity
function, IdX or x 7→ x, then we say that g and f are inverses. In particular, if g ◦ f = f(g(x)) = Idx,
then g is a left inverse of f . If f ◦ g = f(g(x)) = IdX , then g is a right inverse of f . If g is both a left
and right inverse of f , then we just say it is the inverse of f .

A function has a left inverse if and only if it is injective, while a function has a right inverse if and only
if it is surjective.

Because injectivity and surjectivity are statements about elements, we can move focus towards the
function itself by defining injectivity and surjectivity as having a left and right inverse, respectively.
This is useful in some fields, particularly in category theory, where we prefer not to look at elements of
domains and codomains and are instead more interested in analysing structures of functions instead.

4.4.5 Endorelation Properties
A general endorelation R over a set X can also be:

• Reflexive: ∀x ∈ X : xRx – every element is related to itself. For example, x ≤ x holds for all x.

• Irreflexive: ∀x ∈ X : ¬xRx – every element is not related to itself. For instance, < is irreflexive,
because x < x does not hold for any x.

• Symmetric: ∀x,y ∈ X : xRy → yRx – if x is related to y, then y is related to x, similar to
commutativity. For example, if x = y, then y = x.

• Antisymmetric: ∀x,y ∈ X : xRy ∧ yRx → x = y – if x is related to y and y is related to x, then
x = y. For example, if x ≤ y and y ≤ x, then x = y, so ≤ is antisymmetric.

• Asymmetric: ∀x,y ∈ X : xRy → ¬yRx – if x is related to y, then y is not related to x. For
example, < is asymmetric because x < y implies ¬y < x, but ≤ is not asymmetric. A relation is
asymmetric if and only if it is both antisymmetric and irreflexive.

• Transitive: ∀x,y,z ∈ X : xRy ∧ yRz → xRz – if x is related to y and y is related to z, then x is
related to z. For example, the game rock-paper-scissors, with relation R being “wins against” over
the set {r,p,s} is not transitive, because rRp and pRs but rRs does not hold.

• Connected : ∀x,y ∈ X : x ̸= y → xRy ∨ yRx.

• Strongly Connected : ∀x,y ∈ X : xRy ∨ yRx.

4.4.6 Preorders

4.4.6.1 Non-Strict Preorders

A (non-strict) preorder or a quasiorder is a relation that is reflexive and transitive. We often use ≺,
≲, or similar, to distinguish this type of relation from the more familiar partial orders, but ≤ is also
common. If a ≺ b, we say that a precedes b, or that b covers a.

A preorder is a superset of partial orders and equivalence relations, as defined below: an antisymmetric
preorder is a partial order, while a symmetric preorder is an equivalence relation.

4.4.6.2 Strict Preorders

A strict preorder is a relation that is irreflexive and transitive. We often use ≺ or < for this type of
relation.
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4.4.7 Partial Orders

4.4.7.1 Non-Strict Partial Orders

A weak or non-strict partial order is an antisymmetric non-strict preorder. That is, a relation that is
reflexive, antisymmetric, and transitive. For example, ≤ is a non-strict partial order. The term partial
order by itself can also refer to this type of non-strict partial order relation. A non-strict partial order
is also called an asymmetric preorder.

4.4.7.2 Strict Partial Orders

A strong or strict partial order is an asymmetric strict preorder. That is, a relation that is irreflexive,
antisymmetric and transitive. For example, < is a strict partial order.

Irreflexivity and antisymmetry imply asymmetry, so an alternative definition replaces the requirement
for antisymmetry with asymmetry, but asymmetry also implies irreflexivity, so either irreflexivity or
asymmetry (but not both) can technically be completely omitted from this definition.

Irreflexivity and transitivity also imply asymmetry, so every strict preorder is a strict partial order.
Because a strict partial order is defined to be a type of strict preorder, this means that the two relations
are actually equivalent: a relation is a strict partial order if and only if it is a strict preorder.

4.4.8 Total Orders
Note that both strict and non-strict partial orders do not require every element to be comparable.
In contrast, a total order is a partial ordering where every element is comparable: that is, they are
additionally connected. Total orders can be strict or non-strict as above.

4.4.9 Equivalence Relations
An equivalence relation is a binary relation that is reflexive, symmetric, and transitive. If two elements
are related by an equivalence relation, we say they are equivalent .

Let R be an equivalence relation over a set X. The equivalence class of an element a ∈ X with respect
to R is the set [a]R = {x ∈ X : xRa}, or, the set of all elements of X that are equivalent to a. The
equivalence class of a is sometimes just written [a], if the equivalence relation is clear. The set of all
equivalence classes partitions X.

If aRb, then we say a and b are equivalent up to R. For example, if our relation R is aRb if a is a
permutation of b, then the tuples, (1,2,3) and (3,2,1) are said to be equivalent up to ordering. Equivalence
relations are a mathematician’s way of saying they don’t care about some property. If you’re just looking
at the contents of some tuples, and you don’t care about the order, you can just define an equivalence
relation to put tuples with the same contents in the same equivalence class, as above, and just treat
them as the same object. Later, in §10.2, we work with integers, but we only care about the remainder
under division by some number, m, so we define an equivalence relation∗ to do exactly that.

4.4.10 Well-Founded Relations
A relation, R, is well-founded on a collection of sets, X, if every non-empty subset S ⊆ X has a minimum
element with respect to R, that is, some element m ∈ S such that sRm does not hold for all s ∈ S.

In conjunction with the axiom of choice (the full axiom is not required, some weakened variants are
sufficient), a relation is well-founded if it contains no infinitely descending chains. That is, there is no
infinite sequence x0,x1,x2, . . . ∈ X such that xn+1Rxn for all natural n.

∗ We actually define a congruence relation, which is an equivalence relation that is also compatible with the operations
on some structure. That is, performing an operation on two equivalent objects yields equivalent objects.
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The axiom of regularity in ZFC asserts that all sets are well-founded.

There is a related notion of converse well-founded relations, where infinitely ascending chains are disal-
lowed, but we will not be using these here.

4.4.11 Well-Ordering
A well-ordering is a total order that is well-founded. That is, a well-ordering on a set S is a total order
on S such that every non-empty subset of S has a least element in this ordering. S, together with this
well-order relation is then called a well-ordered set . Equivalently, a relation is a well-ordering if it is a
well-founded total ordering.

Similarly to well-founded relations, no infinitely descending chains, x1 > x2 > x3 > . . ., can exist.

To show that this is implied by every set having a least element, suppose that a given total order has
the least-element property. Then, given a supposedly infinitely descending chain, x1 > x2 > x3 > . . ., a
least element, xi exists. But then, xi ̸> xi+1. Conversely, suppose some non-empty set S does not have a
least element. Then, we can construct an infinitely descending chain by choosing any x1 arbitrarily, then
recursively generate a descending chain by selecting some element less than the smallest of x1, . . . ,xi to
be xi+1 for all i. Doing so requires the axiom of choice (§4.3.9), or Zorn’s lemma (§5.4).

The useful property of well-orders, is that induction (§5) works on well-ordered sets. That is, if, P
holds for the smallest element, m, in a set, S, and P (x′) for all x′ < x implies P (x), then P holds
for all x ∈ S. The proof is that if P doesn’t hold for at least some x, then there is a least element
y ∈ {y ∈ S : ¬P (y)} ⊆ S for which P doesn’t hold, which exists because S, and hence any subset of S,
is well-ordered. But, if y = m, this contradicts that P (m) holds. Otherwise, y > m, in which case P
holds for all x < y, so P (y) holds by the second assumption, which is a contradiction.

For sets that are not well-ordered, this argument generally does not work. For example, induction doesn’t
work on the integers, because there isn’t a number negative enough to work as a base case for all integers.
Even if we include a new minimum element, −∞, we can’t finish the inductive step because we can’t
find the minimum y in the set of integers excluding −∞.

It is possible to have a well-ordering in an infinite set where some elements do not have predecessors.
For instance, consider the ordering of {0,1}×N given by (a,b) ≺ (x,y) if a < x, or b < y if a = x. This is
a well-ordering because no infinitely descending chains exist. However, the element, (1,0) does not have
a predecessor. We call (1,0) a limit ordinal – a number with predecessors, but no direct predecessor.
Induction can still be done on these sets (specifically, a generalisation of weak induction called transfinite
or well-founded induction. See §5.4 for further discussion.), but more work is required to deal with these
extra cases that don’t occur in regular induction.

4.4.12 Lattices
A lattice is a partially ordered set, with ordering relation ≺, such that,

• Every pair of elements, x and y has a unique supremum (§34.3.2) or meet, written as x ∧ y, such
that,

– (x ∧ y) ≺ x;

– (x ∧ y) ≺ y;

– z ≺ (x ∧ y) for any z such that z ≺ x and z ≺ y.

• Every pair of elements, x and y has a unique infimum or join, written as x ∨ y, such that,

– x ≺ (x ∨ y);

– y ≺ (x ∨ y);
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– (x ∨ y) ≺ z for any z such that x ≺ z and y ≺ z.

The meet and join are dual: any true statement can be transformed into another true statement by
interchanging meets and joins and inverting the direction of any orderings.

You may also recognise the symbols for meet and join from earlier symbolic logic. This is because those
previous logic statements in Boolean algebra actually have this lattice structure. Boolean algebra also
has an additional operator, the complement operator ¬, and has the property that meet and join also
distribute over each other, making Boolean algebra a complemented and distributive lattice. Set algebra
is also isomorphic to Boolean algebra.

Examples of lattices are,

• Any total ordering:

– x ∧ y is min(x,y);

– x ∨ y is max(x,y).

• Subsets of a fixed set ordered by inclusion:

– x ∧ y is x ∩ y;

– x ∨ y is x ∪ y.

• The divisibility relation on the positive integers (§10.1):

– x ∧ y is gcd(x,y);

– x ∨ y is lcm(x,y).

4.4.13 Minimal & Maximal Elements
If for some x, y ≤ x only if y = x, then x is minimal. Or equivalently, x is minimal if there does not
exist any y such that y < x. A partial order may have any number of minimal elements, including none.
For example, the integers have no minimal element, the naturals have one minimal element, 0, and a set
with k mutually incomparable elements has k minimal elements.

If an element x satisfies x ≤ y for all y, then x is a minimum. A partial order may have at most one
minimum, such as 0 in the naturals, but can also have none at all, either because it contains an infinite
descending chain like with the integers, or because it has more than one minimal element. Any minimum
element is also minimal.

We define maximal and maximum elements similarly, as elements that are not less than any other element
and elements that are greater than all other elements, respectively. Again, maximum elements are also
maximal.

While these definitions seem similar, they are distinct, elements can be maximal, but not maximum. For
example, consider the family of all subsets of N with at most three elements, ordered by ⊆. Then, the
set {0,1,2} is a maximal element of this family, because it is not a subset of any larger set, but it is not
a maximum, because it is not a superset of {3} (and similarly for any other three-element set).

4.4.14 Exercises
• Prove that the definition of ordered pairs we chose ((a,b) := {{a},{a,b}}) satisfies the characteristic

property, (a,b) = (c,d)↔ (a = c ∧ b = d).

• Prove that the Cartesian product of A and B is commutative only if A = B, or at least one of A
and B is the empty set.

• Prove that the Cartesian product is not associative unless one of the involved sets is the empty set.
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• Give an example of a symmetric and transitive relation which is not reflexive.

• Prove that if a function is right invertible, then the function is surjective (you will need to use the
axiom of choice).

– Prove that if f : X → Y has a right inverse, then this right inverse is injective.

– Prove that if f : X → Y has a left inverse, then this left inverse is surjective.

• Let S ⊂ R2 be a unit circle (i.e. the set {(x,y) ∈ R2 : x2 + y2 = 1}).

– Give an explicit example of a surjection f : S × R→ C.

– Give an explicit example of an injection g : S × R→ C.

• Suppose n is a positive natural number. Define the relation R where xRy if n divides b− a. Prove
that R is an equivalence relation. (This is the equivalence relation of numbers modulo n.)

• Suppose X is a set, and let R be an equivalence relation on X. Prove that the set of equivalence
classes partition X. That is,

– For all a ∈ X, a ∈ [a];

– For all a,b ∈ X, either [a] = [b] or [a] ∩ [b] = ∅.

4.5 Constructing the von Neumann Universe

4.5.1 The Naturals
If there exists a bijection between two sets, X and Y , then |X| = |Y |. We can use this fact to measure
the size of arbitrary sets, as long as we have a standard list of sets we already know the cardinality. The
most common choice is the von Neumann ordinals.

As in the definition of the axiom of infinity (§4.3.7), let S(w) abbreviate w ∪ {w}, where w is a set. We
can use S to construct the naturals, N: we define 0 to be the empty set, then define each natural number
to be S applied to the number before it.

Abbreviating {} as ∅, we have,

• 0 = ∅;

• 1 = 0 ∪ {0} = {0} = {∅};

• 2 = 1 ∪ {1} = {0,1} = {∅,{∅}};

• 3 = 2 ∪ {2} = {0,1,2} = {∅,{∅},{∅,{∅}}};

• 4 = 4 ∪ {3} = {0,1,2,3} = {∅,{∅},{∅,{∅}},{∅,{∅},{∅,{∅}}}};

• n = (n− 1) ∪ {n− 1} = {0,1, . . .} = a mess of nested brackets

Natural numbers represented as hereditary sets like this are called von Neumann ordinals. There are
ways to extend von Neumann ordinals to represent infinite quantities of different sizes.

This representation is useful because the cardinality of each set coincides with the number it represents.
We also have n ≤ m if and only if n ⊆ m, and n < m if and only if n ⊂ m (or n ∈ m).

Addition and multiplication can then also all be defined in terms of the successor function, S, though it
does get rather messy.
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4.5.2 The Integers
The integers, Z can be represented as ordered pairs. We encode the pair (x,y) as the integer x − y.
Because this representation isn’t unique, i.e. 3−2 and 4−3 both represent the integer 1, we also include
an equivalence relation (a,b) = (c,d) if and only if a+d = c+b. So, a positive integer z is then represented
as the equivalence class [(z,0)], while a negative integer z is represented as the equivalence class [(0,z)].

We can then define addition as (a,b) + (c,d) = (a + c,b + d), where the internal addition is just natural
number addition as defined with successor functions. Subtraction is then, (a,b)− (c,d) = (a,b) + (d,c) =
(a+ d,b+ c), and multiplication is, (a,b) · (c,d) = ((a · c) + (b · d),(a · d) + (b · c)).

4.5.3 The Rationals
The rationals are then simple enough to extend from the integers: the rational number p

q is encoded as
the ordered pair (p,q), where p and q are integers. Again, we have duplicates, such as (−a,b) and (a,− b)
representing the same rational, so we include another equivalence relation.

Arithmetic operations can then also be defined rather laboriously in terms of set operations.

4.5.4 The Reals
It turns out that the reals can be defined in several different ways. Because these constructions can be
rather complicated, especially given that we’re already several levels of nested ordered pairs in, for ease
of use, we often just axiomatically define the real numbers as a type of algebraic structure called a field
(§11.2), or even in terms of smaller structures (§12.10), but we can also explicitly construct it.

In real analysis (§34), one standard technique is construction from Cauchy sequences or completion. But
the more set-theoretic way is to define the partial orderings < and ≥, then encode the real number x as
the pair of sets, {y ∈ Q : y < x} and {y ∈ Q : y ≥ x}. This is known as a Dedekind cut . A Dedekind cut
is any pair of subsets, (A,B) of Q, such that,

• A ∩B = Q ∧A ∪B = ∅ – A and B partition Q;

• ∀a ∈ A∀b ∈ B : a < b – every element of A is less than every element of B;

• ∀x ∈ A∃y ∈ A : x < y – A does not contain a largest element.

For convenience, we may take A to represent the Dedekind cut (A,B), because B is completely determined
by A. By doing this, we can think of a real number more intuitively as being represented by the set of
all rational numbers smaller than it.

All the usual arithmetic operations can then be defined rather tediously through various total orderings
and set operations.

This construction of the real numbers also allows us to easily obtain the extended real number system,
a system useful in some areas of calculus where ±∞ are treated as numbers, by associating −∞ with
A = ∅ and ∞ with A = Q. If we just want the regular real number system, we simply restrict A to be
non-empty and not equal to Q.

4.5.5 Calculating Cardinalities
The cardinality of the union of two disjoint sets is the sum of the cardinalities of the sets. That is, if A
and B are disjoint, then |A ∪B| = |A|+ |B|. These unions act as addition for cardinalities.

Similarly, the cardinality of the Cartesian product of two sets is the product of the cardinalities of the
sets, so |A×B| = |A| · |B|. Even though the Cartesian product is not commutative, swapping the order
of A and B just swaps each pair (a,b) with (b,a), which is a bijection, so |A×B| = |B ×A|.
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The set of all functions from B to A has size |A||B|. The power set, P(A) is a special case of this, where
we map from the set {0,1} to A, with each subset being encoded by an indicator function which maps
each element to 0 or 1, depending on whether the element is included in the subset or not.

A set is countable if it has the same cardinality as a subset of the naturals, or equivalently, a set S is
countable if there exists an injective function f : S → N. If the subset is infinite in size, then the set is
countably infinite. Countable sets are also called enumerable or denumerable.

4.5.6 Cardinals & Ordinals
It is now convenient to discuss the difference between cardinal numbers and ordinal numbers, given the
name of the von Neumann ordinals.

The cardinality of a set, as mentioned before, is the number of elements of the set, which we can measure
with bijections.

We use cardinalities to talk about amounts – how many things there are. We usually use the natural
numbers as cardinals. For example, in “5 apples”, and “3 sheep”, the natural numbers 5 and 3 are cardinal
numbers.

But how many naturals are there? What is the cardinality of N?

It can’t be a number in the naturals, because there’s always 1 plus that number, so clearly, whatever
natural number we pick will never be enough.

Instead, we give this number the label, ℵ0 (aleph null). ℵ0 is the first infinite cardinal. ℵ0 is how many
natural numbers there are. It’s also how many even naturals there are.

This might be surprising, because the natural numbers are a superset of the even naturals, so it might
seem like there should be twice as many, but, doubling every natural number obtains the set of even
naturals. That is, a bijection – the doubling function – exists between the two sets, so the two sets have
the same cardinality: ℵ0.

Similarly, we have things like ℵ0 + ℵ0 = ℵ0, as demonstrated by adding the even naturals to the odd
naturals to obtain the natural numbers. We also have ℵ0 = ℵ0 − 1, as demonstrated by the function
x 7→ x+ 1 forming a bijection between N and N \ {0}.

ℵ0 is also the number of rational numbers. Again, this seems surprising, since the rationals seem so much
more dense (see §34.3 or §37.4.3) on the number line, but as famously shown by Cantor, there’s a way
to form a bijection between the rationals and the naturals:

1
1 → 1

2
1
3 → 1

4
1
5 →

↙ ↗ ↙ ↗ · · ·
2
1

2
2

2
3

2
4

2
5 · · ·

↓ ↗ ↙ ↗ · · ·
3
1

3
2

3
3

3
4

3
5 · · ·

↙ ↗ · · ·
4
1

4
2

4
3

4
4

4
5 · · ·

↓ ↗ · · ·
5
1

5
2

5
3

5
4

5
5 · · ·

...
...

...
...

...
...

...
...

...
. . .

Cantor’s zig-zag argument
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This bijects the positive rationals with the naturals, but the negative rationals can easily be interleaved
with this sequence, giving the desired bijection. Cantor also showed that ℵ0 · ℵ0 = ℵ0 by constructing a
bijection from N2 to N with his pairing function,

(x,y) 7→ (x+ y + 1)(x+ y)

2
+ y

Through repeated applications of this pairing function, this also implies that N1000, for example, has the
same cardinality as N.

4.5.6.1 ℵ0 & ω

If we draw a set of lines, each a fraction of the length of the previous, and a fraction of the distance from
each last line, we can Zenoianly fit infinitely many lines in a finite space:

The number of lines here is equal to the number of natural numbers. We can demonstrate this by pairing
each line up with a natural number.

There is always a next line, but there is also always a next natural number, so this is a bijection. Both
sets have cardinality ℵ0.

But what happens if we do this?
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Do we have ℵ0 + 1 lines?

No – there are still only ℵ0 lines, because we can still show another bijection between this new set of
lines, and the naturals. We do this by relabelling the lines, starting with the extra line, then continuing
as before:

The extra line doesn’t appear to affect the cardinality of this set of lines – the number of lines hasn’t
changed.

We could add two more lines, or three more, or four. The cardinality of this set will not change. We can
even add another infinite ℵ0 of more lines without changing the cardinality:

We can relabel the left half with the even naturals, and the right with the odd naturals, again showing
a bijection.
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However, while this does contain the same number of lines, something clearly does seem structurally
different between this pair of infinities, and the single infinite group of lines we started with. If it’s not
the amount of stuff, what is the difference?

Let’s revisit the situation with only one extra line after an ℵ0 sized collection. Rather than forming
a bijection in any way we want, what happens if we insist on labelling each line in the order they are
drawn? With this requirement, we have to label the first line 0, and continue, left to right.

What number does the new line get?

For infinite quantities, labelling things in order is quite different from counting them. This new line
doesn’t add anything to the total, but in order to label it in the order it was drawn, we need a set of
labels, a set of numbers, that extends past the naturals. We need the ordinal numbers.

The first transfinite ordinal is ω. If you came ωth place in a race, that would mean an infinite number
of people finished the race, then you did.
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Next, comes ω+1,∗ which perhaps doesn’t look as much like a single number, but it is; like how 1+ i is
a single complex number. However, while a complex number can be separated into real and imaginary
parts, ω + 1 is one indivisible atomic number.

Ordinal numbers label things in order – they aren’t about how many things there are, they are about
how those things are arranged – they tell us about the order-type of those things.

Two ordered sets (that is, sets equipped with a binary relation of partial order or stronger), X and Y ,
have the same order-type if there exists a bijection between them that preserves order.† So for any
a,b ∈ X with a < b, a bijection f must give f(a) < f(b). Order-type also satisfies the definition of an
equivalence relation, so sets that share order-type are in the same equivalence class.

The order-type of a set is the first ordinal number not needed to label everything in the set. So the set
{−12,π} requires the labels 0 and 1 to label everything in the set, so the order-type of this set is 2.

For finite quantities, order-type and cardinality coincide. The order-type of all the naturals, ℵ0, is ω.

Every time we add a new line, we don’t increase the number of things, so the cardinality remains at ℵ0,
but the order-type of the sequence of lines changes to ω + 1, or ω + 2, and so on.

No matter how long an arrangement becomes, as long as it’s well-ordered – every subset has a minimal
element (§4.4.11) – the arrangement describes a valid ordinal number.

We can even go out to ω + ω, or ω · 2:

This corresponds to the well-ordering of the natural numbers given by defining all even numbers to be
less than all odd numbers, and having usual ordering apply within the separated even and the odds:

0 ≺ 2 ≺ 4 ≺ 6 ≺ 8 ≺ . . . ≺ 1 ≺ 3 ≺ 5 ≺ 7 ≺ 9 ≺ . . .

This well-ordered set has order-type ω+ω – same as the set of line above. It is worth emphasising again
that larger order-types do not correspond to more objects – These ordinals all refer to the same number
of things, just arranged differently. The previous two examples still contain the same number of objects
as the naturals: ℵ0.

ω + 1 isn’t bigger than ω, it just comes after.

Also note that the axiom of infinity only guarantees the existence of one infinite set, and going out to
ω + ω would be creating a second. However, we can resolve this with the axiom schema of replacement
(§4.3.6), by letting φ map x 7→ ω + x, so we know that ω + ω is a valid set.

However, ℵ0 is not the end. For instance, what is the cardinality of P(N)? We know this set should have
2ℵ0 subsets, but how many is that exactly?

∗ Note that addition is not commutative with transfinite ordinals. A line after ω gives ω+ 1, but a line before ω, is just
ω, so 1 + ω = ω.

† The function must be monotonically increasing (§34.2.1)
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Imagine a list of all natural numbers.

0 1 2 3 4 5 6 7 8 9 · · ·

We now generate subsets of the naturals. We can represent sets with an indicator function, putting a
1 in the column of a natural number if the set contains that natural number, and a 0 otherwise. For
example, the set of even naturals would be,

0 1 2 3 4 5 6 7 8 9 · · ·
1 0 1 0 1 0 1 0 1 0 · · ·

We continue, adding infinitely many subsets, labelling each one with a natural number as we go.

0 1 2 3 4 5 6 7 8 9 · · ·
0 1 0 1 0 1 0 1 0 1 0 · · ·
1 0 0 1 1 1 1 0 1 0 1 · · ·
2 0 0 0 1 0 1 0 1 0 0 · · ·
3 1 1 1 1 0 1 1 0 1 1 · · ·
4 0 1 1 0 0 0 0 1 0 1 · · ·
5 1 0 1 0 1 1 0 0 1 0 · · ·

...

If we can show that there is a set not on this list, that means we’ve exhausted all the natural numbers,
yet still have elements left unlabelled, so the cardinality of this set must be larger than the set of naturals
– a bigger infinity than ℵ0.

We do this by checking the first element of the first subset, and doing the opposite to our new set. 0 is
a member of this set, so it is not a member of our new set. Then, we move diagonally down to check if
1 is a member of the second subset. In this case, it isn’t, so 1 is a member of our new set.

0 1 2 3 4 5 6 7 8 9 · · ·
0 1 0 1 0 1 0 1 0 1 0 · · ·
1 0 0 1 1 1 1 0 1 0 1 · · ·
2 0 0 0 1 0 1 0 1 0 0 · · ·
3 1 1 1 1 0 1 1 0 1 1 · · ·
4 0 1 1 0 0 0 0 1 0 1 · · ·
5 1 0 1 0 1 1 0 0 1 0 · · ·

...
? 0 1 1 0 1 0 · · ·

Continuing like this, our new set is guaranteed to be distinct from every other subset in at least one
place by how we’ve defined it. Even if we somehow put this set back into the list, this process – Cantor’s
diagonalisation argument – can still be done.

More generally, we can prove that the power set of any set will always resist a one-to-one correspondence
with the original set:

Let S be any set, and let f : S → P(S) be a surjection. Let A = {x ∈ S : x ̸∈ f(x)}, and suppose
A = f(y). Then, y ∈ A↔ y ̸∈ A, so f cannot exist. Since a surjective f cannot exist, it follows that no
bijection can exist, so |S| ≠ |P(S)|.∗

It turns out that the power set of the naturals, 2ℵ0 has the same cardinality as the set of real numbers – we
can construct a bijection between the two. This set of real numbers is sometimes called the continuum,
and its cardinality is given the symbol C. Repeated applications of power sets will produce sets that

∗ Corollary: There are functions f : N → {0,1} that cannot be computed by any computer program. Computer programs
are finite sequences of a finite alphabet of possible instructions, while the set of functions f has size 2|N| = P(N) which is
uncountable, so no bijection can exist between the sets.
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can’t be put into one-to-one correspondence with the last, so we know there’s an infinite chain of ever
larger infinite cardinals.

Now, using the axiom schema of replacement, we can construct ever larger and larger sets. We can map
x 7→ ω · x, going up to ω · ω, or ω2, which looks something like this:

Now we map x 7→ ωx to reach ωω.

Then, use x 7→ ωω
. .

.
ω

︸ ︷︷ ︸
x

to reach ωω
ω

..
.︸ ︷︷ ︸

ω

, and we run out of standard notation to use. But we just

label this number ε0, and continue from there. Replacement will still work, regardless of whether we
have enough notation to write down these new infinities.

However, ε0, and every other ordinal we can reach with replacement, while monstrously large, is still
just an arrangement of ℵ0 things. They’re all still countable ordinals. Furthermore, these arrangements
are all well-ordered, so they have an order-type – some ordinal that comes after them.

In this case, this ordinal is ω1: the first uncountable ordinal. Now, because ω1 comes after every order-
type of ℵ0 things, it must describe an arrangement of more things than the last aleph number. If it didn’t,
it would lie within the epsilon numbers, which directly contradicts its own definition as the order-type of
those epsilon numbers. The cardinal number describing the number of things that ω1 arranges is called
ℵ1.

It is not known how large the power set of the naturals is in relation to this cardinal. It can’t lie between
ℵ0 and ℵ1, because there aren’t cardinals between them. It could be the case that 2ℵ0 = ℵ1, which is
the continuum hypothesis, but it could also be larger.
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The continuum hypothesis has been proven to be consistent with ZFC. However, the negation of the
continuum hypothesis has also been proven to be consistent with ZFC, so it is independent of, and
cannot be proven from within ZFC.

4.5.6.2 ε0 & Inaccessible Cardinals

Notice that, now we have reached ℵ1, we have another set of subscripts to work with. With replacement,
we can now reach ℵω, then ℵω2 , up to ℵωω

.. .

, and we again run out of notation. The axiom schema of

replacement allows us to make larger and larger leaps as we go along, each replacement granting access
to even larger replacements. We can continue, reaching bigger and bigger infinities from below.

So, surely there can’t be anything larger.

But, that’s what we said about getting from the finite up to ω. We could axiomatically assert the
existence of a cardinal so large, no amount of replacement or power setting on anything smaller could
ever reach it from below. Such a number is called an inaccessible cardinal , because it can’t be accessed
from below. Within the numbers we have already reached, we can see traces of such a cardinal: ℵ0.

All numbers less than ℵ0 are finite, and no finite amount of replacement or power setting on finite sets
can give anything but another finite amount. The only way we accessed ℵ0 in the first place was by
declaring that it existed with the axiom of infinity. And even further, set theorists have described many,
many sets, far larger than inaccessible cardinals, each one requiring a new large cardinal axiom.

While there are infinitely many cardinals and infinitely many interesting things to cover, we unfortunately
have very finite time, so this is where we’ll draw the line.
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Chapter 5

Induction

“Begin with the simplest examples.”
— David Hilbert, Methoden der mathematischen Physik

Induction is a technique used to prove universal statements about some class of objects built from smaller
objects. We do this by showing that if every object has a property given that smaller objects have that
property, then every object in the class has that property. Recursion is a related idea, but for definitions
– building up a class of objects by defining objects in terms of previous ones.

5.1 Simple Induction

The first form of induction you are likely familiar with is simple or weak induction. This is the form
commonly used to prove that a statement holds for all natural numbers.

It is related to the recursive definition of the natural numbers. We have seen many definitions of the
naturals, but all of them follow the same basic pattern:

• 0 is a natural number.

• If x is a natural number, then x+ 1 is also a natural number.

For instance, the von Neumann ordinal construction operation isn’t x + 1, but x ∪ {x}, and our base
object is ∅. For the Peano construction, the construction operation is S(x), with base object 0.

So, all of these are recursive definitions. Later natural numbers (x+ 1) are defined in terms of ones we
already have (x), using some given operation (+1), and we start with a base object to begin building off
of (0).

Because this recursive definition is built into the naturals, we can leverage this to our advantage. If we
want to prove that a predicate, P , holds for a natural number, we can do this by showing that a natural
number can’t be constructed without having P be true. However, in doing so, we have also inadvertently
shown that P holds for all naturals.

In simple induction, we do this by proving that P (0) holds, and that P (x) implies P (x + 1). Then, P
would hold for all natural numbers, built directly into each one by construction.

We express this idea formally as the axiom of induction,

∀P : (P (0) ∧ ∀x : P (x)→ P (Sx))→ ∀x : P (x)



Induction Simple Induction

In the above statement of the axiom, the predicate is being quantified over, so this axiom is stated in
second-order logic, which is not ideal, given the first-order nature of ZFC. Because of this, we would
normally use an axiom schema of induction instead, where we use declare a separate axiom for each
possible predicate, but we can treat predicates as sets in ZFC, which can be quantified over:

∀P (0 ∈ P ∧ ∀n ∈ N : n ∈ P → (n+ 1) ∈ P )→ N ⊆ P

The above statement, and by extension, induction itself, is actually a theorem in ZFC, and not an axiom.

Regardless of our choice of axiomatisation, they all say the same thing: if a proposition holds for 0, and
P (x) implies that P (x+ 1) also holds, then P holds for all natural x.

P (0) is called the base case, where the rest of the proof is built up from. To prove that P (x+ 1) follows
from P (x), we start by assuming that P (x) holds, called the induction hypothesis (sometimes abbreviated
IH), then prove that P (x+ 1) follows, the inductive step.

As a classic example, let us prove Gauss’ formula for the sum of consecutive naturals.

Theorem (Gauss Summation). For all n,
∑n
i=0 i = 0 + 1 + 2 + · · ·+ n = n(n+1)

2 .

Proof. Let P (n) be the statement that
∑n
i=0 i =

n(n+1)
2 . We induct on n.

P (0) gives an empty sum on the left side, equalling zero, while the right side evaluates to 0(0+1)
2 = 0, so

P (0) holds, thus demonstrating the base case.

Then, for the induction hypothesis, we assume that P (n) holds for some fixed n ≥ 0.

Then,

n∑
i=0

i =
n(n+ 1)

2

n∑
i=0

i+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1)

n+1∑
i=0

i =
(n+ 1)n

2
+

(n+ 1)2

2

n+1∑
i=0

i =
(n+ 1)(n+ 2)

2

n+1∑
i=0

i =
(n+ 1)((n+ 1) + 1)

2

which is exactly the statement P (n+ 1), thus completing the inductive step.

As the base case has been shown to be true, and the inductive step has been established, the statement
P (n) holds for all natural numbers n by the principle of mathematical induction. ■

We were rather verbose in this proof, naming the base case, induction hypothesis and inductive step.
This isn’t strictly necessary, but explicitly using this terminology signals to the reader that you are
attempting a proof by induction (as well as immediately saying “We induct on n.”).

We haven’t defined exponentiation over the naturals yet, but we could do it as,

x0 = 1
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xn+1 = x · xn

where n ∈ N.

This is a recursive definition: for example, to compute 24, we expand the exponent out until the base case
is reached, as 23 = 2 · 22 = 2 · 2 · 21 = 2 · 2 · 2 · 20. This recursive definition makes natural exponentiation
well suited to inductive proofs.

Theorem. If a > 1, then an > 1 for all n > 0.

Proof. Let a > 1, and let P (n) be the statement that an > 1 when n > 0. We induct on n.

P (0) holds vacuously as n = 0 gives n ̸> 0 evaluating as true. Suppose P (n) holds for some arbitrary
fixed value of n ≥ 0.

If n = 0, then a1 = a0 · a = 1 · a = a > 1. Otherwise, if n > 0, an+1 = a · an > a · 1 > 1.

In either case, P (n) implies P (n+1). As the base case has been shown to be true, and the inductive step
has been established, the statement P (n) holds for all natural numbers n by the principle of mathematical
induction. ■

5.1.1 Alternative Base Cases
As we saw in the last example, having a base case of n = 0, can sometimes require some annoying case
analysis, or other similar workarounds if 0 isn’t the first case where the predicate holds. In practice, we
use a more general induction axiom that works for any integer base case,

∀P (z0 ∈ P ∧ ∀z ∈ Z : z ∈ P → (z + 1) ∈ P )→ {z ∈ Z : x ≥ z0} ⊆ P

So proving P (z0) and P (z) → P (z + 1), gives P (z) for all integers z ≥ z0. This is somewhat more
powerful than our first axiomatisation of induction, because this form works for negative integers as well.

Intuitively, this axiom holds for the same reason the previous theorem holds – if P (z0) holds, and any
larger integer can be reached by applying the +1 operation enough times, and each +1 operation preserves
the truth value of P , then P holds for all integers greater than or equal to z0.

To prove this formally, we do a simple change of variable and let Q(n) = P (z − z0), and use induction
on Q – for the purposes of induction, a set of bounded below negative integers shifted along behaves
identically to the naturals.

As an example of starting at a non-zero base case:

Theorem 5.1.1. Let n ∈ N. If n ≥ 4, then 2n ≥ n2.

Proof. Let P (n) be the statement that 2n ≥ n2. P (4) holds with equality, as 24 = 16 = 42.∗ Suppose
P (n) holds for some arbitrary fixed n ≥ 4.

Then,

2n+1 = 2 · 2n

∗ Extension tasks:
• What are all the integer solutions of xy = yx?

• What about real solutions?

• Complex solutions?

• What is limt→∞ t
1

t−1 ?

• What is the connection between the above limit and the equation in the first part?
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≥ 2n2

= n2 + n2

≥ n2 + 4n

= n2 + 2n+ 2n

≥ n2 + 2n+ 1

= (n+ 1)2

so P (n+ 1) also holds, completing the inductive step.

As the base case has been shown to be true, and the inductive step has been established, the statement
P (n) holds for all natural numbers n ≥ 4 by the principle of mathematical induction. ■

5.1.2 Validity of Recursive Definitions

Previously, we defined natural exponentiation recursively by defining a base case, x0 = 1, and giving a
rule to compute xn+1 given xn. Using simple induction, we can show that these definitions work. That
is, these definitions uniquely and exactly define the objects they are supposed to.

Lemma 5.1.2. Let S be a set, let g : S → S be an function, and let f : N→ S satisfy,

f(0) = x0

f(n+ 1) = g(f(n))

Then, f is unique.

Proof. Suppose there exists some function f ′ : N → S that also satisfies f ′(0) = x0 and f ′(n + 1) =
g(f ′(n)). We will show that f ′(n) = f(n) for all n by induction on n.

The base case holds as f ′(0) = x0 = f(0). Now suppose f ′(n) = f(n) for some arbitrary fixed n ≥ 0.
Then, f ′(n+ 1) = g(f ′(n)) = g(f(n)) = f(n+ 1), so f is unique. ■

5.1.3 Alternative Operations
We can also perform induction with a different operation than +1, say, +2. This will, however, only
prove a statement for a subset of the naturals or integers.

Theorem 5.1.3. a ∈ Z is odd if and only if a2 is odd.

Proof. Let P (n) represent the statement that n is odd if and only if n2 is odd. We induct on n.

P (1) holds as 1 is odd and 12 = 1 is also odd. Suppose P (n) holds for some arbitrary fixed odd integer
n ≥ 1.

Then, n+2 is the sum of an odd and even integer, which is odd, and (n+2)2 = n2+4n+4 = n2+4(n+1),
which, by the inductive hypothesis, is the sum of an odd and even number, which is odd. So, both n+2
and (n+ 2)2 are odd, which is exactly the statement P (n+ 2) ■

This proof is valid enough, but doesn’t actually follow directly from the axiom of induction. After all, the
construction of the naturals uses +1, so our induction using +2 will need a bit of work to be completely
formally valid. However, these fixes are easy enough corollaries of regular induction: we just redefine a
new proposition in terms of the old, encoding the variable, similar to translating the integers across. For
this example, our encoding of n could be m := n−1

2 , then we prove a similar statement on Q(m) with
regular induction.

This is, however, a fairly obvious and pedantic point, so this generally isn’t included with an induction
proof, since the related encoded induction should be obvious to the reader.
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5.1.4 Multiple Counters & Base Cases
We can prove many properties of operations on natural numbers using induction. Here, we will prove
various properties about addition in particular. The analogous properties for multiplication is left as an
exercise for the reader.

For this section, we will use a Peano axiomatisation ofthe natural numbers. That is,

A1 n+ 0 = n;

A2 n+ S(m) = S(n+m).

And we define the symbol 1 to represent the successor of 0, so S(0) = 1.

In particular, we have

Lemma 5.1.4. S(a) = a+ 1

Proof.

S(a) = S(a+ 0) A1
= a+ S(0) A2
= a+ 1 Definition of 1

■

so this definition of the symbol 1 matches with our intuition of succession over the naturals.

Theorem (Existence of Identity Element of Addition over the Naturals). 0 is the identity element of
addition over the naturals.

Proof. From A1, we know 0 is a right identity for any natural n. We prove that 0 is also a left identity
by induction on n.

Let P (n) be the statement that 0 + n = n. P (0) holds from A1 as 0 is a right identity. Suppose P (n)
holds for some arbitrary fixed value of n ≥ 0.

Then,

0 + S(a) = S(0 + a) A2
= S(a) IH

thus completing the inductive step, so P holds for all n by induction. ■

Theorem (Associativity of Addition over the Naturals). For all a,b,c ∈ N, (a+ b) + c = a+ (b+ c)

Proof. Fix arbitrary a,b ∈ N, and let P (c) represent the statement that (a + b) + c = a + (b + c). P (0)
holds from two applications of A1 as (a + b) + 0 = a + b = a + (b + 0). Suppose P (c) holds for some
arbitrary fixed c ≥ 0.

Then,

(a+ b) + S(c) = S((a+ b) + c) A2
= S(a+ (b+ c)) IH
= a+ S(b+ c) A2
= a+ (b+ S(c)) A2

so P (S(c)) holds. It follows that P holds for all c by induction. ■
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Now, this proof is somewhat different from the simple inductions we have seen before. We induct on two
different variables to complete this proof, as well as using several base cases.

Theorem (Commutativity of Addition over the Naturals). For all a,b ∈ N, a+ b = b+ a.

Proof. Let P (b) be the statement that a + b = b + a for a fixed a. To prove P (b), we will induct on b,
but some preamble is required.

P (0) holds immediately from the identity element property of 0 as proved above.

Now, we will show a second base case, P (1), by induction.

Let Q(a) be the statement that a + 1 = 1 + a. We induct on a. We have already proved P (0), so 0
commutes with everything – in particular, with 1. So, Q(0) gives 0 + 1 = 1 + 0 which holds by P (0),
completing the base case for Q. Then,

S(a) + 1 = S(a) + S(0) Definition of 1
= S(S(a) + 0) A2
= S((a+ 1) + 0) Lemma 5.1.4
= S(a+ 1) A1
= S(1 + a) IH
= 1 + S(a) A2

completing the induction on a, proving the base case b = 1. Now, suppose for all natural numbers a, P
holds. We now induct on b.

a+ S(b) = a+ (b+ 1) Lemma 5.1.4
= (a+ b) + 1 Associativity
= (b+ a) + 1 IH
= b+ (a+ 1) Associativity
= b+ (1 + a) Base case b = 1

= (b+ 1) + a Associativity
= S(b) + 1 Lemma 5.1.4

completing the induction on b. ■

For this proof, we had to prove a base case by induction, within the induction.

5.2 Strong Induction

Another form of induction is complete or strong induction, where we assume that the induction hypothesis
holds for all naturals less than n+1, and not just n itself. The name comes from the stronger induction
hypothesis, because we are assuming more things. Strong induction is not, however, a stronger technique
than simple or weak induction. They are in fact equivalent to both each other and to the axiom of
induction.

Formally, instead of proving ∀n : P (n) → P (n + 1), we prove ∀n : (∀k ≤ n : Q(k)) → Q(n + 1). But,
if we let P (n) ≡ ∀k ≤ n : Q(k), we see that this is exactly the same thing as simple induction, since, if
∀k ≤ n : Q(k) → Q(n + 1), it also implies ∀k ≤ n + 1 : Q(k), giving us the original induction formula
∀n : P (n)→ P (n+ 1).
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Any statement you can prove with weak induction, you can prove with strong induction, and vice versa.
The reason we have a distinction between the two, however, is that often, one method will be significantly
easier than the other for a human to read and write, though they will be logically equivalent.

As an example of strong induction, suppose we have an infinite supply of alien 4 and 5 pence pieces. We
can prove by strong induction that we can reach any monetary value above 12 pence∗ using just these
two denominations.

Reframing this question as a statement about linear combinations, we have,

Theorem 5.2.1. For all n ≥ 12, there exist a,b ∈ N such that n = 4a+ 5b.

Proof. Let P (n) be the statement that there exist a,b ∈ N such that n = 4a + 5b. We provide 4 base
cases:

• 4 · 3 + 5 · 0 = 12

• 4 · 2 + 5 · 1 = 13

• 4 · 1 + 5 · 2 = 14

• 4 · 0 + 5 · 3 = 15

So P (n) holds for n = 12,13,14,15. Now fix an arbitrary natural n > 15 and suppose that P (k) holds for
all 12 ≤ k ≤ n.

Let k = n − 4. Because n > 15, it follows that 12 ≤ n − 4 ≤ n, so P (n − 4) holds by the inductive
hypothesis. So, the sum n − 4 can be formed by some linear combination of the 4 and 5 pence pieces.
Then, adding an additional 5 pence piece gives us n+1, so, if P (k) holds for all 12 ≤ k ≤ n, it also holds
for P (n+ 1), completing the inductive step. ■

Exercise. Prove the same statement with weak induction.

As shown above, strong induction is particularly helpful for statements which can increment by different
amounts, or otherwise have multiple base cases. As another example, how many ways are there to cut a
square up into smaller squares?

The most obvious non-trivial first thing to try is to cut a square into quarters, forming 4 smaller squares.

So, 4 is reachable. In fact, every time we have a valid division of the square, we can always divide one
of the smaller constituent squares into 4, adding 3 to the total, so we’ve really reached all of 1 + 3n.

∗ The largest number we can’t make, is then 11. 11 is then called the Frobenius number of 4 and 5. More generally,
the Frobenius number of a set of numbers is the largest number that cannot be created as a linear combination of those
numbers.

Rather famously, the Frobenius number for chicken nuggets at a certain fast food chain is 43, because they can only be
bought in packs of 6, 9 and 20.

For two numbers, x and y, the Frobenius number is given by xy− x− y. For three or more numbers, no explicit formula
is known. We do, however, have algorithms that can compute this number for any fixed numbers of denominations of coins,
but if the number of denominations can be arbitrarily large, the problem is NP-hard.
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So we’ve reached 6, and by extension, 6 + 3n.

and now, we have 8, and 8 + 3n

Clearly, the three cases now partition all of the naturals greater than 6. In fact, any number of squares
greater than 6 can be created. The proof of this is extremely similar to the last strong induction proof
and is left to the reader. As a non-induction extension task, prove that you cannot divide a square into
2, 3 or 5 smaller squares.

The contrapositive of strong induction is actually the method of infinite descent, an example of which is
used in the proof of the irrationality of

√
2 in the section for real analysis (Lemma 34.3.1).

5.3 Backward-Forward Induction

In a previous section, §34.1.2, we proved the AM-GM inequality through a series of replacement of
elements. Another way is through backward-forward induction. This technique is very rarely used, but
allows us to use induction “backwards”, by proving a statement holds for n − 1 from it holding for n.
However, this only gives a finite number of cases where this works, so we need another “forward” induction
to prove the statement for infinitely many natural numbers. We don’t have to prove it for all naturals
in the forward induction, because any gaps will be filled in by the backward induction.

Proposition (AM-GM inequality). For any set, X, of cardinality n ∈ N containing the non-negative
real numbers x1, x2...xn−1, xn, the inequality

1

n

n∑
i=1

xi ≥ n

√√√√ n∏
i=1

xi

holds.

Proof. If the terms are all equal, x1 = x2 = · · · = xn, then; their sum is nx1, so their arithmetic mean is
x1; and their product is xn1 , so their geometric mean is x1; so the proposition holds with equality in this
case.

We need to prove that if the terms are not all equal, then the proposition still holds. Clearly, this can
only be the case for n > 1. We divide this step into subcases.

If n = 2, then we have two terms, x1 and x2.

x1 + x2
2

−
√
x1x2 =

x1 − 2
√
x1x2 + x2
2
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=
(
√
x1 +

√
x2)

2

2
≥ 0

so x1+x2

2 ≥ √x1x2 as desired.

Now, suppose n = 2k, where k ∈ Z+. We induct on k. If k = 1, then n = 2, which holds from the case
above. Now, suppose the statement holds for an arbitrary fixed value k − 1 ≥ 1. Then, we prove the
statement holds for k by subdividing the case with 2k elements into two halves of size 2k−1 and applying
the inductive hypothesis within each half, then applying the base case to the two halves themselves.

x1 + x2 + · · ·+ x2k

2k
=

x1+x2+···+x
2k−1

2k−1 +
x
2k−1+1

+x
2k−1+2

+···+x
2k

2k−1

2

≥
2k−1√x1x2 · · ·x2k−1 + 2k−1√x2k−1+1x2k−1+2 · · ·x2k

2

≥
√

2k−1√x1x2 · · ·x2k−1 · 2k−1√x2k−1+1x2k−1+2 · · ·x2k

= 2k
√
x1 · x2 · · ·x2k

Where, in the first inequality, the two sides are equal only if x1 = x2 = · · · = x2k−1 , and x2k−1+1 =
x2k−1+2 = · · · = x2k , in which case, both the arithmetic and geometric means of the first term would
be equal to x1, and similarly, both the arithmetic and geometric means of the first term would be equal
to x2k−1+1. In the second inequality, the two sides are equal only if the two geometric means are equal.
Since by assumption, the terms are not all equal, it is not possible for both inequalities to be equalities,
so we know,

x1 + x2 + · · ·+ x2k

2k
≥ 2k
√
x1x2 · · ·x2k

as required.

Now, if n is not a natural power of 2, then it is clearly less than some natural power of 2, since the
sequence of terms, ak = 2k is not bounded above. So, without loss of generality, let k be some natural
power of 2 such that 2k > n. Also let us label the arithmetic mean of our n terms as α, and let
xn+1 = xn+2 = · · · = xk = α, so our extra terms do not contribute towards changing the average.

α =
x1 + x2 + · · ·+ xn

n

=
k
n (x1 + x2 + · · ·+ xn)

k

=

(
1− 1 + k

n

)
(x1 + x2 + · · ·+ xn)

k

=
x1 + x2 + · · ·+ xn +

(
k
n − 1

)
(x1 + x2 + · · ·+ xn)

k

=
x1 + x2 + · · ·+ xn +

(
k−n
n

)
(x1 + x2 + · · ·+ xn)

k

=
x1 + x2 + · · ·+ xn +

(
x1+x2+···+xn

n

)
(k − n)

k

=
x1 + x2 + · · ·+ xn + α(k − n)

k

=
x1 + x2 + · · ·+ xn + xn+1 + xn+2 + · · ·+ xk

k
≥ k
√
x1x2 · · ·xnxn+1xn+2 · · ·xk

=
k
√
x1x2 · · ·xnαk−n
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So,

αk ≥ x1x2 · · ·xnαk−n

αk

αk−n
≥ x1x2 · · ·xn

αn ≥ x1x2 · · ·xn
α ≥ n

√
x1x2 · · ·xn

giving the required inequality. ■

5.3.1 Well-Ordering
In ZFC, the axiom of induction and the well-ordering principle (§6.11.4) are equivalent. With the Peano
axioms, however, they are not, as we will see.

Theorem (Induction Well-Ordering Equivalence). The axiom of induction is equivalent to the well-
ordering principle.

Proof. Suppose S is a set of natural numbers with no least element. 1 is not in S, as 1 is the least
element of all naturals, and would therefore be the least element of a subset of the naturals. Let Q = S′,
so 1 is in Q. Let n be an arbitrary natural number, and suppose that {1,2,3, . . . n − 1} is in Q. If n is
in S, then it would be the least element of S as every natural less than n is in Q, which is disallowed,
so n must also be in Q. By strong induction, every natural number must be in Q, so S must be the
empty set. Therefore, any non-empty subset of the naturals must have a least element. This completes
the forward direction.

Let P (n) be a statement on natural n , such that P (1) is true and P (n) implies P (n+ 1). Let S = {x :
¬P (x)}. Suppose that S is not the empty set, such that m is the least element of S. As P (1) is true, 1
is not in S, so m ̸= 1, so m > 1. It follows that m− 1 is a natural number. As m is the least element of
S, m− 1 is not in S. It follows that P (m− 1) is true. But P (n) implies P (n+ 1), so P (m− 1) implies
that P (m) is true, which is a contradiction. It follows that S is the empty set, so P (n) holds for all
natural numbers. This completes the backward direction, establishing the equivalence of induction and
well-ordering. ■

While this proof is perfectly valid in ZFC, the problem is, m − 1 is not guaranteed to be a unique and
well-defined natural number in the Peano axiomatisation, so the backward direction of the proof does
not hold in Peano. This actually makes induction strictly stronger than well-ordering, in the context of
the other Peano axioms.

We can show this with a counter example of a well-ordered Peano set that doesn’t obey the axiom of
induction.

For our Peano axioms, we will suppose,

• Trichotomy (Lemma 11.3.2);

• For every natural number n, we have n+ 1 > n;

• For every natural number n, there does not exist a natural number between n+ 1 and n;

• No natural is less than 0.

The set, {(0,n) : n ∈ N} ∪ {(1,n) : n ∈ N} is well-ordered by the relation (a,b) ≺ (c,d) if a < c, or
b < d if a = c. Furthermore, this set also satisfies all the Peano axioms, where the Peano constant 0 is
interpreted as (0,0), and S((x,n)) = S((x,n+ 1)) for all x ∈ {0,1} and n ∈ N.

If this feels familiar, that’s because it is! This setup is a more formal version of the odd-even ordering of
the naturals from §4.5.6.1.
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As an example of a predicate which does not follow the axiom of induction, let P ((x,n)) represent
the statement that (x,n) = (0,0) or (x,n) = S((y,m)) for some y ∈ {0,1} and m ∈ N. The base
case, P ((0,0)) holds trivially, as does the induction step by the definition of the successor function, so
P ((x,n)) → P (S((x,n))), so P should hold for all pairs (x,n) with x ∈ {0,1} and n ∈ N. However, P
fails to hold for (1,0). That is, in the well-ordered set of lines above, the first line in the right half is not
the successor of any element in the set.

While the axiom of induction and the well-ordering principle are equivalent in many axiom systems, we
need the additional axiom,

• Every natural number is either 0 or n+ 1 for some natural number n.

for them to be equivalent with Peano axioms. Specifically, the axiom above combined with the first two
axioms in the list above are equivalent to induction.

5.4 Transfinite Induction

Well-founded or Noetherian induction is the generalisation of regular mathematical induction to well-
founded sets. If R is a well-founded relation on a set, X, and P (x) is a predicate defined over elements
x of X, then, to show that P (x) holds for all x ∈ X, we only need to show that P (y) holds for all y such
that yRx.

That is,
∀x ∈ X : [(∀y ∈ X : yRx→ P (y))→ P (x)]→ ∀x ∈ X : P (x)

Depending on set being used and the type of relation that R is, we have special cases of well-founded
induction. For instance, if we have (N,S), where S is the successor relation, we have simple induction.
If we have (N, <), we have strong induction. In fact, we well-founded induction doesn’t even have
to operate on sets – it also works on proper classes, as long as the relation in question is set-like and
well-founded.

There are other types of induction with various exotic sets and relations, such as structural induction,
which allows us to prove statements about structures like trees and graphs, and is particularly important
for computer science, or ε-induction, which allows us to prove statements hold for all sets.

But, one type of induction of particular note to us is transfinite induction, which is where R is a ordering
on the class of ordinal numbers as we constructed in §4.5.6.1.

Let P (α) be a predicate defined over all ordinals α. Suppose that, if P (β) holds for all β < α then P (α)
also holds. Then, transfinite induction says that P holds for all ordinals.

Transfinite induction proofs often distinguish three cases:

• when α is a minimal (§4.4.13) element – that is, no element precedes α;
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• when α has a direct predecessor – the set of elements which precedes α has a largest element.

• when α is a limit ordinal – there exists elements which precede α, but α itself has no direct
predecessor.

ω is an example of a limit ordinal because any smaller ordinal will have a following ordinal generated by
adding 1 that is still less than ω. ε0 as we defined it is another limit ordinal, this time preceded by all
ω numbers.

We can actually see all three cases in the example we constructed in the previous section. (1,0) is a
limit ordinal because elements that precede it exist, but it does not have a direct predecessor; (0,0) is a
minimal element as no elements that precede it exist; and every other element has direct predecessors.

One motivating example of transfinite induction is Zorn’s lemma.

Theorem (Zorn’s Lemma). Every partially ordered set that contains upper bounds for any totally ordered
subsets must contain a maximal element.

Zorn’s lemma is required to prove a vast variety of results in various fields, from topology to metalogic.
One notable theorem that Zorn’s lemma proves is that every vector space, even infinite-dimensional ones,
has a basis.

We provide a sketch of the proof of Zorn’s lemma below.

Suppose Zorn’s lemma is false, so there exists a partially ordered set, P with partial order ≺, such that
every totally ordered subset has an upper bound, but there does not exist a maximal element of P . That
is, for every p ∈ P , there exists another q ∈ P such that p ≺ q.

For each totally ordered subset, S ⊆ P , define b(S) to be a function that returns an element of P that
is bigger than every element in S. We know such a number always exists, because every totally ordered
subset is assumed to have an upper bound. However, it aren’t guaranteed that there is a smallest element
of P that is bigger than every element in S, so there isn’t an obvious way to pick such an element. So,
we need to invoke the axiom of choice in order to define b.

Using the function, b, we generate an ordered list of elements, a0 ≺ a1 ≺ a2 ≺ a3 ≺ . . . ≺ aω ≺ aω+1 ≺
. . .. We pick the values of ai with transfinite recursion. a0 is selected arbitrarily (we know a0 exists
because the empty set has an upper bound in P , so P is non-empty), then for any ordinal, w, we choose
aw = b({av : v < w}), recalling that an ordinal is the set of sets smaller than itself. Because the av are
totally ordered, this definition is well-founded.

This sequence requires not only the natural numbers to index it, but all ordinals. In fact, this sequence is
so long, it cannot possibly be a set – the class of all ordinals is larger than any set that we can construct
in ZFC, so this sequence of elements of P is larger than P could possibly be, giving a contradiction.
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5.5 Exercises

Unless otherwise specified, take n to be a positive integer.

1. Prove that if x and y are both positive, then x < y implies xn < yn.

2. Prove that
∑n
i=1

1
i2 ≤ 2− 1

n .

3. Prove that 6n − 1 is divisible by 5.

4. Prove that n2 − 1 is divisible by 8 for all odd integers n.

5. Prove that 2n+1 > n2.

6. Prove that n! > 3n for n ≥ 7.

7. Prove that n3 + n is even for all integers n with a pair of inductions.

8. Prove that
n∑
i=1

(2i− 1)2 =
4n3 − n

3

9. Consider the sequence (an) recursively defined by an+1 =
√
an + 2, with initial term a0 = 1.

(a) Show that 2− an+1 = 2−an
2+

√
2+an

.

(b) Using this identity, prove by induction that

2− an ≤
1

(2 +
√
3)n

(c) Prove that 1 ≤ an ≤ 2.

(d) Show that (an+1 −
√
2) = (a−

√
2)2

2an
.

(e) Using this identity, prove by induction that∣∣∣an −√2∣∣∣ ≤ 1

22n

and conclude that (an) converges to
√
2.

10. Consider the sequence (an) recursively defined by an+1 = 2a1an−an−1 for n ≥ 1 with initial terms
a0 = 1 and a1 = cos θ for some fixed constant θ. Prove that an = cos(nθ) for all n ≥ 0.

11. Show that if n ≥ 2, and the following radical is nested n times:√
1 +

√
1 +

√
1 +
√
1 + · · ·︸ ︷︷ ︸

n times

then the expression is irrational.

12. Prove that for any non-negative integer n, we have
� ∞

0

tne−t dt = n!
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13. Prove that

√
n ≤

n∑
i=1

1√
k
≤ 2
√
n− 1

14. Prove the following:

(a)
n∑
i=1

i =
1

2
n(n+ 1).

(b)
n∑
i=1

i2 =
1

6
n(n+ 1)(2n+ 1).

(c)
n∑
i=1

i3 =
1

4
n2(n+ 1)2.

(d)
n∑
i=1

i4 =
1

30
n(n+ 1)(2n+ 1)(3n2 + 3n− 1).

(e)
n∑
i=1

i5 =
1

12
n2(n+ 1)2(2n2 + 2n− 1).

15. Generalising the previous question, prove that

n∑
i=1

m−1∏
j=0

(i+ j) =
1

m+ 1

m∏
j=0

(n+ j)

for all positive integers n and m.

16. Let Hn =
∑n
i=1

1
n be the nth partial sum of the harmonic series. Show that H2n ≥ Hn + 1

2 for
all n, then show by induction that H2n ≥ 1 + n

2 for all n and conclude that the harmonic series
diverges.

17. Let Fn denote the nth Fibonacci number, defined by Fn = Fn−1 + Fn−2, where F0 = 0 and
F1 = F2 = 1. Prove that:

(a)
n∑
i=0

Fi = Fn+2 − 1 for n ≥ 1.

(b)
n∑
i=0

F2i = F2n+1 − 1 for n ≥ 1.

(c)
n∑
i=0

F2i−1 = F2n for n ≥ 1.

(d)
n∑
i=0

F 2
i = FnFn+1 for n ≥ 1.

(e) Fn = ϕn−ψn

√
5

, where ϕ = 1+
√
5

2 is the golden ratio, and ψ = 1−
√
5

2 = − 1
ϕ = ϕ− 1.

(f) Fm+n+1 = FmFn + Fm+1Fn+1 for all m,n ≥ 0.

18. Prove that multiplication is associative over the naturals from the Peano axioms.

19. Prove that multiplication is commutative over the naturals from the Peano axioms.
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20. Find all analytic functions f such that there exists a complex number z0 such that

f(z) = z0 + zf(z2)

by following these steps:

(a) Use analyticity of f to express zf(x2) as a power series with coefficients (an).

(b) Find an expression for f(z)− zf(z2) as the difference of two power series and compare coef-
ficients to form recurrence relations for (an).

(c) Rearrange these recurrence relations and prove, using backward-forward induction, that an =
z0 if n is of the form 2i − 1 for some non-negative integer i, and that an = 0 otherwise.

(d) Hence conclude that f must be of the form z0
∑∞
j=0 z

2j−1.
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Chapter 6

Set Theory

“People think of axioms as laws you have to follow or true things you have to
assume and I think neither of these perspectives is correct. It’s more accurate to
think of axioms as a way to agree that we’re talking about the same thing.”

— Qiaochu Yuan

In this chapter, we continue to use the symbol ⊆ for the subset relation, and ⊂ for the proper subset
relation (as opposed to using ⊂ for subset and ⊊ for proper subset). However, we occasionally use
the symbol ⫋ whenever it is important in a proof that the containment is proper, or to otherwise add
emphasis when the inequality is important. This symbol is purposefully distinct from the symbol ⊊ used
in the other convention.

6.1 Transfinite Iteration

We recall some definitions about the topology on R:

1. A subset U ⊆ R is open if for every point x ∈ U , there exists ε > 0 such that B(x,ε) = (x−ε,x+ε) ⊆
U .

2. A set F ⊆ R is closed if its complement R \ F is open.

3. Equivalently (in metric spaces), a set F ⊆ R is closed if and only if it contains the limit of every
convergent sequence in F . That is, if (xn)∞n=1 ⊆ F converges to x ∈ R, then x ∈ F .

4. A point p ∈ F is isolated (in F ) if there exists ε > 0 such that B(p,ε) ∩ F = {p}, or equivalently,
B(p,ε) ∩

(
F \ {p}

)
= ∅.

Example.

• Any interval with positive measure has no isolated points.

• The entire set R and the empty set ∅ has no isolated points.

• The set of rationals Q has no isolated points.

• The middle-third Cantor set has no isolated points.

• The point contained in a singleton set is isolated.

• Every point of Z is isolated (take any ε < 1
2 ).

• The point 0 in the set [−2,− 1] ∪ {0} is isolated (take any ε < 1).
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△

We are interested in removing the isolated points. In the last example above, removing the isolated
points yields the interval [0,1], which has no isolated points.

For any set F ⊆ R, denote by D(F ) the derived set obtained by removing the isolated points from F , or
equivalently, the set of all limit points of F . Note that if F is closed, the derived set D(F ) is also closed
since isolated points, as singletons, of F are always open in F .

Example.

• D
(
[0,1]

)
= [0,1].

• D
(
[0,1] ∪ {2}

)
= [0,1].

• D
(
{0}
)
= ∅.

• D
(
{ 1n : n ∈ Z+}

)
= ∅.

△

The question is, “if we start with a closed set and remove all the isolated points, do we always get a set
without isolated points?” Or more precisely, “given a closed set F , is the derived set D(F ) always free
of isolated points?”

It turns out that the answer is “no” – in removing the isolated points, a point that was not isolated before
may then become isolated in the resulting set.

For instance, define the set X ⊂ R by

X = [−2,− 1] ∪ {0} ∪
{
1

n
: n ∈ Z+

}
Nothing in the interval is isolated and 0 is not isolated since there are elements arbitrarily close to it, but
all the elements 1

n are isolated (take ε = n
4 for each point 1

n ). Removing these points yields the derived
set

D(X) = [−2,− 1] ∪ {0}

which has an isolated point, 0. The derived set of this set is then the interval D
(
D(X)

)
= [−2,− 1], and

from that point onwards, applying the derivation operator leaves the set unchanged, as the set is now
free from isolated points. Using superscripts to denote the number of iterations, we have the sequence

D0(X) = X

D1(X) = [−2,− 1] ∪ {0}
D2(X) = [−2,− 1]

D3(X) = [−2,− 1]

so D2(X) is the first iteration where the set has no isolated points, after which the sequence stabilises
to a fixed point.

In the previous example, X took 2 steps to stabilise because we had a sequence of isolated points that,
when removed, produced a new isolated point. We can take inspiration from this to construct a set that
takes another iteration to stablise by including sequences of isolated points that tend towards another
sequence of isolated points. To avoid collisions, we use a geometric series rather than harmonic.

Define the set Z ⊂ R by

Z = {0} ∪ {2−n : n ∈ Z+} ∪ {2−n + 2−n−m : n,m ∈ Z+}
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R

2−1
2−2

2−3
· · ·

0

The points of the form 2−n + 2−n−m are all isolated, and for each fixed n, the sequence (2−n + 2−n−m)
tends to 2−n as m→∞, so none of the points 2−n are isolated. Also, the point 0 is not isolated, because
the sequence (2−n) tends towards it.

Thus, we have

D0(Z) = {0} ∪ {2−n : n ∈ Z+} ∪ {2−n + 2−n−m : n,m ∈ Z+}
D1(Z) = {0} ∪ {2−n : n ∈ Z+}
D2(Z) = {0}
D3(Z) = ∅
D4(Z) = ∅

So Z takes three iterations to stabilise.

By adding more and more sequences that converge to the sequences added in the previous step, this
construction generalises, and it is possible to construct a set

E = {0} ∪
⋃
i∈Z+


i∑

j=1

2−
∑j

k=1 nk : nα ∈ Z+


R

0

such that Dn(E) has isolated points for all natural n. This means that even if we remove the isolated
points at all steps n, the set

Dω(E) :=
⋂
n∈N

Dn(E)

still has isolated points. (Note that ω is just notation right now.)

This is just a set, so it makes sense for us to apply the derivation operator again, which we may choose
to denote by

Dω+1(E) := D
(
Dω(E)

)
Again, this is still a set, so we may define

Dω+2(E) := D
(
Dω+1(E)

)
and so on, until

Dω+ω(E) :=
⋂

α=0,1,2,...,ω,ω+1,ω+2,...

Dα(E)

and we may suggestively define the notation D2·ω to represent Dω+ω more compactly, which suggest a
further generalisation.

For any set S, we may then form the sequence of sets

D0(S),D1(S), . . . ,Dω(S),Dω+1(S), . . . ,D

ω·2︷ ︸︸ ︷
ω + ω(S),Dω·2+1(S), . . . ,Dω·3(S), . . . ,D

ω2︷︸︸︷
ω · ω(S), . . .
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The natural numbers can be used for two distinct purposes: to describe the size or cardinality of a set, or
to describe the position of an element in a sequence, or more precisely, the order-type (sometimes called
ordinality) of an ordered set.

The order-type of an ordered set is the first number not required to label the elements of the set. For
instance, the set {a,b,c} may be labelled by 0, 1, and 2, so it has ordinality 3. For finite sets, cardinality
and order-type coincide.

However, the sequence above is too long for every element to be labelled by a natural number – after all,
the natural numbers have all been exhausted by the time we reach Dω(S) – so its order-type is greater
than that of the naturals. On the other hand, the sequence is still countable, so its cardinality is the
same as the naturals.

We still have not formally defined what any of these ω symbols mean – only the notation involving
derivations that use them – but informally, they are the order-types of sets beyond the natural numbers.

6.2 The Set-Theoretic Universe

One way of specifying a (finite) set is to list out its members in curly brackets, e.g. {a,b,c,d}. The symbol
∈ is called the membership relation, indicating that the object to the left is an “element of” or “member
of” the set, so a ∈ {a,b,c,d}.

• Sets are unordered, so {b,a,c,d} = {a,b,c,d};

• Elements are unique, so {a,a,a,b,b,c,d,d,d} = {a,b,c,d}.

The most basic set is the empty set, denoted by ∅, containing no elements. It may also be represented
in the manner above, listing its elements as: {}.

The symbol ⊆ is the subset relation between sets: A ⊆ B if and only if every element in A is also an
element in B.

Note that there are two ways for a set to be “in” another set: either as an element, or as a subset. To
reduce ambiguity, whenever we say that A is “in” B, we mean A ∈ B, while the wording A is contained
in B means A ⊆ B.

6.2.1 Atoms
Let A denote the collection of objects we want to talk about that are not themselves sets. For instance,
the real number

√
2, the natural number 5, or the imaginary unit i, or anything else. Such an element

is called an atom or urelement.

The goal is now to build a hierarchy of sets

V0 ⊆ V1 ⊆ V2 ⊆ V3 ⊆ · · ·

such that V0 is the collection of all sets that can be formed from atoms. That is, an element of V0 is a
subset of A, so V0 = P(A) is the power set of A.

Then, V1 is the collection of all sets whose members are either atoms or sets in V0. That is, an element
of V1 is a subset of A ∪ V0, so V1 = P(A ∪ V0). A set containing only atoms is certainly a set containing
only atoms or elements of V1, so we also have V0 ⊆ V1.

We then recursively define

Vn+1 := P(A ∪ Vn)

and we have Vn ⊆ Vn+1 by induction.
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The empty set is in V0, so we have {∅} ∈ V1,{{∅}} ∈ V2,{{{∅}}} ∈ V3, . . ., but the infinite set{
∅,{∅},{{∅}},{{{∅}}}, . . .

}
is not in Vn for any natural n, since there will always be an element with at least n+ 1 nested brackets.
To remedy this, we may take the infinite union

Vω :=
⋃
n∈N

Vn

(we still haven’t defined ω, but the notation is coming in handy), which immediately extends to

Vω+1 := P(A ∪ Vω)
Vω+2 := P(A ∪ Vω+1)

...

6.2.2 No Atoms
It turns out that atoms aren’t really necessary.

Most higher mathematical objects are defined as sets equipped with certain operations on them, so as
long as we can encode relations, and functions as sets, everything else should follow from there.

The previous hierarchy is also simpler without atoms. Because there are no atoms, the only set containing
atoms is the empty set, so V0 = {∅}. Then, we have V1 = P(V0), and moer generally,

Vn+1 := P(Vn)

The ωth term, Vω is the same as before, but the following sets follow the new pattern:

Vω :=
⋃
n∈N

Vn

Vω+1 := P(Vω)
Vω+2 := P(Vω+1)

...

6.3 Unrestricted Comprehension

Rather than explicitly listing out the elements extensionally, we often define sets intensionally by speci-
fying a property P and collecting all objects x that satisfy that property:

X = {x : P (x)}

However, we need to be careful with what we allow as the property P .

6.3.1 Frege’s Natural Numbers
One intuitive implementation of the natural numbers as pure sets was given by Gottlob Frege. The idea
is to define the number 1 as the set of all sets that have exactly one element. This may appear circular
(1 vs “one”), but luckily, we can define the predicate P (S) = “S has one element” in first order logic
without appealing to a prior notion of “one”:

P (S) := ∃x :
(
x ∈ S ∧

(
∀y : (y ∈ S → x = y)

))
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so the number 1 would be implemented as

[[1]] :=
{
S : P (S)

}
Any finite number n can be similarly implemented as the set [[n]] of all sets containing exactly n elements.

This construction seems reasonable. But let us now consider the set
{
[[1]]

}
. This set has exactly one

element, namely [[1]], so we have
[[1]] ∈

{
[[1]]

}
∈ [[1]]

There is, as yet, no reason that this circularity is incorrect, but it does seem somewhat suspect.

6.3.2 Universal Sets
Consider the universal set U that contains all sets:

U := {S : S is a set}

Since U is itself a set, it must be an element of U , so we have U ∈ U . This is again concerning.

6.3.3 Russell’s Paradox
Consider the following set, proposed by Bertrand Russell:

R := {S : S /∈ S}

That is, R is the set of all sets that do not contain themselves. The problems then arise when we ask if
R ∈ R or not. If R ∈ R, then it is a set that does not contain itself, so we must have R /∈ R. Conversely,
if R /∈ R, then by definition, R ∈ R.

6.3.4 Unrestricted Comprehension
In the previous examples, we obtained some questionable chains of membership, culminating with the
self-contradictory membership of the Russell set. Informally, the problem is that these sets are “too
large”.

One method of resolving this problem is to switch to type theory. This approach has its own advantages,
but the simple solution we will use is to introduce an axiom that restricts how sets are built.

So far, we have been using unrestricted comprehension to generate sets by collecting all objects that
satisfy any given properties, but as we have seen, this is problematic. The first step is to only allow the
collection of objects from an existing set. That is, we cannot form sets

{x : P (x)}

but only
{x ∈ X : P (x)}

where X is a known set. This already resolve some paradoxes – Russell’s paradox included – but there
is some ambiguity in what we mean by “property”.

Let S be the set of the natural numbers that may be defined in less than 100 characters:

S = {x ∈ N : x can be defined in less than 100 characters}

So, for instance, “the third natural number”, 3, is in S, as is “the 10000th prime number”, 104 729, or
“the numerator of the 15th coefficient of the Maclaurin series for tan”, 689 005 380 505 609 448.

This set is huge. But it is finite: there are finitely many characters we can use, and as such, there are
only finitely many strings with fewer than 100 characters. So, there is a smallest natural not in S.

The string,
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“n is defined to be the smallest natural number that
cannot be defined in fewer than 100 characters.”

that describes the number n /∈ S is 99 characters long. So, n ∈ S.

Despite restricting the set comprehension to only collect natural numbers, we still ran into a contradiction
– we also need to restrict what qualifies as a “property”. We replace “properties” with formulae in first
order logic.

A formula may contain some or all of the following symbols:

• Logical symbols: ∧, ∨, →, ↔, and ¬;

• Quantifiers: ∀ :, ∃ : (the : are optional);

• Variable symbols: x1,x2,x3, . . ., or a,b,c,x,y,z,A,B,C, . . .;

• Scoping symbols: (, );

• The equality symbol: =;

• The membership symbol: ∈.

The syntax of valid formulae is defined recursively. Given a collection of valid symbols as above, the
atomic formulae are as follows:

• The string x = y is a valid formula for any variables x,y;

• The string x ∈ y is a valid formula for any variables x,y.

and given two formulae φ and ψ, the following are all valid formulae:

• (φ ∧ ψ);

• (φ ∨ ψ);

• (φ→ ψ);

• (φ↔ ψ);

• ¬φ;

• ∀x : φ for any variable x;

• ∃x : φ for any variable x.

The inclusion of brackets ensures that every formula can be parsed unambiguously.

Note that we do not yet have the symbols ̸= and /∈. However, x ̸= y is just an abbreviation for the
formula ¬(x = y), and similarly, x /∈ y is an abbreviation of ¬(x ∈ y).

We have also not yet defined the symbol ⊆:

A ⊆ B := ∀x(x ∈ A→ x ∈ B)

The notation of using memberships in quantifiers such as ∀x ∈ X : P (x) or ∃x ∈ X : P (x) can also be
defined by:

∀x ∈ X : P (x) := ∀x
(
x ∈ X → P (x)

)
∃x ∈ X : P (x) := ∃x

(
x ∈ X ∧ P (x)

)
(where P (x) is some first order formula with free variable x).

Using these symbols, we can now begin to express some basic axioms for set theory.
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6.4 The Axioms of ZF

6.4.1 Axiom of Extensionality

Axiom of Extensionality.
If two sets have exactly the same members, then they are equal:

∀X∀Y
(
∀z(z ∈ X ↔ z ∈ Y )→ x = y

)
Note that our theory concerns itself only with sets, so it matters not if we use upper or lowercase letters
as variable symbols.

6.4.2 Axiom of The Empty Set

Axiom of the Empty Set.
There exists a set with no elements:

∃E∀x : x /∈ E

We can prove a theorem with these two axioms:

Theorem 6.4.1. There exists exactly one set with no members.

Proof. By the axiom of the empty set, there exists at least one such set.

For uniqueness, suppose A and B are sets with no members. Then, for every x, the implication x ∈ A→
x ∈ B holds vacuously, as does the reverse implication, so A = B by the axiom of extensionality. ■

We call this set the empty set, with the theorem above justifying the wording “the empty set” over “an
empty set”.

6.4.3 Axiom of Pairing

Axiom of Pairing.
For any two sets u and v, there exists a set that contains exactly u and v as elements.

∀u∀v∃X∀x
(
x ∈ X ↔ (x = u ∨ x = v)

)
We denote the set obtained from pairing u and v by {u,v}, with uniqueness given by extensionality. If
u = v, then we also denote this by {u}.

6.4.4 Axiom of Binary Union

Axiom of Binary Union.
For any two sets u and v, there is a set whose members are those sets that are members of u or of
v:

∀u∀v∃U∀x :
(
x ∈ U ↔ (x ∈ u ∨ x ∈ v)

)
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6.4.5 Axiom of the Power Set

Axiom of the Power Set.
For any set u, there is a set whose elements are exactly the subsets of u:

∀u∃P∀s(s ⊆ u↔ s ∈ P )

or omitting the abbreviation ⊆,

∀u∃P∀s
(
∀x(x ∈ s→ x ∈ s)↔ s ∈ P

)
6.4.6 Free and Bound Variables
A free variable, also called a parameter, is a variable that is not bound by a preceding quantifier.

Example. In the formula
∀x : x = y

the variable x is bound, while y is free. △

Quantifiers have a certain scope in which they bind their variables, so more accurately, we should talk
about free and bound instances or occurrences of variables.

Example. Consider the formula
(∀x : x ∈ y) ∧ (∃y : y ∈ X)

Clearly, x is bound and X is free. However, y is free in the first clause and bound in the second. △

This is similar to variable binding in other areas of mathematics:

x+

� 1

0

x dx

Although the integral uses the symbol x, that instance of the symbol is bound, and doesn’t really have
anything to do with the free variable x outside of the integral. We could (and should) use a different
label for that bound variable:

x+

� 1

0

t dt

Similarly, the symbol used to denote a bound variable may be changed freely in a formula of first order
logic:

(∀x : x ∈ y) ∧ (∃z : z ∈ X)

(This is closely related to the notion of α-conversion in the lambda calculus.)

6.4.7 Truth Values
A formula that has no free variables is called a sentence. Assuming classical first order logic – specifically,
the law of the excluded middle – any sentence has a truth value (though they may not be decidable in
any particular theory c.f. Gödel’s incompleteness theorems).

Formulae that are not sentences do not have truth values, because they contain free variables. A formula
that is not a sentence may be true for all possible valuations of their parameters, such as

x = x

which is true for all x (such a formula is a tautology), but the formula itself does not have a truth value.
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6.5 More Axioms

6.5.1 Axiom Schema of Specification
Most of the existence axioms so far have been of the form

∀t1∀t2 . . . ∀tk∃B∀x
(
x ∈ B ↔ φ

)
where φ is some meaningful statement about x and the sets t1, . . . ,tk. For instance, we have k = 2 with
t1 = u and t2 = v in the pairing or axiom union, and k = 0 in the axiom of the empty set.

Note that for this formula to be meaningful, the statement φ cannot contain B as a variable, or else it’s
not a very useful definition of the set B. Also, to resolve Russell’s paradox as before, we will only allow
the collection of elements from some existing set. This leads to the next set of axioms:

Unlike the axioms we have seen so far, this is an axiom schema because it contains infinitely many axioms
– one for each property φ.

Axiom Schema of Specification.
Let φ be any formula that does not contain the variable name B and has only bound variables,
except for x,t1, . . . ,tk. Then, the following is an axiom:

∀t1∀t2 . . . ∀tk∀A∃B∀x
(
x ∈ B ↔ (x ∈ A ∧ φ)

)
That is, for any property φ of x and any set A, there exists a set B that contains exactly the
elements of A for which φ(x) holds, and φ may depend on additional parameters t1, . . . ,tk.

This axiom schema is also known as separation, since it allows us to separate out the elements of a set
that satisfy a property, or as restricted comprehension, since it constrains what sets can be constructed
via set comprehension.

These axioms define new sets, which we denote as

Bt1,...tk,A = {x ∈ A : φ(x,t1, . . . ,tk)}

or
B = {x ∈ A : φ(x)}

Theorem 6.5.1. For any sets A and T , there is a unique set B whose elements are precisely those that
are members of both A and T .

This set is called the intersection of A and T , and is denoted (as usual) by B = A ∩ T .

Proof. The axiom schema of specification contains the axiom

∀t1∀A∃B∀x
(
x ∈ B ↔ (x ∈ A ∧ x ∈ t1)

)
which implies the existence of at least one such set. For uniqueness, suppose X and Y are both inter-
sections of A and T . Then, for each x ∈ X,

x ∈ X ↔ (x ∈ A ∧ x ∈ B)↔ x ∈ Y

so X = Y by extensionality. ■

We can also prove that Russell’s paradox does not occur using these axioms:
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Theorem 6.5.2. Russell’s set R = {x : x /∈ x} does not exist.

Proof. Suppose R exists. If R ∈ R, then R /∈ R; and if R /∈ R, then R ∈ R. In either case, we have a
contradiction. ■

Theorem 6.5.3. There is no set of all sets. That is,

¬∃U∀x : x ∈ U

Proof. Suppose U is such a set, and let φ be the formula x /∈ x. The formula φ does not contain U and
has x free with no other bound variables, so specification yields the set

R = {x ∈ U : x /∈ x}

That is,
x ∈ R↔ (x ∈ U ∧ x /∈ x)

Because U contains every set, x ∈ U is a tautology, so

x ∈ R↔ x /∈ x

This implies that R is Russell’s set, which does not exist by the previous theorem. ■

6.5.2 Axiom of Union
Using the axiom of binary union, we can form the union A ∪ B of two sets, and by repeating it, we
can form the union of three or more sets as (A ∪ B) ∪ C. However, we cannot form arbitrary unions of
infinitely many sets u1,u2, . . .

Because we attempting to axiomatise sets, we will require that any collection of sets we are attempting to
take the union of is itself a set. That is, we wish to take the union of the members of a set A = {u1,u2, . . .}.
Such a union would be a set B whose elements are exactly the members of the members of A.

Axiom of Union.
For any set A, there exists a set B whose members are precisely the members of the members of
A:

∀A∃B∀x
(
x ∈ B ↔ ∃y(y ∈ A ∧ x ∈ y)

)
This set is unique through an argument identical to that for intersections. We denote this set by

B =
⋃
A

That is, x ∈
⋃
A if and only if there is a set y ∈ A such that x ∈ y.

Note that
⋃

is a unary operator, while the previous ∪ was binary. However, the new operator is stronger
in that we can take the union of more sets.

Theorem 6.5.4. The axiom of union and axiom of pairing imply the axiom of binary union.

Proof. Pairing sets u and v gives {u,v}, and the union
⋃
{u,v} is precisely u ∪ v. ■
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6.5.3 Arbitrary Intersections
We have already found the binary intersection using specification, but we would like to define the inter-
section of members of any set. Unlike for unions, a new axiom isn’t required for this.

Theorem 6.5.5. For any non-empty set A, there is a unique set B whose members are precisely those
that are members of all members of A. That is,

x ∈ B ↔ ∀y(y ∈ A→ x ∈ y)

Proof. Suppose A is non-empty and fix some set w ∈ A. Then, the set{
x ∈ w : ∀y(y ∈ A→ x ∈ y)

}
exists by specification, and its members are precisely those that are members of every member of A.
Uniqueness follows from extensionality. ■

Analogously to unions, we write B =
⋂
A for this unary intersection. We can also express binary unions

as the special case x ∩ y =
⋂
{x,y}.

Theorem 6.5.6. Let A be non-empty and let A ⊆ B. Then,⋂
A ⊇

⋂
B

Proof. Let x ∈
⋂
B. By the definition of the intersection,

x ∈
⋂
B ↔ ∀y(y ∈ B → x ∈ y)

→ ∀y(y ∈ A→ x ∈ y)

↔ x ∈
⋂
A

so
⋂
B ⊆

⋂
A as required. ■

6.6 Ordered Pairs

One important basic mathematical structure is the ordered pair, written as (x,y) or ⟨x,y⟩, satisfying the
characteristic property

⟨x,y⟩ = ⟨a,b⟩ ↔ (x = a ∧ y = b)

The goal is to find a representation of this structure made from pure sets that satisfies the property
above.

Let’s first see two encodings that don’t work:

1. ⟨x,y⟩ := {x,y}. For any sets x and y, we have,

⟨x,y⟩ = {x,y}
= {y,x}
= ⟨y,x⟩

2. ⟨x,y⟩ :=
{
x,{y}

}
. For any sets x and y, we have,〈

{x},y
〉
=
{
{x},{y}

}
=
{
{y},{x}

}
=
〈
{y},x

〉
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In either encoding, if x ̸= y, we have a contradiction.

The standard Kuratowski construction of the ordered pair is given by

⟨x,y⟩ :=
{
{x},{x,y}

}
which exists by repeated applications of pairing.

Theorem 6.6.1. The Kuratowski construction satisfies the characteristic property of the ordered pair.
That is, {

{x},{x,y}
}
=
{
{a},{a,b}

}
↔ (x = a ∧ y = b)

Proof. Suppose that {
{x},{x,y}

}
=
{
{a},{a,b}

}
We have {x,y} ∈

{
{a},{a,b}

}
, so either

(a) {x,y} = {a} or

(b) {x,y} = {a,b}

holds. We also have {x} ∈
{
{a},{a,b}

}
, so either

(c) {x} = {a} or

(d) {x} = {a,b}

holds.

If (a) holds, then x = y = a and the equation reduces to{
{a}
}
=
{
{a},{a,b}

}
so x = y = a = b. If (b) holds and

• if (c) also holds, we have x = a and {x,y} = {x,b}. If x = b, then x = y = a = b. Otherwise, y = b.

• if (d) also holds, then x = y = a = b.

In all cases, x = a and y = b.

The other direction is trivial. ■

Theorem 6.6.2.

(i) There is a formula with free variables x,y,z that is satisfied if and only if z = ⟨x,y⟩.

(ii) There is a formula with free variable z that is satisfied if and only if z is an ordered pair.

(iii) There is a formula with free variable x,z that is satisfied if and only if z is an ordered pair with x
as the first coordinate.

(iv) There is a formula with free variable y,z that is satisfied if and only if z is an ordered pair with y
as the second coordinate.

Proof.

(i) φ(x,y,z) = ∃L∃R
(
(L ∈ z) ∧ (R ∈ z) ∧ ∀t

(
t ∈ z → (t = L ∨ t = R)

)︸ ︷︷ ︸
z has precisely two elements, L and R

∧ (x ∈ L) ∧ ∀l(l ∈ L→ l = x)︸ ︷︷ ︸
L contains precisely x

∧ (x ∈ R) ∧ (y ∈ R) ∧ ∀r(r ∈ R→ r = x ∨ r = y)︸ ︷︷ ︸
R contains precisely x and y

)
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The next three follow trivially as partial applications of this formula:

(ii) ∃x∃y : φ(x,y,z)

(iii) ∃y : φ(x,y,z)

(iv) ∃x : φ(x,y,z)

■

6.6.1 Cartesian Product
Now we have ordered pairs, we can define cartesian products as follows:

A×B :=
{
⟨a,b⟩ : a ∈ A ∧ b ∈ B

}
However, we have not yet proven the existence of this set. First, we identify a larger set that contains
all such ordered pairs, before using specification to obtain the cartesian product.

Lemma 6.6.3. If a ∈ A and b ∈ B, then ⟨a,b⟩ ∈ PP(A ∪B).

Proof.

a ∈ A ∧ b ∈ B → a ∈ A ∪B ∧ b ∈ A ∪B
↔ {a} ⊆ A ∪B ∧ {a,b} ⊆ A ∪B
↔ {a} ∈ P(A ∪B) ∧ {a,b} ∈ P(A ∪B)

↔
{
{a},{a,b}

}
∈ P(A ∪B)

↔
{
{a},{a,b}

}
∈ PP(A ∪B)

↔ ⟨a,b⟩ ∈ PP(A ∪B)

■

Theorem 6.6.4. The cartesian product of two sets is a set.

Proof. Consider the formula
ψ(a,b,z) ≡ a ∈ A ∧ b ∈ B ∧ φ(a,b,z)

where φ is the formula from Theorem 6.6.2. Specification then yields the set{
z ∈ PP(A ∪B) : ψ(a,b,z)

}
which, by the lemma above, is A×B. Uniqueness follows from extensionality. ■

The cartesian product is not commutative, as the pairs are ordered, and it is also not associative, as
(A × B) × C consists of pairs of the form ⟨⟨a,b⟩, c⟩, while A × (B × C) consists of pairs of the form
⟨a,⟨b,c⟩⟩. They are, however, naturally isomorphic.

To reduce the number brackets required, the convention is that the product operator binds to the left.
That is, A×B × C ×D × E should be read as ((((A×B)× C)×D)× E).
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6.7 Relations and Functions

6.7.1 Relations
A relation R is a set of ordered pairs. If ⟨x,y⟩ ∈ R, then we use infix notation and write xRy.

Given a relation R, we define the domain, range, and field of R as

dom(R) := {x | ∃y : xRy}
ran(R) := {y | ∃x : xRy}
field(R) := dom(R) ∪ ran(R)

Lemma 6.7.1. If ⟨x,y⟩ ∈ A, then x,y ∈
⋃⋃

A.

Proof.

⟨x,y⟩ ∈ A{
⟨x,y⟩

}
⊂ A{{

{x},{x,y}
}}
⊂ A⋃{{

{x},{x,y}
}}
⊂
⋃
A{

{x},{x,y}
}
⊂
⋃
A⋃{

{x},{x,y}
}
⊂
⋃⋃

A

{x,y} ⊂
⋃⋃

A

x,y ∈
⋃⋃

A ■

Corollary 6.7.1.1. The domain, range, and field of a relation are sets.

Proof. By specification, the following are sets:

dom(R) =
{
x ∈

⋃⋃
R
∣∣∣ ∃y : xRy

}
ran(R) =

{
x ∈

⋃⋃
R
∣∣∣ ∃x : xRy

}
so field(R) = dom(R) ∪ ran(R) is a set by union. ■

6.7.2 Functions
In ordinary mathematics, we think of a function as a special kind of correspondence between pairs of
object, where every given object x (the “input”) is assigned exactly one corresponding object y (its
“image”) by the function. This means that each such object can be represented as an ordered pair ⟨x,y⟩.

A function F is a relation such that for every x ∈ dom(R) there exists a unique y with ⟨x,y⟩ ∈ F . If
⟨x,y⟩ ∈ F for some function F , we write y = F (x) to denote this.

The inverse of a relation R is the set

R−1 :=
{
⟨x,y⟩ : yRx

}
and the composition of two relations R and T is the set

R ◦ T :=
{
⟨x,y⟩ : ∃z(xTz ∧ zRy)

}
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Theorem 6.7.2. If F and G are functions, then the composition F ◦G is a function with domain

dom(F ◦G) =
{
x ∈ dom(G) : G(x) ∈ dom(F )

}
Proof. Suppose ⟨x,y⟩,⟨x,y′⟩ ∈ F ◦G. Then, there exist t and t′ such that

⟨x,t⟩ ∈ G ⟨t,y⟩ ∈ F
⟨x,t′⟩ ∈ G ⟨t′,y′⟩ ∈ F

Since G is a function, t = t′, so we have

⟨t,y⟩ ∈ F
⟨t,y′⟩ ∈ F

and since F is a function, y = y′, so ⟨x,y⟩ = ⟨x,y′⟩ and F ◦G is a function. ■

6.7.3 Images
Given a relation R and a set X, the (R-)image of X under R is the set

R[X] :=
{
y
∣∣ ∃x ∈ X : ⟨x,y⟩ ∈ R

}
and the (R-)preimage is the set

R[X] :=
{
y
∣∣ ∃x ∈ X : ⟨x,y⟩ ∈ R−1

}
=
{
y
∣∣ ∃x ∈ X : ⟨y,x⟩ ∈ R

}
Note that it is not necessary to have X ⊆ dom(R) when taking the R-image, or X ⊆ ran(R) when taking
the R-preimage, since R[X] = R[X ∩ dom(R)] and R−1[X] = R−1[X ∩ ran(R)].

A function F is injective if for every y there is at most one x such that ⟨x,y⟩ ∈ F .

Theorem 6.7.3. A function F is injective if and only if F−1 is a function.

Otherwise F−1 is a relation but not a function.

Theorem 6.7.4. For any functions F and G, we have

• (F ◦G)(x) = F
(
G(x)

)
;

• (F ◦G)−1 = G−1 ◦ F−1.

We write f : A→ B to denote a function f with dom(f) = A and ran(f) ⊆ B. A function f is surjective
if ran(f) = B.

Theorem 6.7.5.

• For any A ̸= ∅, there is no function f : A→ ∅;

• For any B, there is a unique function f : ∅→ B given by f = ∅.

6.7.4 Cantor’s Diagonal Argument
Theorem (Cantor). For any set A, there is no surjection f : A→ P(A).

Proof. Let f : A→ P(A) be a function, and define the set

S =
{
a ∈ A : a /∈ f(a)

}
which is a set by specification. Clearly, S ⊆ A, so S ∈ P(A).

Suppose S ∈ ran(f). Then, there exists a0 ∈ A such that S = f(a0). If a0 ∈ S, then a0 /∈ f(a0) = S,
and if a0 /∈ S, then a0 ∈ f(a0) = S. This is a contradiction, so S /∈ ran(f), and f is not surjective. ■
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We define the identity function on a set A by

IA :=
{
⟨a,a⟩ : a ∈ A

}
That is, IA(a) = a for all a ∈ A.

Theorem 6.7.6. If A is non-empty and there is an injective function f : A → B, then there exists a
surjective function g : B → A such that g ◦ f = IA.

Proof. Let a0 ∈ A. If b ∈ ran(f), then define g(b) to be the unique a ∈ A such that f(a) = b (since f is
injective), otherwise define g(b) = a0. This function (set) exists because

g = f−1 ∪
{
⟨b,a0⟩ ∈ B ×A : b /∈ ran(f)

}
is the union of two sets, the latter of which exists by specification.

Clearly, g is surjective and we have g ◦ f = IA. ■

Theorem 6.7.7. If f : A→ B is surjective, then there exists an injective function g : B → A such that
f ◦ g = IB.

The sets f−1
[
{b}
]

for b ∈ B are non-empty and partition A.

For each b, select ab ∈ f−1
[
{b}
]
. Then, the map g : B → A defined by b 7→ ab is injective, and clearly,

f ◦ g = IB .

However, this proof is not yet valid with the axioms we have so far – we have yet to prove that the set
constructed above exists. The problem is that we do not know if collecting an element ab from infinitely
many sets f−1

[
{b}
]

yields a set.

Axiom of Choice (first form).
For any relation R, there exists a function F ⊆ R such that dom(F ) = dom(R).

That is, for each element x ∈ dom(R), the function F “chooses” exactly one y with ⟨x,y⟩ ∈ R. That is,
exactly one element y ∈ R

[
{x}
]
.

Proof of Theorem 6.7.7. (AC) Suppose f : A→ B is surjective, and consider the relation f−1. We have
dom(f−1) = B and ran(f−1) = A, so by the axiom of choice, there exists a function F ⊂ f−1 with
domain B. For every b ∈ B, we must have ⟨F (b),b⟩ ∈ f , so f

(
F (b)

)
= b. That is, f ◦ F = IB . ■

6.8 Constructing Numbers

6.8.1 Axiom of Infinity
Since we are attempting to embed all of mathematics into set theory, we should find sets that correspond
to natural numbers, as well as a set that contains all natural numbers.

Zermelo proposed the following construction of the natural numbers:

• 0 = ∅;

• 1 = {∅};

• 2 = {{∅}};

• 3 = {{{∅}}};

• n = {n− 1}.
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However, the generally accepted (and in many senses better) convention given by von Neumann is as
follows:

• 0 = ∅;

• 1 = {0} = {∅};

• 2 = {0,1} = {∅,{∅}};

• 3 = {0,1,2} = {∅,{∅},{∅,{∅}}};

• 4 = {0,1,2,3} = {∅,{∅},{∅,{∅}},{∅,{∅},{∅,{∅}}}};

• n = {0,1, . . . ,n− 1}.

One major advantage of this encoding is that the set representing n now has n elements (while in
Zermelo’s construction, every natural number n has exactly one element – n− 1).

We also have
0 ∈ 1 ∈ 2 ∈ 3 ∈ · · ·

and
0 ⊂ 1 ⊂ 2 ⊂ 3 ⊂ · · ·

For a set x, we define its successor x+ by x+ = x ∪ {x}.

Example.

• 0+ = 0 ∪ {0} = {0} = 1;

• 1+ = 1 ∪ {1} = {0,1} = 2;

• 2+ = 2 ∪ {2} = {0,1,2} = 3;

• 3+ = 3 ∪ {3} = {0,1,2,3} = 4;

so 0 = ∅, 1 = ∅+, 2 = ∅++, 3 = ∅+++. △

It is now intuitively clear what natural numbers are in set theory, but without a further axiom, we cannot
write a formula φ(x) that identifies if x is a natural number or not, and we also cannot form the set of
all natural numbers yet.

Lemma 6.8.1. For all m,n ∈ ω.

(i) 0 ̸= n+;

(ii) m ∈ n→ m+ ∈ n+;

(iii) m+ = n+ → m = n.

(You may recognise some of these as Peano axioms.)

A set A is inductive if it contains the empty set and is closed under the successor operation. That is,

∀x(x ∈ A→ x+ ∈ A)

Axiom of Infinity.
There is an inductive set:

∃A
(
∅ ∈ A ∧ ∀x(x ∈ A→ x+ ∈ A)

)
or omitting ∅ and x+,

∃A
(
∃e(∀z : z /∈ e) ∧ e ∈ A ∧ ∀x(x ∈ A→ x ∪ {x} ∈ A)

)
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The axiom of infinity gives the existence of inductive sets, but does not provide uniqueness. We are only
interested in the “smallest” such set.

A natural number is a set that is a member of every inductive set.

Theorem (Existence of Natural Numbers).

(i) There is a set ω whose elements are precisely the natural numbers.

(ii) The set ω is the unique set that is a subset of every inductive set.

Proof. Let A be an inductive set given by the axiom of infinity. Then, by specification, the following is
a set:

ω =
{
a ∈ A : ∀S((∀y : y ∈ S → y+ ∈ S)→ x ∈ S)

}
= {a ∈ A : x is an element of every inductive set}

Clearly, its elements are precisely the natural numbers, and we also have ω ⊆ S for any inductive set S,
with uniqueness given by extensionality. ■

We will use the notation N = {0,1,2, . . .} to refer to the natural numbers when the encoding is irrelevant,
and ω whenever von Neumann’s convention is required.

Theorem (Induction Principle for ω). Any inductive subset of ω coincides with ω.

Proof. Clear from the definition of ω. ■

Theorem (Proof by Induction). Suppose φ is a property of natural numbers such that φ(0) holds and
for every natural number x, φ(x)→ φ(x+). Then φ(x) holds for all natural numbers x.

Proof. Let X = {x ∈ ω : φ(x)} ⊆ ω. By assumption, φ(0) holds, so 0 = ∅ ∈ X, and because
φ(x)→ φ(x+), X is inductive. Thus, by the previous theorem, X = ω. ■

Theorem 6.8.2. Every element of ω is either 0 or the successor x+ of a unique x ∈ ω.

Proof. Define the set
A = {n ∈ ω : n = ∅ ∨ ∃m ∈ ω : n = m+}

Clearly, 0 = ∅ is a member of A, and A is closed under the successor operation, so A is inductive, and
hence A = ω. Injectivity of the successor function (Lemma 6.8.1) implies uniqueness. ■

6.8.2 Ordering of ω
We define the less than relation <ω on ω by

<ω:=
{
⟨m,n⟩ ∈ ω × ω : m ∈ n

}
and the less than or equal to relation ≤ω on ω by

≤ω:=
{
⟨m,n⟩ ∈ ω × ω : m ∈ n ∨m = n

}
If ⟨m,n⟩ ∈ <ω, we write m < n, and similarly, if ⟨m,n⟩ ∈ ≤ω, we write m ≤ n.

Theorem 6.8.3. The relation ∈ linearly orders ω. That is, it is:

(i) irreflexive: ∀n ∈ ω : n /∈ n;

(ii) transitive: ∀x,y,z ∈ ω : (x ∈ y ∧ y ∈ z)→ x ∈ z;
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(iii) linear/total: ∀m,n ∈ ω : m ∈ n ∨m = n ∨ n ∈ m.

Proof.

(i) Define the set
A = {n ∈ ω : n /∈ n}

We show A is inductive via induction on n.

The empty set has no elements, so ∅ /∈ ∅ holds, and ∅ ∈ A.

Now assume that n ∈ A and suppose for a contradiction that n+ ∈ n+ = n ∪ {n}. Then, either
n+ ∈ n or n+ = n. In the former case, n ∈ n ∪ {n} = n+ ∈ n, so by transitivity (ii), n ∈ n,
contradicting that n ∈ A. In the latter case, n ∈ n ∪ {n} = n+ = n, so n ∈ n, again contradicting
that n ∈ A.

It follows that n+ /∈ n+, so n+ ∈ A. So, A ⊆ ω is inductive, giving A = ω, and hence ∈ is an
irreflexive relation on ω.

(ii) Fix x,y ∈ ω and define the set

A = {z ∈ ω : x ∈ y ∈ z → x ∈ z}

We show A is inductive via induction on z.

If z = ∅, then the implication holds vacuously, so ∅ ∈ A.

Now assume that z ∈ A, and suppose that x ∈ y ∈ z+. As y ∈ z+ = z ∪ {z}, we either have y ∈ z
or y = z. If y ∈ z, then by the inductive hypothesis x ∈ z, and since z ⊆ z+, we have x ∈ z+, so
z+ ∈ A.

If y = z, then x ∈ y gives x ∈ z. Again, z ⊆ z+, so x ∈ z+, and z+ ∈ A.

So, A ⊆ ω is inductive, giving A = ω, and hence ∈ is a transitive relation on ω.

(iii) Define the set
B = {n ∈ ω : ∅ = n ∨∅ ∈ n}

We show B is inductive via induction on n.

If n is empty, then n = ∅ so n ∈ B.

Now assume that n ∈ B, so either ∅ ∈ n or ∅ = n. In the former case, ∅ ∈ n ∈ n ∪ {n} = n+,
and in the latter case ∅ ∈ ∅ ∪ {∅} = n+. In either case, ∅ ∈ n+ by transitivity (ii), so B ⊆ ω is
inductive and hence B = ω, so ∅ ∈ n ∨∅ = n holds for all n ∈ ω.

Now define the set
A = {m ∈ ω : ∀n(m ∈ n ∨m = n ∨ n ∈ m)}

If m = ∅, then m ∈ A by the above result.

Now assume m ∈ A. If n ∈ m, then n ∈ m+ by transitivity. If n = m, then n+ = m+. If m ∈ n,
then m+ ∈ n+, so either m+ ∈ n or m+ = n. In all cases, one of the conditions hold, so m+ ∈ A.
So, A ⊆ ω is inductive, giving A = ω, and hence ∈ is total on ω.

■
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6.8.3 Recursion
Theorem (Recursion on ω). Let X be a set and x ∈ X. Let r : X → X be a function. Then, there is a
unique function f : ω → X such that

(i) f(0) = x;

(ii) f(n+) = r
(
f(n)

)
.

Informally, given a set X, and an element x ∈ X, every function r : X → X generates a unique sequence
of elements (xi)

∞
i=1 ⊆ X such that x0 = x and xn+1 = r(xn). The theorem above then says that the

mapping that sends n to xn defines a function ω → X.

That is, the following diagram commutes

N N

{∗}

X X

f

0

x

s

r

f

Proof sketch. Call a function v acceptable if the following four properties hold:

• dom(v) ⊆ ω;

• ran(v) ⊆ A;

• 0 ∈ dom(v)→ v(0) = a;

• n ∈ ω ∧ n+ ∈ dom(v)→ n ∈ dom(v) ∧ v(n+) = F
(
v(n)

)
.

The last property implies that if n ∈ dom(v), then {0,1,...,n} ⊆ dom(v). The empty set is also an
accemptable function, as is the function v =

{
⟨0,a⟩

}
.

Let K be the collection of acceptable functions. Because any acceptable function is a function with
domain contained in ω and range contained in A, all of its elements are ordered pairs in ω × A. That
is, every acceptable function v is a subset of ω × A, or an element in P(ω × A). Thus, K ⊆ P(ω × A)
constitutes a set by specification.

Define
f :=

⋃
K

That is, h is the relation formed from the union of all acceptable functions. This relation h satisfies
⟨n,y⟩ ∈ f ↔ ∃v ∈ K : ⟨n,y⟩ ∈ v.

It can be proven that f is itself an acceptable function, and moreover, its domain is ω, thus satisfying
the conclusions of the theorem. This function can also be shown to be unique by considering the set

T = {n ∈ ω : f1(n) = f2(n)}

and proving that it is inductive. ■

6.8.4 Classes & Class-Functions
What happens if we try to iterate the power set operation? That is, does this theorem on recursion
prove the existence of a function f on ω for which f(0) = ∅ and f(n+) = P(f(n))? The range of such a
function would be the collection

{
∅,P(∅),PP(∅),PP,P(∅), . . .

}
.
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With our current axioms, we cannot prove the existence of this function, nor of this set. The problem
is that the power set operation is not a function, as it is not a set – the power set operation may be
applied to any set, so its domain would be the collection of all sets, which we know is not a set.

A class is a collection of sets satisfying a formula φ:

H = {x : φ(x)}

This is similar to the earlier unrestricted comprehension, but now, these collections do not a priori
constitute sets, being only classes unless proved otherwise.

Example. The class V defined by
V = {x : x = x}

is the class of all sets, called the universe. △

A class that is not a set is called a proper class. For instance, the universe class is a proper set. A class
that happens to be a set is sometimes called a small class.

We can now define more precisely what kind of operation x 7→ P(x) is.

A class-function is a class F whose elements are ordered pairs and for every set x there is exactly one set
y such that ⟨x,y⟩ ∈ F . So, a class-function is an operation “definable with a formula”. A class-function
can thus be regarded as an operation V → V , but it is not a function since it is not a set.

A class (and therefore a class-function) is defined by a formula φ(x), which one designated free variable x,
and possibly other unlisted parameters. As we have defined it, whenever φ(x) holds for a class-function,
x must be an ordered pair. This is inconvenient.

Instead, we will talk about class-functions using formulae φ(x,y) such that for every set x, there is exactly
one other set y such that φ(x,y) holds.

Theorem 6.8.4. There is a formula that is satisfied if and only if φ(x,y) defines a class function.

Proof.
∀x∃y : φ(x,y)︸ ︷︷ ︸

existence

∧∀x∀y∀y′
((
φ(x,y) ∧ φ(x,y′)

)
→ y = y′︸ ︷︷ ︸

uniqueness

)
■

6.8.5 Axiom Schema of Replacement
The axiom schema of specification can be rephrased as saying that the “intersection” of any class with a
set is a set. More generally, one can safely assume that every sufficiently small class is a set, and proper
sets are those that contain “too many” elements.

If we take the “image” of a set under a class-function, intuitively we do not get a “bigger” thing (i.e. a
class) than the set we started with. This is the motivation behind the next axiom.

Axiom Schema of Replacement.
The image of a set under a class-function is a set; if φ is any formula that does not contain B,
then:

∀A
(
∀x∀y∀y′

((
x ∈ A ∧ φ(x,y) ∧ φ(x,y′)

)
→ y = y′

)
︸ ︷︷ ︸

φ is a class-function on at least A

→ ∃B∀y
(
y ∈ B ↔ ∃x(x ∈ A ∧ φ(x,y))

)
︸ ︷︷ ︸

there is a set B consisting of φ-images of elements of A

)
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That is, if φ represents a definable function f , A represents its class domain, and f(x) is a set for every
x ∈ A, then the image of f is a subset of some set B.

Using the axiom schema of replacement, we can prove a more general recursion theorem that does not
presuppose the existence of the set A.

Theorem (Recursion on ω, Class Form). Let a be any set and let φ(x,y) define a class-function. Then,
there is a set A and a unique function h : ω → A such that h(0) = a and φ

(
h(n),h(n+)

)
for every n ∈ ω.

Proof sketch. Call a function n-acceptable if it is acceptable and has domain n. First, we prove that for
each n ∈ ω, there exists an n-acceptable function, and furthermore, that any n-acceptable function and
m-acceptable function agree on n∩m = min(n,m). This implies there is a unique n-acceptable function
for each n ∈ ω.

Then, let φ(x,y) be the formula that if x ∈ ω, then y is x-acceptable, and otherwise y = ∅. This
defines a class-function by the uniqueness proved above, and the axiom of replacement for φ implies the
existence of the set K of all acceptable functions. Then, as before, h =

⋃
K satisfies the conclusions of

the theorem. ■

Corollary 6.8.4.1. There is a function h with domain ω for which h(0) = ∅ and h(n+) = P
(
h(n)

)
for

all n ∈ ω.

Proof. Apply the class form of the recursion theorem for the formula φ(x,y) ≡ y = P(x); and let
a = ∅. ■

Corollary 6.8.4.2. There is a set
{
∅,P(∅),PP(∅),PPP(∅), . . .

}
.

Proof. This is the range of the function of the previous corollary. ■

6.8.6 Addition and Multiplication on ω

Theorem 6.8.5 (Parametric Recursion on ω). Let f0 : A→ B and u : B ×A→ A be functions. Then,
there exists a unique function f : A× ω → B such that

• f(a,0) = f0(a) for all a ∈ A;

• f(a,n+) = u
(
a,f(a,n)

)
for all n ∈ ω and a ∈ A.

Corollary 6.8.5.1. There is a unique function + : ω × ω → ω such that

• +(m,0) = m for all m ∈ ω;

• +(m,n+) =
(
+(m,n)

)+ for all m,n ∈ ω.

Proof. Let A = B = ω, and let f0 : ω → ω be the identity function, and u : ω × ω → ω be defined by
(a,n) 7→ n+ in the previous theorem. ■

We will write this function using infix notation like with relations. Intuitively, this theorem states that
the equations m+ 0 = m and m+ (n+ 1) = (m+ n) + 1 uniquely characterise addition.

Corollary 6.8.5.2. There is a unique function · : ω × ω → ω such that

• m · 0 = 0 for all m ∈ ω;

• m · n+ = m+m · n for all m,n ∈ ω.

Proof. Let A = B = ω, f0 : ω → ω be the constant zero function, and u : ω × ω → ω be defined by
(a,n) 7→ a+ n in the previous theorem. ■
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Theorem 6.8.6 (Basic Properties of ω). The following general properties all hold:

(i) ∀a,b ∈ ω : a+ω b = b+ω a (commutativity of addition);

(ii) ∀a,b,c ∈ ω : (a+ω b) +ω c = a+ω (b+ω c) (associativity of addition);

(iii) a+ω 0ω = a (existence of additive identity);

(iv) a+ 1 = a+ (equivalence of successor and addition);

(v) ∀a,b ∈ ω : a ·ω b = b ·ω a (commutativity of multiplication);

(vi) ∀a,b,c ∈ ω : (a ·ω b) ·ω c = a ·ω (b ·ω c) (associativity of multiplication);

(vii) ∀a,b,c ∈ ω : a ·ω (b+ω c) = a ·ω b+ω a ·ω c (distributivity of multiplication over addition);

(viii) ∀a ∈ ω : a ·ω 1ω = a (existence of multiplicative identity);

(ix) 0ω ̸= 1ω (non-degeneracy);

(x) ∀a,b ∈ ω : a ·ω b = 0ω → (a = 0ω ∨ b = 0ω) (zero divisors).

Proof of (i). Fix a ∈ ω and define the set

S = {b ∈ ω : a+ b = b+ a}

If b = 0, then a+ b = b+ a holds by property (iii), so 0 ∈ S.

Now assume b ∈ S. Then, by the definition of addition,

a+ b+ = (a+ b)+

= (b+ a)+

= b+ a+

so b+ ∈ S, and S ⊆ ω is inductive, so S = ω.

The proofs for the other properties are similar. ■

Theorem 6.8.7. For any natural numbers m,n,p

m ∈ n ↔ m+ p ∈ n+ p

and if p ̸= 0, then also
m ∈ n ↔ m · p ∈ n · p

Theorem 6.8.8. For any natural numbers m,n,p

m+ p ∈ n+ p → m = n

and if p ̸= 0, then also
m · p = n · p → m = n

Theorem 6.8.9. ω is well-ordered by <ω. That is, every non-empty subset A ⊆ ω has an <ω-minimal
element.
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6.8.7 Equivalence Relations
A relation R ⊆ A×A is an equivalence relation on A if it is:

• reflexive: ∀x ∈ A : xRx;

• symmetric: ∀x,y ∈ A : xRy ↔ yRx;

• transitive: ∀x,y,z ∈ A : (xRy ∧ yRz)→ xRz.

We define the equivalence class [x]R of x ∈ A under R as the set

[x]R := {t : xRt}

Note that this is indeed a set by specification, as [x]R ⊆ ran(R) = A.

Theorem 6.8.10. Two elements are equivalent under R if and only if their equivalence classes are equal.

Proof. Suppose xRy, and let a ∈ [x]R. Then, by definition, xRa, so by symmetry and transitivity, aRy,
so a ∈ [y]R, and hence [x]R ⊆ [y]R. Now, let b ∈ [y]R. Then, by definition, yRb, so by transitivity, xRb,
so b ∈ [x]R, and hence [y]R ⊆ [x]R. So, [x]R = [y]R.

For the reverse implication, suppose [x]R = [y]R. By reflexivity, y ∈ [y]R, and since [x]R = [y]R, we also
have y ∈ [x]R, so xRy, as required. ■

Theorem 6.8.11. Equivalence classes partition A. That is, the union of all equivalence classes is A,
and their pairwise intersections are empty.

Proof. By reflexivity, x ∈ [x]R for all x, so the union of all equivalence classes must be A.

Let x,y ∈ A be distinct, and suppose [x]R ∩ [y]R is non-empty. Let a ∈ [x]R ∩ [y]R, so a ∈ [x]R and
a ∈ [y]R. Then, by definition, xRa and yRa, so by the previous theorem, [x]R = [a]R = [y]R. ■

6.8.8 Integers
We can represent natural numbers and the operations of addition and multiplication as sets. The next
goal is to find an encoding of the integers, then of the rationals.

A rational number p/q may be expressed as a pair of integers, p and q – but this representation is
not unique. For instance, p/q = 2p/2q. So, the rationals are really an equivalence relation of these
representations on pairs of integers.

We take the same approach for constructing the integers: just a rational is an equivalence class of
quotients of integers, an integer can be expressed as an equivalence class of differences of naturals. For
instance,

−3 = 0− 3 = 1− 4 = 2− 5 = 3− 6 = · · ·

Define ∼ to be the equivalence relation on ω×ω for which ⟨a,b⟩ ∼ ⟨x,y⟩ if and only if a+ y = b+x. The
set of integers Z is defined to be the set of equivalence classes

Z := ω × ω
/
∼

For instance, the integer 2Z is the equivalence class

2Z =
[
⟨2,0⟩

]
=
{
⟨2,0⟩,⟨3,1⟩,⟨4,2⟩,⟨5,3⟩, . . .

}
while the integer −3Z is the equivalence class

−3Z =
[
⟨0,3⟩

]
=
{
⟨0,3⟩,⟨1,4⟩,⟨2,5⟩,⟨3,6⟩, . . .

}
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Note that in this construction, ω is not a subset of Z, and that

0ω = ∅ ̸=
{
⟨n,n⟩ : n ∈ ω

}
= 0Z

How should we define addition? Informally, we have

(a− b) + (x− y) = (a+ x)− (b+ y)

Theorem (Addition on Z). There is a unique function +Z : Z× Z→ Z such that[
⟨a,b⟩

]
+Z
[
⟨x,y⟩

]
=
[
⟨a+ω x,b+ω y⟩

]
Proof. We check that this operation is well-defined. Suppose ⟨a,b⟩ ∼ ⟨a′,b′⟩ and ⟨x,y⟩ ∼ ⟨x′,y′⟩, so
a+ b′ = b+ a′ and x+ y′ = y + x′. Adding these together, we have a+ b′ + x+ y′ = b+ a′ + y + x′. As
+ω is commutative, we have (a+ x) + (b′ + y′) = (b+ y) + (a′ + x′), so

⟨a+ x,b+ y⟩ ∼ ⟨a′ + x′,b′ + y′⟩

as required. ■

For multiplication, informally, we have

(a− b)(x− y) = (ax+ by)− (ay + bx)

Theorem (Multiplication on Z). There is a unique function ·Z : Z× Z→ Z such that[
⟨a,b⟩

]
·Z
[
⟨x,y⟩

]
=
[
⟨ax+ by,ay + bx⟩

]
The ring unit and zero are then given by

0Z =
[
⟨0,0⟩

]
1Z =

[
⟨1,0⟩

]
Theorem 6.8.12 (Basic Properties of Z). Replacing (+ω, ·ω ,0ω,1ω) by (+Z, ·Z ,0Z,1Z), the same results
as in Theorem 6.8.6 for ω hold for Z, with the addition of

(xi) ∀a ∈ Z : ∃b ∈ Z : a+Z b = 0Z (existence of additive inverses).

Although ω is not a true subset of Z, there is a natural embedding E : ω → Z defined by E(n) =
[
⟨n,0⟩

]
such that E(ω) behaves like ω:

E(m+ω n) = E(m) +Z E(n);

E(m ·ω n) = E(m) ·Z E(n).

E(0ω) = 0Z;

E(1ω) = 1Z.

(That is, E is a semiring homomorphism.) We also have

⟨m,n⟩ = E(m)− E(n)
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6.8.9 Rationals
As mentioned previously, rationals can be expressed as the quotient of two integers (non-zero, in the case
of the divisor). For instance,

1

2
=
−1
−2

=
2

4
=
−2
−4

=
3

6
=
−3
−6

= · · ·

Let Z′ := Z \ {0Z} be the set of non-zero integers and define the equivalence relation ∼ on Z × Z′ for
which ⟨a,b⟩ ∼ ⟨x,y⟩ if and only if a · y = b · x. The set of rationals Q is the set of equivalence classes

Q := Z× Z′/∼
Informally, we have

a

b
+
x

y
=
ay + bx

by

so,

Theorem 6.8.13 (Addition on Q). There is a unique function +Q : Q×Q→ Q such that[
⟨a,b⟩

]
+Q

[
⟨x,y⟩

]
=
[
⟨ay +Z bx,by⟩

]
for all a,b ∈ Z and x,y ∈ Z′.

Similarly, for multiplication, we should have

a

b
· x
y
=
ax

by

so

Theorem 6.8.14 (Multiplication on Q). There is a unique function ·Q : Q×Q→ Q such that[
⟨a,b⟩

]
·Q
[
⟨x,y⟩

]
=
[
⟨ax,by⟩

]
for all a,b ∈ Z and x,y ∈ Z′.

The unit and zero are then given by

0Q =
[
⟨0,1⟩

]
1Q =

[
⟨1,1⟩

]
Again, Z is not a true subset of Q, but there is a natural embedding E : Z→ Q defined by E(a) =

[
⟨a,1Z⟩

]
such that E(Z) behaves like Z:

E(a+Z b) = E(a) +Q E(b);

E(a ·Z b) = E(a) ·Q E(b);

E(0Z) = 0Q;

E(1Z) = 1Q.

(That is, E is a semiring homomorphism.)

Theorem 6.8.15 (Basic Properties of Q). Replacing the relevant operations and constants by (+Q, ·Q
,0Q,1Q), the same results as in Theorem 6.8.6 and Theorem 6.8.12 for ω and Z hold for Q, with the
addition of

(xii) ∀a ∈ Q : ∃b ∈ Q : a ·Q b = 1Q (existence of multiplicative inverses).
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6.8.10 Real Numbers
There are many possible approaches to construct the real numbers.

• Decimal expansions: every real number can be expressed as an integer and an infinite sequence of
digits (a function ω → {0,...,9}).

Disadvantages: multiplication is messy to define; also, real numbers may have two distinct decimal
expansions, so we need to use equivalence classes.

• Equivalence classes of Cauchy sequences of rationals.

Advantage: defining addition and multiplication is very easy.

• Dedekind cuts.

Advantages: defining addition is easy, as is proving the existence of suprema; also no equivalence
classes needed.

We take the third approach here.

A Dedekind cut is a subset X ⊂ Q such that

(i) ∅ ̸= X ̸= Q;

(ii) X is downward closed – that is,
q ∈ X ∧ r < q → r ∈ X

(iii) X has no largest member – that is,

¬∃m ∈ X : ∀x ∈ X : x < m

(A Dedekind cut may also alternatively be defined to be the pair ⟨X,Q \ X⟩, but X alone completely
determines the pair, so no information is lost by just considering the first component.)

The set of real numbers R is the set of all Dedekind cuts.

We define the relation <R on R by x <R y if and only if x ⊂ y, and the relation ≤R by x ≤R y if and
only if x ⊆ y.

Theorem 6.8.16. The relation <R is a linear ordering on R.

Proof. Irreflexivity and transitivity follows from that of the strict subset relation. Obviously, at most
one of

x ⊂ y, x = y, y ⊂ x

can hold. To show at least one holds, suppose the first two cases fail, so x ̸⊆ y.

Since x ̸⊆ y, there exists a rational r ∈ x \ y. Now, let q ∈ y. If q ≥ r, then r ∈ y, as y is downward
closed, but r /∈ y by definition, so q < r. Since x is downward closed, q ∈ x. So, y ⊂ x. ■

6.8.10.1 Bounds

• A number u ∈ R is an upper bound of a set A ⊆ R if a ≤R u for all a ∈ A.

• The set A ⊆ R is bounded from above if there exists an upper bound of A.

• A least upper bound is an upper bound less than any other upper bound.

Theorem 6.8.17. Any non-empty subset of R that is bounded from above has a least upper bound.
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Proof. Let A ⊆ R be non-empty and bounded from above. We claim that
⋃
A is a Dedekind cut, and is

the least upper bound of A.

Since A is a collection of Dedekind cuts, which are sets of rational numbers, we have
⋃
A ⊆ Q. Since A

is non-empty,
⋃
A ̸= ∅, and since A is bounded above, there exists an upper bound, say u, so u+1 /∈ A,

and A ̸= Q.

Let a ∈
⋃
A and r ∈ Q such that r < a. Because a ∈

⋃
A, there exists a Dedekind cut x ∈ A such

that a ∈ x. Because x is a Dedekind cut, it is downwards closed, so r ∈ x, and hence r ∈ A. So
⋃
A is

downward closed.

Now, let m ∈
⋃
A, so there exists x ∈ A such that m ∈ x. If m is a largest element of

⋃
A, then it would

also be the largest element of x. But x is a Dedekind cut, which has no largest element.

Hence,
⋃
A is a Dedekind cut. For all x ∈ A, we have x ⊆

⋃
A (that is, x ≤R

⋃
A), so

⋃
A is an upper

bound of A. Now, let z be any upper bound of A, so x ≤R z (x ⊆ z) for every x ∈ A. Then,
⋃
A ⊆ z

(
⋃
A ≤R z), so

⋃
A is the least upper bound. ■

For any x,y ∈ R, we define the set

x+R y = {p+ q ∈ Q : q ∈ x,r ∈ y}

This coincides with our usual idea of addition, since, for example, if

x = {q ∈ Q : q < 1}
y = {q ∈ Q : q < 3}

then

x+R y = {a+ b ∈ Q : a ∈ x,b ∈ y}
= {a+ b ∈ Q : a < 1,b < 3}
= {q ∈ Q : q < 4}

Lemma 6.8.18. If x,y ∈ R, then x+R y ∈ R.

Proof. Clearly, x+R y ⊆ Q. If a,b ∈ Q such that a /∈ x and b /∈ y, then for every p ∈ x and q ∈ y, p < a
and q < b, so every element (p+ q) ∈ x+R y is less than a+ b, so a+ b /∈ x+R y, giving x+R y ̸= Q.

Let a < (p + q) ∈ x +R y. Then, a − q < p, so (a − q) ∈ x by downward-closedness of x as a Dedekind
cut. Then, a = (a− q) + q ∈ x+R y, so x+R y is downward closed.

Suppose p+ q ∈ x+R y is the largest element. As x is a Dedekind cut, p is not the largest element in x,
so there exists a larger element p < p′ ∈ x. Then, p+ q < p′ + q ∈ x+R y, contradicting that p+ q was
the largest.

Thus, x+R y is a Dedekind cut. ■

Theorem 6.8.19 (Basic Properties of R). Replacing the relevant operations and constants by (+R,·R,0R,
1R), the same results as in Theorem 6.8.6, Theorem 6.8.12, and Theorem 6.8.15 for ω, Z, and Q hold
for R.

Again, Q is not a true subset of R, but there is a natural embedding E : Q→ R defined by E(r) = {q ∈
Q : q < r} such that E(Q) behaves like Q:

E(a+Q b) = E(a) +R E(b);
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E(a ·Q b) = E(a) ·R E(b);

E(a) <R E(b)↔ a <Q b;

E(0Q) = 0R;

E(1Q) = 1R.

(That is, E is a order semiring homomorphism.)

6.8.11 Complex Numbers
A complex number consists of a real part, and an imaginary part, which is just a real number scaling the
imaginary unit. As such, complex numbers can easily be represented using ordered pairs: C = R × R,
with addition and multiplication defined as usual:

⟨a,b⟩+C ⟨c,d⟩ = ⟨a+ c,b+ d⟩
⟨a,b⟩ ·C ⟨c,d⟩ = ⟨ac− bd,ac+ bd⟩

Again, R is not a true subset of C – for instance, 1C = ⟨1R,0R⟩ – but, as usual, there is a natural
embedding that lifts one to the other.

6.9 Cardinality

Informally, the cardinality of a set means the “size” of that set, in the sense of how many elements it has.

Two sets A and B are equinumerous if there exists a bijection between A and B, and we denote this
relation by A ∼ B.

Equinumerosity is an “equivalence relation” since,

• For all A, A ∼ A via the identity on A;

• For all A,B, A ∼ B → B ∼ A, as a bijection between A and B is also a bijection between B and
A;

• For all A,B,C, (A ∼ B ∧B ∼ C)→ A ∼ B via composition.

However, equinumerosity is not a relation in the sense that it is not a set: it is a proper class, consisting
of pairs of sets that are equinumerous.

We say that two sets A and B have the same cardinality, written as |A| = |B|, if they are equinumerous.

For comparing these cardinalities, we have several options. We could say that a non-empty set A is
“smaller than” (or is “at most as large as”) another set B if:

(i) A is equinumerous to a subset of B. That is, A ∼ B0 ⊆ B;

(ii) There exists an injection A↣ B;

(iii) There exists an surjection A↠ B.

The first two are equivalent, and they also imply the third, but the third only implies the first two with
the axiom of choice.

We say that the cardinality of A is at most the cardinality of B, written as |A| ≤ |B| if there is an
injective function from A to B.

Theorem 6.9.1. If |A| ≤ |B| and |B| ≤ |C|, then |A| ≤ |C|.

Proof. Let f : A→ B and g : B → C be injective. Then, g ◦ f : A→ C is injective. ■
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Theorem 6.9.2 (Cantor-Bernstein). Let A and B be sets. If there is an injection f : A → B and an
injection g : B → A, then there is a bijection between A and B. That is, if |A| ≤ |B| and |B| ≤ |A|, then
|A| = |B|.

Proof (König, 1906). Without loss of generality that A and B are disjoint (any elements in the intersec-
tion can be paired with their copy in the other set, and hence ignored).

For any a ∈ A, we may consider its orbit,

· · · → f−1
(
g−1(a)

)
→ g−1(a)→ a→ f(a)→ g

(
f(a)

)
→ · · ·

This sequence may terminate at some point to the left, if f−1 or g−1 is not defined.

Because f and g are injective, each a ∈ A and b ∈ B is in exactly one such sequence, since if an element
a ∈ A occurs in two sequences, the following and preceding elements are just functions applied to that
element, so the two sequences must agree. Therefore, the sequences partition the disjoint union of A and
B, so it is sufficient to give a bijection between the elements of A and B in each sequence separately.

Call a sequence A-terminating if it terminates to the left because g−1 cannot be taken at a certain point.
That is, the sequence begins with an element in A. Define B-terminating sequences similarly.

Then, for an A-terminating sequence, f is a bijection between its A-elements and its B-elements, and
similarly, for a B-terminating sequence, g is a bijection between its A-elements and its B-elements. For
a doubly infinite or cyclic sequence, both f and g provide bijections.

To explicitly give a bijection A → B, define the set A0 = A \ g(B). Note that every A-terminating
sequence starts with an element in A0, or else g−1 would be defined for its starting element.

Then, recursively define An = g(f(An−1)), and define A′ to be their union:

A′ =
⋃
n∈N

An

= A0 ∪ g(f(A0)) ∪ g(f(g(f(A0)))) ∪ · · ·

That is, A′ is the orbit of A0 under g ◦ f .

Then,

h(x) :=

{
f(x) x ∈ A′

g−1(x) x /∈ A′

is a bijection A→ B. ■

Corollary 6.9.2.1. [0,1] ∼ [0,1). That is, the closed unit interval [0,1] is equinumerous with the half-open
unit interval [0,1).

Proof. The functions f : [0,1] → [0,1) and g : [0,1) → [0,1] defined by f(x) = x/2 and g(x) = x are
injections. Then, we have,

A0 = [0,1] \ g
(
[0,1)

)
= [0,1] \ [0,1)
= {1}

An =

{
1

2n

}
A′ =

⋃
n∈N

An
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=

{
1

2n
: n ∈ N

}
So

h(x) :=

{
x
2 x ∈ A′

x x /∈ A′

is a bijection [0,1]→ [0,1). ■

We recall Cantor’s theorem and state a new corollary related to cardinality.

Theorem (Cantor). For any set A, there is no surjection f : A→ P(A).

Corollary 6.9.2.2 (Cantor). For every set A, we have |A| < |P(A)|.

Proof. The function f : A → P(A) defined by a 7→ {a} is an injection, so |A| ≤ |P(A)|, but Cantor’s
theorem states that there is no surjection A → P(A), which implies that no bijection A → P(A) may
exist, so |A| ≠ |P(A)|. ■

For any sets A and B, is it true that at least one of |A| ≤ |B| and |B| ≤ |A| holds? This is surprisingly
non-trivial, and is in fact equivalent to the axiom of choice. We prove this later.

6.9.1 Finite Sets
How do we determine if a set is finite or not? We cannot directly write a first order formula that states
that a set X has finitely many elements. Fortunately, in our definition of the natural numbers, each set
n ∈ ω is defined to be the set {0,1, . . . ,n− 1}, so it “has n elements”.

A set is finite if it is equinumerous to a natural number. This can be written as a formula for any set X
as

∃n∃f
(
n ∈ ω ∧ f ⊆ X × n︸ ︷︷ ︸
f is a function X → n

∧
(
∀x ∈ X : ∀y ∈ X : ∀a ∈ n

(
(⟨x,a⟩ ∈ f ∧ ⟨y,a⟩ ∈ f)→ (⟨x,a⟩ = ⟨y,a⟩ → x = y)

)︸ ︷︷ ︸
f is injective

)
∧
(
∀m : m ∈ n→ ∃x(x ∈ X ∧ ⟨x,m⟩ ∈ f)︸ ︷︷ ︸

f is surjective

))

A finite set X has cardinality n or has n elements if there is a bijection from X to n, and we write
|X| = n in this case.

Theorem (Pigeonhole Principle). No natural number is equinumerous to a proper subset of itself.

Lemma 6.9.3. Let X be finite. Then, there exists a unique n ∈ ω such that |X| = n.

Proof. By the definition of finiteness, there exists at least one such natural number. For uniqueness,
suppose |X| = n and |X| = m, so there exist bijections f : X → n and g : X → n. Suppose further that
m < n. Then g◦f−1 is a bijection n→ m, so n is equinumerous to a proper subset of itself, contradicting
the pigeonhole principle. ■

Corollary 6.9.3.1. No finite set is equinumerous to a proper subset of itself.
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Proof. Let X be finite, so there exists a unique n ∈ ω such that |X| = n, so there is a bijection f : X → n.
Let Y ⊂ X be a proper subset, and suppose that X ∼ Y (X and Y are equinumerous), so there exists
a bijection g : X → Y . Then, f ◦ g ◦ f−1 is a bijection n → f(Y ) ⫋ n, contradicting the pigeonhole
principle. ■

A set is infinite if it is not finite. Note that if X is finite and Y ∼ X, then Y is also finite. Similarly, if
X is infinite, and Y ∼ X, then Y is also infinite.

Theorem 6.9.4. ω is infinite.

Proof. Let s : ω → ω be the function s(n) = n+. Then, ran(s) = ω \ {0} ⊂ ω, so ω is equinumerous to a
proper subset of itself, so ω is not finite. ■

6.9.1.1 Dedekind Finiteness

There are other possible notions of finiteness.

A set X is Dedekind finite if no proper subset of X is equinumerous to X.

The pigeonhole principle implies that every finite set is Dedekind finite, but is the converse true? Yes,
but this direction requires the axiom of choice.

Theorem 6.9.5.

(i) Finite sets are Dedekind finite.

(ii) (AC) Dedekind finite sets are finite.

Proof.

(i) Follows from the pigeonhole principle.

(ii) (Proof sketch.) Let A be an infinite set, and let a0 ∈ A. Then, choose a1 ∈ A\{a0}, a2 ∈ A\{a0,a1},
and so on. Since A is infinite, this process can continue forever.

Now define a function f : A → A such that f(an) = an+1, and f(a) = a for any a /∈ {an}n∈N.
Then, f is injective, but not surjective as a0 /∈ ran(f), so A is equinumerous to A \ {a0} ⊂ A.

■

6.9.2 Countability
A set X is countable if there is an injective function f : X → ω.

Clearly, finite sets are countable.

Because injections imply surjective inverses (Theorem 6.7.6), equivalently, a set X is countable if is empty
or if there is a surjection from ω to X. We have a converse theorem (Theorem 6.7.7), so the previous
implication is actually biconditional, but this theorem requires the axiom of choice.

However, it turns out that we can prove this result for ω without the axiom of choice.

Theorem 6.9.6. A set X is countable if and only if there is a surjection g : ω → X, or if X is empty.

Proof. Suppose X is countable, so there exists an injective function f : X → ω, so by Theorem 6.7.6,
there exists a surjection g : ω → X, or X is empty.

If X is empty, then the unique empty function (X = ∅) → ω is vacuously injective, so X is countable.
Suppose otherwise that there is a surjection g : ω → X. Define f : X → ω by

f(x) = min
(
g−1

[
{x}
])
⊆ ω
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The set g−1
[
{x}
]

is non-empty as g is surjective, and the minimum element exists as ω is well-ordered
(Theorem 6.8.9). The preimages are also disjoint for distinct inputs (or else anything in the intersection
has multiple images under g), so f is injective, as required. ■

The existence of such a surjection is often phrased as “the elements of X can be listed in a sequence”,
since a sequence in X is just a function ω → X.

Example. The sets N, Z, Q, and N× N are countable.

By the above theorem, it is enough to enumerate the elements of each set in a sequence:

• N: 0,1,2,3, . . .

• Z: 0,1,−1,2,−2,3,−3, . . .

• Q: A listing of all the positive rationals was famously given by Cantor:

1
1 → 1

2
1
3 → 1

4
1
5 →

↙ ↗ ↙ ↗ · · ·
2
1

2
2

2
3

2
4

2
5 · · ·

↓ ↗ ↙ ↗ · · ·
3
1

3
2

3
3

3
4

3
5 · · ·

↙ ↗ · · ·
4
1

4
2

4
3

4
4

4
5 · · ·

↓ ↗ · · ·
5
1

5
2

5
3

5
4

5
5 · · ·

...
...

...
...

...
...

...
...

...
. . .

Cantor’s zig-zag argument

This lists all the positive rationals, but to include the negative rationals, we can interleave them like
with the integers (and also add 0 to the beginning of the list).

• N× N: Like the grid above, but listing (p,q) instead of p
q .

△

To distinguish between finite sets and infinite countable sets, we call a set countably infinite if it is infinite
and countable.

Lemma 6.9.7. Let A ⊆ ω be infinite. Then, there is a bijection f : A→ ω

Proof sketch. Intuitively, we match the smallest element of A with 0, the second smallest with 1, and so
on. This does not require the axiom of choice, since ω (and hence A) is well-ordered, so no arbitrary
choice functions are required, and the recursion theorem then gives the required function. ■

Theorem 6.9.8. A set X is countably infinite if and only if there is a bijection between X and ω.
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Proof. Suppose there is a bijection f : X → ω, so X ∼ ω. Since ω is infinite, X is infinite, and since f
is injective, X is countable.

Now suppose that X is countably infinite. Since X is countable, there is an injection f : X → ω.
Consider A = f(X). Since f : X → A is a bijection, X ∼ A, and since X is infinite, A ⊆ ω is infinite, so
there is a bijection h : A→ ω by the previous lemma. The composition h ◦ f is then a bijection between
X and ω. ■

If X is countably infinite, then we say that its cardinality is |X| = ℵ0.

Corollary 6.9.8.1. If X and Y are countably infinite, then X ∼ Y . That is, there exists a bijection
XY .

Proof. By the above theorem, X ∼ ω and Y ∼ ω, so X ∼ Y . ■

Theorem 6.9.9. If A and B are countable, then

(i) A ∪B is countable;

(ii) A×B is countable.

Proof.

(i) If A or B are empty, then the union is just one of the sets, which is countable, so suppose otherwise
that A and B are both non-empty.

Enumerate A as a1,a2, . . . and B as b1,b2, . . ., possibly listing each element multiple times. Then,
A ∪B may be enumerated as a1,b1,a2,b2, . . ..

(ii) If A or B are empty, then the product is empty, which is countable, so suppose otherwise that A
and B are both non-empty.

As A and B are countable, there exist surjections f : N→ A and g : N→ B. Define h : N× N→
A×B by

h
(
⟨a,b⟩

)
=
〈
f(a),g(b)

〉
■

By induction, the union and product of finitely many countable sets is countable.

Is it true that the union of countable many countable sets is countable? Yes, but surprisingly, this
requires the axiom of choice.

Theorem 6.9.10. (AC) The union of countably many countable sets is countable. That is, if X is
countable and A ∈ X is countable for all A, then

⋃
X is countable.

Proof sketch. On a grid, enumerate each An on a horizontal line. Then, Cantor’s zig-zag argument
applies.

Slightly more formally, without loss of generality assume that ∅ /∈ X, and fix a surjection f : N → X.
Each A = f(n) is a non-empty countable set, so choose a surjection gn : N→ A, and let h : N×N→

⋃
X

be defined by
h(n,m) = gn(m)

This function is a surjection as f and gn are surjections.

Now, let i : N→ N× N be a surjection. Then h ◦ i : N→
⋃
X is a surjection, so

⋃
X is countable. ■
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In more detail, the axiom of choice is required when choosing gn:

Define R to be the set of ordered pairs ⟨n,g⟩ n ∈ N such that g is a surjection N→ f(n). Because f(n)
is countable for all n, such a surjection always exists, so every n is in the domain of R, so dom(R) = N.

By the first version of the axiom of choice, there is a function G ⊆ R with the same domain, N. That is,
for each n, there is a unique gn such that ⟨n,gn⟩ ∈ G. This gives the surjection from N to f(n), and the
proof from this point is identical to the one above.

A set is uncountable if it is not countable, and we write |X| > ℵ0.

6.9.3 Continuum
In set theory, the continuum refers to the size of R.

Theorem 6.9.11 (Cantor’s Diagonal Argument). R is not countable.

Proof. This is Cantor’s original diagonal argument.

Every real number can be uniquely expressed in base 10 as a series

d0.d1d2d3 . . . = n+

∞∑
i=0

di
10i

where d0 is an integer, and di, i > 0, is a digit from 0 to 9, and the sequence (di) is not eventually all 9s.

Suppose that R is countable, so there is a list containing all real numbers

di0.d
i
1d
i
2d
i
3 . . .

Let r = d′0.d
′
1d

′
2d

′
3 . . . where

d′i =

{
1 di = 0

0 di ̸= 0

Then r is a real number not listed, as it differs from the ith real number at the ith digit. ■

Or, as a table, the list of real numbers is given by:

i d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 · · ·
0 0 1 2 3 4 5 6 7 8 9 · · ·
1 1 4 1 4 2 1 3 5 6 2 · · ·
2 3 1 4 1 5 9 2 6 5 3 · · ·
3 1 3 7 0 3 5 9 9 0 8 · · ·
4 1 6 1 8 0 3 3 9 8 8 · · ·
5 0 1 1 2 3 5 8 3 1 4 · · ·
6 0 1 4 2 8 5 7 1 4 2 · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .

and the new real number can be generated by examining the diagonal entries of the table, giving this
proof its name:
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i d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 · · ·
0 0 1 2 3 4 5 6 7 8 9 · · ·
1 1 4 1 4 2 1 3 5 6 2 · · ·
2 3 1 4 1 5 9 2 6 5 3 · · ·
3 1 3 7 0 3 5 9 9 0 8 · · ·
4 1 6 1 8 0 3 3 9 8 8 · · ·
5 0 1 1 2 3 5 8 3 1 4 · · ·
6 0 1 4 2 8 5 7 1 4 2 · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .

? 1 0 0 1 1 0 · · ·

If A ∼ R, then we say that A has cardinality of the continuum, and we write |A| = c. Cantor’s theorem
above can then be written as |R| = c > ℵ0.

Theorem 6.9.12. R ∼ (0,1). That is, there is a bijection between R and the open unit interval (0,1).

Proof. The logistic function σ : R→ (0,1)

σ(x) =
1

1 + e−x

with inverse f(x) = − ln( 1
x−1 ) provides the required bijection. ■

Lemma 6.9.13. [0,1) ∼ (0,1). That is, the half-open unit interval [0,1] is equinumerous with the open
unit interval (0,1).

Proof. We have previously proved that [0,1] ∼ [0,1) (Corollary 6.9.2.1). The bijection here is similar:

f(x) =


1
2 x = 0
1

2n+1 x = 1
2n

x otherwise

■

So, we have [0,1] ∼ [0,1) ∼ (0,1) ∼ R, so these sets all have the same cardinality. Combining with scaling
transformations, this implies that all non-trivial intervals of R are equinumerous to R and thus have the
cardinality of the continuum.

Corollary 6.9.13.1. If S ⊆ R contains an open interval, then |S| = c.

Proof. A suitable scaling map map injects (0,1) into the open interval in S, so there is an injection
from R ∼ (0,1) into S. Also, there is an injection from S into R given by the inclusion map. The
Cantor-Bernstein theorem then implies |S| = |R| = c. ■

Theorem 6.9.14. [0,1] ∼ [0,1]2

Corollary 6.9.14.1. |R2| = c
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So far, we know the cardinalities 0,1,2, . . . ,ℵ0,c, and Cantor’s theorem implies the existence of infinitely
many infinite cardinalities given by iterated power sets:

|N| < |P(N)| < |PP(N)| < |PPP(N)| < . . .

Where does c lie in this infinite chain?

Theorem 6.9.15. |P(N)| = |R|

Proof. For each subset A ⊆ N, define xA to be the real number whose decimal expansion is

0.d1d2d3 . . .

where

dn =

{
1 n ∈ A
0 n /∈ A

The function A 7→ xA injects P(N) into R, so |P(N)| ≤ |R|.

Now, given x ∈ (0,1) ⊂ R, write x in its unique binary expansion

0.b0b1b2 . . .

where the sequence (bi) is not eventually all 1s, and define the set

Ax := {n ∈ N : xn = 1}

Then, x 7→ Ax injects (0,1) ∼ R into P(N), so |R| = |(0,1)| ≤ |P(N)|. ■

6.9.3.1 Transcedental Numbers

A real number is algebraic if it is the root of a polynomial with integer (or rational) coefficients. A real
number is transcendental if it is not algebraic.

It is very difficult to construct explicit examples of transcendental numbers, but surprisingly, most real
numbers are transcendental:

Theorem 6.9.16. The set of algebraic numbers is countable.

Proof. A polynomial p ∈ Z[x] of degree n has the form

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

with an, . . . ,a0 ∈ Z. Define the height of p to be the natural number

n+

n∑
i=0

|ai|

Note that there are only finitely many polynomials with any given fixed height, since there are finitely
many integer partitions of any natural number. Every non-zero non-constant polynomial also has at
most n (i.e. finitely many) roots. So, for each height h ∈ N, there are finitely many roots of polynomials
of height h.

Therefore, these roots may be enumerated by enumerating the roots of polynomials of height 1, then
height 2, etc. ■

Corollary 6.9.16.1. There exist transcendental numbers. Furthermore, the set of transcendental num-
bers is not countable.

Proof. Let A be the set of algebraic numbers and T = R \ A be the set of transcendental numbers.
If T were countable, then A ∪ T = R is countable as the union of two countable sets. But R is not
countable. ■
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6.9.4 Cardinal Arithmetic
If κ and λ are cardinalities, then we define κ + λ to be the cardinality of any set S = A ∪ B where
|A| = κ, |B| = λ, and A ∩B = ∅.

For natural numbers (i.e. elements of ω), this definition is equivalent to the previous definition of
addition, +ω.

If κ and λ are cardinalities, then we define κ ·λ to be the cardinality of any set S = A×B where |A| = κ,
|B| = λ.

Example.

• 1 + ℵ0 = ℵ0, given by f : {−1} ∪ N→ N : x 7→ x+ 1.

• ℵ0 + ℵ0 = ℵ0: N ∼ E := {n : ∃k ∈ N : n = 2k} and N ∼ O := {n : ∃k ∈ N : n = 2k+1} via x 7→ 2x
and x 7→ 2x+ 1, respectively, and E ∪O = N.

• 2 · ℵ0 = ℵ0: N× N is countably infinite, and hence bijects to ω.

• c · c = c.

• ℵ0 · c = c.

△

Theorem 6.9.17 (Basic Properties of Cardinal Arithmetic). The following all hold:

(i) ∀κ,λ : κ+ λ = λ+ κ (commutativity of cardinal addition);

(ii) ∀κ,λ,µ : (κ+ λ) + µ = κ+ (λ+ µ) (associativity of cardinal addition);

(iii) ∀κ : κ+ 0 = κ (existence of additive identity);

(iv) ∀κ,λ : κ · λ = λ · κ (commutativity of multiplication);

(v) ∀κ,λ,µ : (κ · λ) · µ = κ · (λ · µ) (associativity of multiplication);

(vi) ∀κ : κ · 1 = κ (existence of multiplicative identity);

(vii) ∀κ,λ,µ : κ · (λ+ µ) = κ · λ+ κ · µ (distributivity of multiplication over addition);

(viii) ∀κ,κ′,λ,λ if κ ≤ κ′ and λ ≤ λ′, then κ+ λ ≤ κ′ + λ′ and κ · λ ≤ κ′ · λ′ (weakly monotone);

Proof. All trivial from basic properties of unions and products. For instance, distributivity holds because

A× (B ∪ C) = (A×B) ∪ (A× C)

■

These cardinal operations are not, however, strictly monotone, as 1 + ℵ0 = 2 + ℵ0, and 1 · ℵ0 = 2 · ℵ0.

Next, we define cardinal exponentiation.

Let A and B be sets. We denote the set of functions B → A by BA or AB . That is,

BA = AB := {f : f is a function from B to A}

Note that for finite sets, AB has |A||B| many elements.

If κ and λ are cardinalities, then we define κλ to be the cardinality of AB where |A| = κ and |B| = λ.

Theorem 6.9.18 (Basic Properties of Cardinal Exponentiation). For all cardinalities κ,λ,µ, the follow-
ing hold:

(i) κλ+µ = κλ · κµ;
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(ii) (κ · λ)µ = κµ · λµ;

(iii) (κλ)µ = κλ·µ.

Lemma 6.9.19. For any cardinality κ, 2κ = |P(S)| for any set S with cardinality |S| = κ.

Proof. Let S have cardinality κ. The set {0,1} has cardinality 2, so 2κ = |{0,1}S | by definition. Let
f : S → {0,1}, and define the set

Af := {s ∈ S : f(s) = 1}

Then, f 7→ Af is a bijection from {0,1}S to P(S). ■

Corollary 6.9.19.1. For any cardinality κ, κ < 2κ

Proof. Apply Cantor’s theorem to the previous lemma. ■

Corollary 6.9.19.2. 2ℵ0 = c

Proof. By the previous lemma,

2ℵ0 = |{0,1}N| = |P(N)| = |R| = c ■

Corollary 6.9.19.3. cℵ0 = c

Proof.
cℵ0 = (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0 = c ■

Corollary 6.9.19.4. The set of sequences of real numbers has cardinality equal to that of the continuum.
That is, |RN| = |R|.

Proof. By the previous corollary,
|RN| = cℵ0 = c = |R| ■

6.10 Axiom of Choice

6.10.1 Equivalent Formulations
We recall the first form of the axiom of choice:

Axiom of Choice (first form).
For any relation R, there exists a function F ⊆ R such that dom(F ) = dom(R).

We used this to prove that the existence of a surjection B → A implies the existence of an injection
A→ B.

We now present another more intuitive form of the axiom of choice. Informally, given a collection of
non-empty sets, there is a function that chooses one element from each set.

Axiom of Choice (second form).
Let S be a set with ∅ /∈ S. Then, there is a choice function for S. That is, a function σ : S →

⋃
S

such that σ(A) ∈ A for all A ∈ S.
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Example. Let S ⊆ P(N) \ {∅} be a collection of non-empty sets of natural numbers. A choice function
is a function σ : S →

⋃
S = N that sends each set A ∈ S to an element σ(A) = a ∈ A.

One possible choice function is given by selecting the smallest number in each set. Even if S contains
infinitely many sets, or even all possible sets of natural numbers, it is always possible to choose the
smallest element from each set to produce a new set, because N is well-ordered.

In this case, we don’t have to invoke the axiom of choice because we can construct this function explicitly

σ =
{
⟨A,n⟩ ∈ P(ω)× ω : A ∈ S,n ∈ A,∀m ∈ ω : m <ω n→ m /∈ A

}
△

However, for some sets, a choice function is not known. For instance, the set of all non-empty subsets
of the real numbers does not admit such a choice function. In this case, the axiom of choice must be
invoked.

As Russell once remarked, “The Axiom of Choice is necessary to select a set from an infinite number of
pairs of socks, but not an infinite number of pairs of shoes.”

Axiom of Choice (third form).
Let A be a set of pairwise disjoint non-empty sets. Then, there exists a set C who has as a member
exactly one element from each member of A. That is, for each B ∈ A, |C ∩B| = 1.

6.10.1.1 Infinite Cartesian Products

Let I be an set (the indexing set) and let H be a function whose domain includes I. Then, for each
i ∈ I, we have a set H(i). We define the indexed product of the H(i) as

×
i∈I

H(i) := {f : f is a function with domain I and f(i) ∈ H(i) for all i ∈ I}

Note that, up to natural isomorphism, this agrees with our earlier definition of an iterated cartesian
product. For instance, a binary cartesian product X1 × X2 is the set of pairs ⟨x1,x2⟩ with x1 ∈ X1

and x2 ∈ X2, but such a pair can be naturally identified with a function x : {1,2} → X1 ∪ X2, with
x(1) = x1 ∈ X1 and x(2) = x2 ∈ X2.

This definition of an indexed product, however, makes sense even if the indexing set is not finite, or even
countable.

Clearly, if any of the sets H(i) is empty, then there are no such functions, and the entire product is
empty. However, is it true that the product of non-empty sets is non-empty? This is again the axiom of
choice:

Axiom of Choice (fourth form).
For any indexing set I and function H with domain I, if H(i) ̸= ∅ for all i ∈ I, then

×
i∈I

H(i) ̸= ∅

Theorem 6.10.1. In the presence of the other ZF axioms, the first, second, third, and fourth forms of
the axiom of choice are all equivalent.

Proof of (1)↔ (2). Assume the first form holds. Let S be a set with ∅ /∈ S, and define the relation

R =
{
⟨x,y⟩ ∈ S ×

⋃
S : y ∈ x

}
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Let F ⊆ R be a function such that dom(F ) = dom(R), given by the first form. Then, for every x ∈ S,
y = F (x) ∈ x, so F is a choice function for S.

Now assume the second form holds. The idea is that an arbitrary relation is like a multi-valued function,
and a choice function given by the second form can choose for every x in the domain exactly one
corresponding y.

Let R be any relation. Then, R ⊂ dom(R)× ran(R). Let

S = P
(
ran(R)

)
\ {∅}

Let σ : S →
⋃
S be a choice function given by the second form. That is, for every A ∈ S (so ∅ ̸= A ⊆

ran(R)), we have σ(A) ∈ A. For x ∈ dom(R), let

F (x) = σ
({
y ∈ ran(R) : ⟨x,y⟩ ∈ R

})
This defines a function F : dom(R)→ ran(R) with F ⊆ R. ■

6.10.2 Partial Orders
A relation R ⊆ X ×X is a (weak or non-strict) partial order on X if it satisfies, for all x,y,z ∈ X:

(i) reflexivity: xRx;

(ii) transitivity: (xRy ∧ yRz)→ xRz;

(iii) antisymmetry: (xRy ∧ yRx)→ x = y.

The usual notation for a weak partial order R is ⪯R or just ⪯.

A relation R ⊆ X ×X is a strict partial order on X if it satisfies, for all x,y,z ∈ X:

(i) irreflexivity: ¬xRx;

(ii) transitivity: (xRy ∧ yRz)→ xRz;

(iii) asymmetry: xRy → ¬yRx;

Note that asymmetry is implied by irreflexivity and transitivity, and may optionally be omitted from
this definition.

The usual notation for a strict partial order R is ≺R or just ≺. If a ≺ b, then we say that a precedes b
or that b covers a.

The pair (X, ≺) (where ≺ is any partial order, weak or strict depending on context) is then called a
partially ordered set or a poset.

Weak and strict partial orders are essentially the same notions, differing only by the diagonal elements
⟨x,x⟩: given a strict partial order, adding these pairs into it yields a corresponding weak partial order,
and conversely, removing these pairs from a weak partial order yields a strict partial order.

Note that not all elements in a poset may be comparable under the ordering. If every pair of elements
are comparable, then the ordering is total.

Example. Consider the set of all subsets of N with at most three elements ordered by inclusion, ⊆.
The sets {0} and {1} are incomparable under this relation because neither {0} ⊆ {1} nor {1} ⊆ {0}
holds. △

In a poset (X, ⪯), an element x ∈ X is maximal if for all y ∈ X, x ⪯ y only if y = x, or equivalently, x
is maximal if there does not exist any y such that x ≺ y.
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A partial ordering may have any number of maximal elements, including none. For instance, the integers
have no maximal element, while the set [0,1] has one maximal element, and a set with k mutually
incomparable elements has k maximal elements.

This notion is distinct from that of a maximum element, which is an element x ∈ X such that y ⪯ x for
all y ∈ X. Clearly, a maximum element is maximal, and if it exists, it is unique.

Informally, a maximal element is an element that is not less than any other element, while a maximum
element is an element that is greater than every other element.

Example. Consider the set of all subsets of N with at most three elements ordered by inclusion, ⊆.
The set {0,1,2} is maximal because it is not a subset of any other set apart from itself, but it is not a
maximum, because, for example, it is not a superset of {3}. △

6.10.2.1 Zorn’s Lemma

Let ⪯ be a weak partial order on a set Z.

A chain is a subset C ⊆ Z such that ⪯ is total on C. That is, every pair of elements in C are comparable
under ⪯:

∀c1,c2 ∈ C : c1 ⪯ c2 ∨ c2 ⪯ c1
Clearly, every subset of a chain is itself a chain.

An element x ∈ Z is an upper bound of a chain C if c ⪯ x for all c ∈ C.

Zorn’s Lemma.
Let (Z, ⪯) be a poset, and suppose that every chain C ⊆ Z has an upper bound. Then, Z has a
maximal element.

Although called a lemma, we normally treat this as an axiom, for it is equivalent to the axiom of choice.

Theorem 6.10.2. In the presence of the other ZF axioms, Zorn’s lemma is equivalent to the axiom of
choice.

Proof, forward direction only. We prove the first form of the axiom of choice, assuming Zorn’s lemma.

Let R be any relation and define

Z = {f ⊆ R : f is a function}

Z is partially ordered by inclusion, ⊆. (Recall that f ⊆ g if and only if g extends the function f).

Let C ⊆ Z be a chain. We claim that
⋃
C ∈ Z, and that

⋃
C is an upper bound of C. As the union of

functions in R,
⋃
C is a subset of R, and since

⋃
C is the union of relations, it is itself a relation.

Suppose that ⟨x,y⟩,⟨x,y′⟩ ∈
⋃
C. Then, there are functions f,f ′ ∈ C such that ⟨x,y⟩ ∈ f and ⟨x,y′⟩ ∈ f ′.

Since C is a chain, every function is comparable. Without loss of generality, suppose f ⊆ f ′. Then, both
pairs lie within f ′, so y = y′. Thus,

⋃
C is a function, so it is in Z.

Now, for any f ∈ C, we have f ⊆
⋃
C by the definition of a union, so

⋃
C is an upper bound for C.

Zorn’s lemma then says that (Z, ⊆) has a maximal element F .

As F ⊆ R, dom(F ) ⊆ dom(R). Suppose for a contradiction that dom(F ) ̸= dom(R), so there exists
x0 ∈ dom(R) \ dom(F ). Let y0 be such that ⟨x0,y0⟩ ∈ R, and define

F ′ = F ∪
{
⟨x0,y0⟩

}
Clearly, F ′ ⊆ R is a function, so F ′ ∈ Z. But then, F ⫋ F ′, contradicting that F is maximal in Z, so
dom(R) = dom(F ), as required. ■
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Theorem 6.10.3. (AC) Every vector space has a basis.

Proof. Let V be a vector space over a field K, and define the set

Z = {S ⊆ V : S is linearly independent over K}

Consider the partial order on Z given by ⊆. The empty set is linearly independent, and ∅ ∈ Z, so
Z ̸= ∅.

Let C ⊆ Z be a chain. Clearly,
⋃
C ⊆ V .

Suppose
n∑
i=1

kivi = 0

for some vectors v1, . . . ,vn ∈
⋃
C and scalars k1, . . . ,kn ∈ K. Since vi ∈

⋃
C, there are Si ∈ C with

vi ∈ Si, and since C is a chain, the Si also form a chain. Without loss of generality, suppose the ordering
is as follows:

S1 ⊆ S2 ⊆ · · · ⊆ Sn
so v1, . . . ,vn ∈ Sn. Since Sn ∈ Z is linearly independent, k1 = · · · = kn = 0, so

⋃
C is linearly

independent, and hence
⋃
C ∈ Z.

⋃
C is also an upper bound for C since S ⊆

⋃
C for all S ∈ C.

By Zorn’s lemma, there is a maximal element S ∈ Z. We claim S is a basis for V .

Since S ∈ Z, S is linearly independent. If S = V , then we are done. Otherwise, let u ∈ V \ S. Since S
is maximal in Z, S ∪ {u}, is not linearly independent, so

k0u+

n∑
i=1

kivi = 0

for some vectors v1, . . . ,vn ∈ S and scalars k0, . . . ,kn ∈ K not all equal to 0. If k0 = 0, then
∑n
i=1 kivi = 0

with k1, . . . ,kn not all zero, contradicting that S is linearly independent. So, k0 ̸= 0, and hence

u = − 1

k0
(k1v1 + · · ·+ knvn)

is in the linear span of S, so S is a basis for V . ■

Corollary 6.10.3.1. R as a vector space over Q has a basis. That is, there is a set H ⊂ R such that
every x ∈ R can be expressed as a unique linear combination

x =

n∑
i=1

qixi

of vectors x1, . . . xn ∈ H and scalars q1, . . . qn ∈ Q.

Such a basis is called a Hamel basis.

6.10.3 Cardinal Comparability
Recall that we write |A| ≤ |B| if there exists an injection A → B. Is this ordering total on the class of
all cardinals?

Cardinal Comparability.
For any sets A and B, we have |A| ≤ |B| or |B| ≤ |A|. That is, there is an injective function
A→ B or there is an injective function B → A.
Equivalently, for any two cardinals κ and λ, we have κ ≤ λ or λ ≤ κ.

It turns out that cardinal comparability is again equivalent to the axiom of choice.

Notes on Mathematics | 138



Set Theory Well-Ordered Sets

6.10.4 Absorption Law
So far, we have seen that cardinal arithmetic for finite cardinalities agrees with arithmetic on ω. That
is, if |A| = n (i.e. there exists a bijection between A and n ∈ ω) and |B| = m and A and B are disjoint,
then n+m = |A∪B| = n+ωm, where the addition on the left is cardinal addition. Similarly, if |A| = n
and |B| = m, then n ·m = |A×B| = n ·ω m.

Theorem 6.10.4. (AC) For every infinite cardinality κ, κ · κ = κ. That is, for every infinite set X,
there is a bijection X → X ×X.

Corollary (Absorption Law). (AC) If κ or λ is infinite, then

κ+ λ = max(κ,λ)

If one is infinite and the other is non-zero, then

κ · λ = max(κ,λ)

Proof. Suppose without loss of generality that κ ≥ λ. Then,

κ ≤ κ+ λ ≤ κ+ κ ≤ κ · 2 ≤ κ · κ = κ

so κ+ λ = κ = max(κ,λ). If additionally λ ̸= 0, then,

κ ≤ κ · λ ≤ κ · κ = κ

so κ · λ = κ = max(κ,λ). ■

6.11 Well-Ordered Sets

6.11.1 Linearly Ordered Sets
A binary relation <X on a set X is a (weak or non-strict) total or linear order if:

• For all a,b ∈ X, exactly one of a <X b, b <X a, and a = b holds (trichotomy);

• For all a,b,c ∈ X, if a <X b and b <X c, then a <X c (transitivity).

or equivalently, if <X is a partial order in which every pair of elements is comparable or equal.

Example. The double line is the set X = R×{0,1} equipped with the lexicographical ordering <lex where
⟨r,i⟩ <X ⟨s,j⟩ if and only if r < s or r = s and i < j. △

Two ordered sets (X, <X) and (Y, <Y ) are order-isomorphic, written as (X, <X) ∼= (Y, <Y ) if there is
a bijection f : X → Y that compatible with the ordering. That is, a <X b if and only if f(a) <Y f(b).

Every finite totally ordered set is order-isomorphic to a subset of the natural numbers, and similarly,
every countable totally ordered set is order-isomorphic to a subset of the rationals.

6.11.2 Well-Ordered Sets
A total ordering (X, <X) is well-ordered if every non-empty subset S ⊆ X has a minimal element. That
is, for every S ⊆ X, there exists s ∈ S such that s ≤X t for all t ∈ S.

Example.

• N is well-ordered.

• Z with its usual numerical ordering <Z is not well-ordered.
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• Z with the ordering a ≺ b if and only if |a| < |b| or if a = |b|,

0 ≺ 1 ≺ −1 ≺ 2 ≺ −2 ≺ 3 ≺ −3 ≺ · · ·

is well-ordered. This ordering is order-isomorphic to (N, <N).

• {− 1
n : n ∈ Z+} ∪ N is well-ordered.

• Z with the ordering a ≺ b if and only if 0 ≤ a < b, a ≥ 0 > b or if 0 ≥ a > b,

0 ≺ 1 ≺ 2 ≺ 3 ≺ · · · ≺ −1 ≺ −2 ≺ −3 ≺ · · ·

is well-ordered. This ordering is order-isomorphic to {− 1
n : n ∈ Z+} ∪ N.

• R is not well-ordered.

• (N× N, <lex) is well-ordered.

△

Theorem 6.11.1. (AC) A total ordering (X, <X) is well-ordered if and only if there is no strictly
decreasing infinite sequence x0 > x1 > x2 > · · · in X.

Proof. If such a sequence exists, take S = {x0,x1, . . .}. Then, S has no minimal element. Conversely,
if S is non-empty and has no minimal element, then choose some element x0 ∈ S. Because x0 is not
minimal, there exist elements x1 ∈ S less than x0. Choose one such element and add it to the sequence.
This element is again not minimal, and so on. ■

Theorem 6.11.2. Suppose (X, <) is a well-order. Then, if x ∈ X is not maximal, then there is a
unique element x+ ∈ X such that x < x+ and there is no element y ∈ X with x < y < x+.

Proof. Let x+ be the minimal element of the non-empty subset {y ∈ X : y > x}. ■

Theorem (Fundamental Lemma). Let (X, <) be a well-ordering, and let f : X → X be order preserving.
That is, x < y → f(x) < f(y) for all x,y ∈ X. Then, f(x) ≥ x for all x ∈ X.

Proof. Suppose the set
S = {x ∈ X : f(x) < x}

of counterexamples is non-empty. Since X is well-ordered, S ⊆ X has a minimal element x0. By
definition of S, we have f(x0) = x1 < x0, and since f is order preserving, we also have f(x1) < x1, so
x1 ∈ S. But x1 < x0, contradicting that x0 is minimal. ■

Corollary 6.11.2.1. If (X, <X) ∼= (Y, <Y ) are isomorphic well-ordered sets, then the order-isomorphism
X → Y is unique.

Proof. Suppose f,g : X → Y are order-isomorphisms. Then, f−1 ◦ g : X → X is an order-isomorphism,
and by the fundamental lemma, (f−1 ◦ g)(x) = f−1

(
g(x)

)
≥ x for all x. So, g(x) ≤ f(x) for all x.

Similarly, by considering g−1 ◦ f : X → X, we obtain that f(x) ≤ g(x) for all x, so f = g. ■
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6.11.3 Trichotomy Theorem for Well-Ordered Sets
Let (X, <) be a well-ordering, and let a ∈ X. We define the initial segment determined by the element
a to be the set

X ↾ a = {x ∈ X : x < a}

This set is well-ordered by the ordering inherited from X.

Example.

• For (N, <N), N ↾ a = {0,1, . . . ,a− 1} equipped with the usual ordering 0 < 1 < · · · < a− 1.

• For Z in the unusual ordering 0,1,2,3, . . . ,− 1,− 2,− 3,− 4, . . ., the initial segment Z ↾ −1 is simply
N in its usual ordering.

△

Theorem 6.11.3. If X is well-ordered, and x0 ∈ X, then X ̸∼= X ↾ x0.

Proof. Suppose f : X → X ↾ x0 is an order-isomorphism. Then, the same map is equivalently a order
homomorphism f : X → X, but with f(x0) < x0, contradicting the fundamental lemma. ■

Theorem (Trichotomy). Let (X, <X) and (Y, <Y ) be well-ordered sets. Then, exactly one of the
following holds:

• X ∼= Y ;

• There exists x0 ∈ X such that X ↾ x0 ∼= Y ;

• There exists y0 ∈ Y such that Y ↾ x0 ∼= X;

6.11.4 Well-Ordering Principle

Well-Ordering Principle (Cantor).
Every set is well-orderable. That is, given any set X, there is a relation < on X such that (X, <)
is well-ordered.

The well-ordering principle is equivalent to the axiom of choice.

Recall that every finite totally ordered set is well-ordered. We also have that ω = N with natural ordering
is well-ordered, but Z, Q, and R, with their natural ordering, are not well-ordered.

We can prove that Z and Q can be well-ordered without invoking the axiom of choice: both sets are
countable, so take any bijection f : Z→ ω or f : Q→ ω, and define the ordering < on Z or Q by

a < b ↔ f(a) <ω f(b)

Since (ω, <ω) is well-ordered, Z or Q equipped with this ordering < will also be well-ordered. However,
this method does not work on R since it is uncountable. Here, the well-ordering principle must be used.

6.11.5 Order-types
Informally, the cardinality of a set describes the “size” of that set. The order-type instead describes the
“length” of a well-ordered set.

Let (X, <X) and (Y, <Y ) be well-orderings. We say that

type(X, <X) = type(Y, <Y )
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if (X, <X) ∼= (Y, <Y ).

We seem to have very good notation for the order-type of many well-ordered sets:

• ω = type(N);

• n = type
(
{0,1, . . . ,n− 1}

)
;

• 0 = type(∅).

Let α and β be order-types of well-ordered sets. Fix well-ordered sets (X, <X) and (Y, <Y ) with
order-type α and β, respectively.

• We write α = β if X ∼= Y ;

• We write α > β if there exists x0 ∈ X such that X ↾ x0 ∼= Y ;

• We write α < β if there exists y0 ∈ Y such that X ∼= Y ↾ y0 ∼=.

Recall that exactly one of these three options holds by the trichotomy theorem.

6.11.6 Ordinal Arithmetic
We have seen that cardinalities admit a sensible notion of arithmetic. What about order-types?

Let α = type(X, <X) and β = type(Y, <Y ).

• Suppose that X and Y are disjoint. The union X ∪Y is well-ordered by the relation < where a < b
if (a ∈ X and b ∈ Y ) or (a,b ∈ X and a <X b) or (a,b ∈ Y and a <Y b).

• The product X × Y can also be well-ordered by the anti-lexicographic ordering with ⟨x,y⟩ <anti-lex
⟨x′,y′⟩ if and only if y <Y y′, or if y = y′ and x <X x′.

Then, we define α+ β = type(X ∪ Y, <) and α× β = type(X × Y, <anti-lex).

Recall the labels used in Cantor’s transfinite iteration from §6.1:

0,1, . . . ,ω,ω + 1, . . . , ω + ω︸ ︷︷ ︸
ω·2

, . . . , ω + ω + ω︸ ︷︷ ︸
ω·3

, . . . , ω · ω︸︷︷︸
ω2

, . . .

Formally, this notation lists out the order-types in increasing order.

6.12 Transfinite Induction

Induction works on N precisely because N is well-ordered. It turns out that there is nothing special about
N, and induction works equally as well on any well-ordered set.

6.12.1 Induction on N
To prove that a property φ holds for all natural numbers, the usual way is to show that φ(0) holds, then
to prove that for every n ∈ N if φ(n) holds, then φ(n+ 1) holds.

Theorem (Induction on N). Let φ be a property of natural numbers. If φ(0) holds, and for every n ∈ N,
φ(n) implies φ(n+ 1), then for every n ∈ N, φ(n) holds:(

φ(0) ∧ ∀n ∈ N
(
φ(n)→ φ(n+ 1)

))
→ ∀n ∈ N : φ(n)

This version of induction does not generalise easily to arbitrary well-ordered sets, so first we rephrase
this.
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Theorem (Strong Induction on N). Let φ be a property of natural numbers, and assume that φ satisfies
the following property:

If for every n ∈ N, if φ(m) holds for all m < n, then φ(n) holds.

Then, for every n ∈ N, φ(n) holds:(
∀n ∈ N :

(
∀m ∈ N : m < n→ φ(m)

)
→ φ(n)

)
→ ∀n ∈ N : φ(n)

It may seem that we are missing the base case φ(0) in our assumptions, but for n = 0, the assumption
becomes the following: if φ(m) holds for all naturals m < 0, then φ(0) holds. The conditional clause is
vacuously true, since there are no naturals m < 0.

Proof. Let ψ(n) be the statement “if m < n, then φ(m) holds”. Then, ψ(0) holds as there is no m < 0.

Now assume ψ(n) holds, so φ(m) holds for all m < n and therefore φ(n) holds by the hypothesis of
the theorem. Thus, φ(m) holds for all m < n + 1, which is the statement of ψ(n + 1). Then, standard
induction for ψ gives that ψ(n) holds for all n ∈ N, and therefore φ(n) holds for all n ∈ N. ■

6.12.2 Transfinite Induction on Well-Ordered Sets
Strong induction on N generalises nicely to arbitrary well-ordered sets.

Theorem (Transfinite Induction). Let (X, <) be a well-ordered set, and let φ be a property of elements
of X. That is, for each x ∈ X, φ(x) is either true or false.

Assume that for every x ∈ X, the following holds:

If φ(y) holds for every y < x then φ(x) holds.

Then, for every x ∈ X, φ(x) holds:

(
∀x ∈ X

(
∀y ∈ X

(
y < x→ φ(y)

)))
→ ∀x ∈ X : φ(x)

Proof. Define the set
S =

{
x ∈ X : ¬φ(x)

}
Suppose for a contradiction that S is non-empty. Then, since X is well-ordered, S ⊆ X has a minimal
element x0. Then, for every y < x0, y /∈ S so φ(y) holds. By the assumption, this implies φ(x0) holds,
so x0 /∈ S. ■

6.13 Ordinals as Sets

6.13.1 Concept Evolution
Recall the evolution of the concept of natural numbers. Early in life, we become familiar with the abstract
concept of “three”, common to all collections of three objects. Then, we learnt how to manipulate 3, and
other numbers.

Then, in set theory, we identified the number 3 with a particular set,
{
∅,{∅},{∅,{∅}}

}
. This choice is

arbitrary, but it has some nice properties, and, importantly, it is a set, so we can continue on our quest
to embed all of mathematics into set theory.

One may notice that we have not completed this final step for cardinalities – or ordinals, for that matter.
We have looked at all those sets that can be mapped bijectively to N, and called them countably infinite.
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Then, we introduced the notation ℵ0, common to all these sets. Then, we defined some arithmetic
operations to manipulate these cardinalities.

But, we haven’t yet talked about what kind of object ℵ0 is, nor any other cardinality κ.

This isn’t really a problem, as mathematics is not interested in the internal composition of its objects –
only about their external structure and how they behave. This, we have defined, even for cardinalities.
We know what κ = λ or κ < λ means; and we have defined κ+ λ, κ · λ, κλ, etc.

However, our goal was to embed all of mathematics into set theory – so this should include cardinalities
too. The task is to present a unique set, called a cardinal, for each cardinality.

It turns out that it is more convenient if we do this for order-types first. In this case, the representing
sets are called ordinals.

6.13.2 Mapping Order-Types to Sets
We wish to define the ordinals: sets equipped with a natural well-ordering such that each order-type of
well-ordered sets corresponds to exactly one ordinal.

We can think of this as a “map” that assigns the abstract concept of order-types to well-ordered sets.
However, the order-types are just classes of well-ordered sets, so we are really looking for a class-function
that sends well-ordered sets to representing well-ordered sets, such that order-isomorphic well-ordered
sets have the same image.

Consider the three-element set X = {a,b,c} with ordering a < b < c, and let E be a function with domain
X that satisfies the equation

E(x) =
{
E(y) : y <X x

}
for all x ∈ X.

Then,

E(x0) =
{
E(y) : y <X a

}
= ∅ = 0 ∈ ω

E(x1) =
{
E(y) : y <X b

}
=
{
E(a)

}
= {∅} = 1 ∈ ω

E(x2) =
{
E(y) : y <X c

}
=
{
E(a),E(b)

}
=
{
∅,{∅}

}
= 2 ∈ ω

More generally, for any finite well-ordered set X, the function E as defined above maps the smallest
element of X to ∅ = 0, the second smallest to {0} = 1, the next smallest to {0,1}, and so on; and
furthermore, E gives an order-isomorphism between X and the set n = {0,1,2, . . . ,n− 1}.

Note that if x <X x′ for some x,x′ ∈ X, then E(x) ∈ E(x′). This recursive property allows us to define
E for all well-ordered sets.

Lemma (Epsilon-image of a Well-Ordered Set). Let (X, <X) be a well-ordered set. Then, there is a
unique function E with domain X such that for all x ∈ X,

E(x) =
{
E(y) : y ≤X x

}
= E

[
{y ∈ X : y <X x}

]
= E[X ↾ x]

Theorem (Transfinite Recursion for Well-Ordered Sets). For any formula φ(f,y), the following is a
theorem:

Suppose that for any function f , there is a unique y such that φ(f,y) holds, and let (X, <X) be a
well-ordered set. Then, there exists a unique function F with domain X such that

φ(F |X↾x,F (x))

holds for all x ∈ X.
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This map E has some very useful properties.

Lemma (Epsilon-images II). The function E defined in the previous lemma satisfies the following prop-
erties:

• Whenever x <X x′, we have E(x) ∈ E(x′), and also E(x) ⫋ E(x′);

• E is injective;

• E is an order-isomorphism between (X, <X) and E[X] with its well-ordering given by the ∈ relation.

Lemma 6.13.1. Let (X, <X) ∼= (Y, <Y ) be order-isomorphic well-ordered sets. Then, their epsilon-
images EX [X] and EY [Y ] coincide.

Proof. This is a proof by transfinite induction. Let f : X → Y be an order-isomorphism, and define the
set

S :=
{
x ∈ X : EX(x) ̸= EY

(
f(x)

)}
Suppose for a contradiction that S is non-empty. Let x0 be the smallest element of S (S ⊆ X, so S is
well-ordered and x0 exists). By definition of S, we have EX(x) = EY

(
f(x)

)
for all x < x0. Then,

EX(x0) =
{
EX(x) : x <X x0

}
=
{
EY
(
f(x)

)
: x <X x0

}
=
{
EY
(
y
)
: y <X f(x0)

}
= EY

(
f(x0)

)
contradicting that x0 ∈ S. ■

6.13.3 Ordinals
A set α is an ordinal if

• it is well-ordered by the ∈ relation;

• whenever y ∈ x ∈ α, we have y ∈ α.

The second property is equivalent to x ∈ α→ x ⊆ α (α is transitive).

Note that by iterating the second property, we also have that if x3 ∈ x2 ∈ x1 ∈ α, then x3 ∈ x2 ∈ α, and
x3 ∈ α. Informally, α contains as elements “all the things it references”.

Theorem 6.13.2.

(i) The epsilon-image of well-ordered sets are ordinals.

(ii) Every ordinal is the epsilon-image of a well-ordered set. Namely, each ordinal is the epsilon-image
of itself.

(iii) Ordinals represent order-types of well-ordered sets.

Proof.

(i) This follows from Lemma 6.13.1. Let (X, <X) be a well-ordering. Suppose a ∈ b ∈ E[X], so
a = E(x) and b = E(x′) for some x < x′. Then E(x) ∈ E[X].

(ii) Let α be an ordinal. Then, by definition,

E(x) =
{
E(y) : y ∈ x

}
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We claim that E(x) = x for every x ∈ α. Suppose otherwise, and let x0 be the ∈-minimal element
in α for which E(x0) ̸= x0. Then,

E(x0) =
{
E(y) : y ∈ x0

}
=
{
y : y ∈ x0

}
= x0

This is a contradiction, so E(x) = x for all x ∈ α, and E[α] = α.

(iii) The previous two statements combined with Lemma 6.13.1 is precisely this result.

■

Theorem (Properties of Ordinals).

(i) Any element of an ordinal is itself an ordinal.

(ii) For any ordinals α,β,γ, if α ∈ β ∈ γ, then α ∈ γ.

(iii) For any ordinal α, we have α /∈ α.

(iv) For any two ordinals α,β, exactly one of the α ∈ β, α = β, and β ∈ α holds (trichotomy).

(v) Any non-empty set S of ordinals has a least element. That is, there exists an ordinal δ ∈ S such
that δ ∈ α for all α ∈ S distinct from δ.

(vi) Every ordinal is the set of ordinals smaller than it: α = {β : β < α}, where β < α ≡ β ∈ α.

(vii) For each ordinal α, the set
α+ 1 := α+ := α ∪ {α}

is also an ordinal, and is the smallest ordinal larger than α:

α+ = min{β : β > α}

(viii) If A is any set of ordinals, then
⋃
A is also an ordinal, and is the least upper bound of A.

An infinite ordinal is called a limit ordinal if it is not the successor of any ordinal.

Example. ω is a limit ordinal, while ω+ and ω++ are successor ordinals. △

Example. The following sets are ordinals:

• 0 = ∅;

• 1 = {∅};

• 2 =
{
∅,{∅}

}
;

• n = {0,1,2, . . . ,n− 1} for every n ∈ ω;

• ω = {0,1,2, . . .};

• ω + 1 = ω+ = ω ∪ {ω} = {0,1,2, . . . ,ω};

• ω + 2 = ω++ = ω+ ∪ {ω+} = {0,1,2, . . . ,ω,ω + 1};

• ω + n =
{
0,1,2, . . . ,ω,ω + 1, . . . ,ω + (n− 1)

}
;

• ω · 2 = ω + ω = {0,1,2, . . . ,ω,ω + 1,ω + 2, . . .};

△
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An ordinal α is countable if α is a countable set. Every ordinal in the example above is countable.

However, what is the order-type of an uncountable well-ordered set? Such sets exist, by the well-ordering
principle, so it must have an order type.

We define the ordinal
ω1 := the smallest uncountable ordinal

Since any subset of the ordinals has a minimal element, such a smallest ordinal exists.

So, α is a countable ordinal if and only if α < ω1. That is, if α ∈ ω1. Since ω1 is uncountable, there are
uncountably many countable ordinals. This also means that not every countable ordinal can be explicitly
expressed like those above.

Theorem (Burali-Forti). There is no set to which every ordinal number belongs.

Proof. The class of ordinals is well-ordered by ∈, and every element of an ordinal is an ordinal, so if the
class of ordinals was a set, it would be an ordinal itself. But then it would be a member of itself, and no
ordinal has this property. ■

6.13.4 Cardinals
Let A be a set. Then, its cardinal κ = |A| is the smallest ordinal that is equinumerous to A.

Note that cardinals are always limit ordinals, because for any infinite ordinal α, α and α+ 1 = α ∪ {α}
are equinumerous.

We show that |A| is well-defined, and that this definition agrees that equinumerous sets have the same
cardinals. By the well-ordering principle, A can be well-ordered by an ordering <A. Let β be be the
ordinal representing the order type of (A, <A). So, β = E[A], and the epsilon function is a bijection, so
β ∼ A. Now, consider the set of ordinals {γ : γ ≤ β}. This has a minimal ordinal equinumerous to A;
this minimal ordinal is the cardinal |A|.

Now, let f : A → B be a bijection. Clearly, the cardinal defined for A is still the smallest ordinal
equinumerous to B, so |A| = |B|.

Example. The smallest countably infinite ordinal is ω, so ω = ℵ0 = |N| = |Z|.

Note that it is still sensible to retain the differing notations ω and ℵ0 despite them being the same set,
because cardinal and ordinal arithmetic are distinct. That is, ω+1 ̸= ℵ0+1. Also, ω = ℵ0 = |ω+1| △

Let ℵ1 denote the cardinality of ω1. Actually, ℵ1 = ω1 by the definition above. Then, ℵ1 is the smallest
uncountable cardinality. We similarly define ℵ2 to be the smallest cardinal larger than ℵ1, and so on.
Note that we did not know until now that there is a smallest uncountable cardinality.

6.14 Applications

6.14.1 Transfinite Recursion

Theorem 6.14.1. It is possible to draw disjoint letters T in R2 above every rational point of the x-axis.

(A letter T above a real number x with height h > 0 and width w > 0 is a union of two line segments:
the vertical line segment connecting (x,0) to (x,h), and the horizontal line segment connecting (x− w

2 ,h)
to (x+ w

2 ,h).)

Constructive proof. For the rational number p
q with p ̸= 0, q > 0, and p,q coprime, draw a letter T with

width 1
2q2 and height 1

q .
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Let p
q and p′

q′ be two rationals in simplest form. If q′ = q, then the horizontal distance of these rational
numbers is at least 1

q , so the letters T are clearly disjoint. Otherise, suppose without loss of generality
that q′ < q. Then, ∣∣∣∣pq − p′

q′

∣∣∣∣ = ∣∣∣∣pq′ − p′qqq′

∣∣∣∣ ≥ 1

qq′
≥ 1

q2

so the horizontal segment of the letter T for p
q does not reach the vertical segment of the letter for p′

q′ ,

and since the height of the letter T for p′

q′ is greater than the height of the letter T for p
q , the letters are

indeed disjoint. ■

Proof by recursion. Enumerate the rationals as x0,x1,x2, . . .. First draw a letter T above x0. Then draw
a letter T x1, disjoint from the one above x0. Then draw a letter T above x2, disjoint from the previously
drawn letters. And so on.

At each step, there are always finitely many letters T drawn, so we can always draw the next one disjoint
from all previous ones. ■

Theorem 6.14.2. (AC) R3 is a union of disjoint circles of unit radius.

Proof. Let {pα : α < c} enumerate the points of R3. That is, well-order R3 so that its order type is
the smallest possible ordinal with cardinality of the continuum; or equivalently, fix a bijection from the
cardinal/ordinal c to R3.

For each ordinal α < c, we will choose a circle Cα to cover the point pα unless pα was already covered
by previous circles {Cβ : β < α}, in which case, we set Cα = ∅.

With transfinite recursion, define sets Cα such that for each α < c,

•
⋃
β≤α Cβ contains the point pα,

• Cα is disjoint from the set
⋃
β<α Cβ .

Once this is done, the non-empty sets Cα are pairwise disjoint unit circles whose union is R3.

Assume that for some α < c, the sets Cβ for β < α are already defined. From this, we will construct Cα
to finish the result by strong induction.

If pα ∈
⋃
β<α Cβ , then define Cα := ∅. Otherwise, pα /∈

⋃
β<α Cβ . because c is the minimal ordinal with

cardinality continuum, the ordinal α = {β : β < α} has cardinality less than continuum, so at this point
of the construction, we have less than continuum many circles.

Each circle Cβ lies in a plane, Hβ . There are continuum many planes through p, and we have less than
continuum many circles constructed, so there exists a plane H distinct from the other planes Hβ . This
plane H can intersect each circle Cβ in at most two points, or otherwise it would contain the whole circle.
So, H intersects

⋃
β Cβ in less than continuum many points. Denote this set of intersections as S ⊂ H,

with cardinality κ < c. There are continuum many circles in H passing through p, and each point of S
disqualifies only two such circles. So, there exists a circle through p in H disjoint from S, and therefore
disjoint from all the circles Cβ . ■

6.14.2 Exactly Two Points on Every Line

Theorem 6.14.3. (AC) There exists a subset A of the plane R2 that intersects every straight line in
exactly two points.

It is a major unsolved problem in fractal geometry whether there is a Borel set A with this property.
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Proof. Let L be the set of all straight lines in R2. Then |L| = c. Enumerate the lines as

L = {ℓα : α < c}

We construct sets Aα ⊂ R2 by induction and recursion such that, for all α < c,

• Aα has at most two points;

•
⋃
β≤αAβ does not have three collinear points;

•
⋃
β≤αAβ has exactly two points of the line ℓα, and thus exactly two points of any line ℓβ for β ≤ α.

Once we have this set, the set
A =

⋃
α<c

Aα

has the desired properties. It has at least two points on every line ℓα, and it cannot have three on any
line, as then there would be an ordinal α such that the set⋃

β≤α

Aβ

already contains those three collinear points.

To begin the construction, consider the first line ℓ0. Choose two arbitrary points p0,q0 ∈ ℓ0 and let
A0 = {p0,q0}. Now consider the line ℓ1. If A0 already contains a point on ℓ1, then let A1 = {p1} for
some other point p1 on ℓ1. Otherwise, choose two arbitrary points p1,q1 from ℓ1 \ ℓ0 and let A = {p1,q1}
(we disallow the point of intersection if it exists, or there would be three points on ℓ0 already).

Let 1 ≤ α < c be arbitrary and assume that the sets Aβ for β < α are already defined.

The set S =
⋃
β<αAβ has cardinality |S| ≤ α < c by the absorption law as it is the union of α many

sets of cardinality at most 2.

By the inductive hypothesis, the set S can contain at most two points of the line ℓα. If |S ∩ ℓα| = 2,
then let Aα = ∅ and we are done. If |S ∩ ℓα| is one or two, then we choose one or two new point(s) on
ℓα, respectively, and define Aα to be the set containing these new points. We have to show that these
new points do not create three collinear points anywhere.

Consider the set M of lines that contain (at least) two points of S. Then, |M | ≤ |S×S| = |S|2 = |S| < c,
so the line ℓα contains less than continuum many points that are incident to a line of M . Apart from
these, we can choose any other points on ℓα for Aα. ■

6.14.3 Ultrafilters
A set U ⊂ P(N) is a filter if it satisfies the following properties:

• N ∈ U ;

• ∅ /∈ U ;

• (monotone) if A ∈ U and A ⊆ B ⊆ N, then B ∈ U ;

• (closed under intersection) if A,B ∈ U , then A ∩B ∈ U ;

A filter is an ultrafilter if it additionally satisfies

• (maximal) for every A ⊆ N, either A ∈ U or N \A ∈ U .

Example. Let U be the family of sets A ⊆ N that contain 5. Then U is an ultrafilter. △

An ultrafilter U is principal if there is no n0 ∈ N such that every A ∈ U satisfies n0 ∈ A, and is free
otherwise. Equivalently, U is free if it does not contain any finite set.
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Theorem 6.14.4. There is a free ultrafilter U ⊂ P(N).

Proof. Let F0 be the filter that contains those sets A whose complement N \A is finite, and let Z be the
set of those filters that contain F0. Then, Z forms a partial order for the relation ⊆ and furthermore
satisfies the hypotheses of Zorn’s lemma. Then, any maximal filter U in Z is a free ultrafilter. (If it
wasn’t an ultrafilter, because say, C ∈ U and N \ C /∈ U , then

U ′ =
{
(C ∩A) ∪ T : A ∈ U ,T ⊆ N \ C

}
is a larger filter than U .) ■

6.14.3.1 Ultraproducts and the Hyperreals

Using ultrafilters to construct ultraproducts of structures is ubiquitous in model theory. We will only
define the hyperreals here, which are the ultraproduct of N many copies of R.

Let (Xn)n∈N be non-empty sets, and let U be a free ultrafilter on N. Then, their ultraproduct∏
U
Xn

consists of the equivalence classes of the standard product∏
n∈N

Xn

under the equivalence relation ∼U where (xi) ∼U (yi) if and only if {i ∈ N : xi = yi} ∈ U .

Notice that if, for example, U is the principal ultrafilter of sets that contain 5, then the ultraproduct is
just the set X5.

The set R∗ is the ultraproduct of the field of real numbers R under any free ultrafilter U . That is,

R∗ =
∏
U

R = RN/∼U

consists of the equivalence classes of real sequences (xn)
∞
n=0 under the equivalence relation ∼U where

(xi) ∼U (yi) if and only if {i ∈ N : xi = yi} ∈ U .

Since the complement of finite sets are always in U , changing finitely many entries of a sequence does
not change its equivalence class.

There is also a natural embedding E : R→ R∗ defined by

E(r) = [r,r,r,r, . . .]

and we can also extend the ordering relation < from R to R∗. We have

[x0,x1,x2,x3 . . .] < [y0,y1,y2,y3, . . .]

if {n ∈ N : xn < yn} ∈ U . This ordering is a total ordering on R∗.

There are hyperreals greater than any real number. For instance,

[1,2,3,4,5, . . .] > E(r)

for any r ∈ R. There are also infinitesimal hyperreals, smaller than any non-zero real. For instance, the
hyperreal

ε = [1, 12 ,
1
3 ,

1
4 ,

1
5 , . . .]
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satisfies E(0) < ε < E(r) for any r > 0.

Addition and multiplication also extend naturally to the hyperreals by being applied pointwise, and
these extensions satisfy their usual properties. For instance, the multiplicative inverse of [0,1,2,3,4, . . .]
is [0,1, 12 ,

1
3 ,

1
4 , . . .], and their product is [0,1,1,1,1, . . .] = [1,1,1,1,1, . . .].

Theorem 6.14.5. R∗ is a field.

Conversely, the standard product
∏
n∈N R is not a field: while addition and multiplication can be defined,

not every non-zero sequence has a multiplicative inverse. (It is still a commutative ring, though with no
obvious linear ordering.)

Theorem 6.14.6 (Łoś’ Theorem, Fundamental Theorem of Ultraproducts).

(i) (General Statement) A first-order formula is true in the ultraproduct
∏

U Xn if and only if the set
of indices n for which the formula holds in Xn is in U .

(ii) (Transfer Theorem for the Hyperreals) Let φ be a first-order formula expressible in the language
of the real numbers (e.g. using 0,1,+ ,− , · ,/, <, etc.). Then, φ holds for the hyperreals R∗ if and
only if it holds for the reals R.

On the other hand, R and R∗ really are distinct fields. The hyperreals have many interesting properties
that are not first-order definable in the language of the reals. For instance, R is Archimedian (Theo-
rem 11.4.1), but R∗ is not: the element ω = [1,2,3,4, . . .] is larger than any of [1,1, . . .], [1,1, . . .]+[1,1, . . .],
[1,1, . . .] + [1,1, . . .] = [1,1, . . .], and so on.

6.14.4 Continuum Hypothesis
Is it true that a set A ⊂ R is either countable or there is a bijection A → R? That is, is it true that
there is no cardinal κ with ℵ0 < κ < 2ℵ0? Or equivalently, is it true that c = ω1?

This last statement is the continuum hypothesis, and it has been shown to be independent from the
axioms of ZFC set theory. That is, there are models of set theory in which CH holds, and models in
which it fails.

6.14.5 Borel sets, σ-algebras, and ω1

Let G be a finitely generated group with generators g1, . . . ,gr. For g ∈ G, define |g| (unrelated to the
order of the element) to be the minimal k ∈ N such that g can be written as the product of k many
generators or their inverses.

Letting G0 = {1} and defining for each 1 ≤ k ∈ N by recursion

Gk =
⋃

i=1,2,...,r

giGk−1 ∪
⋃

i=1,2,...,r

g−1
i Gk−1

we see that |g| is the minimal k such that g ∈ Gk.

The point is that generating a group is a process of length ω. Generating a σ-algebra takes considerably
longer.

Let X be a set. A collection F ⊆ P(X) is a σ-algebra if it is closed under countable unions, countable
intersections, and complementation. That is,

• If A1,A2, . . . ∈ F , then
⋃
n∈NAn ∈ F and

⋂
n∈NAn ∈ F ;

• If A ∈ F , then X \A ∈ F ;

A Borel set is any subset of a topological space X that can be formed by taking countable unions,
countable intersections, and complements of open sets (or equivalently, closed sets) in X.
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For any topological space X, the collection of all Borel sets on X forms a σ-algebra called the Borel
algebra of X. Equivalently, the Borel algebra on X is the smallest σ-algebra containing all open sets (or
equivalently, all closed sets).

We consider the Borel algebra on R.

We define the rank of a Borel set recursively. Open and closed sets have rank 0 and form the set B0.
Then, for 1 ≤ α < ω1, a Borel set has rank at most α if it is the union of intersection of countably many
Borel sets of rank less than α (or a complement of such a set). That is, Bα – the family of Borel sets
of rank at most α – consists of those sets that can be obtained as the union of intersection of countably
many sets from ⋃

β<α

Bβ

or a complement of such a set.∗ We say that a Borel set B has rank α if α is the minimal ordinal such
that B ∈ Bα.

Theorem 6.14.7.
B =

⋃
α<ω1

Bα

That is, every Borel set has a rank that is an ordinal less than ω1.

Proof. Since every open (and every closed) set is Borel, we have B ⊇ B0. Suppose that

B ̸⊇
⋃
α<ω1

Bα

Then, there is a minimal α such that B ̸⊇ Bα. Then,

B ⊇
⋃
β<α

Bβ

and since every set in Bα can be obtained as a union, intersection, or complement of countably many
sets from the right side, and B is a σ-algebra, we must have that B ⊇ Bα, which is a contradiction. So,

B ⊇
⋃
α<ω1

Bα

For the other direction, all we have to show is that

B′ :=
⋃
α<ω1

Bα

is a σ-algebra. If A ∈ Bα, then R\A ∈ Bα, so the complement is clear. Now suppose that A1,A2,A3, . . . ∈
B′, so Ai ∈ Bαi

for some ordinals αi < ω1.

Let α = supi αi =
⋃
i αi. Then, α is the countable union of countable sets, so α < ω1, and

⋃
iAi and⋂

iAi have rank at most α+ 1, and are thus elements of Bα+1. This shows that B′ is a σ-algebra. ■

This Borel hierarchy is usually split into not one, but two well-ordered sequences of length ω1. To
simplify, we have merged these two sequences into one here. The Borel hierarchy can also be used to
prove that there are only continuum many Borel sets on R.

∗ Actually, since B0 is closed under complementation, this last part of the sentence can be omitted and we get the same
family of sets.
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6.14.6 Cantor-Bendixson Theorem
In §6.1, we iteratively described the derived sets of closed subsets of R. With ordinals, we can define this
transfinite sequence more formally.

Recall that D(A) is the set of points in A that are not isolated.

Let A ⊂ R be closed. Let D0(A) = A, and define for any ordinal α

Dα+1(A) = D
(
Dα(A)

)
For limit ordinals α, let

Dα(A) =
⋂
β<α

Dβ(A)

When Dα+1(A) = Dα(A), then Dα(A) has no isolated points, and obviously for any β > α, we have
Dβ(A) = Dα(A). Any ordinal α < ω1 can be the smallest ordinal when this happens first.

However, this must happen at some point strictly before ω1. This follows from the next theorem.

A set is perfect if it is closed and has no isolated points.

Theorem (Cantor-Bendixson). Every closed set A ⊂ R can be uniquely written as the union of a perfect
set and a countable set.

6.15 Axiom of Regularity

We have proved that for every natural number n, we have n /∈ n. However, there is an additional axiom
that implies that no set is an element of itself.

Axiom of Regularity.
Every non-empty set X has an element x such that x ∩X = ∅. That is:

∀X
(
X ̸= ∅→ ∃x : x ∈ X ∧ x ∩X = ∅

)
That is, x does not contain any element of X. This axiom is often stated as, “every non-empty set has
an ∈-minimal element.”

Theorem 6.15.1 (Corollaries of Regularity).

(i) For every set x, x /∈ x.

(ii) There are no sets a and b such that a ∈ b and b ∈ a.

Proof.

(i) Suppose x ∈ x. Let X = {x} (this is a set by the axiom of pairing). Since x is the only element
of X, we must have x ∩ X = ∅ by the axiom of regularity. However, x ∈ x and x ∈ X, so
x ∈ x ∩X ̸= ∅.

(ii) Suppose a ∈ b and b ∈ a. Let X = {a,b}. By regularity, either a ∩X = ∅ or b ∩X = ∅. However,
neither hold, since a ∈ b ∩X and b ∈ a ∩X.

■

The axiom of regularity is equivalent to the statement that there is no infinite sequence of sets, x0,x1,x2, . . .
such that

x0 ∋ x1 ∋ x2 ∋ · · ·
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Since a sequence is just a function from ω, more precisely, there is no function f with domain ω such
that

f(0) ∋ f(1) ∋ f(2) ∋ · · ·

Theorem 6.15.2. The axiom of regularity is equivalent to the statement that there are no functions f
with domain ω such that f(0) ∋ f(1) ∋ f(2) ∋ · · · .

Proof. Let X = ran(f). By regularity, x ∩ X = ∅ for some x ∈ X. But x = f(n) for some n ∈ ω, so
f(n+ 1) ∈ x ∩X ̸= ∅.

The other direction requires the axiom of choice. Let X be a non-empty set, and let x0 ∈ X. If
x0 ∩X = ∅, then take x = x0. Otherwise, choose some x1 ∈ x0 ∩X and check if x1 ∩X = ∅. If so, take
x = x1. Otherwise, choose some x2 ∈ x1 ∩X. And so on. ■

6.15.1 Cumulative Hierarchy and Rank
Recall the hierarchy of sets described in §6.2.1. We did not end up needing atoms, so we restate the
atomless version of the hierarchy of sets more formally here.

Informally, we defined V0 to be a certain set, then recursively defined V1 = P(V0), V2 = P(V1), and so
on. We formalise the “and so on” part using ordinals.

Let
V0 = ∅

(This is slightly different from the introduction, where we instead had V0 = {∅}.) Then, for each ordinal
α, define

Vα+1 = P(Vα)

For limit ordinals α, define
Vα =

⋃
β<α

Vβ

(Proving, by a version of transfinite recursion, that this is well-defined is quite some work.)

Theorem 6.15.3. The axiom of regularity is equivalent to the statement that every set appears in the
Cumulative Hierarchy. That is, for every set A, there is an ordinal α such that A ∈ Vα.

The rank of a set A is defined as

rank(A) = min{β : A ∈ Vβ + 1}

The previous theorem implies that every set has a rank.

Notice that the smallest ordinal β for which A ∈ Vβ can never be a limit ordinal, as the set Vβ for a
limit ordinal β is just the union of Vγ for γ < β. This is why the definition is given with the minimal β
for which A ∈ Vβ+1. This way, for every ordinal α, there is a set with rank α; in fact, the ordinal α has
rank α.

6.16 Condensed List of ZFC Axioms

Axiom of Extensionality.
If two sets have exactly the same members, then they are equal:

∀X∀Y
(
∀z(z ∈ X ↔ z ∈ Y )→ x = y

)
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Axiom of the Empty Set.
There exists a set with no elements:

∃E∀x : x /∈ E

Axiom of Pairing.
For any two sets u and v, there exists a set that contains exactly u and v as elements.

∀u∀v∃X∀x
(
x ∈ X ↔ (x = u ∨ x = v)

)
Axiom of the Power Set.
For any set u, there is a set whose elements are exactly the subsets of u:

∀u∃P∀s(s ⊆ u↔ s ∈ P )

or omitting the abbreviation ⊆,

∀u∃P∀s
(
∀x(x ∈ s→ x ∈ s)↔ s ∈ P

)
Axiom Schema of Specification.
Let φ be any formula that does not contain the variable name B and has only bound variables,
except for x,t1, . . . ,tk. Then, the following is an axiom:

∀t1∀t2 . . . ∀tk∀A∃B∀x
(
x ∈ B ↔ (x ∈ A ∧ φ)

)
That is, for any property φ of x and any set A, there exists a set B that contains exactly the
elements of A for which φ(x) holds, and φ may depend on additional parameters t1, . . . ,tk.

Axiom of Union.
For any set A, there exists a set B whose members are precisely the members of the members of
A:

∀A∃B∀x
(
x ∈ B ↔ ∃y(y ∈ A ∧ x ∈ y)

)
Axiom of Infinity.
There is an inductive set:

∃A
(
∅ ∈ A ∧ ∀x(x ∈ A→ x+ ∈ A)

)
or omitting ∅ and x+,

∃A
(
∃e(∀z : z /∈ e) ∧ e ∈ A ∧ ∀x(x ∈ A→ x ∪ {x} ∈ A)

)
Axiom Schema of Replacement.
The image of a set under a class-function is a set; if φ is any formula that does not contain B,
then:

∀A
(
∀x∀y∀y′

((
x ∈ A ∧ φ(x,y) ∧ φ(x,y′)

)
→ y = y′

)
︸ ︷︷ ︸

φ is a class-function on at least A

→ ∃B∀y
(
y ∈ B ↔ ∃x(x ∈ A ∧ φ(x,y))

)
︸ ︷︷ ︸

there is a set B consisting of φ-images of elements of A

)
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Axiom of Regularity.
Every non-empty set X has an element x such that x ∩X = ∅. That is:

∀X
(
X ̸= ∅→ ∃x : x ∈ X ∧ x ∩X = ∅

)
Axiom of Choice (first form).
For any relation R, there exists a function F ⊆ R such that dom(F ) = dom(R).

Axiom of Choice (second form).
Let S be a set with ∅ /∈ S. Then, there is a choice function for S. That is, a function σ : S →

⋃
S

such that σ(A) ∈ A for all A ∈ S.

Axiom of Choice (third form).
Let A be a set of pairwise disjoint non-empty sets. Then, there exists a set C who has as a member
exactly one element from each member of A. That is, for each B ∈ A, |C ∩B| = 1.

Axiom of Choice (fourth form).
For any indexing set I and function H with domain I, if H(i) ̸= ∅ for all i ∈ I, then

×
i∈I

H(i) ̸= ∅

Well-Ordering Principle (Cantor). (Equivalent to Choice)
Every set is well-orderable. That is, given any set X, there is a relation < on X such that (X, <)
is well-ordered.

Cardinal Comparability. (Equivalent to Choice)
For any sets A and B, we have |A| ≤ |B| or |B| ≤ |A|. That is, there is an injective function
A→ B or there is an injective function B → A.
Equivalently, for any two cardinals κ and λ, we have κ ≤ λ or λ ≤ κ.

Zorn’s Lemma. (Equivalent to Choice)
Let (Z, ⪯) be a poset, and suppose that every chain C ⊆ Z has an upper bound. Then, Z has a
maximal element.
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Chapter 7

Combinatorics I

“If I walk randomly on a grid, never visiting any square twice, placing a marble
every N steps, on average how many marbles will be in the longest line after N ×K
steps? Somehow the answer is important in like three unrelated fields.”

— Cueball (xkcd 2529), Randall Munroe

There is a substantial amount of disagreement about the scope of combinatorics, but very broadly
speaking, combinatorics is the branch of mathematics that deals with counting and discrete structures.
In any case, combinatorics is well known for the sheer breadth of the problems it handles.

Most topics in mathematics have a generally clear goal, such as the prime number theorem in number
theory, and if such a goal doesn’t exist, there is usually a narrow focus, as in group theory. Combinatorics
is not like that – it is often described as a collection of unrelated problems, some of which we think have
solutions. Many problems in combinatorics end up being embedded into many other disparate areas
of maths, and there isn’t a general theory for many combinatorial problems. Combinatorics is about
solving problems – it is about techniques rather than specific results.

Because we will often be using sets purely to count things, we introduce the reasonably standard notation
of writing [n] to denote the set {1,2, . . . ,n}. Note that [n] is sometimes taken to include 0 in other
applications, but in this chapter, we will take [n] to exclude 0.

7.1 Introduction

The multiplication principle states that if you have n options for one item, and m for a second item, then
the total number of ways to choose both items is n ×m. In general, if there are k items to be chosen,
with nk options for the kth item, then there are n1 × n2 × · · · × nk ways to choose the k items. We call
these combinations of the items. Combinations do not care about the ordering of the items in question.

In contrast, say you are arranging 5 different books on a shelf, each with a different colour, and all snugly
fitting together. How many ways are there to arrange the books on the shelf?

We call these different orderings permutations, so an equivalent question is to ask how many permutations
of 5 objects there are.

For the first position on the shelf, we have 5 options to pick from – any book could go in the first place.
Then, for the next space, we have 4 options to pick from, then for the next, 3. We multiply all of these
together, giving 5× 4× 3× 2× 1 = 120 ways of arranging the 5 books.
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Particularly in combinatorics, multiplying sequences of integers occurs often enough that we have notation
for this called the factorial : n! := n× (n− 1)× (n− 2)× · · · × 2× 1. This function comes up in a lot of
places outside of combinatorics, but here, we restrict the factorial function to take natural inputs only.
One thing of note is that 0! = 1, which corresponds to the idea that if you have zero objects, there is
only one permutation – having zero objects.

Another point to remember, is that there is only one combination of books here. Regardless of how we
arrange them, we will end up with the same 5 books on the shelf – combinations do not care about order.

Now, what if we had 8 different books, but still only 5 spaces on the shelf? Then, we have 8 options for
the first position, then 7 for the second,. . . , down to 4 for the fifth space. We can compactly write this
as 8!

3! .

Total permutations =
(Number of items we can choose from)!
(Number of items we can’t choose)!

Or, if we have n items and k spaces, these are called k-permutations of n,∗ and are denoted with P (n,k),
nPk, or Pnk , and

Pnk =
n!

(n− k)!

Now, say we have a shelf with 3 spaces, and 7 different books. How many ways to choose 3 books out of
7 do we have?

We know there are P 7
3 = 7!

(7−3)! = 210 permutations. Each set of 3 objects can be arranged in 3! = 6

ways, so we’ve counted each combination exactly 6 times, so the number of combinations is 7!
4!3! = 35.

Total combinations =
(Number of items we can choose from)!

(Number of items we can choose)!× (Number of items we can’t choose)!

We call these k-combinations of n objects, denoted C(n,k), Cnk , nCk„ or
(
n
k

)
.

Cnk =

(
n

k

)
=

n!

k!(n− k)!

Now, we have 5 books again, with 5 spaces on the shelf, but this time, 3 of the books are indistinguishable.
How many permutations do we have now?

We still start with the 5! = 120 permutations from before, but now, every permutation has set of
matching versions with the indistinguishable books swapped around. Since those permutations are
indistinguishable, we divide them out, giving 5!

3! = 20 total permutations.

In general, for permutations with repeated elements,† we start as if the items are all distinguishable,
then divide out by the repeated elements swapping with each other:

Total permutations with repeated objects =
(Total number of objects)!

(Group 1)!× (Group 2)!× (Group 3)! · · ·

Example. How many distinct anagrams of the word “MISSISSIPPI” are there?

The word is 11 letters long, and we have 4 groups of letters, M , I, S and P with multiplicities 1, 4, 4,
and 2, respectively, so there are,

11!

1!4!4!2!
= 34 650

such anagrams. △
∗ A “permutation” in more general contexts is a bijection from a set to itself, and should use all elements of the set, so

this is a slightly different notion of a permutation.
† Since sets cannot contain duplicates of elements, we consider structures called “multisets” instead, and these permuta-

tions are technically called multiset permutations.
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Of course, when rolling 10 D6 dice, there are 6 possible values for the first die, 6 for the second, 6 for the
third, and so on, giving 610 possible permutations, but how many possible combinations are there when
rolling 10 D6 dice? (More properly, we call these “k-multicombinations” or “k-multisubsets” of n.)

We let xi denote the number of dice in with value i per multisubset. The question is then to find the
number of non-negative integer solutions∗ to x1 + x2 + x3 + x4 + x5 + x6 = 10.

We use a method called the stars and bars. A solution to the equation can be represented with x1
symbols called stars, followed by a separator called a bar, then x2 more stars, another bar, and so on.
For example, the combination of dice values, 1112234446 (order doesn’t matter) would be represented
as ⋆ ⋆ ⋆ | ⋆ ⋆ | ⋆ | ⋆ ⋆ ⋆ || ⋆ .

In general, any valid solution to
∑k
i=1 xi = n is represented by n stars and k− 1 separating bars, so the

number of solutions is the number of permutations of the n stars and k − 1 bars, which we know from
above is,

Number of combinations of n objects with k choices each =
(n+ k − 1)!

n!(k − 1)!
=

(
n+ k − 1

k − 1

)
so there are

(
6+10−1

6−1

)
= 5005 different combinations you could get from rolling 10 D6 dice.

These are all examples of simple problems in enumerative combinatorics – problems where we want to
count some objects, or count how many ways we can do something. We will systematically classify these
problems later, but first, we give a common presentation of these types of problems.

7.1.1 Balls and Boxes
We met a few different situations so far where we choose a selection of objects, subject to some constraints.
One common framing for these kinds of problems is to count the number of ways to place balls into boxes,
with various restrictions:

• Suppose we have k distinguishable, or labelled, balls (e.g., they have the integers 1, . . . ,k written
on them), and n labelled boxes. How many ways are there to distribute the balls into the boxes?

• (Indistinguishable balls/boxes) What if the balls are now indistinguishable, or unlabelled, but the
boxes are labelled? What about the reverse situation? What if neither balls nor boxes are labelled?

• (Restricted capacities) What if each box can only hold at most 1 ball? Or 2 balls? Or N balls?

• (Semi-distinguished balls/boxes) Suppose we have k1 red balls, k2 green balls,. . . , and/or n1 blue
boxes, n2 yellow boxes,. . .

• (General case) Suppose we have k1 balls of colour c1, k2 balls of colour c2,. . . , kr balls of colour cr;
and n1 boxes of colour d1 with capacities N1,1, . . . ,N1,n1 , and n2 boxes of colour d2 with capacities
N2,1, . . . ,N2,n2 ,. . . , and ns boxes of colour ds, with capacities Ns,1, . . . ,Ns,ns . How many ways are
there to distribute the balls into the boxes?

Even more generally, we can impose minimum capacities for each box (each box must receive at least 1
ball, or 2 balls, or even more generally, M1,1, . . . ,M1,n1

,M2,1, . . . ,Ms,ns
balls).

The general case is rather difficult and we will not be tackling it here, but the main point is that many
other problems can be rephrased as to be about balls and boxes.

For instance, how many sequences of length k are there whose entries are 1, . . . ,n? This problem is
equivalent to placing k labelled balls into n labelled boxes; there are nk sequences/distributions in both
problems.

∗ Such equations are called Diophantine equations.
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If we have two counting problems that seem to be “the same” like this, sometimes we can show a
relationship between them by matching up the objects being counted. How can you match up the
sequences with the ball arrangements in the previous problem?

Such a matching is called a bijection.

7.2 Bijective Proofs

In the introduction, we met a couple of different formulae, such as,(
n

k

)
=

n!

k!(n− k)!

If we were just given this definition arbitrarily, it would not be clear that this function always returns an
integer. After all, we have some large integer on the numerator being divided by another large integer
on the denominator. However, it must be an integer, because the number of ways to choose k objects
from n must be a whole number!

It is surprisingly common in combinatorics to have an expression that we suspect is an integer like this,
and indeed, one way to prove that such an expression is an integer is to find a counting problem it is the
answer to.

Lemma (Pascal). (
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)

We can prove this in two ways. The first is to expand the expression, and prove the equation algebraically:

Proof. (
n

k

)
=

n!

k!(n− k)!

=
(n− 1)!n

k!(n− k)!

=
(n− 1)!

(
(n− k) + k

)
k!(n− k)!

=
(n− 1)!(n− k)
k!(n− k)!

+
(n− 1)!k

k!(n− k)!

=
(n− 1)!

k!(n− k − 1)!
+

(n− 1)!

(k − 1)!(n− k)!

=
(n− 1)!

k!
(
(n− 1)− k

)
!
+

(n− 1)!

(k − 1)!
(
(n− 1)− (k − 1)

)
!

=

(
n− 1

k

)
+

(
n− 1

k − 1

)
■

While this proof is valid, it isn’t very elegant, and moreover, it doesn’t really provide any insight as to
why the formula is true. A better proof is to show that the left and right sides of the equation count the
same things in possibly different ways:
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Proof.
(
n
k

)
is the number of ways to select a subset of k elements from the set [n]. For each subset, we

could choose to include the element 1, then pick k − 1 elements from the remaining n − 1, or we could
choose to exclude the element 1, and pick k elements from the remaining n−1, so there are

(
n
k−1

)
+
(
n−1
k−1

)
subsets of size k. Because these count the same thing, we have(

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
as required. ■

Such a proof is called a proof by double counting, because we show two expressions are equal by showing
that they are two ways of counting the same thing.

Another related way to show that two expressions are equal is to find sets of things the two expressions
count, then exhibit a bijection between the sets. These proofs are called bijective or combinatorial proofs.
(A proof by double counting is then a special case of a combinatorial proof where the two sets coincide.)

These will be our main techniques for solving enumerative combinatorial problems.

Here is another result that can be proved with a combinatorial approach:

Theorem 7.2.1. The following equation holds for all n ≥ 0:

n∑
k=0

(
n

k

)
= 2n

We give both the algebraic and bijective proofs.

Proof. Let P (n) be the statement that
∑n
k=0

(
n
k

)
= 2n. We induct on n. P (0) holds as

(
0
0

)
= 0!

0!0! = 20.
Suppose P (n) holds for an arbitrary fixed n ≥ 0. Then,

n+1∑
k=0

(
n+ 1

k

)
=

(
n+ 1

n+ 1

)
+

n∑
k=0

(
n+ 1

k

)

= 1 +

n∑
k=0

((
n

k

)
+

(
n

k − 1

))

= 1 +

n∑
k=0

(
n

k

)
+

n∑
k=0

(
n

k − 1

)

= 1 + 2n +

n∑
k=0

(
n

k − 1

)

= 2n + 1 +

n−1∑
k=−1

(
n

k

)

= 2n +

(
n

n

)
+

(
n

−1

)
+

n−1∑
k=0

(
n

k

)

= 2n +

(
n

n

)
+

n−1∑
k=0

(
n

k

)

= 2n +

n∑
k=0

(
n

k

)
= 2n + 2n
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= 2n+1

so P (n) holds for all n ≥ 0 by induction. ■

Proof. Alternatively, let [n] = {1,2, . . . ,n}. How many subsets of [n] are there? There are
(
n
k

)
subsets of

cardinality k, so we can add these up for k = 0 up to k = n, so there are
∑n
k=0

(
n
k

)
subsets of [n].

Another way to generate these subsets is to choose to include or exclude each element 1, . . . ,n in each
subset. This gives n binary choices for each subset, so there are 2n possible subsets. These two methods
count the same thing, so they must be equal, and hence

n∑
k=0

(
n

k

)
= 2n

as required. ■

As can be seen, bijective proofs are often more informative and concise (but not necessarily easier to
come up with!), so we will omit the algebraic proofs from this point forward.

We give a few more results about the choose function.

Theorem (Symmetry). The following equation holds for all n and k:(
n

k

)
=

(
n

n− k

)
Proof. Let R have n elements, and let S ⊆ R be a subset with k elements. Consider the mapping
ϕ(S) = R \ S, noting that |R \ S| = |R| − |S| = n− k.

ϕ
(
ϕ(S)

)
= R \ (R \ S) = S, so ϕ is an involution and is hence bijective; that is, for every subset of

cardinality k, there is a unique subset of cardinality n− k obtained by complementation. There are
(
n
k

)
of the former, and

(
n

n−k
)

of the latter, and the bijection says these quantities are equal. ■

Theorem (Binomial Theorem). Let n be a positive integer. Then,

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k

Proof. Specifying a term in the expansion of (a+ b)(a+ b) · · · (a+ b) consists of choosing, for each factor,
either the a or b, and there are

(
n
k

)
ways to choose k as and n− k bs. ■

This theorem also explains the alternative name of
(
n
k

)
as the binomial coefficient function. Letting

a = b = 1 in the above also yields another bijective proof of Theorem 7.2.1.

We can write out the binomial coefficients in a triangle:
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k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

n = 0 1

n = 1 1 1

n = 2 1 2 1

n = 3 1 3 3 1

n = 4 1 4 6 4 1

n = 5 1 5 10 10 5 1

n = 6 1 6 15 20 15 6 1

n = 7 1 7 21 35 35 21 7 1

n = 8 1 8 28 56 70 56 28 8 1

n = 9 1 9 37 84 126 126 84 37 9 1

This triangle is called Pascal’s triangle, and we can quickly fill in the table using Pascal’s identity from
before – each entry in the table is the sum of the two entries above it (this is more clear if the triangle
is drawn centred).

Note that the nth row also gives the binomial coefficients for an expansion of degree n – for instance,
(a+ b)4 = 1a4 + 4a3b+ 6a2b2 + 4ab3 + 1b4, and the 4th row is 1,4,6,4,1.

There are many patterns and properties of this triangle. For instance, the column k = 1 consists of all
the natural numbers, column k = 2 consists if the triangular numbers, column k = 3 of the tetrahedral
numbers, and column k = i of the i-simplex numbers.

A lower triangular matrix containing Pascal’s triangle can also be obtained by taking the exponential
(§33.9.3.2) of the matrix which has the natural numbers along the first subdiagonal, and zero elsewhere:

exp


0 0 0 0 0
1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0

 =


1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1


7.2.1 Multinomial Coefficients
We have previously derived a formula for counting the number of ways to arrange objects with indistin-
guishable subgroups. We can reframe this in terms of balls and boxes as follows:

If we have n labelled boxes, and n balls with k1 labelled with colour c1, k2 labelled with colour c2, . . . ,
and kr labelled with colour cr, where

∑r
i=1 ki = n, then the number of distinct ways of distributing the

balls among the boxes is

n!

k1!k2! · · · kr!
= n!

r∏
i=1

1

ki!

We give this quantity a symbol in analogy with binomial coefficients:(
n

k1,k2, . . . ,kr

)
and we call this a multinomial coefficient.

Theorem (Multinomial Theorem). Let n be a positive integer. Then,(
r∑
i=1

ar

)n
=

∑
∑r

i=1 ki=n

(
n

k1, . . . ,kr

) r∏
i=1

akii
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7.2.2 Inclusion-Exclusion Principle
A common problem in combinatorics and discrete probability is to find the cardinality of the union of
two sets. If we have a set A with n elements, and B with m elements, it could be that A and B are not
disjoint, so their union has fewer than n +m elements. We have, however, double counted exactly the
elements in their intersection.

Theorem (Binary Inclusion-Exclusion). Let A and B be sets. Then,

|A ∪B| = |A|+ |B| − |A ∩B|

Proof.

|A ∪B| = |A ∪ (B \A)|
= |A|+ |B \A| (1)

|B| = |(B \A) ∪ (A ∩B)|
= |B \A|+ |A ∩B| (2)

Combining (1) and (2) gives the result. ■

In general, to find the cardinality of the union of n sets, we include the cardinality of the sets, exclude
the cardinalities of the pairwise intersections, include the cardinalities of the 3-wise intersections, exclude
4-wise, and continue up to n.

Theorem (Inclusion-Exclusion). ∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ = ∑
∅ ̸=J⊆[n]

(−1)|J|+1

∣∣∣∣∣∣
⋂
j∈J

Aj

∣∣∣∣∣∣
Proof. Let J ⊆ {1, . . . ,r} be the set of Ais containing element x. Then x is counted as +1 in term I for
all I ⊆ J with an odd number of elements, and x is counted as −1 in term I for all non-empty I with
an even number of elements. J has an equal number of odd-cardinality and even-cardinality subsets; if
J has odd cardinality, this is easy, otherwise this follows by complementation. Removing the empty set,
there is one extra odd-cardinality subset, so x is counted overall as +1. ■

Example. A derangement is a permutation with no fixed points: no element appears in its original
position. How many derangements are there of n objects?

For some fixed n and all 1 ≤ k ≤ n, let Sk be the set of permutations of n objects that fix the kth object.
The number of derangements is then the total number of permutations, minus the union of these sets,
n!− |

⋃n
i=1 Si|

Any intersection of a collection of i of these sets then fixes i objects and contains (n− i)! permutations,
and there are

(
n
i

)
such collections, so,∣∣∣∣∣

n⋃
i=1

Si

∣∣∣∣∣ = ∑
∅̸=J⊆[n]

(−1)|J|+1

∣∣∣∣∣∣
⋂
j∈J

Sj

∣∣∣∣∣∣
=

n∑
i=1

(−1)i+1

(
n

i

)
(n− i)!

=

n∑
i=1

(−1)i+1 n!

i!(n− i)!
(n− i)!
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= n!

n∑
i=1

(−1)i+1

i!

So the number of derangements is n!− n!
∑n
i=1

(−1)i+1

i! = n!
∑n
i=1

(−1)i

i! .∗ △

See also §47.1.2 for an application of the inclusion-exclusion principle in probability.

7.2.3 Twelvefold Way
Recall that a function f : A→ B is:

• injective if f(a1) = f(a2) implies a1 = a2;

• surjective if for every b ∈ B, there exists a a ∈ A such that f(a) = b;

• bijective if it is both injective and surjective.

Note that it is only possible for f to be injective if A has at most as many elements as B; that is, if
|A| ≤ |B|. Similarly, it is only possible for f to be surjective if A has at least as many elements as B;
that is, if |A| ≥ |B|. It is also only possible for f to be bijective if |A| = |B|.†

A function f : N → X can be considered from the perspective of N or X, with each giving different
combinatorial interpretations:

• The function f labels elements of X by elements of N ;

• The function f selects or chooses an element of X for each element of N ;

• The function f groups the elements of N together that are mapped to the same element of X.

When viewing f as a labelling of the elements of N , we may think of ordering N in sequence, and
successively applying labels from X to each element. A requirement that f is injective then means that
labels can only be used once; yielding sequences of labels without repetition.

If we instead view f as an unordered selection of elements of X, then injectivity gives a similar restriction:
the selection must involve k distinct elements of X, so it is a subset of X with k elements – this is exactly
an k-combination from before. If we do not require injectivity, the same element of X may occur multiple
times in the selection, so we obtain a k-multicombination of X.

More generally, imagine a set X of objects numbered from 1 to x, from which we choose n (by means
of a function f), yielding an ordered list of objects. Applying various restrictions to f yield a variety of
combinatorial problems:

• Any f – after selecting an item, we replace it and are free to select it again.

• Injective f – after selecting an item, we remove it, so we obtain n distinct items. Note that if
n ≥ x, no such lists can be chosen.

• Surjective f – after selecting an item, we may replace it and select it again, but we require that
every item is selected at least once. Note that if n ≤ x, no such lists can be chosen.

We can also reorder or relabel the lists before counting them:

• Distinct – do not modify the lists.

∗ You might notice that this is the taylor polynomial for e, so another expression for the number of derangements is[
n!
e

]
, where [x] is the nearest integer to x.

† This is somewhat circular, because cardinality in set theory is defined by bijections; we write |K| = |N | if there exists a
bijection f : A → B, and the more colloquial notion of cardinality as “number of elements” follows from forming a bijection
to an initial subset of N. We will leave these subtleties to the chapter on set theory, and not dwell on these matters here;
for us, cardinality will just informally be the number of elements of a set.
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• Sn orbits∗ – before counting, sort the list by item number. This has the effect of treat all permu-
tations as the same list. e.g. the lists (1,2,3), (2,3,1), and (3,1,2) would be considered as the list
(1,2,3).

• Sx orbits – before counting, renumber the items in the order they were selected, repeating if an
item was selected multiple times. e.g. the lists (3,5,3), (3,2,3), (5,8,5), and (8,2,8) would all be
relabelled to the list (1,2,1), while (2,2,4), (3,3,2), (9,9,6) would be relabelled to (1,1,2).

• Sn × Sx orbits – two lists are considered the same if they can be reordered or relabelled as above,
and produce the same result. e.g. (2,9,2) and (3,4,4) can both be reordered into (2,2,9) and (4,4,3),
then relabelled into the same list (1,1,2).

These different ways of modifying the function and lists yields twelve kinds of enumerative problems.
This classification of these problems is called the twelvefold way :

f -class Any f Injective f Surjective f

Distinct
f

n-sequence in X n-permutation of X composition of N
with x subsets

Sn orbits
f ◦ Sn

n-multisubset of X n-subset of X composition of N
with x terms

Sx orbits
Sx ◦ f

partition of N
into ≤ x subsets

partition of N
into ≤ x elements

partition of N
into x subsets

Sn × Sx orbits
Sx ◦ f ◦ Sn

partition of n
into ≤ x parts

partition of n
into ≤ x parts 1

partition of n
into x parts

Each of the classes has a formula, some of which we have already seen, and some we will explore later:

f -class Any f Injective f Surjective f

Distinct
f

xn xn x!S(n,x)

Sn orbits
f ◦ Sn

(
x+ n− 1

n

) (
x

n

) (
n− 1

n− x

)

Sx orbits
Sx ◦ f

x∑
k=0

S(n,k) [n ≤ x] S(n,k)

Sn × Sx orbits
Sx ◦ f ◦ Sn

px(n+ x) [n ≤ x] px(n)

∗ Orbits here refer to the same orbits as in group theory. Enumerative combinatorics is closely related to group actions
– in particular, by Burnside’s lemma and the orbit-stabiliser theorem.
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We can also state these classes in terms of boxes and balls:

f -class Any f Injective f Surjective f

Balls and Boxes
labelled

How many ways to
place n labelled balls
into x labelled boxes?

How many ways to
place n labelled balls
into x labelled boxes,

with every box receiving
at most one ball?

How many ways to
place n labelled balls
into x labelled boxes,

with every box receiving
at least one ball?

Balls unlabelled,
Boxes labelled

How many ways to
place n unlabelled balls
into x labelled boxes?

How many ways to
place n unlabelled balls
into x labelled boxes,

with every box receiving
at most one ball?

How many ways to
place n unlabelled balls
into x labelled boxes,

with every box receiving
at least one ball?

Balls labelled,
Boxes unlabelled

How many ways to
place n labelled balls

into x unlabelled boxes?

How many ways to
place n labelled balls

into x unlabelled boxes,
with every box receiving

at most one ball?

How many ways to
place n labelled balls

into x unlabelled boxes,
with every box receiving

at least one ball?

Balls and Boxes
unlabelled

How many ways to
place n unlabelled balls
into x unlabelled boxes?

How many ways to
place n unlabelled balls
into x unlabelled boxes,
with every box receiving

at most one ball?

How many ways to
place n unlabelled balls
into x unlabelled boxes,
with every box receiving

at least one ball?

We will spend the rest of this section exploring more of these classes.

7.2.4 Stars and Bars
Earlier, we asked the question of how many combinations are possible when rolling n dice each with k
faces (our example had n = 10 and k = 6). Here are some equivalent formulations:

• How many ways can we place n unlabelled balls into k labelled boxes?

• How many combinations of n numbers with repetition from [k] are there?

• How many degree-n monomials in k variables are there?

• How many non-negative integer solutions are there to
∑n
i=1 xi = k?

• How many ways are there to arrange n stars and k − 1 separating bars?
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Example. k = 3, n = 3:

[3][0][0] [2][1][0] [1][2][0] [0][3][0] [0][2][1]
[0][1][2] [0][0][3] [1][0][2] [2][0][1] [1][1][1]

111 112 122 222 223
233 333 331 311 123

x3 x2y xy2 y3 y2z
yz2 z3 xz2 x2z xyz

x1,x2,x3 =
3,0,0
0,1,2

2,1,0
0,0,3

1,2,0
1,0,2

0,3,0
2,0,1

0,2,1
1,1,1

⋆ ⋆ ⋆ || ⋆ ⋆ | ⋆ | ⋆ | ⋆ ⋆ | | ⋆ ⋆ ⋆ | | ⋆ ⋆ | ⋆
| ⋆ | ⋆ ⋆ || ⋆ ⋆ ⋆ ⋆ || ⋆ ⋆ ⋆ ⋆ || ⋆ ⋆ | ⋆ | ⋆

△

We previously showed that the dice problem is equivalent to the integer solution problem by constructing
a sum

∑n
i=1 xi = k, where xi is the number of dice with value i (and we have n dice, so the xi sum to

k). Each solution can then be represented as xi many stars, followed by a separating bar, then x2 many
stars, etc. which gives the neat and tidy formula(

n+ k − 1

k − 1

)
for all the these problems.

Exercise. Construct an explicit bijection from the original dice problem to these other formulations.

Looking at the balls and boxes formulation, we can count these distributions in a different way. We could
first place 0 ≤ i ≤ n balls in the first box, leaving n − i balls to distribute among the k − 1 remaining
boxes. Applying the formula above with double counting, we have,(

n+ k − 1

k − 1

)
=

n∑
i=0

(
n+ k − 2− i

k − 2

)
Reindexing the variables by n+ k − 2→ n and k − 2→ k, we obtain:

Theorem 7.2.2. (
n+ 1

k + 1

)
=

n+k−2∑
i=0

(
n− i
k

)
=

n∑
i=0

(
i

k

)

This identity is sometimes called the hockey-stick identity because of the way the relevant terms are
arranged on Pascal’s triangle.

7.2.5 Set Partitions and Stirling Numbers
Let k ≤ n. How many ways are there to place n labelled balls into k labelled boxes, if every box must
get a ball?
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Example. n = 4, k = 2. Each box must have at least one ball, so we can either place 3 balls in one box,
and 1 in the other, or place 2 in each. In the former case, there are

(
4
1

)
= 4 ways to pick the ball that is

to be on its own, and 2 places to put it, giving 8 total ways. In the latter case, there are
(
4
2

)
= 6 ways to

choose which two balls to place into the first box (which also fully determines the balls placed into the
other box). This gives a total of 14 ways. △

This is the same as counting surjective functions f : [n]→ [k] – the requirement that every box receives
a ball is equivalent to every element of the codomain receiving a non-empty preimage under f .

If the boxes are unlabelled, then the answer will simply be lower by a factor of k! – because every box
receives a ball, we can simply remove permutations of the boxes.

This unlabelled box form is also equivalent to counting set partitions – the number of ways to partition
[n] into exactly k non-empty subsets. These numbers are written as S(n,k) or{

n

k

}
and are called Stirling numbers of the second kind. We also define S(0,k) to be 1 if k = 0, and 0 otherwise.

These numbers turn out to be somewhat more complicated to calculate. It is easier to count surjections
– k!S(n,k) – then to divide by k!. In fact, it is easier to count the functions that are not surjections –
kn−k!S(n,k) – and apply the inclusion-exclusion principle. But how do we transform this into a problem
about set unions?

Let Ai be the set of functions [n]→ [k] such that i is not in the image of the function (no ball goes into
box i). Then, |Ai| = (k − 1)n, since these are just functions from [n] to a set of cardinality k − 1 (or
in terms of balls and boxes, we have n balls, each with k − 1 choices of destination). The intersection
Ai ∩ Aj is then the set of functions such that no ball goes into box i nor j, so |Ai ∩ Aj | = (k − 2)n.
Similarly,

∣∣⋂
i∈I Ai

∣∣ = (k − |I|)n for all I ⊆ [k]. Then,

k!S(n,k) =
∑

∅ ̸=I⊆[k]

(−1)|I|−1(k − |I|)n

=

k∑
i=1

(−1)i−1(k − i)n
(
k

i

)
and hence

S(n,k) =
1

k!

k∑
i=0

(−1)i(k − i)n
(
k

i

)

We can write out the Stirling numbers in a triangle:

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

n = 0 1

n = 1 1 1

n = 2 1 3 1

n = 3 1 7 6 1

n = 4 1 15 25 10 1

n = 5 1 31 90 65 15 1

n = 6 1 63 301 350 140 21 1

n = 7 1 127 966 1701 1050 266 28 1

n = 8 1 255 3025 7770 6951 2646 462 36 1

n = 9 1 511 9330 34105 42525 22827 5880 750 45 1
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Just like with Pascal’s triangle, we might see some patterns in this triangle:

Theorem 7.2.3.

S(n,k) = S(n− 1,k − 1) + kS(n− 1,k)

Proof. Consider the first element 1 ∈ [n]. If 1 is in a part by itself, then there are S(n− 1,k− 1) ways to
partion the rest of the set into k − 1 non-empty parts. Otherwise, 1 is in a subset with other elements.
There are S(n − 1,k) ways to partition the elements that are not 1 into k parts, and we then have k
choices of subset to place 1 into. ■

Theorem 7.2.4.

S(n,n− 1) =

(
n

2

)
Proof. Dividing [n] into n− 1 subsets is equivalent to picking a single subset of cardinality 2, with every
other element necessarily forming a singleton part. ■

Theorem 7.2.5.

6S(n,3) + 6S(n,2) + 3S(n,1) = 3n

Proof. There are 3n functions f : [n] → [3], since there are n inputs and 3 choices of outputs. We can
also count these functions according to the cardinalities of their images. S(n,1) of these functions map
every input to the same output, and there are P (3,1) = 3 ways to do this; S(n,2) of these functions
map the inputs to 2 distinct outputs, and there are P (3,2) permutations of the output; and S(n,3) of
these functions are surjective, and there are P (3,3) ways to permute the outputs. This covers all possible
cases, so

6S(n,3) + 6S(n,2) + 3S(n,1) = 3n

as required. ■

For n ≥ 0, we define the Bell numbers Bn to be the number of ways to partition [n] into any number of
parts. The Bell numbers are given by the formula:

Bn =

n∑
k=0

S(n,k)

and the first few Bell numbers are as follows:

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322, . . .

Theorem 7.2.6.

Bn =

n−1∑
k=0

(
n− 1

k

)
Bk

Proof. In each partition of [n], removing the part that contains n yields a partition of 0 ≤ k < n items,
and there are

(
n−1
n

)
possible combinations for the k remaining items, with Bk ways to partition each

one, so summing over all k yields Bn. ■
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7.2.6 Integer Partitions
Let k ≤ n. How many ways are there to divide n unlabelled balls into k unlabelled boxes, if every box
must get a ball? In the previous section, the balls were labelled, but here, all that matters is the total
number of balls in each box. This is equivalent to counting the number of ways to write the integer n as
a sum of k positive integers, and we write the answer to this problem as pk(n). These are called integer
partitions of n into k parts (not to be confused with the set partitions explored in the previous section).

Example. p3(10) = 8; there are 8 partitions of 10 into 3 parts:

8 + 1 + 1 7 + 2 + 1 6 + 3 + 1 6 + 2 + 2

5 + 4 + 1 5 + 3 + 2 4 + 4 + 2 4 + 3 + 3

It is standard to write these sums in descending order of summands. △

If we modify the problem to allow any number of boxes, or equivalently, to write n as a sum of any
number of positive integers, we obtain the number of integer partitions of n, written as p(n). Note that
p(0) = 1, because the unique partition of 0 is the empty sum, consisting of no parts.

Example. p(10) = 42; there are 42 partitions of 10. △

We also define p≤ak (n) to be the number of partitions of n into k parts of size at most a, and similarly,
p≤a(n) to be the number of partitions of n into any number of parts of size at most a.

There is no known closed-form expression for p(n), nor any of these other variants. However, we do have
some relations that relate them together:

Theorem 7.2.7.

p(n) =

n∑
i=1

p≤i(n− i)

pk(n) =

n−k+1∑
i=1

p≤ik−1(n− i)

Again, we can write these values as a triangle:

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

n = 1 1

n = 2 1 1

n = 3 1 1 1

n = 4 1 2 1 1

n = 5 1 2 2 1 1

n = 6 1 3 3 2 1 1

n = 7 1 3 4 3 2 1 1

n = 8 1 4 5 5 3 2 1 1

n = 9 1 4 7 6 5 3 2 1 1

n = 10 1 5 8 9 7 5 3 2 1 1

And the first few values of p(n):

1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, . . .

While we don’t have a closed-form expression for p(n), we do have an interesting asymptotic relationship:
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Theorem 7.2.8 (Hardy-Ramanujan).

p(n) ∼ 1

4
√
3
exp

(
π

√
2n

3

)

Here is one way of visualising a partition: draw a horizontal line of dots for each part in the partition,
then stack them on top of each other. For example, here is the picture of the partition 18 = 7+5+4+2:

• • • • • • •
• • • • •
• • • •
• •

This is called a Ferrers diagram.

Instead of drawing dots, we could alternatively draw a line of boxes:

This is called a Young diagram. These seem very similar to Ferrers diagrams, and they are often also
called as such, but this small change turns out to be very useful. Unlike a Ferrers diagram, the boxes in
a Young diagram can be filled with various numbers or objects to form structures called Young tableaux.

Let λ be a partition of n. The conjugate partition λ⊤ of λ is the partition corresponding to the reflection
of the Young diagram of λ over the diagonal. For instance,

−→

so the conjugate of 7+5+4+2 is given by 4+4+3+3+2+1+1. This symmetry immediately implies
many results about partitions.

Theorem 7.2.9. The number of partitions of n into at most k parts is equal to the number of partitions
of n into parts of size at most k. That is,

k∑
i=0

pi(n) = p≤k(n)

Proof. The two sets of partitions are in bijection by conjugation. ■

Theorem 7.2.10. The number of partitions of n into distinct odd parts is equal to the number of self-
conjugate partitions of n.

Consider the following partitions of 26 into 7+ 6+4+4+4+2+2+1, which is self conjugate, and and
13 + 9 + 3 + 1, which consists of distinct odd parts:
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By “folding” and “unfolding” along the midpoint of the marked lines, we can transform these partitions
into each other. This motivates the strategy for our proof.

Proof. Given a Young diagram of a partition λ, let (i,j) denote the box in the ith row and jth column.
We define the hook length or hook number hλ(i,j) of a box (i,j) to be the number of boxes below and
to the right of (i,j), including the box itself. For example, here is a Young tableau filled with the hook
lengths of each box:

1311 8 7 4 3 1
11 9 6 5 2 1
8 6 3 2
7 5 2 1
4 2
3 1
1

Let γ be a self-conjugate partition of n. Because γ is self-conjugate, every hook number along the
diagonal must be odd, as the boxes of the form (i,i) must have an equal number of boxes below and to
the right of them; adding the box itself then yields an odd number. Hook numbers must also necessarily
be decreasing, so the diagonals are also distinct.

Thus, any self-conjugate partition γ corresponds to a partition λ : (λ1 + λ2 + · · ·+ λk) of n into distinct
odd parts λi via the mapping λi = hγ(i,i) for each 1 ≤ i ≤ k. ■

Theorem 7.2.11. The number of Young tableaux of shape λ, denoted by fλ is given by

fλ =
n!∏

i,j hλ(i,j)

7.2.7 Generating Functions
We’ve seen several infinite sequences and triangles of special numbers, some of which do not have explicit
closed formulae. This is not unusual, and we will often stumble into new sequences that we don’t yet
understand.

An infinite sequence of numbers is rather unwieldy, especially if there isn’t a formula for the nth term.
For example, suppose we have two sequences, perhaps originating from distinct counting problems, and
we suspect they are equal, but can’t find a bijective proof. We could compute terms from the two
sequences, and check that they agree, but we cannot prove that two infinite sequences are equal in this
way.

To this end, combinatorics has developed a more finite-appearing representation of infinite sequences
(and this generalises even to triangles, or other higher dimensional sequences).

Recall that the Bell numbers are given by

Bn =

n∑
k=0

S(n,k)
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The first few of these numbers are:

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, . . .

If we play about with these numbers for a while, we might think to write them as the coefficients of a
power series:

1

0!
+

1x

1!
+

2x2

2!
+

5x3

3!
+

15x4

4!
+

52x5

5!
+ · · ·

You might ask why we have done this, since this seems to have just added more clutter to our sequence,
but it turns out that this power series is the Maclaurin series of ee

x−1(!) This expression is much easier
to remember!

This should be a) hugely surprising, and b) evocative of the power of these representations. These
encodings of sequences are called generating function, and they lie within the intersection of combinatorics
and analysis.

Let (an)
∞
n=1 be a sequence of numbers. The formal power series

∞∑
n=0

anx
n

is called the ordinary generating function of (an), and the formal power series
∞∑
n=0

an
xn

n!

is called the exponential generating function of (an).

Formal power series here means that x is treated purely as an indeterminate variable and we are not
concerned with the radius of convergence of the series, but we can still manipulate these expressions just
like any other ordinary power series.

We give an example of a problem solvable with generating functions.

Example. Let Gn denote the number of sequences of length n of elements of [3] whose consecutive entries
differ by at most 1. The first few values are as follows: G0 = 1, G1 = 3, G2 = 7, G3 = 17. Compute a
closed-form expression for Gn.

Let An denote the number of sequences of length n that begin with 1 (and by symmetry, with 3), and
let Bn denote the number of sequences of length n that begin with 2, so Gn = 2An +Bn.

If a sequence begins with 1, then the sequence with the first element removed begins with either a 1, or
a 2, so An = An−1 + Bn−1. If a sequence begins with 2, then the truncated sequence could begin with
any digit, so Bn = 2An−1 +Bn−1 = Gn−1. Then,

Gn = 2An +Bn

= 2(An−1 +Bn−1) + 2An−1 +Bn−1

= 2(2An−1 +Bn−1) +Bn−1

= 2Gn−1 +Gn−2

Then, we use the ordinary generating function of Gn as follows:
∞∑
n=0

Gnx
n = G0 +G1x+

∞∑
n=0

Gn+2x
n+2
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= 1 + 3x+

∞∑
n=0

(2Gn+1 +Gn)x
n+2

= 1 + 3x+ 2x

∞∑
n=0

Gn+1x
n+1 + x2

∞∑
n=0

Gnx
n

= 1 + 3x+ (2xG0x
0 − 2xG0x

0) + 2x

∞∑
n=0

Gn+1x
n+1 + x2

∞∑
n=0

Gnx
n

= 1 + 3x− 2x+

(
2xG0x

0 + 2x

∞∑
n=0

Gn+1x
n+1

)
+ x2

∞∑
n=0

Gnx
n

= 1 + x+ 2x

∞∑
n=0

Gnx
n + x2

∞∑
n=0

Gnx
n

= 1 + x+ (2x+ x2)

∞∑
n=0

Gnx
n

=
1 + x

1− 2x− x2

Performing partial fraction decomposition, and using geometric series, we have:
∞∑
n=0

Gnx
n =

1 + x

(−x+
√
2− 1)(x+

√
2 + 1)

=
1

2

(
1

−x+
√
2− 1

)
− 1

2

(
1

x+
√
2 + 1

)
=

1

2

(
1√

2− 1− x

)
− 1

2

(
1√

2 + 1 + x

)

=
1

2(
√
2− 1)

 1

1−
(

1√
2−1

)
x

− 1

2(
√
2 + 1)

 1

1−
(
− 1√

2+1

)
x


=

1

2(
√
2− 1)

∞∑
n=0

(
1√
2− 1

)n
xn − 1

2(
√
2 + 1)

∞∑
n=0

(
− 1√

2 + 1

)n
xn

=

∞∑
n=0

(
1

2(
√
2− 1)

(
1√
2− 1

)n
− 1

2(
√
2 + 1)

(
− 1√

2 + 1

)n)
xn

=

∞∑
n=0

1

2

((
1√
2− 1

)n+1

+

(
− 1√

2 + 1

)n+1
)
xn

=

∞∑
n=0

1

2

((√
2 + 1

)n+1

+
(
−
√
2 + 1

)n+1
)
xn

So,

Gn =
1

2

((√
2 + 1

)n+1

+
(
−
√
2 + 1

)n+1
)

△

This may not seem very impressive given that there are much simpler techniques for solving linear
recurrence relations, but generating functions generalise to non-linear, and higher dimensional recurrence
relations.
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Example. A north-east lattice walk is a path in the 2D Cartesian plane consisting of integer-length steps
in the positive x (north) or positive y (east) direction. For instance, here are all the north-east lattice
walks from (0,0) to (2,2):

How many north-east lattice walks are there from (0,0) to (n,m)?

Let N(n,m) denote the number of paths from (0,0) to (n,m).

If n = 0 and m = 0, then there is only the single trivial empty walk so N(0,0) = 1. If exactly
one of n and m are zero, then the lattice is a straight line and again, only one trivial walk exists, so
N(n,0) = N(0,m) = 1.

We also note that the problem is symmetric, in the the north and east directions are arbitrary, so
N(a,b) = N(b,a) for all a,b.

At (0,0), walking east on a (n,m) grid leaves a (n − 1,m) grid remaining to be walked, and similarly,
walking north leaves a (n,m− 1) grid.

The 4 × 4 grid reduces to a 3 × 4 grid with an east step, and
similarly to a 4× 3 grid with a north step.

So, we have,
N(a,b) = N(a− 1,b) +N(a,b− 1)

with boundary conditions,
N(k,0) = N(0,k) = 1

We solve this recurrence relation with generating functions:

∑
i,j≥0

ci,jx
iyj = c0,0 +

∞∑
i=1

ci,0x
i +

∞∑
j=1

c0,jy
j +

∑
i,j≥1

ci,jx
iyj
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= 1 +

∞∑
i=1

xi +

∞∑
j=1

yj +
∑
i,j≥1

ci−1,jx
iyj +

∑
i,j≥1

ci,j−1x
iyj

= 1 +
x

1− x
+

y

1− y
+ x

∑
i,j≥1

ci−1,jx
i−1yj + y

∑
i,j≥1

ci,j−1x
iyj−1

= 1 +
x

1− x
+

y

1− y
+ x

∑
i≥0,j≥1

ci,jx
iyj + y

∑
i≥1,j≥0

ci,jx
iyj

= 1 +
x

1− x
+

y

1− y
+ x

∑
i,j≥0

ci,jx
iyj −

∞∑
j=0

c0,jy
j

+ y

∑
i,j≥0

ci,jx
iyj −

∞∑
i=0

ci,0x
i


= 1 +

x

1− x
+

y

1− y
+ x

∑
i,j≥0

ci,jx
iyj − 1

1− x

+ y

∑
i,j≥0

ci,jx
iyj − 1

1− y


= 1 + x

∑
i,j≥0

ci,jx
iyj + y

∑
i,j≥0

ci,jx
iyj

= 1 + (x+ y)
∑
i,j≥0

ci,jx
iyj

=
1

1− x− y

=
1

1− (x+ y)

=

∞∑
n=0

(x+ y)n

=

∞∑
n=0

n∑
k=0

(
n

k

)
xn−kyk

Letting n = i+ j and k = j, we have,

=
∑
i,j≥0

(
i+ j

j

)
xiyj

so,

ci,j =

(
i+ j

j

)
△

This particular problem happens to have another elegant combinatorial solution that does not involve
generating functions at all, and the simplicity of the final form we obtained is rather suggestive of this
fact.

Exercise. Construct this alternative proof.

In the previous problem, we actually managed to find a simple form for the generating function for some
of the binomial coefficients: ∑

n,k≥0

(
n+ k

k

)
xnyk =

1

1− x− y

Let us fix k and just work with the one dimensional sequence
(
k
k

)
,
(
k+1
k

)
, . . .. Define

A(x) =

∞∑
n=0

(
k + n

k

)
xn
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Expanding the binomial coefficient, we have,

A(x) =

∞∑
n=0

(k + n)!

k!n!
xn

So, taking the derivative, we obtain:

A′(x) =

∞∑
n=1

(k + n)!

k!(n− 1)!
xn−1

(1− x)A′(x) = (1− x)
∞∑
n=1

(k + n)!

k!(n− 1)!
xn−1

(1− x)A′(x) =

∞∑
n=1

(k + n)!

k!(n− 1)!
xn−1 −

∞∑
n=1

(k + n)!

k!(n− 1)!
xn

=

∞∑
n=1

(k + n)

(
k + n− 1

k

)
xn−1 −

∞∑
n=1

n

(
k + n

n

)
xn

=

∞∑
n=0

(k + n+ 1)

(
k + n

k

)
xn −

∞∑
n=0

n

(
k + n

n

)
xn

= (k + 1)A(x) +

∞∑
n=0

n

(
k + n

k

)
xn −

∞∑
n=0

n

(
k + n

n

)
xn

= (k + 1)A(x)

giving the differential equation

(1− x)A′(x) = (k + 1)A(x)

Rearranging, we have,

A′(x)

A(x)
=
k + 1

1− x�
A′(x)

A(x)
dx =

�
k + 1

1− x
dx

ln
(
A(x)

)
= (k + 1) ln(1− x) + C

A(x) =
C

(1− x)k+1

We also have the initial condition A(0) =
(
k
k

)
= 1, which gives C = 1.

We can also show this formula with an alternative combinatorial proof. Recall that
(
k+n
k

)
is the number

of ways to place n unlabelled balls into k + 1 labelled boxes – or equivalently, the number of degree-n
monomials in k + 1 variables. Consider the product

k+1∏
j=0

∞∑
i=0

xij = (1 + x1 + x21 + · · · )(1 + x2 + x22 + · · · ) · · · (1 + xk+1 + x2k+1 + · · · )

In the expansion of this product, every monomial in k + 1 variables appears exactly once. Setting all
variables x1, . . . ,xk+1 equal to x thus gives A(x), and the product reduces to

k+1∏
j=0

∞∑
i=0

xi =

( ∞∑
i=0

xi

)k+1

=
1

(1− x)k+1
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Earlier, we proved that the Bell numbers satisfy

Bn =

n−1∑
k=0

(
n− 1

k

)

so we can attempt to write the generating function for the Bell numbers. Define

A(x) =

∞∑
n=0

Bn
xn

n!

Then,

A′(x) =

∞∑
n=0

Bn
xn−1

(n− 1)!

=

∞∑
n=0

n−1∑
k=0

(
n− 1

k

)
Bk

xn−1

(n− 1)!

=
∞∑
k=0

∞∑
n=k+1

(
n− 1

k

)
Bk

xn−1

(n− 1)!

=

∞∑
k=0

∞∑
n=0

(
k + n

k

)
Bk

xk+n

(k + n)!

=

∞∑
k=0

Bk
xk

k!

∞∑
n=0

xn

n!

= A(x)ex

Which yields

A′(x)

A(x)
= ex

ln
(
A(x)

)
= ex + CA(x) = ee

x+C

We also have the initial condition A(0) = B0 = 1, which gives C = 1, thus proving:

Theorem 7.2.12. The generating function for the Bell numbers is given by

A(x) = ee
x−1

Let us explore another sequence of numbers. Earlier, we encountered the partition numbers p(n) which
count the number of ways to write n as a sum of non-negative integers.

What is the coefficient of xn in the following expression?

k∏
j=0

∞∑
i=0

xij = (1 + x+ x2 + · · · )(1 + x2 + x4 + · · · ) · · · (1 + xk + x2k + · · · )

The answer is equal to the number of ways to write n as a sum of the form a1 + 2a2 + 3a3 + · · ·+ kak.
Such sums are in bijection with the partitions of n into parts that are at most k, with the bijection being
that ai is the number of copies of i in the partition. That is,

∞∑
n=0

p≤k(n)x
n =

k∏
i=1

1

1− xi
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Removing the limit on k, we obtain:

∞∑
n=0

p(n)xn =

∞∏
i=1

1

1− xi

These generating functions are exceptionally clean, but despite that, p(x) and all of its variants still do
not admit closed formulae.

We can apply similar reasoning as the above to obtain more generating functions. For instance, the
coefficient of xn in

∞∏
j odd

∞∑
i=0

xij = (1 + x+ x2 + · · · )(1 + x3 + x6 + · · · )(1 + x5 + x10 + · · · ) · · ·

is the number of partitions of n into odd parts. Similarly, the coefficient of xn in

∞∏
i=1

(1 + xi)

is the number of ways partitions of n into a sum of distinct parts.

These two restrictions of partitioning n don’t seem to be related, but in fact:

Theorem (Euler). The number of partitions of n into odd parts is equal to the number of partitions of
n into distinct parts.

Proof. Using (1 + x)i = 1−x2i

1−xi , we have,

∞∑
n=0

pdistinct(n)x
n =

∞∏
i=1

(1 + xi)

=

∞∏
i=1

1− x2i

1− xi

=
(1− x2)(1− x4)(1− x6) · · ·
(1− x)(1− x2)(1− x3) · · ·

=
1

(1− x)(1− x3)(1− x5) · · ·

=
1

1− x
· 1

1− x3
· 1

1− x5
· · ·

= (1 + x+ x2 + · · · )(1 + x3 + x6 + · · · )(1 + x5 + x10 + · · · ) · · ·

=

∞∏
j odd

∞∑
i=0

xij

=

∞∑
n=0

podd(n)x
n

■

We can also give a combinatorial proof of this result:

Proof. Given a partition of n into odd parts, we count the number of times each odd number occurs, so

n = 1a1 + 3a3 + 5a5 + · · ·
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and we can write ai as a sum of powers of two:

n = 1(2b1,1 + 2b1,2 + · · · ) + 3(2b3,1 + 2b3,2 + · · · ) + 5(2b5,1 + 2b5,2 + · · · ) + · · ·

Note that the binary representation of a number is unique. Then, because each of the coefficients is an
odd number, every term in the expansion is distinct, so this yields a unique partition of n into distinct
parts. This operation also works in reverse, so there is a bijection between the number of partitions of
n into distinct parts and the number of partitions of n into odd parts. ■

7.2.8 Catalan Numbers
In the previous problem, we explored the number of north-east lattice paths from (0,0) to (n,m). That
is, the number of ways to travel from (0,0) to (n,m) on the Cartesian plane using only steps (1,0) and
(0,1). Note that such a path must have length n+m, consisting of n steps east, and m steps north.

How many lattice paths are there from (0,0) to (n,n) if we add the restriction that they never strictly
cross above the diagonal line y = x from (0,0) to (n,n)?

Example. For n = 3, there are 5 such paths:

△

These paths are called Dyck paths, and they are counted by the Catalan numbers, Cn, and the first few
are:

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, . . .

The Catalan numbers describe a surprising amount of other things. For instance:

(i) How many valid strings of length 2n of opening and closing brackets are there such that the brackets
are correctly matched? For example, ()() and (()) are valid strings of length 4, but ((() and ))()
are not valid. (These are called Dyck words or Dyck strings.)

(ii) How many ways are there to split a convex (n + 2)-sided polygon into triangles by connecting
corners together such that the lines formed do not intersect? (This is called a triangulation of the
polygon)

(iii) Pick 2n points on a circle. How many ways are there to pair them up into n non-intersecting
chords?
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(iv) How many non-decreasing sequences (ai)
n
i=1 ⊆ Z are there such that a1 ≤ 1, and all partial sums

are non-negative?

(v) How many rooted ordered trees are there on n+ 1 nodes?

(vi) Draw n+1 points on the x-axis of the Cartesian plane. How many ways are there to connect these
points with n arcs such that the arcs are all above the x-axis such that the arcs do not intersect,
the arcs exit each node in the same direction, and the graph formed is a tree?

(vii) Now, allow intersections in the above, but we do not allow any arc to lie strictly below another
arc. How many ways are there now?

(viii) How many permutations of [n] are there such that, when written in cycle notation, the permutation
does not contain a 3-cycle?

(ix) How many ways can you fill in a 2 × n grid of squares with the numbers 1 to 2n such that each
row and each column is increasing?

(x) How many non-decreasing sequences (ai)
n
i=1 ⊆ N are there, such that ai ≤ i?

(xi) How many non-decreasing sequences (ai)
n
i=1 ⊆ N are there, such that 1 ≤ ai ≤ 2i?

(xii) How many permutations of the multiset {1,1,2,2,3,3,...,n,n} are there, such that the first occurrences
of 1 to n are in increasing order, and there is no subsequence of the form abab?

Exercise. Find bijections between these different formulations.

There is a book, simply titled Catalan Numbers, by Richard P. Stanley, which famously describes 214
different counting problems whose solutions are all the Catalan numbers.

Let us find a formula for Cn.

First, we have the following recurrence relation for Cn:

Theorem 7.2.13.

Cn+1 =

n∑
i=0

CiCn−i

Proof. Given a Dyck path P from (0,0) to (n+1,n+1), let (i+1,i+1) denote its first point of intersection
of P with the diagonal, after the point (0,0), so 0 ≤ i ≤ n+ 1.

We can split P into two smaller Dyck paths: P1 from (0,0) to (i+ 1,i+ 1), and P2 from (i+ 1,i+ 1) to
(n+ 1,n+ 1). Then, P2 is a Dyck path of length 2(n− i), so there are Cn−i many choices for P2.

P1 is also a Dyck path, but with the additional property that it never intersects the diagonal line between
(0,0) and (i + 1,i + 1) – or equivalently, it never strictly crosses the subdiagonal line y = x − 1, apart
from the first and last steps, which necessarily connect to (0,0) and (i+1,i+1). Deleting these segments
yields a Dyck path from (1,0) to (i+1,i), which is a Dyck path of length 2i, so there are Ci many choices
for P1. ■

There are
(
2n
n

)
total paths from (0,0) to (n,n), of which Cn are Dyck paths. The goal is now to count

how many bad paths do strictly cross the diagonal.

Suppose a path touches the diagonal y = x + 1 for the first time at a point (i,i + 1). Reflecting the
remainder of the path over this line yields a new path ending at (n− 1,n+ 1). We claim that this gives
a bijection between bad paths from (0,0) to (n,n), and all paths from (0,0) to (n− 1,n+1). We describe
the inverse operation.
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Every path from (0,0) to (n − 1,n + 1) must cross the diagonal y = x + 1 since it starts below it and
ends above it, so we can reflect about the first point of contact between the path and y = x+1. We are
guaranteed to get a bad path from (0,0) to (n,n), as the resulting path must touch y = x+ 1.

This bijection shows that there are
(

2n
n−1

)
bad paths, and thus,

Cn =

(
2n

n

)
−
(

2n

n− 1

)
=

2n!

n!n!
− 2n!

(n− 1)!(n+ 1)!

=
2n!(n+ 1− n)
n!(n+ 1)!

=
2n!

n!(n+ 1)!

=
1

n+ 1

(
2n

n

)
7.2.9 Pigeonhole Principle
The pigeonhole principle states that if n elements (often described as pigeons) are partitioned into m
non-empty sets (pigeonholes), with n > m, then at least set must contain more than one element. For
example, if we have three balls to be placed into two boxes, then one of the boxes must contain more
than one ball. This seemingly obvious fact can be used to prove seemingly unexpected results.

Example. Let nine points be placed inside a square of side length 1, with no three points lying on the
same line. Prove that it is always possible to select 3 points that form a triangle with an area of at most
1
8 .

Divide the unit square into 4 subregions of area 1
4 ; for simplicity, and without loss of generality, let these

regions be squares of side length 1
2 .

As there are 9 points, and 4 squares, there will always be at least one square containing at least 3 points
by the pigeonhole principle (note: a point that lies on the edge of the square can be considered to be
contained within that square). Selecting these three points within the square to be the vertices of a
triangle, the entire triangle must be fully contained within that square.

The largest area it can be is half the area of the square. As the square has area 1
4 , it follows that the

area of the triangle is at most 1
8 , as required. △

Example. Prove that, for any 5 points placed on a sphere, at least one hemisphere will contain 4 of the
points.

Pick any pair of points. These points describe a great circle on the sphere, which divides the remaining
3 points into 2 hemispheres. By the pigeonhole principle, at least 2 of these points lie in the same
hemisphere, and, including the points on the great circle, this hemisphere will contain at least 4 points.

△

Example. Let X ⊂ [200] be a subset with 101 elements. Show that there exist distinct elements x,y ∈ X
such that x divides y.

Every integer can be written in the form 2k · a, where k is a non-negative integer, and a is odd. If we
do this for any number less than 200, a must be one of the 100 odd numbers {1,3,5, . . . ,199}. By the
pigeonhole principle, at least two of the 101 integers in X share the same a value, say, 2r · a and 2s · a,
with r ̸= s. If r < s, then the first divides the second; otherwise, the second divides the first. △
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Example. Let X ⊂ [80] be a subset with 10 elements. Show that there exist two disjoint subsets of X
whose elements sum to the same number.

The largest possible sum of the elements of X is 80 + 79 + 78 + · · · + 71 < 80 · 10 < 1000. There are
210− 1 = 1023 non-empty subsets of X, so by the pigeonhole principle, there are at least two non-empty
subsets A and B such that the sum of the elements in A equals the sum of the elements in B. This also
implies that A and B are not proper subsets of each other, so we can remove their intersection from both
sets, yielding the disjoint subsets A \B and B \A with the same sums. △

Example. Given a set of 16 distinct positive integers that are at most 100, prove there is a subset of four
integers a,b,c,d such that a+ b = c+ d.

Let (ai)
16
i=1 denote the 16 numbers. We consider the differences between pairs of these integers, noting

that there are
(
16
2

)
= 120 such pairs. For convenience, let (a,b) denote a pair such that a > b.

If we have two distinct pairs (ai1 ,ai2) and (ai3 ,ai4) such that ai1 − ai2 = ai3 − ai4 , then we have the
quadruplet (a,b,c,d) = (ai1 ,ai4 ,ai2 ,ai3), unless ai2 = ai3 .

We say that x is bad for the pair of pairs (aj1 ,x) and (x,aj2) if aj1 − x = x − aj2 , or equivalently, if
2x = aj1 + aj2 . Note that if x is bad for (at least) two distinct pairs, we are done; if x is bad for (ai1 ,x),
(x,ai2) and (ai3 ,x), (x,ai4), then ai1 + ai2 = 2x = ai3 + ai4 .

Now, suppose each of the ai is bad for at most one pair of pairs of numbers. For each such pair, remove
one pair of numbers, so there are no bad numbers remaining. Then, we still have at least 120− 16 = 104
pairs of numbers remaining. The difference of the numbers in each remaining pair ranges from 1 to 99,
so by the pigeonhole principle, some of these differences have the same value. △

Some variants on the pigeonhole principle are as follows:

(i) If n balls are placed into k boxes, and k ∤ n, then at least one box contains strictly greater than n
k

balls.

(ii) If infinitely many balls are placed into finitely many boxes, then at least one box contains infinitely
many balls.

(iii) If uncountably many balls are placed into countably many boxes, then at least one box contains
uncountably many balls.
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7.3 Exercises

1. How many ordered quadruples (x1,x2,x3,x4) of positive odd integers are there such that x1 + x2 +
x3 + x4 = 98?

2. Prove that
(
2n
n

)
is even with a combinatorial argument.

3. How many rational numbers between 0 and 1 have the property that when written in simplest
form, the product of the numerator and denominator is 20! (twenty factorial)?

4. Each square of a 1998 × 2002 chessboard contains either a 0 or a 1 such that the total number
of squares containing 1 is odd in each row and in each column. Prove that the number of white
squares containing 1 is even.

5. How many subsets X ⊂ [18] of cardinality 5 have the property that every pair of numbers differ
by at least 2?

6. How many rooted binary trees are there on n vertices?

7. Show that there is a bijection between the set of partitions of a set X, and the set of equivalence
relations on X.

7.3.1 Solutions
1. Because the integers are odd, we may write each in the form xi = 2yi − 1. Then,

98 =

4∑
i=1

(2yi − 1)

98 = 2

(
4∑
i=1

yi

)
− 4

51 =

4∑
i=1

yi

so we are looking for the number of ordered quadruples of integers whose sum is 51. This can
be done with stars and bars: each such quadruple corresponds to 51 stars split into 4 parts by 3
separating bars, so there are (

50

3

)
= 19600

ways to insert 3 bars into the 50 spaces.

2. Suppose we need to pick n objects from 2n total. Given any selection, the complement of that
selection is also a valid selection, so the total number of selections is even.

3. The numerator and denominator must be relatively prime, so their prime factorisations must be
disjoint. There are eight prime factors of 20 – namely, 2,3,5,7,11,13,17, and 19. Each prime factor
may go to the numerator and denominator, so there are 28 = 256 fractions whose products are 20!.

These fractions can be paired up as reciprocals (i.e. swap where every prime factor goes), each con-
taining exactly one fraction less than 1. Thus, there are 128 fractions less than 1 whose numerator
and denominator multiply to 20!.

4. Let (i,j) denote the position of the unit square in the ith row and jth column, and let ai,j denote
the number within that square.

Notes on Mathematics | 185



Combinatorics I Exercises

The sum of the numbers in the 999 odd rows:

R =

999∑
i=1

2002∑
j=1

a2i−1,j

is odd, as it is the sum of 999 odd numbers. Similarly, the sum of all the numbers in the even
columns:

C =

1001∑
i=1

1998∑
j=1

a2i,j

is odd, as it is the sum of 1001 odd numbers. Consider the set B of black squares in the even
columns, and let S(B) denote the sum of the numbers in squares in B.

The numbers in each of the squares in B appears precisely once in the sum R, and once in the sum
C. Finally, note that each of the numbers in the white squares appears exactly once in the sum
R+C. Thus, the sum of the numbers in all the white squares is R+C − 2S(B), which is even, so
the number of white squares containing 1 is even.

5. Let a1 < a2 < a3 < a4 < a5 be the five chosen numbers. Consider the numbers

(b1,b2,b3,b4,b5) = (a1,a2 − 1,a3 − 2,a4 − 3,a5 − 4)

Then, the bi are five distinct numbers from the first fourteen positive integers.

Conversely, given any five distinct numbers b1 < b2 < b3 < b4 < b5, we can reconstruct

(a1,a2,a3,a4,a5) = (b1,b2 + 1,b3 + 2,b4 + 3,b5 + 4)

to obtain five numbers such that every pair of numbers differ by at least 2.

Thus, there is a bijection between the set of 5-tuples of numbers satisfying the required conditions,
and the set of 5-tuples of distinct numbers from the first fourteen positive integers. Therefore,
there are

(
14
5

)
= 2002 possible subsets.

6. Denote the number of rooted binary trees on n vertices by Cn. C0 = 1, as there is only the empty
tree, and C1 = 1 as there is only the trivial graph.

On 0 or 1 vertices, there is only 1 such tree. Then, given any two rooted binary trees on a and b
vertices, we may construct a new binary tree on a + b + 1 vertices by adding a new vertex, and
connecting it to the root node of the two given trees. So, Cn satisfies the recurrence relation:

Cn+1 =

n∑
i=0

CiCn−i

with boundary conditions C0 = C1 = 1, which describes the Catalan numbers.

7. Let ∼ be an equivalence relation. By reflexivity, x ∈ [x] for all x ∈ X, so the union of the
equivalence classes is X. Now, let x,y ∈ X be distinct, and suppose [x] ∩ [y] is non-empty. Let
a ∈ [x] ∩ [y]. Then, by definition, a ∼ x and a ∼ y, so [x] = [a] = [y]. So, the equivalence classes
form a partition of X.

Conversely, given a partition {Ai}i∈I of X, define an relation ∼ on X such that x ∼ y if and only
if x,y are in the same part. This is clearly reflexive, as every element is in the same part as itself,
and also symmetric, because if x,y ∈ Ai, then y,x ∈ Ai. Let x ∼ y, so x,y ∈ Ai, and y ∼ z, so
y,z ∈ Ai. Then, x,z ∈ Ai, so x ∼ z. It follows that ∼ is an equivalence relation.
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7.4 Extremal Combinatorics

7.5 Graph Theory

A graph G is represented by V , a set of vertices or nodes, and E, a set of pairs of vertices, called edges or
arcs, and we write G = (V,E). If we are using multiple graphs at once, we can refer to the vertex (edge)
set of a graph G by writing V (G) (E(G)), but when the context is clear, we will often write things like
G ∪ v to mean the graph formed by adding the vertex v to the graph G.

If the edge pairs are ordered, the graph is directed or oriented, and can also be referred to as a digraph.

A vertex and an edge are incident if the vertex is at either end of the edge. The degree, valency or order
of a vertex is the number of edges incident to it. The indegree and outdegree of a vertex of a digraph is
the number of edges pointing into and out from the vertex. A vertex of degree 1 is called a leaf. If every
vertex of a graph have the same degree k, then the graph is said to be k-regular.

7.5.1 Vertex Covers

7.5.2 Edge Covers

7.5.3 Bipartite Graphs

7.5.3.1 Matchings

7.5.4 Chromatic Numbers

7.5.5 Eulerian Graphs

7.5.6 Hamiltonian Cycles

7.5.7 Cayley’s Tree Enumeration Theorem

7.5.8 Hall’s Theorem

7.5.9 Turán’s Theorem

7.5.10 Ramsey’s Theorem
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Chapter 8

Combinatorics II

“Every hard problem in mathematics has something to do with combinatorics.”
— Lennart Carleson

8.1 Projective Planes and Latin Squares

8.1.1 Projective Planes
There is a deep connection between algebra and geometry, but once we move beyond linear algebra, there
is a certain inconvenience in the vector spaces in which we do geometry, which stems primarily from an
asymmetry between points and lines. Any two points are incident to a single line, but it is not true that
any two lines are incident to a single point: they could be parallel, or in higher dimensions, skew.

To resolve this imbalance, we add a point “at infinity” which some lines may be incident to in projective
geometry.

Consider the vector space K3 over a field K. Removing the origin, we define an equivalence relation on
K3 \ {0K} by (a,b,c) ∼ (x,y,z) if there exists 0 ̸= λ ∈ K such that (a,b,c) = λ(x,y,z). That is, vectors
are equivalent up to scaling.

The projective plane over K, denoted KP2 is then the set of equivalence classes of non-zero vectors in
K3. Equivalently, the points of KP2 may be viewed as the lines through the origin in K3.

Example. Consider the case K = R, giving the real projective plane RP2. Each line through the origin
in R3 intersects the unit sphere at two antipodal points, so we can also view the set of points of RP2 as
the surface of the sphere with antipodal points identified.

Intuitively, a line in RP2 is then just a great circle on the sphere, also with antipodal points identified.
Such a great circle also be viewed as the intersection of a plane through the origin with the sphere, which
can be characterised by the normal vector (λ,µ,ν) ̸= 0K . The great circle is then the (equivalence class
of the) set of points (x,y,z) satisfying

λx+ µy + νz = 0

where λ, µ, and ν are elements of K that are not all zero. △

We will be studying the discrete analogue of these spaces in which our projective planes have only finitely
many points.
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If a field K is finite with q elements, then K3 \ {0K} has q3 − 1 elements. Each equivalence class has
q − 1 elements, as there are q − 1 non-zero elements of K to scale by. So, there are

q3 − 1

q − 1
= q2 + q + 1

elements, or points, in KP2.

A line in KP2 is then the set of points (x,y,z) satisfying

λx+ µy + νz = 0

where λ, µ, and ν are elements of K that are not all zero. That is, a line is the set of points orthogonal
to a point (λ,µ,ν).

Note that this is well-defined due to the bilinearity of the dot product.

Example. Consider the case K = Z2, the field of two elements {0,1} in which 1+1 = 0. In this case, the
equivalence classes in Z2P2 are singletons, so the points in the projective planes are given by the seven
non-zero vectors

(0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)

Each line in Z2P2 contains 3 points: for instance, the line represented by (1,0,0) (i.e. 1x+ 0y + 0z = 0)
consists of the three points

(0,0,1), (0,1,0), (0,1,1)

and the line represented by (1,1,1) (i.e. 1x+ 1y + 1z = 0) consists of the three points

(0,1,1), (1,0,1), (1,1,0)

This projective plane is also called the Fano plane, and its points are often drawn arranged in a triangle:

(0,0,1)

(0,1,0)

(1,0,0)

(0,1,1)

(1,0,1)

(1,1,0)

(1,1,1)

△

As we would expect, any two distinct points determine a unique line connecting them.

Lemma 8.1.1 (Points in the Projective Plane). Given any two distinct points in KP2, there is exactly
one line incident to both of them.
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Proof. Let the points be (represented by) (a,b,c) and (x,y,z) and form the cross product

(λ,µ,ν) := (a,b,c)× (x,y,z)

= (bz − cy,cx− az,ay − bx)

The cross product is also zero if and only if the two starting vectors are linearly dependent, but by as-
sumption, (a,b,c) and (x,y,z) are representatives of distinct points and are therefore linearly independent,
so (λ,µ,ν) is non-zero and defines a line.

By construction, the cross product is orthogonal to (a,b,c) and (x,y,z) (or otherwise, this can be checked
by hand), so both the points are incident to the line defined by (λ,µ,ν).

For uniqueness, suppose (λ′,µ′,ν′) defines a line incident to (a,b,c) and (x,y,z):

λ′a+ µ′b+ ν′c = 0 (1)
λ′x+ µ′y + ν′z = 0 (2)

From the above, we have that bz− cy, cx−az, and ay− bx are not all zero, so without loss of generality,
suppose that ϕ := bz − cy ̸= 0. Then, multiplying (1) by z and (2) by c, and subtracting (2) from (1),
we have:

c(λ′x+ µ′y + ν′z)− z(λ′a+ µ′b+ ν′c) = 0− 0

λ′cx+ µ′cy − λ′az − µ′bz = 0

λ′(cx− az) + µ′(cy − bz) = 0

λ′(cx− az) = µ′(bz − cy)
λ′(cx− az) = µ′ϕ

and similarly,
λ′(ay − bx) = ν′ϕ

so

λ′ = (ϕ−1λ′)(bz − cy)
µ′ = (ϕ−1µ′)(cx− az)
ν′ = (ϕ−1ν′)(ay − bx)

so (λ′,µ′,ν′) ∼ (λ,µ,ν), and the line is unique. ■

The preceding proof shows that if (a,b,c) and (x,y,z) are non-equivalent elements of K3 \{0}, then there
is a unique equivalence class of elements (λ,µ,ν) ∈ K3 \ {0} satisfying

λa+ µb+ νc = λx+ µy + νz = 0

However, we may also interpret (a,b,c) and (x,y,z) as (equivalence classes of) lines and
[
(λ,µ,ν)

]
as a

point, so this also shows that any pair of distinct lines are incident at a single point.

Lemma 8.1.2 (Lines in the Projective Plane). Given any two distinct lines in KP2, there is exactly one
point incident to both of them.

You will notice that this lemma is precisely the same as the previous, only with the words “point” and
“line” interchanged. This is not a coincidence: points and lines in projective planes are dual in the sense
that any result about points and lines in projective planes will still hold true if the two are interchanged.

This is also the reasoning for the choice of wording “incident to” for describing the relation between
points and lines, rather than saying “two lines meet at a point” or “two points lie on a line”, since this
makes the dualisation process easier.
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8.1.2 Finite Projective Planes
Based on the previous algebraic construction, we define a combinatorial object.

A finite projective plane (FPP) is a finite set P of points, and a set L ⊆ P(P ) of lines satisfying:

(i) Every pair of points are incident to exactly one common line;

(ii) Every pair of points are incident to exactly one common point;

(iii) There are four points, no three of which belong to a single line.

The last condition is there only to rule out certain degenerate cases which lack the desired symmetries
we like to work with.

Lemma 8.1.3 (Point-Line Matching). Let (P,L) be an FPP, ℓ ∈ L be a line, and p ∈ P be a point not
incident to ℓ. Then, the number of points incident to ℓ is equal to the number of lines incident to p.

Proof. By axiom (i), each point on ℓ is incident to exactly one line through p; and by axiom (ii), each
line through p is incident to exactly one point on ℓ. ■

Theorem 8.1.4 (FPP Structure). Let (P,L) be an FPP. Then, there is a number q such that:

(i) Each line is incident to q + 1 points;

(ii) Each point is incident to q + 1 lines;

(iii) There are q2 + q + 1 points;

(iv) There are q2 + q + 1 lines.

The number q is then called the order of the FPP.

Proof.

(i) It suffices to show that any two lines are incident to the same number of points (and call this q+1).
Suppose ℓ and ℓ′ are two lines. By Lemma 8.1.2, it is sufficient to find a point p not on either line,
since each line would then be incident to as many points as there are lines incident to p.

Consider the 4 points p1,p2,p3,p4 guaranteed by axiom (iii). If one is in neither line, we are done.
Otherwise, all four are on ℓ or ℓ′, and by axiom (iii), there must be two on each line, say, p1,p2 ∈ ℓ
and p3,p4 ∈ ℓ′. Now, consider the lines ℓ13 and ℓ24 connecting p1 to p3 and p2 to p4, respectively.
These lines meet at a point p.

If p ∈ ℓ, then p1 and p are points common to both ℓ and ℓ13, so ℓ = ℓ13 by uniqueness, and p1, p2,
and p3 all lie on the line ℓ = ℓ13, contradicting axiom (iii). Similarly, p /∈ ℓ′.

(ii) Let p be a point. Again, by Lemma 8.1.1, it suffices to find a line not incident to p. Consider the 4
points p1,p2,p3,p4 guaranteed by axiom (iii), and without loss of generality, suppose p ̸= p1. Then,
the line connecting p1 and p2 and the line connecting p1 and p3 cannot simultaneously contain p
since they already both contain p1.

(iii) Let p be a point and consider the q + 1 lines incident to it. Every pair of these lines intersect only
at p, so each contains q points other than p, and the lines jointly cover the plane. So the total
number of points is (q + 1)q + 1 = q2 + q + 1.

(iv) Each point is incident to q + 1 lines and every line is incident to q + 1 points, so the number of
lines must be equal to the number of points.

■
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8.1.3 Latin Squares
A Latin square is an n× n array of n distinct symbols such that every symbol appears in every row and
every column.

Example.

A B

B A

A B C

B C A

C A B

△

Example. Any Cayley table forms a Latin square. For instance, C4 yields:

0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

△

Two n×n Latin squares A = (aij) and B = (bij) are orthogonal if the n2 pairs (aij ,bij) cover all possible
pairs.

Example. If we pair

A B C

B C A

C A B

and

1 2 3

3 1 2

2 3 1

we obtain

(A,1) (B,2) (C,3)

(B,3) (C,1) (A,2)

(C,2) (A,3) (B,1)

All 9 possible pairs are present, so these Latin squares are orthogonal. △

Let (P,L) be an FPP, and choose two points, say x,y ∈ P . They are connected by a line ℓ incident to
q + 1− 2 = q − 1 other points a1, . . . ,aq−1, and P \ ℓ contains q2 other points not on this line.

The point x is incident to q other lines, each disjointly incident to q points, so the x-lines hence partition
these q2 other points. Similarly, the point y is incident to q lines, each disjointly incident to q points, so
the y-lines also partition these q2 points. Also, each x-line meets all other y-lines, so the q2 intersections
have a Cartesian product structure and form a grid.
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x

y

a1a2

a1 also lies on q other lines that also partition the grid. Also, each of these q lines meets each x-line and
each y-line, so each line through a1 is incident to q points within the grid; one in each row, and one in
each column.

So, these q lines through a1 generate a Latin square on the grid by labelling the points on the first line
by a11, points on the second line a12, etc.

x

y

a1a2

So in the example above, a1 generates:

a12 a13 a11

a13 a11 a12

a11 a12 a13

while the point a2 generates:

a21 a23 a22

a22 a21 a23

a23 a22 a21

The q − 1 points on the line connecting x and y thus generate q − 1 Latin squares.

Theorem 8.1.5. The q − 1 Latin squares generated in this way are pairwise orthogonal.

Proof. Without loss of generality, consider the Latin squares generated by the points a1 and a2. These
points each lie on q other lines corresponding to the symbols a1j and a2j used in their Latin squares,
and each a1-line meets each a2-line at one of the q2 points of the grid. So, every possible pair of symbols
appears when the grids are merged. ■
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Theorem 8.1.6. There is an FPP of order q > 1 if and only if there are q− 1 pairwise orthogonal q× q
Latin squares.

8.2 Error-Correcting Codes

8.2.1 Introduction
Suppose Alice wishes to send Bob a message encoded in binary across an unreliable or noisy channel.
That is, some bits in the message may be flipped during transmission.

One simple protocol to resist noise is for Alice to send each bit of the message repeatedly, say, ten times,
then for Bob to take the most frequent received bit in each block of ten received bits to be the intended
bit.

Message Bit Code Bit

0 0000000000

1 1111111111

For instance, if Bob receives the string “1011011111 0100011000”, he can be fairly confident that the
original message was “1 0”.

This replacement procedure constitutes an error-correcting code. The idea is that only certain strings
of ten bits are valid or admissible strings, also called codewords, and that these admissible strings are
selected to be very distinct from each other to minimise the chance that one is converted into by noise.

However, this code is not very efficient, because the rate of transmission decreases by a factor of ten
when using this code.

Consider the similar repetition code:

Message Bit Code Bit

0 00

1 11

This code detects one bit errors: if the string 01 is received, Bob will know there has been at least one
bit flip. However, this code cannot detect two bit flips, as the intended message 00 could be converted
into the admissible string 11 with two bit flips. The rate of this code is also 1/2.

If we use this code to send two bits of information, we have the encodings:

Message Bit Code Bit

00 0000

01 0011

10 1100

11 1111

Again, this code is only safe against single bit flips. However, using three bits, we can achieve the same
resilience against noise:
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Message Bit Code Bit

00 000

01 011

10 110

11 101

Any pair of these strings differ in two places, so again, two bits have to be corrupted to change one
admissible string into another in this code. However, this code is also faster than the previous scheme,
having rate 2/3.

Let the alphabet A be a set of symbols called letters. A code is a subset C ⊆ An, where n is the length
of the code, and the elements of C are called codewords. If a code uses n bits of codewords to send k
bits of plaintext, then the code has rate k/n.

Example. In the examples above, we have been working over the alphabet A = {0,1}, and we call such
codes binary. △

An encoding is a bijection e :W → C from the set W of words in the plain text, to the code C.

Example. The table above describes an encoding from W = {0,1}2 to a code C = {000,011,110,101} ⊆
{0,1}3. △

For our purposes, it will not matter how this encoding is selected; all that is relevant is how “well-
separated” the codewords are.

To quantify this separation, we define the Hamming distance of two codewords as the number of positions
in which they differ. The Hamming distance forms a metric on any set of strings.

Example. The codewords 110 and 011 differ in the first and third positions, so they are Hamming distance
d(110,011) = 2 apart. △

Note that the minimum separation minX ̸=Y ∈C d(X,Y ) of a code determines the maximum number of
bit flips it can detect, as any number of bit flips exceeding this number could then potentially turn one
codeword into another valid codeword. If for a code C, this minimum separation is

D := min
X ̸=Y ∈C

d(X,Y )

then we say that C is D-separated.

8.2.2 Block Codes
We will only be considering block codes, where the message is divided into blocks of fixed length k, each
of which can be encoded without reference to any of the other blocks. That is, we will take the set of
words W to be the set {0,1}k of all possible binary strings of length k.

To decode a message encoded with a block code, we break the received transmission into blocks of length
n, where n is the length of the code used. If a block is a codeword (i.e. admissible), then we assume
that this block was correctly transmitted. Otherwise, we find the closest codeword to the received block,
and interpret that as the intended codeword. If the code is well designed, this closest codeword should
be unique.

Lemma 8.2.1. If a block code is (2r + 1)-separated, then it can correct r bit flips.

Proof. An invalid block x can be at distance at most r from its nearest codeword y.

d(x,y) ≤ r
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Then, for any other codeword z, the reverse triangle inequality gives:∣∣d(z,y)− d(y,x)∣∣ ≤ d(x,z)∣∣(2r + 1)− r
∣∣ ≤ d(x,z)

r + 1 ≤ d(x,z)

so the codeword closest to x is unique. ■

Given a binary block code C, any encoding gives a bijection W → C, we have |C| = |W | = 2k, so the
rate of a binary block code is simple to compute as:

log2|C|
n

=
k

n

In a binary code, we can also interpret the alphabet {0,1} as the finite field Z2 := Z/2Z of characteristic
2. If the codewords have length n, then they can be interpreted as elements of the vector space Zn2 .

In the code of length 3 above, we had the vectors

000, 011, 110, 101

These elements form a linear subspace of Z3
2, and we call this code a linear code.

The aim is to find codes in which every pair of codewords are far from each other in the Hamming metric.
Linear codes have a simple feature that makes this easier to achieve:

Lemma 8.2.2. Suppose C ⊆ Zn2 is a linear code such that every element of C other than 0 contains at
least D coordinates equal to 1. Then, C is D-separated. That is,

∀(X ̸= Y ∈ C) : d(X,Y ) ≥ D

Proof. Suppose u and v are distinct codewords with d(u,v) = r < d. That is, they differ only in r < d
coordinates. Then, u⊕ v is also a codeword, as C is linear. This codeword has a 1 only in the positions
where u and v disagree, since vector addition in Zn2 is componentwise exclusive disjunction, so u⊕ v has
r < d coordinates equal to 1, contradicting the construction of C. ■

It is also very simple to determine the rate of a linear code; if C is a linear subspace of Zn2 of dimension
k, then it has 2k elements, so the rate is just

dimC

n
=
k

n

Example. Consider the code
C = {000,011,110,101} ⊂ Z3

n

The minimum number of 1s in a non-zero codeword is 2, so C is 2-separated. C is also a 2-dimensional
subspace of Z3

2, so the rate is 2
3 . △

So, the goal is to look for k-dimensional subspaces of Zn2 whose non-zero elements contain a large number
of 1s to get good separation. We also want k to be large to get a high rate. Since we want this subspace
to have large dimension, it is usually easier to define it using n− k linear equations, rather than using a
basis of size k.

Example. The code above consists of the elements (x1,x2,x3) ∈ Z3
2 which contain an even number of 1s,

so they can be specified to be the elements satisfying

x1 + x2 + x3 = 0

In other words, this code is defined by a parity check. △
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8.2.3 Hamming Codes
In this section, we describe an efficient 3-separated binary code based on parity checks.

Let r be a positive integer and n = 2r − 1 be the length of the code. The code will be an (n − r)-
dimensional subspace of Zn2 , so we need r linear equations to specify the codewords, and the rate will be
almost 1:

rate(C) =
log2(n)

n
=
n− r
n

= 1− r

n
= 1− r

2r − 1
≈ 1

for large r.

We arrange the linear equations into an r × n matrix B, so the code will be given by

C = {x ∈ Zn2 : Bx = 0}

The Hamming code of length n is given by the matrix with columns consisting of all binary numbers
from 1 to n.

Example. For r = 3 and n = 2r − 1 = 7, then B is given by

B =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


△

Note that (1,1,1,0, . . . ,0) ∈ C regardless of r, since the first 3 columns of B have 0 below the top two
rows. So, Hamming codes are at most 3-separated.

Lemma 8.2.3. Hamming codes are precisely 3-separated.

Proof. We have already shown that Hamming codes are at most 3-separated. If two words are less than
distance 3 apart, then they must either be distance 1 or distance 2 apart. In the former case, both would
fail to satisfy a parity check involving the different bit, and in the latter case, then there would be a
non-codeword in betweem them, which would decode as either one of them. ■

As with any block code, to decode a message encoded with a Hamming code, we break the received code
bits into blocks of length n, and check if the block is a codeword. If it is, then we assume that this block
was correctly transmitted; otherwise, we find the closest codeword to the received block, and interpret
that as the intended codeword.

We show that this closest codeword is at distance at most 1 for any possible received block, and further-
more, that this closest codeword is unique.

Theorem 8.2.4. Let C be a Hamming code of length n = 2r−1. Then, for any invalid block x ∈ Zn2 \C,
there is a unique element y of C at distance d(x,y) = 1 from x.

Proof. Suppose x ∈ Zn2 \ C is not a codeword, so Bx ̸= 0. Consider the vector

u := Bx ∈ Zr2 \ {0}

By construction, the columns of B contain all possible non-zero vectors, so u must coincide with some
column of B, say, the mth column Bm representing the binary number m.

Now, consider the vector
x̃ := x⊕ em

where em is the standard mth basis vector, so x̃ differs from x only in the mth coordinate. In particular,
d(x,x̃) = 1.
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Multiplying x̃ by B, we have

Bx̃ = Bx⊕Bem

= u⊕Bm
= Bm ⊕Bm
= 0

and we see that x̃ is a codeword at distance 1 from x, as required.

For uniqueness, suppose u and v are distinct codewords at distance 1 from x. Then, by the triangle
inequality, we have d(u,v) ≤ d(u,x)+d(x,v) = 2, contradicting that Hamming codes are 3-separated. ■

Example. Decode the received string 1010011.

The first bit parity checks the positions whose unit digit is 1. That is, the 1st, 3rd, 4th, and 7th bits.
We have 1 + 1 + 0 + 1 = 1, so an error has occured somewhere within in these odd digits.

The second bit parity checks the positions whose 2s digit is 1. That is, the 2nd, 3rd, 6th, and 7th bits.
We have 0 + 1 + 1 + 1 = 1, so an error has occured somewhere within these digits.

The fourth bit parity checks the positions whose 4s digit is 1. That is, the 4th, 5th, 6th, and 7th bits.
We have 0 + 0 + 1 + 1 = 0, so no error has occured within these digits.

From this, we deduce that the 3rd digit has been flipped, so the closest codeword we correct to is
1000011. △

This process is somewhat involved, so we present a graphical method to quickly decide which positions
to parity check:

Example. Decode the received string 1010011.

Arrange the string into a grid as follows, skipping the first entry:

1 0 1

0 0 1 1

Now, perform parity checks within each of the highlighted regions:

1 0 1

0 0 1 1

×

1 0 1

0 0 1 1

×

1 0 1

0 0 1 1

✓

The error is in the first two regions, so it must be in the 4th column. The error is not in the last region,
so it must be in the first row.

1 0 1

0 0 1 1

We deduce that the error is in the 3rd bit, so the closest codeword we correct to is 1000011. △

Example. Decode the received string 110 1011 1010 0101.
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Arrange the string into a grid as follows, skipping the first entry:

1 1 0

1 0 1 1

1 0 1 0

0 1 0 1

Now, perform parity checks within each of the highlighted regions:

1 1 0

1 0 1 1

1 0 1 0

0 1 0 1

✓

1 1 0

1 0 1 1

1 0 1 0

0 1 0 1

×

1 1 0

1 0 1 1

1 0 1 0

0 1 0 1

×

1 1 0

1 0 1 1

1 0 1 0

0 1 0 1

✓

The error is in the second region, but not the first, so the error must be in the third column; the error
is in the third region, but not the fourth, so the error is in the second row:

1 1 0

1 0 1 1

1 0 1 0

0 1 0 1

So, we correct the received block to 110 1001 1010 0101. △

Theorem 8.2.5 (Sphere-packing Bound). Let C be a (2r+ 1)-separated binary code of length n. Then,

|C|
r∑
i=0

(
n

i

)
≤ 2n

Proof. In Lemma 8.2.1, we showed that if a block code is (2r+1)-separated, then it can correct r bit flips,
since every string that is distance at most r from a codeword x is closer to x than any other codeword.
In other words, the balls of radius r centred on each codeword are all disjoint.

How many strings are contained in each ball of radius r?

We count these strings based on their distance from the centre x. If we change 0 bits from x, then we
just get the string x; if we change 1 bit, then there are n =

(
n
1

)
many strings at distance 1 from x; if we

change 2 bits, then there are
(
n
2

)
many strings at distance 2 from x; and so on, so the balls each contain

1 +

(
n

1

)
+

(
n

2

)
+

(
n

3

)
+ · · ·+

(
n

r

)
=

r∑
i=0

(
n

i

)
strings. Since these balls are all disjoint, the total number of elements contained in all of these balls is
|C| times this sum, and there are 2n possible strings, so

|C|
r∑
i=0

(
n

i

)
≤ 2n
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as required. ■

A code that attains this bound is called a perfect code.

Lemma 8.2.6 (Domain of Codewords). Let C be the Hamming code of length n = 2r − 1. Then, each
codeword is the closest codeword to n other elements of Zn2 .

Proof. There are n possible bits to flip in each codeword. ■

Theorem 8.2.7. Hamming codes are perfect codes.

Proof. By the previous lemma, each codeword is closest to 2r many possible bit strings: itself, and
n = 2r − 1 others adjacent to it. Also, there are |C| = 2n−r many codewords, so

|C| ·
∣∣Br∣∣ = 2n−r2r

= 2n

■

8.2.4 Shannon’s Theorem
Suppose we have a binary communication channel which flips bits with probability p. We define the
Shannon capacity to be

R := 1 + p log2(p) + (1− p) log2(1− p)

Theorem 8.2.8 (Shannon’s Limit). Using a binary communication channel which flips bits with prob-
ability p, there exists a code C with rate almost R and almost perfect accuracy.

That is, for all ε > 0, there exists a code C with rate

rate(C) ≥ 1 + p log2(p) + (1− p) log2(1− p)− ε

and such that the probability of decoding a codeword incorrectly is less than ε. Moreover, subject to any
accuracy constraint, rates greater than R are not achievable.

Proof sketch. Choose a large value of n for the length of a block code and let F be a random variable
measuring the number of bits flipped out of a message of length n. F has expectation E(F ) = np and
standard deviation σ =

√
npq (where q = 1−p). Notably, for large n, σ ≪ E(F ), so we will almost never

have more than np bits flipped. Let d := n(p+ ε).

The first idea one might have is to find a (2d + 1)-separated code with the given rate, but it turns out
that this is extremely difficult to do.

Instead, choose M codewords from Zn2 uniformly and independently to form a code C. Now, suppose a
codeword S is sent using this scheme, and is received as the string S′. There are two things that could
go wrong during decoding:

A: More than d bits are flipped.

B: There is an incorrect codeword Y ̸= S at distance d(S′,Y ) ≤ d from S′.

The first case is rare by our choice of d, since σ ≪ E(F ) < d. The second case occurs whenever one of
the M − 1 codewords X in C \ {S} is within distance d of S′

P(B) = (M − 1)
# of strings X with d(S′,X) ≤ d

2n
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As before, the number of strings at distance r from S′ is given by
(
n
r

)
, so the numerator is given by the

sum

= (M − 1)

∑d
i=0

(
n
i

)
2n

If d is not too large, then the sum of binomial coefficients is approximately the last summand, so

P(B) ≈ (M − 1)
(nd)
2n . So, we need (M − 1)

(
n
d

)
to be small compared to 2n:

(M − 1)

(
n

d

)
= α2n

for some small constant α > 0.

The rate of C is then given by

rate(C) :=
log2(M)

n

≈ 1

n
log2

(
2nα(
n
d

) )

=
1

n

(
log2(2

n) + log2(α)− log2
(
n
d

))
=

1

n

(
n+ log2(α)− log2

(
n
d

))
= 1 +

1

n
log2(α)−

1

n
log2

(
n
d

)
1
n log2(α) is very small even for small α, so,

≈ 1− 1

n
log2

(
n
d

)
= 1− 1

n
log2

(
n!

d!(n− d)!

)
≈ 1− 1

n
log2

(
n!

(np)!
(
n(1− p)

)
!

)
By Stirling’s formula and discarding sublinear factors,

≈ 1− 1

n
log2

(
nn

(np)np
(
n(1− p)

)n(1−p)
)

= 1− 1

n
log2

(
nn

nnppnpnn(1−p)(1− p)n(1−p)

)
= 1− 1

n
log2

(
nn

nnpnp(1− p)n(1−p)

)
= 1− 1

n
log2

(
1

pnp(1− p)n(1−p)

)
= 1− 1

n
log2

((
1

pp(1− p)(1−p)

)n)

= 1− log2

(
1

pp(1− p)(1−p)

)
= 1 + log2

(
pp(1− p)(1−p)

)
Notes on Mathematics | 201



Combinatorics II Discrete Geometry

= 1 + p log2(p) + (1− p) log2(1− p)

■

The point is that, if we fix the rate, then the number d of bit flips we can correct is proportional to n,
and if we fix the probability p, then the expected number of bits flipped is np, also proportional to n.
However, the standard deviation σ =

√
npq grows slower than proportionally to n, so as n increases, the

chance that n(p+ ε) bits are flipped decreases to 0.

8.3 Discrete Geometry

A set C ⊆ Rd is convex if for all pairs x,y ∈ C, we have λx+ (1− λ)y ∈ C for all λ ∈ [0,1]. That is, the
line segment connecting x to y is also contained in C.

Example. The unit ball of any normed space is convex. △

Lemma 8.3.1. The arbitrary intersection of convex sets is convex.

Proof. Let {Si}ni=1 be a family of convex sets. Then, for any x,y ∈
⋂n
i=1 Si we have x,y ∈ Si for all i,

and all the Si are convex, so λx + (1 − λ)y ∈ Si for all i, so λx + (1 − λ)y ∈
⋂n
i=1 Si and

⋂n
i=1 Si is

convex. ■

The expression λx + (1 − λ)y is called a convex combination of x and y. More generally, the convex
combination of a collection of points x1, . . . ,xm ∈ Rd is a point of the form

m∑
i=0

λixi

where λi ≥ 0, and
∑m
i=0 λi = 1.

We write cc(E) to denote the set of all convex combinations of a set E.

Lemma 8.3.2. The convex combinations operator is idempotent:

cc
(
cc(E)

)
= cc(E)

Lemma 8.3.3. A set E is convex if and only if it it contains all of its convex combinations:

E = cc(E)

Proof. For the forward direction, we induct on m. For m = 1, a convex combination of points in E is
just a point in E. Now suppose E contains all convex combinations of at most m of its points. Then,
we can reduce

m+1∑
i=0

λixi = λm+1xm+1 +

m∑
i=1

λixi

= λm+1xm+1 +

(
m∑
i=1

λi

)(
m∑
i=1

λi∑m
j=1 λj

xi

)

= λm+1xm+1 + (1− λm+1)

(
m∑
i=1

λi∑m
j=1 λj

xi

)

The sum on the right is a convex combination, and by the inductive hypothesis, this is an element of E.
Then, by convexity of E, the whole expression is a point in C.
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For the reverse direction, if E contains all convex combinations of its points, then it contains all convex
combinations of two of its points, which is the definition of convexity. ■

Given a set E ⊆ Rd, we define the convex hull of E to be the intersection of all convex sets containing
E.

conv(E) :=
⋂
C⊇E

C convex

C

As the intersection of convex sets, the convex hull is convex. The convex hull also satisfies:

(i) E ⊆ conv(E), since every set in the intersection contains E;

(ii) If C is convex and E ⊆ C, then conv(E) ⊆ C, since the intersection is the minimal element of the
poset of convex sets containing E.

Theorem 8.3.4. For any E ⊆ Rd,
conv(E) = cc(E)

Proof. Note that cc(E) is convex and that E ⊆ cc(E) since every point in E is a convex combination of
itself. So, by property (ii) of convex hulls, conv(E) ⊆ cc(E).

Any point of cc(E), i.e. a convex combination of points in E, is also a convex combination of points in
conv(E) since E ⊆ conv(E). Because conv(E) is convex, it contains all of these convex combinations, so
cc(E) ⊆ conv(E). ■

8.3.1 Separation
We will be concerned almost entirely with convex sets that are closed, and in almost all cases, they will
also be bounded and hence compact (by Heine-Borel).

Lemma 8.3.5. Every linear functional ϕ : Rd → R is of the form

x 7→ ⟨x,y⟩

where y is some fixed non-zero vector in Rd.

Proof. Let ϕ be a linear functional. Define yi := ϕ(ei) for each 0 ≤ i ≤ d, where ei is the ith standard
basis vector. Then, if x =

∑d
i=1 xiei, we have

ϕ(x) = ϕ

(
d∑
i=1

xiei

)

=

d∑
i=1

xiϕ(ei)

=

d∑
i=1

xiyi

= ⟨x,y⟩

■

We define a hyperplane in Rd to be a set of the form

Π = {x ∈ Rd : ϕ(x) = α}

for some non-zero linear functional ϕ and constant α ∈ R. Equivalently, it is an affine subspace of
codimension 1.
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Theorem 8.3.6 (Separation Principle I). If C ⊆ Rd is compact and convex, and x ∈ Rd \C, then there
is a hyperplane separating x from C. That is, there exists a linear functional ϕ : Rd → R and a number
α such that

• ϕ(x) > α;

• ϕ(c) < α for all c ∈ C.

Example.

C

x

u

ϕ = α

△

Proof. Consider the function C → R defined by c 7→ ∥x − c∥ that returns the distance from a point in
C to the point x. This function is continuous, and so has a minimum on C. That is, there is a closest
point u of C to x. Since x /∈ C, u ̸= x, so ∥x− c∥ > 0.

C

x

u

Now, define ϕ : Rd → R by y 7→ ⟨x− u,y⟩. We have

ϕ(x)− ϕ(u) = ⟨x− u,x⟩ − ⟨x− u,u⟩
= ⟨x− u,x− u⟩
= ∥x− u∥2

> 0

so ϕ(u) < ϕ(x). Let α satisfy ϕ(u) < α < ϕ(x). To complete the proof, it remains to show that if c ∈ C,
then ϕ(c) ≤ ϕ(u).

Suppose c ∈ C, but ϕ(c) > ϕ(u). Consider the convex combination p := δc+ (1− δ)u. Then,

∥x− p∥2 = ∥x− δc− (1− δ)u∥2

= ∥(x− u)− δ(c− u)∥2

= ∥x− u∥2 − 2δ⟨x− u,c− u⟩+ δ2∥c− u∥2

= ∥x− u∥2 − 2δϕ(c− u) + δ2∥c− u∥2

By assumption, ϕ(c− u) < 0, and for small δ, δ2∥c− u∥2 ≪ 2δ⟨x− u,c− u⟩, so,

< ∥x− u∥2

so p is closer to x than u, contradicting the construction of u. ■

Notes on Mathematics | 204



Combinatorics II Discrete Geometry

A half-space of Rd is a set
H = {x ∈ Rd : ϕ(x) ≤ α}

for some non-zero linear functional ϕ and constant α ∈ R.

Corollary 8.3.6.1. If C ⊂ Rd is a compact convex set, then C can be expressed as an intersection of
half-spaces.

Proof. For each point x ∈ Rd \C, there is a half-space containing C and not x, so the intersection of all
half-spaces containing C will exclude all points x ∈ Rd \ C and hence is equal to C. ■

Given a set C, a supporting hyperplane of C is a hyperplane H that contains a boundary point x of C,
but does not intersect the interior of C. Or equivalently, the (non-zero) linear functional ϕ given by the
orthogonal vector of the hyperplane satisfies ϕ(c) ≤ ϕ(x) for all c ∈ C.

Theorem 8.3.7 (Supporting Hyperplanes). If C ⊂ Rd is compact and convex, and x ∈ ∂C, then there
is a hyperplane supporting C at x. That is, there is a non-zero linear functional ϕ : Rd → R such that
ϕ(c) ≤ ϕ(x) for all c ∈ C.

Proof. Let (xi)
∞
i=1 ⊆ Rd \ C be a sequence of points converging to x. By the separation principle, there

exists, for each i, a linear functional ϕi defined by

u 7→ ⟨u,vi⟩

and a number αi such that

• ϕi(xi) > α;

• ϕi(c) < α for all c ∈ C.

Without loss of generality, suppose each vi is a unit vector, and hence that they have an accumulation
point v which is also a unit vector. Passing to a subsequence and re-indexing, assume that (vi)→ v.

For each i, we have
⟨x,vi⟩ < αi < ⟨xi,vi⟩

Taking limits as i→∞, the inner products converge to ⟨x,v⟩, so (ai)→ ⟨x,v⟩. Then, for each c ∈ C, we
have ⟨c,vi⟩ ≤ αi, so taking limits, we have ⟨c,v⟩ ≤ ⟨x,v⟩, as required. ■

We can relax the hypotheses of the separation principle by only requiring that C is closed and not
compact:

Theorem 8.3.8 (Separation Principle II). If C ⊆ Rd is closed and convex, and x ∈ Rd \ C, then there
is a hyperplane separating x from C. That is, there exists a linear functional ϕ : Rd → R and a number
α such that

• ϕ(x) > α;

• ϕ(c) < α for each c ∈ C.

Proof. Let c ∈ C and define R := ∥x − c∥. Now, consider the intersection of C with the ball BR(x) of
radius R centred on x. This is a compact set, so it has a point u closest to x. The proof from this point
onwards is then identical to the first form of the theorem. ■
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8.3.2 Extrema

Given a convex set C ⊆ Rd, an extreme point of C is a point c ∈ C not in the interior of any line segment
contained in C. That is, if c is an extreme point and x,y ∈ C satisfy

c = λx+ (1− λ)y

with λ ∈ (0,1), then x = y = c.

Example. In the following figure, the blue points are extreme points.

C

△

Lemma 8.3.9 (Extreme Points of Faces). Let H be a supporting hyperplane to the compact convex set
C. Then,

(i) H ∩ C is compact and convex;

(ii) Every extreme point of H ∩ C is an extreme point of C.

Proof.

(i) The intersection of a compact and closed set is compact, and the intersection of convex sets is
convex, so H ∩ C is compact and convex.

(ii) Now, suppose x is an extreme point of H ∩C, but not an extreme point of C, so it is in the interior
of a line segment in C. Because x is extreme in H ∩ C, this line segment cannot be contained in
H ∩C, so the segment must have endpoints on either side of H. But, this is impossible, since C is
on one side of H.

■

Theorem 8.3.10 (Extreme Point Theorem). Let C ⊆ Rd be compact and convex, and let E be the set
of its extreme points. Then,

C = conv(E) = cc(E)

Proof. We induct on d. For d = 1, this is trivial.

We already know that conv(E) ⊆ C, so we show the other inclusion. Let c ∈ C. If c is an extreme point,
then there is nothing to prove. So, supposing otherwise, c lies on a line segment in C, which we may
extend in each direction until it intersects the boundary of C, at points, say, x and y.
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H
c

x

y

Let H be a supporting hyperplane to C at x. Then, H ∩ C is a compact convex set by part (i) of the
previous lemma, and it has codimension at least 1, so by the strong inductive hypothesis, H ∩ C is the
convex hull of its extreme points, so

x ∈ H ∩ C = conv
(
EH∩C

)
By part (ii) of the previous lemma, EH∩C ⊆ E, so x ∈ conv(E). Through an identical argument, we
have y ∈ conv(E). Then, c lies on the line segment connecting x and y, so we also have c ∈ conv(E), as
required. ■

Theorem 8.3.11 (Caratheodory). Each point of a compact convex set C ⊂ Rd is a convex combination
of at most d+ 1 of its extreme points.

Proof. We induct on d. For d = 1, this is trivial.

Let c ∈ C and choose an extreme point u of C. Consider the line passing through c and u. This line
intersects the boundary of C at u on one side of c, and at a point y on the other.

H
c

u

y

Now, let H be a supporting hyperplane to C at y. By the strong inductive hypothesis, y is a convex
combination of at most d extreme points in H∩C, so c is a convex combination of these at most d points,
and an extra point u. ■
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8.3.3 Polyhedra and Polytopes

Here are two important constructions of convex sets in Rd:

• A polyhedron is a bounded intersection of a finite set of half-spaces.

• A polytope is the convex hull of a finite set E.

Theorem 8.3.12 (Polyhedra are Polytopes). Every polyhedron C ⊂ Rd is a polytope.

Proof. Let

C :=

n⋂
i=1

Si

be the bounded intersection of half-spaces Si bounded by hyperplanes Hi. Let E be the set of extreme
points of C.

We claim that every extreme point of C is the intersection of at most d hyperplanes. That is, for all
e ∈ E, there exists I ⊆ [n] with |I| ≤ d such that

{e} =
⋂
i∈I

Hi

This would imply that there are at most
(
n
d

)
(i.e. finitely many) extreme points, so C = conv(E) would

be a polytope.

To prove the claim, we induct on d. For d = 1, this is trivial.

Let e ∈ E. If it were in the interior of all the half-spaces, then it would be in the interior of the
intersection, C, in which case, e is not extreme. So, e must be on one of the hyperplanes, say H1.

Note that H1 ∩ C =
⋂n
i=1(H1 ∩ Si), and each H1 ∩ Si is a half-space, so H1 ∩ C is a polyhedron of

dimension at most d− 1. Moreover, e is extreme in H1 ∩C, since if it were not, any line witnessing this
would also witness this in C, contradicting that e ∈ E.

So, by the strong inductive hypothesis, in H1 ∩ C, we have

{e} =
⋂
i∈I′

(H1 ∩Hi)

where |I ′| ≤ d− 1. So, in C, we have

{e} = H1 ∩
⋂
i∈I′

Hi

=
⋂

i∈I′∪{1}

Hi

so e is the intersection of at most |I ′ ∪ {1}| ≤ (d − 1) + 1 = d hyperplanes, completing the induction.
This proves the claim, and the result follows. ■

8.3.4 Polars

Given a compact convex set C ⊆ Rd, we define its polar to be the set

C◦ := {y ∈ Rd : ∀x ∈ C,⟨x,y⟩ ≤ 1}

Under very weak conditions, polarity gives a bijection between C and C◦:
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Lemma 8.3.13. If C ⊆ Rd is a compact convex set containing 0, then polarity is an involution:

C◦◦ = C

Proof. By definition of a polar, for all x ∈ C and y ∈ C◦, we have ⟨x,y⟩ = ⟨y,x⟩ ≤ 1. By symmetry of
the inner product, we have ⟨y,x⟩ ≤ 1, and

C◦◦ = {x′ ∈ Rd : ∀y ∈ C◦,⟨y,x′⟩ ≤ 1}

so C ⊆ C◦◦.

Now, suppose C◦◦ ̸⊆ C, so there exists x ∈ C◦◦ \ C satisfying ⟨x,y⟩ ≤ 1 for all y ∈ C◦.

By the separation principle, there exists a linear functional ϕ(v) = ⟨v,u⟩ for some fixed u and a constant
α such that ϕ(x) > α and ϕ(c) < α for all c ∈ C.

Since 0 ∈ C, α > ϕ(0) = ⟨0,u⟩ > 0, so by rescaling the orthogonal vector u to u′ := 1
αu, we may assume

that the constant is α′ = 1, so ϕ(c) = ⟨c,u′⟩ < α′ = 1 for all c ∈ C, and hence u′ ∈ C◦. But then,
ϕ(x) = ⟨x,u′⟩ > α′ = 1, so x /∈ C◦◦, contradicting our choice of x. ■

Lemma 8.3.14 (Polytope Polars). If C = conv
(
{xi}mi=1

)
, then

C◦ = {y ∈ Rd : ∀i,⟨xi,y⟩ ≤ 1}

That is, we only have to check that ⟨x,y⟩ ≤ 1 for the vertices xi, and not every point x ∈ C.

Proof. Define
C ′ := {y ∈ Rd : ∀i,⟨xi,y⟩ ≤ 1}

Any y ∈ C◦ satisfies ⟨xi,y⟩ ≤ 1 for all xi, since xi ∈ C, so C◦ ⊆ C.

For the reverse inclusion, let y ∈ C ′. Then, any x ∈ C = conv
(
{xi}mi=1

)
is a convex combination

x =

m∑
i=1

λixi

so

⟨x,y⟩ =
m∑
i=1

λi⟨xi,y⟩

≤
m∑
i=1

λi

= 1

so y ∈ C◦. Since y was arbitrary, we have C ′ ⊆ C◦. ■

This lemma allows us to interpret the vectors of C as facets of C◦. More precisely, notice that for any
fixed i ≤ m, the set

{y ∈ Rd : ⟨xi,y⟩ ≤ 1}

is a half-space (i.e. with orthogonal vector xi and α = 1), so this lemma equivalently says that C◦ is the
intersection of these m half-spaces. From this, we deduce:

Corollary 8.3.14.1. If C is a polytope, then C◦ is an intersection of half-spaces, and is hence a poly-
hedron if it is bounded.
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Example. Let C = conv
(
{(1,0),(0,1),(1,1)}

)
:

x

y

By the previous lemma, C◦ is the intersection of half-spaces{
(x,y) :

〈
(1,0),(x,y)

〉
≤ 1
}
=
{
(x,y) : x ≤ 1

}{
(x,y) :

〈
(0,1),(x,y)

〉
≤ 1
}
=
{
(x,y) : y ≤ 1

}{
(x,y) :

〈
(1,1),(x,y)

〉
≤ 1
}
=
{
(x,y) : x+ y ≤ 1

}

x

y

S1 =
{
(x,y) : x ≤ 1

}

x

y

S2 =
{
(x,y) : y ≤ 1

}

x

y

S3 =
{
(x,y) : x+ y ≤ 1

}
Shading the unwanted region so the intersection is easier to see, we have:

x

y

S1 ∩ S2 ∩ S3

x

y

C◦

Note that in this case, C does not contain 0, and C◦ is unbounded, and hence not a polygon. △

Example. Let C = conv
(
{(1,− 3),(−3,1),(1,1)}

)
:
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x

y

By the previous lemma, C◦ is the intersection of half-spaces{
(x,y) :

〈
(1,− 3),(x,y)

〉
≤ 1
}
=
{
(x,y) : x− 3y ≤ 1

}{
(x,y) :

〈
(−3,1),(x,y)

〉
≤ 1
}
=
{
(x,y) : −3x+ y ≤ 1

}{
(x,y) :

〈
(1,1),(x,y)

〉
≤ 1
}
=
{
(x,y) : x+ y ≤ 1

}

x

y

S1 =
{
(x,y) : x− 3y ≤ 1

}

x

y

S1 =
{
(x,y) : −3x+ y ≤ 1

}

x

y

S1 =
{
(x,y) : x+ y ≤ 1

}
Shading the unwanted region so the intersection is easier to see, we have:

x

y

S1 ∩ S2 ∩ S3

x

y

C◦

This time, 0 ∈ C, so C = C◦◦ and C◦ is a polytope whose vertices correspond to the facets of C. So,
another way to find the vertices of the polar is to find the lines in which the facets lie.

In this case, we have the lines 1x + 0y = 1, 0x + 1y = 1, and 1x + 1y = −2, which rearranges to
− 1

2x−
1
2y = 1, so the vertices are (1,0), (0,1), and (− 1

2 ,−
1
2 ). △

Lemma 8.3.15 (Inversion). If C and D are convex sets with D ⊆ C, then C◦ ⊆ D◦.

Proof. If y ∈ C◦, then ⟨x,y⟩ ≤ 1 for all x ∈ C. We have D ⊆ C, so y also satisfies ⟨x,y⟩ ≤ 1 for all
x ∈ D ⊆ C, so y ∈ D◦. ■

Theorem 8.3.16 (Polytopes are Polyhedra). Every polytope C ⊂ Rd is a polyhedron.
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Proof. By translating if necessary, we may assume that C contains 0.

The strategy is to prove that the polar C◦ is bounded, and is hence a polyhedron. We have previously
proved that polyhedra are polytopes, so C◦ is also a polytope. So, we may repeat this argument with
C◦ replacing C, giving that C◦◦ is also a polyhedron. Then, C = C◦◦ is a polyhedron, as required.

We induct on d. If d = 1, this is trivial as polyhedra and polytopes are both just intervals.

Let C be the convex hull of finitely many points. If C is contained in a hyperplane, then the result
immediately follows from the inductive hypothesis, so suppose otherwise.

Pick a point u ∈ C. Since C is d-dimensional, the set

{v − u : v ∈ C}

spans Rd. Pick a basis (vi − u)di=1 consisting of vectors of this form.

The convex hull of the points u,v1, . . . ,vd has non-empty interior since it contains a ball of radius r > 0
say around the barycentre

p :=
1

d+ 1
(u+ v1 + · · ·+ vd)

By translating the polytope C, suppose that p = 0 and that C is the convex hull of x1, . . . ,xm.

We claim that C◦ is bounded.

Suppose that y ∈ C◦ has norm k > 0 and define the point x := r
ky. Then, x has norm

∥x∥ =
∥∥∥ r
k
y
∥∥∥ =

∣∣∣ r
k

∣∣∣ ∥y∥ = r

k
k = r

so x ∈ C. So, by the definition of a polar, y must satisfy

⟨x,y⟩ ≤ 1

⟨ rky,y⟩ ≤ 1
r

k
⟨y,y⟩ ≤ 1

r

k
∥y∥2 ≤ 1

r

k
k2 ≤ 1

k ≤ 1

r

So, C◦ ⊆ B1/r and is hence bounded. So, C◦ is a polyhedron.

Repeating this argument with C◦ replacing C, we have that C◦◦ = C is a polyhedron, as required. ■

Along with Theorem 8.3.12, we have proved that polytopes and polyhedra in Rd are equivalent.

8.3.5 Radon’s Lemma and Helly’s Theorem

Lemma 8.3.17 (Radon). Let X ⊆ Rd have cardinality d + 2. Then, there exists a partition of X into
two subsets whose convex hulls have non-empty intersection.

Example. Consider d = 2, with 4 points in the plane. If at least 3 are colinear, then we can place the
outermost points in one part, and the remaining points in the other part:
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Otherwise, the points could form a convex quadrilateral, in which case, the diagonals intersect; alterna-
tively, they could form a triangle, with a point inside:

△

Proof. Let I = {1, . . . ,d + 2}. Let the points be (xi)i∈I ⊆ Rd. Adjoin an extra coordinate to each xi,
and set the coordinate equal to 1 to obtain d+ 2 points (yi)i∈I ⊆ Rd+1.

Because we have d+2 points in Rd+1, the yi are not linearly independent, so there are scalars αi not all
zero such that ∑

i∈I
αiyi = 0

Define the sets
A := {i : αi > 0}, B := {i : αi < 0}

and define the scalars βi := −αi, positive for i ∈ B. Sorting positive and negative coefficients, we have∑
i∈I
αi>0

αiyi +
∑
i∈I
αi<0

αiyi = 0

∑
i∈I
αi>0

αiyi =
∑
i∈I
αi<0

−αiyi

∑
i∈A

αiyi =
∑
i∈B

βiyi

Considering only the first d coordinates, we have∑
i∈A

αixi =
∑
i∈B

βixi

and considering only the final coordinate, we have∑
i∈A

αi =
∑
i∈B

βi =: C

Because not all of the scalars are zero, A and B are non-empty, so these sums are non-empty, and we
have C > 0.

Then, the vectors

x :=
∑
i∈A

αi
C
xi, y :=

∑
i∈B

βi
C
xi

are convex combinations of two disjoint subsets of the xi, and these two vectors are equal. ■
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Instead of partitioning X into two parts whose convex hulls have non-empty intersection, one could ask
if we can partition X into three or more subsets whose convex hulls have non-empty intersection. For
three parts, we clearly need to start with more than d+ 2 points.

The right number turns out to be 2d+ 3, and in general, if we are partitioning into k subsets, we need
(k − 1)(d+ 1) + 1 points. This more general theorem holds, but is much harder to prove than Radon’s
lemma.

Theorem 8.3.18 (Tverberg). Each set of (k−1)(d+1)+1 points in Rd can be partitioned into k subsets
whose convex hulls have non-empty intersection.

The simplest proof of Tverberg’s theorem relies on the following result:

Theorem 8.3.19 (Colourful Caratheodory Theorem). Let C1, . . . ,Cd+1 be arbitrary subsets of Rd, each
coloured with a different colour. Suppose that 0 ∈ conv(Ci) for all 1 ≤ i ≤ d + 1. Then, there is a
rainbow set R ⊆

⋃
i Ci with precisely one point of each colour whose convex hull contains 0.

The next theorem we will prove is a striking dual of Caratheodory’s theorem.

Recall that a space X is compact if and only if for every open cover U of X, there exists a finite subcover
U0 ⊆ R:

compact(X) ≡
⋃
U = X → ∃ finite U0 ⊆ U :

⋃
U0 = X

We can De Morgan-dualise this statement by replacing open sets by closed sets, unions with intersections,
and covers with empty-intersections:

≡
⋂
F = ∅→ ∃ finite F0 ⊆ F :

⋂
F0 = ∅

≡
⋂
F ̸= ∅← ∀ finite F0 ⊆ F :

⋂
F0 ̸= ∅

Taking the contrapositive in the second line, we have that a set is compact if and only if for every (non-
empty) family F of closed subsets of X, every finite subfamily F0 ⊆ F having non-empty intersection
implies that F has non-empty intersection.

The next theorem shows that in the convex case, we do not need to check all finite subfamilies, but only
those of cardinality at most d+ 1.

Theorem 8.3.20 (Helly’s Theorem). Let F = (Ci)
m
i=1 be a family of convex sets in Rd, and suppose

that every subfamily F0 ⊆ F of cardinality at most d + 1 has non-empty intersection. Then, the whole
family has a non-empty intersection: ⋂

F ̸= ∅

Proof. We induct on the number of sets m.

First, note that if m ≤ d + 1, there is nothing to prove, since the desired result is included in the
hypotheses of the theorem.

For the base case, suppose m = d+ 2.

Then, for each Ci, the other d + 1 sets Ck ̸=i have non-empty intersection by assumption, so we may
select a point xi in each of these intersections:

xi ∈
⋂
k ̸=i

Ck

By Radon’s lemma, X := {xi}d+2
i=1 has a partition into two subsets X1,X2 ⊆ X whose convex hulls have

non-empty intersection. Let u be a point in this intersection.

u ∈ conv(X1) ∩ conv(X2)
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We claim that u is contained in each Ci, and is hence in
⋂
F .

Fix some 1 ≤ j ≤ m, and without loss of generality, suppose that xj is in the Radon subset X1, so
xj /∈ X2. By construction of the xi, we have xi ∈ Cj for all i ̸= j, so X2 ⊆ X \ {xj} ⊆ Cj . Since Cj is
convex, it also contains conv(X2) ∋ u, so u ∈ Cj .

In the above, we have assumed that the xi are all distinct. But if this were not the case, say xi = xj for
some i ̸= j, then by construction, xi ∈ Ck for all k ̸= i, but also xi = xj ∈ Ci (since i ̸= j), so xi ∈ Ck
for all k, and the intersection

⋂
F is again non-empty.

For the inductive step, suppose m > d + 2 and that the result holds for m − 1. Consider a new family
of m− 1 sets given by

F ′ := {C1 ∩ C2,C3,C4, . . . ,Cm}

and let F0 ⊆ F ′ be a subfamily of cardinality d + 1. Then,
⋂
F0 is the intersection of at most d + 2 of

the original Ci, which is non-empty by the base case.

So, F satisfies the hypotheses of the result, so by the induction hypothesis,
⋂
F ′ ̸= ∅. Then,

∅ ̸=
⋂
F ′ = (C1 ∩ C2) ∩ C3 ∩ · · · ∩ Cm =

⋂
F

which completes the inductive step. ■

If we also require that the Ci are compact, then Helly’s theorem also holds for arbitrary collections F ,
and not just finite collections.

8.4 Partially Ordered Sets and Set Systems

A relation ≤ on a set X is a (weak or non-strict) partial order on X if it satisfies, for all x,y,z ∈ X:

(i) reflexivity: x ≤ x;

(ii) transitivity: (x ≤ y ∧ y ≤ z)→ x ≤ z;

(iii) antisymmetry: (x ≤ y ∧ y ≤ x)→ x = y.

The pair (X, ≤) is then called a partially ordered set or poset.

Note that not all elements in a poset may be comparable under the ordering:

Example. Consider
(
P
(
[3]
)
, ⊆
)
, illustrated as the Hasse diagram below, where an edge from a vertex x

travelling upwards to a vertex y indicates that x ≤ y.

{1,2,3}

{1,2} {1,3} {2,3}

{1} {2} {3}

∅

In this example, {1} and {2,3} are incomparable in this poset, because neither {1} ⊆ {2,3} nor {2,3} ⊆
{1} hold. △
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Vertices on the same horizontal level in a Hasse diagram are always incomparable.

If every pair of elements are comparable, then the ordering is total.

Example. (R, ≤) is a total ordering. △

Let ≤ be a partial order on a set X.

A chain is a subset C ⊆ S such that ≤ is total on C. That is, every pair of elements in C are comparable
under ≤:

∀c1,c2 ∈ C : c1 ≤ c2 ∨ c2 ≤ c1

Example. A chain in
(
P
(
[3]
)
, ⊆
)

is given by the sequence of elements

∅ ⊆ {1} ⊆ {1,2} ⊆ {1,2,3}

or
{3} ⊆ {1,3}

△

An antichain is a subset A ⊆ S such that every pair of elements in C are incomparable under ≤:

∀a1,a2 ∈ A : a1 ̸≤ c2 ∧ c2 ̸≤ c1

Example. An antichain in
(
P
(
[3]
)
, ⊆
)

is given by the set{
{2},{1,3}

}
or {

{1},{2},{3}
}

△

More generally, in
(
P
(
[n]
)
, ⊆
)
, any collection of subsets of a fixed cardinality form an antichain, since if

two different sets have the same number of elements, then neither can be a subset of the other.

There are
(
n
k

)
many subsets of [n] of cardinality k, and this number is maximised when k ≈ n/2. If n is

even, then this has size precisely (
n

n/2

)
and if n is odd, the two largest antichains are at level k = (n − 1)/2 and k = (n + 1)/2, and in either
case, this has size (

n

⌊n/2⌋

)
Theorem 8.4.1 (Sperner). The largest antichain in

(
P
(
[n]
)
, ⊆
)

has cardinality(
n

⌊n/2⌋

)

We will deduce Sperner’s theorem from a stronger statement due to Lubell, Yamamoto, and Meshalkin:

Theorem 8.4.2 (LYM Inequality). Let F be an antichain in
(
P
(
[n]
)
, ⊆
)
. Then,∑

A∈F

1(
n
|A|
) ≤ 1
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Proof of Sperner’s Theorem. It is clear that such an antichain exists – just pick all subsets with ⌊n/2⌋
elements.

To show that such an antichain is maximal, let F be an antichain in
(
P
(
[n]
)
, ⊆
)
. Because

(
n

⌊n/2⌋
)
≥
(
n
|A|
)

for any A, we have from the LWM inequality,∑
A∈F

1(
n
|A|
) ≤ 1

∑
A∈F

1(
n

⌊n/2⌋
) ≤ 1

|F| 1(
n

⌊n/2⌋
) ≤ 1

|F| ≤
(

n

⌊n/2⌋

)
■

Proof of the LYM Inequality. There is a bijection from the set of permutations on [n] to the set of
maximal chains in

(
P
(
[n]
)
, ⊆
)
, where each permutation gives the order in which to add elements to

subsets in the chain.

For instance, for n = 5, the permutation [5,2,3,1,4] corresponds to the chain

∅ ⊆ {5} ⊆ {5,2} ⊆ {5,2,3} ⊆ {5,2,3,1} ⊆ {5,2,3,1,4}

We pick a maximal chain/permutation R uniformly at random. The probability that R is any given
maximal chain C is

P(R = C) =
1

n!

since there are n! permutations on [n].

For each subset A ⊆ [n], let EA be the set of maximal chains that contain A. If A and B are in both in
F , then EA and EB must be disjoint, since A and B must be incomparable and cannot both belong to
the same chain. So,

P(R ∩ F ̸= ∅) = P

(
R ∈

⊔
A∈F

EA

)
=
∑
A∈F

P(R ∈ EA)

and since this is a probability, it is bounded above by 1:∑
A∈F

P(R ∈ EA) ≤ 1

To finish the proof, it remains to show that

P(R ∈ EA) =
1(
n
|A|
)

First, we have

P(R ∈ EA) =
# of maximal chains containing A

# of all maximal chains
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A maximal chain containing A corresponds to a permutation which has the elements of A in any order as
a prefix. For instance, any permutation starting with the numbers 1, 2, and 3 in any order will generate
the subset {1,2,3} in the corresponding chain.

So, there are |A|! many ways to arrange this prefix, then (n − |A|)! ways to arrange the remaining
numbers. So,

P(R ∈ EA) =
# of maximal chains containing A

# of all maximal chains
=
|A|!(n− |A|)!

n!
=

1(
n
|A|
)

as required. ■

8.4.1 Dilworth’s Theorem
A chain and an antichain can have at most one common element, for if x and y were two common
elements, then the chain would require x and y to be comparable, and the antichain would require x and
y to be incomparable.

So, if a poset can be covered with m chains, then there cannot be any antichains with more than m
elements by the pigeonhole principle. Hence, another method of proving Sperner’s theorem would be to
find a cover of

(
P
(
[n]
)
, ⊆
)

using (
n

⌊n/2⌋

)
chains. In fact, the proof of the LYM inequality above uses a similar, but simpler, idea, since we only
looked at the covering generated by all maximal chains, and then counted how many times each set was
covered.

This process also works in reverse to deduce that there is a covering by a small number of chains if there
are only small antichains:

Theorem 8.4.3 (Dilworth). Let (Ω, ≤) be a poset in which every antichain has at most m elements.
Then, Ω can be covered by m chains (or fewer).

Proof. We prove the case for finite Ω only.

We induct on |Ω|. If |Ω| = 1, then there is nothing to prove.

Suppose |Ω| > 1, and that the result holds for all smaller posets. Let m be the size of the largest antichain
in Ω, and choose a maximal chain C = {c1 ≤ c2 ≤ · · · ≤ cn} in Ω.

Suppose Ω \C has no antichains of length m, so every antichain has at most m− 1 elements. Then, the
smaller poset Ω \ C may be covered by m − 1 chains (or fewer) by the inductive hypothesis, so Ω may
be covered by m chains by adding C to this cover, and we are done.

Otherwise, Ω \ C has (maximal) antichains of length m. Let A = {a1, . . . ,am} ⊆ Ω \ C be such an
antichain, and define the sets

A− = {x ∈ Ω : ∃i,x ≤ ai}, A+ = {x ∈ Ω : ∃i,x ≥ ai}

Note that these sets jointly cover Ω, since if there were an x ∈ Ω but not A− ∪A+, then this x would be
incomparable to all the ai, so we could extend A, contradicting the maximality of A.

However, we also have that neither of these sets can be all of Ω, since if C ⊆ A−, then we would have
cn ≤ ai for some i, so we could extend C by adding ai, contradicting the maximality of C; and similarly,
if C ⊆ A+, we would have c1 ≥ ai for some i, again contradicting the maximality of C.
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So, because A− and A+ are strict subsets of Ω, they are smaller posets, so the inductive hypothesis
applies. So, A− and A+ can each be covered with m chains C−

i and C+
i , respectively:

A− =

m⋃
i=1

C−
i A+ =

m⋃
i=1

C+
i

Each of these decompositions partition the ai, so, reindexing if necessary, we may assume that ai ∈ C−
i

and ai ∈ C+
i for each i.

We claim that ai is the maximal element of C−
i and the minimal element of C+

− .

Suppose otherwise, so there is an element x such that ai < x ∈ C−
i . Since x ∈ C−

i ⊆ A−, we have
x ≤ aj ̸= ai. But then, ai < aj are comparable, contradicting that A is an antichain. The proof that ai
is minimal in C+

i is entirely symmetric.

Then, the m chains C−
i ∪ C

+
i cover Ω. ■

8.4.2 Covering by Chains
Along with our previous observation that there cannot be an antichain longer than the number of chains
in a covering, Dilworth’s theorem gives that:

Corollary 8.4.3.1. For any poset (Ω, ≤), the length of the largest antichain is equal to the minimum
number of chains required to cover Ω.

We can also apply Dilworth’s theorem to
(
P
(
[n]
)
, ⊆
)

with m =
(

n
⌊n/2⌋

)
given by Sperner’s theorem to

obtain:

Corollary 8.4.3.2. The poset
(
P
(
[n]
)
, ⊆
)

can be covered using
(

n
⌊n/2⌋

)
chains.

We can also show this directly, and conversely use this result with Dilworth’s theorem to give another
proof of Sperner’s theorem. This proof will depend on Hall’s theorem:

Theorem 8.4.4 (Hall). Let G = (L ∪ R,E) be a bipartite graph. For each subset U ⊆ L, let NG(U)
denote the open neighbourhood of W in G:

NG(U) := {v ∈ R : ∃u ∈ U,(u,v) ∈ E}

That is, the set of vertices in R that are adjacent to at least one element in U .

Then, there is an matching that covers L if and only if for every U ⊆ L,

|U | ≤
∣∣NG(U)

∣∣
That is, every subset U ⊆ L must have sufficiently many neighbours in R for such a matching to exist.

Proof of Corollary 8.4.3.2. Let r < n/2, and consider the set R of subsets of cardinality r, and the set
R+ of subsets of cardinality r + 1:

Rr :=
{
S ⊆ [n] : |S| = r

}
, R+

r :=
{
S ⊆ [n] : |S| = r + 1

}
We claim that there is an injection f : Rr ↣ R+

r such that A ⊆ f(A) for all A ∈ Rr. For instance,

{1,2} {1,3} {2,3}

{1} {2} {3}
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Consider the bipartite graph Gr = (Rr∪R+
r ,E), where (A,B) ∈ E if and only if A ⊆ B (i.e. the subgraph

of the Hasse diagram induced by taking the r and (r+ 1)th rows). Note that an Rr-saturated matching
in this bipartite graph precisely corresponds to the required injection.

Each set S ∈ Rr has n − r neighbours, since r of the n numbers we could add are already in the set.
Conversely, each set S+ ∈ R+

r has r + 1 neighbours, since we may remove any of its r + 1 elements.

Now, let U ⊆ Rr. Then, there are ∑
S∈U

deg(S) = |U |(n− r)

edges incident to U , and each vertex in R+
r is incident to at most r + 1 of these edges, so∣∣NG(U)

∣∣ ≥ |U |(n− r)
r + 1

Since r < n/2, we have

r + 1 ≤ n

2

r + 1 ≤ n− n

2
r + 1 ≤ n− r

so ∣∣NG(U)
∣∣ ≥ |U |

so Hall’s condition is satisfied, and there exists an Rr-saturated matching Mr.

Repeating this construction on every layer, we obtain matchings from each layer to the next, up to layer
k := ⌊n/2⌋.

Note that
⋃k
r=0Mr is a subgraph of

⋃k
r=0Gr consisting of disjoint paths: there can be no vertices of

degree 3 or higher since every layer consists of perfect matchings. By the construction of the edge set of
the Gr, each such path defines a chain.

We can cover the rest of P
(
[n]
)

by mirroring this construction as follows. Given A ⊆ [n] with |A| < k,
let g(A) = [n] \A. Then, each above chain defines a chain g(C).

If n is odd, then the middle two layers Rk and Rk+1 have the same cardinality, and Hall’s theorem gives
a perfect matching, so the chains join up as desired. If n is even, then we may have some sets at k = n/2
uncovered, in which case, we may cover them with additional singleton chains.

Each chain contains a set in the middle layer k, so there are
(
n
k

)
=
(

n
⌊n/2⌋

)
total chains in this cover. ■

With the earlier observation that that a covering with m chains implies that every antichain has at most
m elements, this provides another proof of Sperner’s theorem.

There is a nice variation on this construction in which each chain is “symmetric”: each chain consists of
sets of sizes 0,1, . . . ,n − 1,n or of sizes 1,2, . . . ,n − 2,n − 1, etc. This improvement cannot be deduced
from just Hall’s theorem.

Theorem 8.4.5 (de Bruijn, Tengbergen, Kruyswijk). The poset
(
P
(
[n]
)
, ⊆
)

can be covered using
(

n
⌊n/2⌋

)
symmetric chains.

Proof. We induct on n. For n = 1, there is the unique chain
(
∅,{1}

)
, which is symmetric.

Suppose n > 1, and that the result holds for n− 1, so there is a decomposition of [n− 1] into symmetric
chains. For each chain Ci = (A1,A2, . . . ,Ak) in this decomposition, we form two new chains

C+
i :=

(
A1,A2, . . . ,Ak,Ak ∪ {n}

)
Notes on Mathematics | 220



Combinatorics II Partially Ordered Sets and Set Systems

and
C−
i :=

(
A1 ∪ {n},A2 ∪ {n}, . . . ,Ak−1 ∪ {n}

)
The collection of these new chains covers P

(
[n]
)

since for each old subset A ∈ P
(
[n−1]

)
, the new chains

C+
i and C−

i cover A and A ∪ {n}, respectively.

If Ci consists of sets of size j to n− j, then C+
i has sizes j to n− j + 1 = (n+ 1)− j, and C− has sizes

j + 1 to n− j = (n+ 1)− (j + 1), so the new chains are also symmetric.

This construction also ensures that in each chain, each set has precisely one more element than the set
before it, since the first transformation adds a new set one element larger to the top of an existing chain,
and the second transformation adds one element to every set in an existing chain. In either case, this
relation is preserved. So, each chain contains an element of cardinality ⌊n/2⌋, so there are

(
n

⌊n/2⌋
)

chains
in the cover. ■

8.4.3 VC Dimension and the Sauer-Shelah Lemma
Given a finite set U = {u1,u2, . . . ,um}, a family of sets F shatters U if for every subset V ⊆ U , there is
an element A ∈ F such that A ∩ U = V .

Example. If U consists of the three vertices of a triangle in R2, and F is the family of half-spaces in R2,
then each of the 8 subsets of U can be obtained by intersecting U with an appropriate half-space, so F
shatters U .

However, if U consists of four points in the plane, then F cannot shatter U by Radon’s lemma. △

Given a set Ω and a family of sets F ⊆ P(Ω), we define the Vapnik–Cervonenkis (VC ) dimension VC(F)
of F to be maximum cardinality of a subset of Ω that F can shatter.

Example.

• VC
(
P
(
[n]
))

= n;

• VC
(
{half-spaces in Rn}

)
= n+ 1;

• VC
(
any FPP

)
= 2.

△

Fix integers n,k with n ≥ k, and let Ω = [n]. How large can |F| be before VC(F) = k? If F consists of
all sets of size at most k − 1, then it cannot shatter a set of size k. In this case,

|F| =
k−1∑
i=0

(
n

i

)
It turns out that this is the largest cardinality possible.

Theorem 8.4.6 (Sauer-Shelah Lemma). Suppose F ⊆ P
(
[n]
)

has cardinality

|F | >
k−1∑
i=0

(
n

i

)
for some k ≤ n. Then, F shatters a subset of [n] of size k.

Proof. We induct on n. If n = k = 1, then VC(F) = 1 if and only if |F | = 2. So suppose n > 1 and that
the result holds for any smaller sets.

Given a family F , we create two families F1 and F2 of sets in [n− 1] as follows:

F1 :=
{
A ⊆ [n− 1] : A ∈ F or A ∪ {n} ∈ F

}
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F2 :=
{
A ⊆ [n− 1] : A ∈ F and A ∪ {n} ∈ F

}
Note that the the condition in F1 is not exclusive, so F2 ⊆ F1.

We claim that
|F| = |F1|+ |F2|

Clearly,
|F1| =

∑
A⊆[n−1]

1A∈F1 , |F2| =
∑

A⊆[n−1]

1A∈F2

and
|F| =

∑
A⊆[n−1]

1A∈F +
∑

A⊆[n−1]

1A∈F

so it suffices to check that for every A ⊆ [n− 1],∑
A⊆[n−1]

1A∈F +
∑

A⊆[n−1]

1A∈F =
∑

A⊆[n−1]

1A∈F1 +
∑

A⊆[n−1]

1A∈F2

If only one of A and A ∪ {n} are in F , then A is in F1, but not F2. If both A and A ∪ {n} are in F ,
then A is in both F1 and F2. In either case, A is counted the same number of times on each side, so the
equality holds.

Now, we have

k−1∑
i=0

(
n

i

)
=

k−1∑
i=0

(
n− 1

i

)
+

k−1∑
i=i

(
n− 1

i− 1

)

=

k−1∑
i=0

(
n− 1

i

)
+

k−2∑
i=0

(
n− 1

i

)

by Pascal’s formula,
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
.

So, if |F| >
∑k−1
i=0

(
n
i

)
, then either |F1| >

∑k−1
i=0

(
n−1
i

)
or |F)2| >

∑k−2
i=0

(
n−1
i

)
.

In the first case, the inductive hypothesis gives that F1 shatters a subset of [n − 1] of size k, in which
case, F shatters the same subset.

In the second case, the family F2 shatters a subset S of [n− 1] of size k − 1. For each set B ∈ F2, both
B and B ∪ {n} are in F , so F shatters S ∪ {n}, which has size k. ■

We have a strengthening of the Sauer-Shelah theorem that implies that F in fact shatters at least |F|
sets.

Theorem 8.4.7 (Pajor). Suppose F ⊆ P
(
[n]
)

has cardinality

|F | >
k−1∑
i=0

(
n

i

)
for some k ≤ n. Then, F shatters at least |F|. sets

This theorem immediately implies the Sauer-Shelah lemma, since only
∑k−1
i=9

(
n
i

)
< |F| subsets have

cardinality less than k.
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Proof. We induct on n. If n = 0, the sum is empty. But, every family of only one set already shatters
the empty set. So, suppose n > 1 and that the result holds for any smaller sets.

Given a family F satisfying the hypotheses of the result for n, we split F into disjoint subfamilies, F1

and F2, where F1 contains all the subsets containing n, and F is its complement, containing all the
subsets that do not contain n.

By the inductive hypothesis, F1 and F2 each shatter two collections of sets whose sizes add to at least
|F|.

None of the sets S shattered by either family can contain n, since such sets cannot be shattered by F1,
since any subset of S not containing n cannot be created by intersection; nor by F2, since any subset of
S containing n cannot be created by intersection.

However, some of the shattered sets S may be shattered by both F1 and F2. If S is shattered by only
one of F1 and F2, then it contributes one to the number of sets shattered by the subfamily and also to
the number of sets shattered by F . Otherwise, if S is shattered by both F1 and F2, then both S and
S ∪ {x} are shattered by F , so S contributes two to the number of shattered sets of the subfamilies and
of F .

Thus, F shatters at least as many sets as the number of set shattered by F1 and F2, which is at least
|F|. ■

8.5 Graph Colouring

A proper (vertex ) colouring of a graph G = (V,E) is a labelling of the vertex set c : V → [n] such that
c(u) ̸= c(v) whenever (u,v) ∈ E, and the elements of [n] are traditionally called colours.

The chromatic number χ(G) of a graph G is the minimum n for which such a labelling of G exists.

Example.

• For any n, χ(Kn) = n, since all n vertices are adjacent to every other vertex.

• For any n, χ(C2n) = 2.

• For any n, χ(C2n+1) = 3.

• A graph G is bipartite if and only if χ(G) = 2.

△

We write
∆(G) := max

v∈V (G)
deg(v)

for the maximum degree of G.

Lemma 8.5.1. For any graph G,
χ(G) ≤ ∆(G) + 1

Proof. Pick any vertex of G, and greedily assign it any colour not present amongst its previously picked
neighbours, then repeat. It will always be possible to assign a vertex a valid colour, since each vertex has
at most ∆(G) neighbours that can already be coloured, and there are ∆(G) + 1 colours available. ■

As we will see, this bound for the number of colours needed is rarely sharp.

Lemma 8.5.2. Let G be a connected graph that has a vertex x of degree deg(x) < ∆(G). Then,
χ(G) ≤ ∆(G).
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Proof. For each vertex in G, determine the length of the shortest path to x. Because G is connected,
this distance is well-defined.

Let k be the maximum distance, and for each 0 ≤ i ≤ k, define the set

Vi :=
{
v ∈ V : d(v,x) = i

}
Each vertex in Vi is adjacent to a vertex in Vi−1 via an edge along a shortest path to x.

Now, consider the induced subgraph G[Vk]. Because every vertex in Vk has at least one edge to a vertex
in Vk−1, each vertex has degree at most ∆(G)− 1, so by the previous lemma, G[Vk] is ∆(G)-colourable.

Now, consider the induced subgraph G[Vk−1]. Again, every vertex in Vk−1 has at least one edge to a
vertex in Vk−2, so each vertex has degree at most ∆(G)−1, so we can greedily colour G[Vk−1] with ∆(G)
colours, taking the colours used for the previous layer into account.

The same argument continues for each Vi with 0 < i ≤ k until only V0 = {x} remains. By assumption,
deg(x) < ∆(G), so we have a colour left for x. ■

A graph is k-connected if it requires the deletion of at least k vertices to disconnect it.

Example. Any connected graph is at least 1-connected. △

Example. The path graph P3 is 1-connected but not 2-connected, as deleting the middle vertex discon-
nects the graph. △

Example. The cycle graph C4 is 2-connected. △

Theorem 8.5.3 (Brooks). If G is a connected graph which is neither complete nor an odd cycle, then
χ(G) ≤ ∆(G). Otherwise, χ(G) = ∆(G) + 1.

Proof. If G = Kn, then χ(G) = n = ∆(G) + 1, and if G = C2n+1, then χ(G) = 3 = ∆(G) + 1.

Also, if ∆(G) = 1, then G = K2, and if ∆(G) = 2, then G is either a cycle or a path, and paths have
chromatic number 2 via greedy colouring.

Otherwise, assume that G is neither complete nor an odd cycle, and that ∆(G) ≥ 3. We split into three
cases:

(i) G is 1-connected but not 2-connected;

(ii) G is 2-connected but not 3-connected;

(iii) G is 3-connected.

(i) Let v be a vertex whose removal disconnects G into the connected components G \ {v} =
⋃
iGi.

Consider the induced subgraphs G
[
Gi ∪ {v}

]
. In this induced subgraph, v has degree less than

∆(G), since it has edges to other connected components, so this induced subgraph can be coloured
with ∆(G) many colours via the previous lemma.

By permuting the colourings in each induced subgraph, we can ensure that v has the same colour
in each case, so the union of the colourings gives a proper colouring for G.

(ii) Let u,v be a pair of vertices whose removal disconnectsG into the connected componentsG\{u,v} =⋃
iGi.

Note that both u and v have at least one edge incident to each component, since if, say, only u has
such an edge, then deleting u alone disconnects G, contradicting that G is 2-connected.

Through identical arguments as in case (i), we may colour the induced subgraphs G
[
Gi ∪ {u,v}

]
.
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If u and v are adjacent, then in each of the colourings, they are assigned different colours, so by
permuting the colourings in each induced subgraph, we can again take the union of these colourings
to obtain a proper colouring of G.

Otherwise, u and v are not adjacent. Continue as before, but colour each induced subgraph as
though there were an edge connecting u and v. Note that this cannot increase the maximum
degree beyond ∆(G), since u and v previously had at least one other edge to a different connected
component.

However, this might increase the degree of both u and v to exactly ∆(G), in which case we may
not have a vertex of degree less than ∆(G) with which to apply the lemma. This happens if and
only if G \ {u,v} = L ∪ R has two connected components, and u and v each only have one edge
incident to one of them, say R,

v w

u

L R

since in this case, adding the edge between u and v in G
[
L∪{u,v}

]
leaves their degrees unchanged:

R

wv

u

L

Instead, replace v by its neighbour w in R:

u

wv

L R

The vertices u and w disconnect G, and now in both components of G\{u,w}, at least one of u and
w has at most ∆(G)− 2 neighbours, so adding in the edge (u,w) leaves each piece with maximum
degree ∆(G), and at least one vertex of smaller degree.

(iii) We claim that there is an induced path in G of length 2, passing through vertices, say, u,x,v, such
that u and v are not adjacent.
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Let S be a maximal complete subgraph of G. By assumption, G is not complete, so there is a
vertex u ∈ G \ S adjacent to a vertex x ∈ S. There must also be a vertex v ∈ S not adjacent to u,
since if every vertex in S were adjacent in u, then S ∪ {u} would be a larger complete subgraph,
contradicting that S is maximal. This proves the claim.

Colour the vertices u and v with the same colour. Since G is 3-connected, the graph G \ {u,v}
is connected, so each vertex in it has a well-defined distance from x. We proceed as in the proof
of the previous lemma, greedily colouring in the subgraphs induced on the sets Vi of vertices at
distance i from x. Once we reach x, it has two neighbours u and v with the same colour, so there
is a spare colour for x.

■

8.5.1 The Chromatic Polynomial
Given a graph G, we define the function PG : N>0 → N as:

PG(k) := # of proper k-colourings of G

where two colourings are considered distinct if there is a vertex labelled with different colours in the two
colourings.

Example. For the complete graph Kn on n vertices, we have:

PKn
(k) =

n−1∏
i=0

(k − i)

If k < n, then Kn is not k-colourable, so PKn(k) = 0. If k ≥ n, then k-colourings exist: we may select
any of the k colours for the first vertex, any of the remaining k − 1 for the second, etc.

So, there are k(k−1)(k−2) · · ·
(
k− (n−1)

)
such colourings, and this formula also agrees with the k < n

case since one of the factors would vanish. △

Example. For the path graph Pn on n edges and n+ 1 vertices, we have:

PPn
(k) = k(k − 1)n

If k = 1 and n ≥ 1, then there are no colourings. If k > 1, we may choose any of the k colours for the
first vertex. Then, traversing the path, for each of the n remaining vertices vi+1, we may choose any of
the k − 1 colours distinct from the colour of the previous vertex vi.

So, there are k(k − 1)(k − 1) · · · (k − 1) such colourings, and this formula agrees with the k = 1 case,
since every factor past the first would vanish. △

Example. For the empty graph En on n vertices, we have:

PEn(k) = kn

Since there are no adjacencies, every vertex can be independently coloured with any of the k colours,
and there are n vertices, so there are kn total colourings. △

So far, we have seen that

PKn
(k) =

n−1∏
i=0

(k − i)

PPn(k) = k(k − 1)n

PEn(k) = kn

In each case, PG is a polynomial in k. This turns out to be true for all finite graphs, and we call PG the
chromatic polynomial. This fact is not obvious:
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Example. For the cycle graph Cn on n vertices, we can start similarly to the path graph: we choose a
vertex v0, and colour it with any of the k colours. Then, traversing the cycle in one direction, we can
colour each vertex vi+1 with any of the k − 1 colours distinct from the colour of the previous vertex vi.

However, how can we colour the vertex vn−1 that is adjacent to v0? The number of valid colours
depends on whether vn−2 is the same colour as v0 or not. At this point, it is unclear as to how we should
proceed. △

Often, when proving a result on all finite graphs, we induct on the size of the vertex set. However, in the
inductive step, the number of choices for the new vertex depends not only on the number of neighbours,
but also on the colouring on the neighbours.

Instead, we might try to induct on the number of edges. Take a finite graph G and let e = (x,y) be an
edge in G. From G, we construct the graph G \ e by deleting e, and the graph G/e by contracting e.

We can partition the possible k-colourings c of G \ e into two cases:

• c(x) ̸= c(y);

• c(x) = c(y).

In the former case, each such colouring is also an admissible colouring of G, since x and y are adjacent
in G, but are assigned different colours. In the latter case, these colourings are not admissible. However,
such colourings correspond precisely to the proper colourings of G/e, since x and y are the same vertex
in the contraction.

This observation provides us with our inductive step.

Theorem 8.5.4. For every finite graph G = (V,E) containing an edge e = (x,y) ∈ E, and for every
k ≥ 1,

PG(k) = PG\e(k)− PG/e(k)

Consequently, PG coincides with a polynomial in R[k].

Proof. Every k-colouring of G\e either assigns different colours to x and y, in which case, it corresponds
to a proper colouring of G, or it assigns them the same colour. So, it suffices to check that the number
of colourings of G \ e in which x and y are assigned the same colour is equal to the number of colourings
of G/e.

Given a colouring of G \ e with c(x) = c(y) are the same colour, then we can construct a corresponding
colouring of G/e by colouring the contracted vertex as c(x) = c(y), and leaving all other vertices un-
changed; conversely, given a colouring of G/e, we can construct a colouring of G \ e by colouring x and
y the same as the contracted vertex.

We deduce that PG is a polynomial by induction on |E|.

If |E| = 0, then G = E|V | is an empty graph, and we have that PEn
(k) = kn is a polynomial. Otherwise,

G has an edge e = (x,y), and G \ e and G/e are graphs with fewer edges than G, so PG(k) = PG\e(k)−
PG/e(k) is the difference of two polynomials and is hence a polynomial. ■

We can use this recurrence relation to compute the chromatic polynomial:

Theorem 8.5.5. The chromatic polynomial of the cycle graph Cn is

PCn
(k) = (k − 1)n + (−1)n(k − 1)

Proof. If n = 3, then C3 = K3, and

(k − 1)3 + (−1)3(k − 1) = (k − 1)3 − (k − 1)

= k3 − 3k2 + 3k − 1− k + 1

Notes on Mathematics | 227



Combinatorics II Graph Colouring

= k3 − 3k2 + 2k

= k(k − 1)(k − 2)

= PK3
(k)

= PC3
(k)

as required.

Now suppose n > 3, and that the result holds for all smaller cycles. Let e ∈ E(Cn). Then, Cn \e = Pn−1

and Cn/e = Cn−1, so

PCn
(k) = PCn\e(k)− PCn/e(k)

= PPn−1
(k)− PCn−1

(k)

=
[
k(k − 1)n−1

]
−
[
(k − 1)n−1 + (−1)n−1(k − 1)

]
= (k − 1)(k − 1)n−1 + (−1)(−1)n−1(k − 1)

= (k − 1)n + (−1)n(k − 1)

completing the inductive step. ■

Note that if k = 2, then,

PCn
(2) = (2− 1)n + (−1)n(2− 1)

= 1 + (−1)n

=

{
0 n odd
2 n even

There are some other properties of the chromatic polynomial that we can immediately deduce from the
recurrence relation.

Theorem 8.5.6. For any finite graph G = (V,E),

(i) The degree of PG is |V |;

(ii) PG is monic;

(iii) The coefficients of PG have alternating signs;

(iv) PG(0) = 0.

Proof. In all cases, we induct on |E| to use the chromatic polynomial recurrence relation.

If |E| = 0, then G is empty and PE|V |(k) = k|V | is a monic polynomial of degree |V |. Also, the coefficients
are all zero apart from this first term, so they trivially alternate signs. We also have PE|V |(0) = 0|V | = 0.
This establishes the base case for all four claims.

Now, suppose |E| > 0, and that the result holds for all graphs with fewer edges, and let e ∈ E, so

PG(k) = PG\e(k)− PG/e(k)

(i),(ii) The graph G \ e has fewer edges than G, but the same number of vertices, so PG\e(k) is a monic
polynomial of degree |V (G \ e)| = |V | by the inductive hypothesis. The graph G/e has fewer edges
and fewer vertices than G, so its chromatic polynomial does not contribute to the |V |th order term
in PG. So, PG is a monic polynomial of degree |V |.

(iii) The graphs G\e and G/e have fewer edges than G, so their chromatic polynomial coefficients have
alternating signs by the induction hypothesis. PG/e also has degree |V | − 1 by property (i), so its
signs are opposite to that of PG\e, and this alternation is preserved in their difference.
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(iv) By the inductive hypothesis, PG\e(0) = PG/e(0) = 0. So PG(0) = 0− 0 = 0.

■

Thus, if G = (V,E) with |V | = n, then its chromatic polynomial is of the form:

PG(k) = kn − cn−1k
n−1 + cn−2k

n−2 − cn−3k
n−3 + · · ·

Theorem 8.5.7. Let G = (V,E) be a finite graph with chromatic polynomial

PG(k) = kn − cn−1k
n−1 + cn−2k

n−2 − cn−3k
n−3 + · · ·

Then,

(i)
cn−1 = |E|

(ii) and

cn−2 =

(
|E|
2

)
− T (G)

where T (G) is the number of triangles in G.

Proof. We induct on |E|. For |E| = 0, PEn
(k) = kn, and the two coefficients are 0, as required. Now,

suppose |E| > 0, and that the result holds for all graphs with fewer edges.

Let e = (x,y) ∈ E and let cn(G) denote the coefficient the nth degree term of PG.

(i) Comparing the (n− 1)th degree terms of the three polynomials, we have[
−cn−1(G)

]
=
[
−cn−1(G \ e)

]
− cn−1(G/e)

Note that the first two terms are negative because cn−1 is the second coefficient of PG and PG\e,
but the leading coefficient of PG/e, since PG/e degree one less than PG.

By the previous theorem, the leading coefficient cn−1(G/e) is 1, and by the inductive hypothesis,
cn−1(G \ e) =

∣∣E(G \ e)
∣∣ = |E| − 1. So,

cn−1(G) =
(
|E| − 1

)
+ 1

= |E|

This completes the inductive step.

(ii) Comparing the (n− 2)th degree terms of the three polynomials, we have

cn−2(G) = cn−2(G \ e)−
[
−cn−2(G/e)

]
This time, cn−2 is the third coefficient of PG and PG\e, which is positive, but the second coefficient
of PG/e, which is negative. By part (i),

cn−2(G/e) =
∣∣E(G/e)

∣∣
When we contract e = (x,y), we lose one edge from E, but we also lose an edge for every vertex u
adjacent to both x and y, since those two edges are combined into a single edge in the contraction:
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x y

u

x = y

u

Let T0 be the number of such vertices, so

cn−2(G/e) = |E| − 1− T0

Then, by the inductive hypothesis,

cn−2(G \ e) =
(∣∣E(G \ e)

∣∣
2

)
− T (G \ e)

=

(
|E| − 1

2

)
− T (G \ e)

T (G \ e) is equal to T (G) minus the number of triangles that were removed when deleting e. That
is, the number of triangles that contain e. But this is exactly T0, so

cn−2(G \ e) =
(
|E| − 1

2

)
−
(
T (G)− T0

)
So the cn2

coefficient of G is:

cn−2(G) = cn−2(G \ e) + cn−2(G/e)

=

(
|E| − 1

2

)
−
(
T (G)− T0

)
+ |E| − 1− T0

=

(
|E| − 1

2

)
+
∣∣E∣∣− 1− T (G)

=

(
|E|
2

)
− T (G)

as required.

■

8.6 Matroids

A matroid (E,I) consists of a ground set E, and a family I ⊆ P(E) of its subsets satisfying

(i) ∅ ∈ I;

(ii) If A ⊆ B and B ∈ I, then A ∈ I (hereditary property or downward-closedness);

(iii) If A,B ∈ I and |A| > |B|, then there is an element a ∈ A such that {a} ∪ B ∈ I (exchange
condition).

The sets in I are called the independent sets of the matroid.
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Example. Let V be a vector space and E ⊆ V be a set of vectors. If I is the collection of linearly
independent subsets of E, then (E,I) is a matroid called the vector matroid.

△

Example. Fix integers n,r with n < r. Let E = [n] and take I = {S ⊆ E : |S| < r} to be the set of
subsets with cardinality at most r. Then, (E,I) is a matroid called the uniform matroid Un,r. △

Lemma 8.6.1 (Characterisation of Trees). For any graph G = (V,E), any two of the following imply
the third (and hence that G is a tree):

(i) |E| = |V | − 1;

(ii) G is connected;

(iii) G is acyclic.

Theorem 8.6.2 (Graphic Matroids). Let G = (V,E) be a graph, and let I ⊆ P(E) be the set of acyclic
subsets of E (i.e. the set of forests). Then, (E,I) is a matroid.

Proof. The empty set is acyclic, and any subset of an acyclic subset is still acyclic. Now, let A,B ∈ I
with |A| > |B|, and consider the graph GB = (V,B). B is acyclic, so GB is a forest.

If there is an edge a ∈ A that connects distinct components of B, then we are done, as {a} ∪ B is
acyclic. Otherwise, suppose there are no such edges. But then, every edge in A lies within the connected
components of GB . Since A is acyclic, it cannot have more edges in each component than a tree does,
so it cannot have more elements than B. ■

A matroid (E,I) is representable over a field K if there is a vector space V over K and a map ϕ : E → V
such that for each A ⊆ E, A ∈ I if and only if ϕ(A) is a linearly independent set in V .

Example. The uniform matroid U4,2 cannot be represented over Z2.

Suppose otherwise, so there are 4 vectors x1, . . . ,x4 such that any pair are linearly independent, but any
three are linearly dependent. The only possible linear dependency of three vectors is of the form

x1 + x2 + x3 = 0

since the only coefficients available are 0 and 1..

But then, adding the linear dependencies x1+x2+x3 = 0 and x1+x2+x4 yields x3+x4 = 0, contradicting
the linear independence of any pair of vectors. △

Example. Graphic matroids can be represented over any field. △

Example. Un,r is representable over R for any n and r. △

8.6.1 Rado’s Theorem
We recall the set-theoretic statement of Hall’s theorem.

A transversal or system of distinct representatives (SDR) of a family of subsets F ⊆ P(X) is a subset
of X obtained by selecting a distinct representative from each subset S ∈ F .

Theorem 8.6.3 (Hall). Let {Si}ni=1 be a collection of subsets of a set X. Then, there is a transversal
of {Si} if and only for every subset of indices σ ⊆ [n], we have∣∣∣∣∣⋃

i∈σ
Si

∣∣∣∣∣ ≥ |σ|

Notes on Mathematics | 231



Combinatorics II Matroids

Proof. Apply the graph-theoretic variant of Hall’s theorem on the bipartite graph G = (L∪R,E), where
L = {Si} and R = X, and (Si,e) ∈ E if and only if e ∈ Si. ■

Suppose we have sets Si ⊆ E in a matroid (E,I). Under what conditions can we find a transversal of
the Si that is an independent set?

For a set A ⊆ E, we define the rank r(A) of A to be the cardinality of the largest independent set in A:

r(A) := max
{
|B| : B ⊆ A,B ∈ I

}
Example. If (E,I) is a vector matroid, then r(E) = dim(E), and r(A) = dim

(
span(A)

)
. △

Lemma 8.6.4 (Rank Submodularity). Given a matroid (E,I), the rank function satisfies, for any
A,B ⊆ E:

r(A ∪B) +R(A ∩B) ≤ r(A) + r(B)

Proof. Choose a maximal independent set I∩ ∈ I in the intersection A ∩ B. By definition of matroid
rank, |I∩| = r(A∩B) =: n. Through repeated applications of the exchange condition, extend this set to
a maximal independent set I∪ in A ∪B of size |I∪| = r(A ∪B) =: m.

Let a := |I∪ \B| and b := |I∪ \A|, so

|I∪| = |I∪ \B|+ |I∪ \A|+ |I∪ ∩ (A ∩B)|
|I∪| = |I∪ \B|+ |I∪ \A|+ |I∩|
m = a+ b+ n

Then,

r(A ∪B) + r(A ∩B) = m+ n

= (a+ b+ n) + n

= (a+ n) + (b+ n)

Note that I∩ ⊔ (I ∩ \B) = (I∪ ∩ A) ⊆ A is an independent subset of A of size a + n. The rank r(A)
is defined to be the size of a maximal independent subset of A, so we have a + n ≤ r(A). Similarly,
b+ n ≤ r(B), giving:

≤ r(A) + r(B)

as required. ■

Theorem 8.6.5 (Rado). Let (E,I) be a matroid, and let S1, . . . ,Sn ∈ P(E) be arbitary subsets of E. If
for every set σ ⊆ [n] of indices,

r

(⋃
i∈σ

Si

)
≥ |σ|

then there is an independent traversal. That is, a set {e1, . . . ,en} ∈ I of n distinct elements of E with
ei ∈ Si for each i.

Theorem 8.6.6 (Horn). Let X = {x1, . . . ,xn} be vectors in a vector space V , and suppose that for each
set σ ⊆ [n] of indices,

dim
(
span

(
{xi : i ∈ σ}

))
≥ |σ|

2

Then, the set of vectors can be partitioned into two linearly independent sets.
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Proof. Let E = X ⊔ X, and denote the second copies of the xi by x′i. We declare a subset of E as
independent in I if its xi elements are linearly independent and its x′i elements are linearly independent.

The empty set is independent in both cases, and a subset of a linearly independent set is still linearly
independent, so (E,I) satisfies downward-closure. Then, if A,B ∈ I and |A| > |B|, then A has more xi
than B, or A has more x′i than B (or both). By considering only the larger set, this is effectively the
ordinary vector matroid, so the exchange condition holds similarly in any case.

For each i ∈ [n], define the set Si = {xi,x′i}. Let σ ⊆ [n]. By the hypotheses of the theorem, there is
a subset τ ⊆ σ of at least half the size for which the vectors {xi : i ∈ τ} are linearly independent. But
then, ⋃

i∈σ
Si ⊇

⋃
i∈τ

which has at least |σ| elements, and is independent in the matroid. So, the sets Si satisfy the hypotheses
of Rado’s theorem, so there is an independent transversal of the Si. That is, an independent selection of
exactly one xi or x′i from each Si. Then, the set of selected xi and the set of selected x′i give the required
partition. ■

8.7 Random Graphs

Given r ∈ N, we define R(r,r) to be the smallest positive integer such that for every edge 2-colouring of
Kn, there is a monochromatic Kr as a subgraph.

Theorem 8.7.1. R(3,3) = 6.

Proof. Suppose the edges of K6 are coloured red and blue. Select a vertex u. There are five edges
incident to u, so by the pigeonhole principle, at least three of these edges (u,v1), (u,v2), and (u,v3) are
the same colour, say, red. If any of the edges connecting the vi are red, then this forms a red triangle
including u. Otherwise, none of the edges are red, in which case, the vi form a blue monochromatic
triangle. ■

Theorem 8.7.2 (Erdős Lower Bound for R(r,r)). Let r ≥ 3. Then,

R(r,r) ≥ 2
r−1
2

Proof. Colour the edges of Kn red or blue independently with probability 1/2 each. For any fixed set Si
of r vertices, define the random variable X(Si) to be 1 if the Kr induced on Si is monochromatic, and 0
otherwise. For any Si, the expectation of X(Si) is the probability that all

(
r
2

)
edges are the same colour:

E
[
X(Si)

]
= 2 ·

(
1

2

)(r2)
= 21−(

r
2)

There are
(
n
r

)
many possible subsets Si, so the number of monochromatic Kn is the sum

(nr)∑
i=1

X(Si)

which has expected value

E

(
n
r)∑
i=1

X(Si)

 =

(nr)∑
i=1

E
[
X(Si)

]
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=

(
n

r

)
· 21−(

r
2)

=
2 · n!

r!(n− r)!2
r(r−1)

2

<
2 · nr

r!2
r(r−1)

2

If this is less than 1, then there are colourings without any monochromatic Kr. But, if n ≤ 2
r−1
2 , then

this expectation is at least 1. ■

Given n ∈ N and p ∈ [0,1], we write G ∼ G(n,p), or just Gn,p, if G is a random graph with vertex set
E(G) = [n] and each possible edge is included independently at random in E(G) with probability p.

Lemma 8.7.3. For any p ∈ (0,1) and any m,

exp

(
−mp
1− p

)
≤ (1− p)m ≤ exp(−mp)

Lemma 8.7.4. For 1 ≤ k ≤ n, (
n

k

)
≤
(en
k

)k
Theorem 8.7.5 (Linearity of Expectation). For any random variables X1, . . . , Xn, which may be de-
pendent, and constants c1, . . . ,cn,

E

[
n∑
i=1

ciXi

]
=

n∑
i=1

ci · E[Xi]

Example. We compute the expected number of triangles in Gn,p using the linearity of expectation. There
are

(
n
3

)
possible triangles, and each triangle has probability p3 of being included. For each triangle T ,

define the random variable XT to be 1 if T is in Gn,p, and 0 otherwise. Then, the number of triangles
in Gn,p is ∑

T∈G
XT

The XT are not independent, since if T is in G, then any triangle sharing an edge with T is more likely
to also be in G. But by the linearity of expectation, the expected number of triangles in G is

E

[∑
T∈G

XT

]
=
∑
T∈G

E[XT ]

=

(
n

3

)
p3

△

Theorem 8.7.6 (Markov’s Inequality). If X is a non-negative random variable, and t > 0, then

P(X > t) ≤ E[X]

t
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8.7.1 Chromatic Numbers
Theorem 8.7.7 (Chromatic Number of a Random Graph). Let k ∈ Z and suppose p satisfies

p ≥ 2k log(k) + 4k

n

Then,
P
(
χ(Gn,p) ≤ k

)
≤ exp

(
− n

2k

)
If a graph is k-coloured, then one of the colour classes has at least n

k vertices in it by the pigeonhole
principle, so it suffices to prove that if r is an integer satisfying

n

k
≤ r ≤ n

k
+ 1

then then probability that Gn,p contains an independent set of r vertices is less than exp(−r/2).

Theorem 8.7.8 (Independence Number of a Random Graph). Let k ∈ Z and suppose p satisfies

p ≥ 2k log(k) + 4k

n

Then,
P(Gn,p has an independent set of size at least r) ≤ exp

(
−r
2

)
Lemma 8.7.9. Let g,n ∈ Z and p ∈ [0,1] satisfy

5

n
≤ p ≤ n

1
g

n

and let X be the number of cycles of length at most g − 1 in Gn,p. Then, E(X) ≤ n
4 .

Corollary 8.7.9.1. For large n, there is a graph on at most n vertices with chromatic number at least

log(n)

4 log
(
log(n)

) − 1

and no cycles shorter than
log(n)

log
(
log(n)

) − 1

8.7.2 Connectedness
Theorem 8.7.10 (Connectedness of Random Graphs). Let (cn) be a sequence, and let

p(n) =
log(n)

n
+
cn
n

Then,

P(Gn,p is connected)→

{
0 cn → −∞
1 cn →∞

8.8 Regularity Method

WIP
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Chapter 9

Graph Theory

9.1 Introduction

A graph G = (V,E) consists of a finite set V of vertices or nodes, and a finite set E ⊆
(
V
2

)
of unordered

pairs of distinct vertices, called edges or arcs.

Graphs have a natural visual representation in which each vertex is represented by a point, and each
edge by a line connecting two points.

Example. We can draw the graph G =
(
{1,2,3,4,5},{{1,2},{2,3},{3,4},{4,5}}

)
as

1 2 3 4 5

△

By various modifications, we obtain different types of graphs.

• If we instead have E ⊆ V × V such that the edges are ordered pairs, then the graph is directed or
oriented, and can also be referred to as a digraph.

• If we allow both ordered and unordered edges E ⊆
(
V
2

)
∪ (V × V ), then we obtain mixed graphs.

• If we allow repeated or parallel edges by replacing E with a multiset, then we obtain multigraphs.

• If we allow edges to connect a vertex to itself (a loop), then we obtain pseudographs.

• If we allow the edges to be arbitrary subsets of vertices and not necessarily pairs, then we obtain
hypergraphs.

• If we allow V and E to be infinite sets, we obtain infinite graphs.

A simple graph is a finite undirected graph without loops and multiple edges. In this chapter, every
graph will be simple unless stated otherwise.

9.1.1 Terminology and Notation

9.1.1.1 Vertices and Edges

The vertex set of a graph G is also denoted by V (G), and similarly, the edge set of G is denoted by
E(G). For notational convenience, an unordered edge {a,b} will be shortened to just ab.

• Let u,v ∈ V (G) be two vertices. If uv ∈ E(G), then u and v are said to be adjacent, or that u is a
neighbour of v.
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• The (open) neighbourhood NG(v) of a vertex v ∈ V (G) is the set of vertices adjacent to v:

NG(v) :=
{
u ∈ V (G) : uv ∈ E(G)

}
When the graph G is clear, we often suppress the subscript.

• The closed neighbourhood NG[v] of v is the neighbourhood of v, plus v itself:

NG[v] := N(v) ∪ {v}

• If e = uv is an edge of G, then G is incident to u and v. We also say that u and v are the endpoints
of e.

• The degree, valency, or order of a vertex v ∈ V (G) is the number of edges incident to v:

deg(v) :=
∣∣NG(v)∣∣

In a digraph, we instead define the indegree and outdegree of a vertex to be the number of edges
pointing into and out from the vertex, respectively.

If

– deg(v) = 0, then v is isolated.

– deg(v) = 1, then v is a leaf, and v together with the only edge incident to v are called pendant ;

– deg(v) = |V (G)| − 1, then v is dominating.

• The maximum vertex degree and minimum vertex degree in a graph G are denoted by ∆(G) and
δ(G), respectively:

∆(G) := max
v∈V (G)

deg(v), δ(G) := min
v∈V (G)

deg(v)

• The degree sequence of a graph is the sorted list of its vertex degrees. If every vertex has the same
degree k, i.e. ∆(G) = δ(G) = k, G is said to be k-regular. In particular, 3-regular graphs are called
cubic.

Lemma 9.1.1 (Euler’s Handshaking Lemma). Let G = (V,E) be a graph. Then,∑
u∈V

deg(v) = 2|E|

Proof. Each edge is incident to two vertices, so each edge is counted twice in the sum. ■

Corollary 9.1.1.1. The number of vertices of odd degree is even in any graph.

9.1.1.2 Paths and Connectedness

• A path in a graph is a sequence of distinct vertices v1,v2, . . . ,vk such that vivi+1 is an edge for each
i = 1, . . . ,k − 1.

• The length of a path P is the number of edges connecting consecutive vertices of P .

• A chord in a path is an edge connecting two non-consecutive vertices. A chordless path is a path
without chords.

• A graph is connected if every pair of distinct vertices is joined by a path, and is disconnected
otherwise.
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• The distance d(x,y) between two vertices x and y is the length of a shortest path connecting them.
This notion of distance defines a metric on any connected graph.

• The diameter of a connected graph is the maximum distance achieved between some pair of vertices:

diam(G) := max
x,y∈V (G)

d(x,y)

9.1.1.3 Special Graphs

• Kn is the complete graph on n vertices – the graph on n vertices with all possible edges.

• En is the empty (edgeless) graph on n vertices – the graph on n vertices with no edges.

• Pn is a chordless path on n vertices – V (Pn) = {v1, . . . ,vn} and E(Pn) = {v1v2, . . . ,vn−1vn}.

• Cn is a chordless cycle on n vertices – V (Cn) = {v1, . . . ,vn} and E(Cn) = {v1v2, . . . ,vn−1vn,vnn1}.

• Qn is a hypercube – the graph whose vertex set is the set of all binary strings of length n where
two vertices are adjacent if and only if they differ in precisely one coordinate.

• G +H or G ⨿H is the disjoint union of two graphs G and H – V (G +H) = V (G) ⊔H(G) and
E(G + H) = E(G) ⊔ E(H). In particular, nG denotes the disjoint union of n copies of G. For
instance, En = nK1.

• G × H is the join of G and H, obtained by adding all possible edges between G and H in the
disjoint union G+H.

• Wn := K1 × Cn is the wheel on n vertices.

Two graphs G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if there exists a bijection f : V1 → V2 such
that uv ∈ E1 if and only if f(u)f(v) ∈ E2, and we write G1

∼= G2 to denote this relation.

• The complement of a graph G = (V,E) is a graph G with vertex set V and edge set E′, where
e ∈ E′ if and only if e /∈ E.

• A graph is self-complementary if G is isomorphic to its complement.

9.1.1.4 Subgraphs

Given two graphs G1 = (V1,E1) and G2 = (V2,E2), G1 is said to be:

• a subgraph of G2 if V1 ⊆ V2 and E1 ⊆ E2, i.e. G1 can be obtained from G2 by deleting vertices
and edges;

• a spanning subgraph of G2 if V1 = V2 and E1 ⊆ E2, i.e. G1 can be obtained from G2 by deleting
edges but not vertices;

• an induced subgraph of G2 if G1 is a subgraph of G2 such that uv ∈ E1 whenever u,v ∈ V1, i.e. G1

can be obtained from G2 by deleting vertices.

Given a graph G and a subset U ⊆ V (G), we write

• G[U ] for the subgraph of G induced by U , i.e. the graph with vertex set U whose vertices are
adjacent if and only if they are adjacent in G;

• G−U for the subgraph of G induced by V (G) \U , i.e. the graph obtained from G by deleting the
vertices in U .

We say that G contains a graph H as an induced subgraph if H is isomorphic to an induced subgraph
of G, and we write H < G to denote this relation. If H ̸< G, then G is said to be H-free.

A maximal (with respect to inclusion) connected subgraph of G is called a connected component of G.
A co-component in a graph is a connected component of its complement.
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9.1.1.5 Cliques and Independent Sets

In a graph, a set of pairwise adjacent vertices is called a clique. The size of a maximum clique in G is
called the clique number of G, and is denoted by ω(G).

A set of pairwise non-adjacent vertices is called an independent set or stable set. The size of a maximum
independent set in G is called the independence number or stability number of G, and is denoted by
α(G).

9.1.2 Exercises
1. Show that every graph has two vertices of the same degree.

2. Prove or disprove that there exist graphs in which all vertices are pendant.

3. Find the diameter of:

(a) Kn;

(b) Pn;

(c) Cn;

(d) Qn;

(e) Wn;

(f) Pn × Cn.

4. Find the length of the shortest path between 0 = [0,0,0, . . . ,0] and [1,1,1, . . . ,1] in Qn.

5. Determine δ(Qn), ∆(Qn), |V (Qn)|, and |E(Qn)|.

6.

7. Find all pairwise non-isomorphic graphs on 2, 3, 4, and 5 vertices.

8. Find all pairwise non-isomorphic (n− 2)-regular graphs on n vertices.

9. Find all pairwise non-isomorphic with the degree sequence:

(a) (0,1,2,3,4);

(b) (1,1,2,3,4);

(c) (2,2,3,3,4,4).

10. Let G be a self-complementary graph. Show that if the degree sequence of G is (d1, . . . ,dn) with
the di listed in non-increasing order, then

di = n− 1− dn+1−i

for all i = 1,2, . . . ,⌊n/2⌋

11. Prove that any self-complementary k-regular graph on n vertices satisfies k = (n− 1)/2.

12. Prove that graph isomorphism is an equivalence relation the class of all graphs.

13. Prove that:

(a) C4
∼= E2 × E2;

(b) K4
∼=W4.

14. Find the complements of

(a) C4;
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(b) C5;

(c) P4;

(d) P5.

15. Show that

(a) If diam(G) ≥ 3, then diam(G) ≤ 3;

(b) If diam(G) ≥ 4, then diam(G) ≤ 2;

16. Determine |E(Pn)|.

17. Find examples of self-complementary graphs on 4, 5, and 6 vertices.

18. Is it possible for a self-complementary graph with 100 vertices to have exactly one vertex of degree
50?

19. Show that for every n ∈ N, there exist self-complementary graphs with at least n vertices.

20. Prove that:

(a) The complement of a connected graph is necessarily disconnected;

(b) The complement of a disconnected graph is necessarily connected and hence deduce that a
graph is connected if and its complement is disconnected.

21. Prove that a graph is connected if and only if for every partition of its vertex set into two non-empty
sets A and B, there exist vertices a ∈ A and b ∈ B such that ab ∈ E(G).

22. Prove that if a graph on n vertices has more than
(
n−1
2

)
edges, then it is connected.

23. Prove that if a graph has exactly two vertices of odd degrees, then they are connected by a path.

24. Let G be a graph with |V (G)| even, and for each vertex v ∈ V (G), deg(v) is also even. Show that
for each vertex v ∈ V (G), there is a different vertex u ∈ V (G) such that |NG(v) ∩NG(u)| is even.

25. Show that if G is a graph with n vertices and m edges, then δ(G) ≤ 2m
n ≤ ∆(G).

26. Find the clique and independence number of:

(a) Kn;

(b) Pn;

(c) Cn;

(d) Qn;

(e) Pn + Cn;

(f) Pn × Cn.

27. Show that the vertices of Qn can be partitioned into two independent sets.

28. Show that:

(a) α(G+H) = α(G) + α(H);

(b) α(G×H) = max
(
α(G),α(H)

)
;

(c) α(G) ≥ |V (G)|
1+∆(G) ;

(d) If G has no isolated vertices, then α(G) ≤ |E(G)|
δ(G) .
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9.2 Classes of Graphs

A class of graphs or a graph property is a set of graphs closed under isomorphism.

Example. We have already seen various examples of graph properties:

• complete graphs;

• cycles;

• paths;

• connected graphs.

△

Many more classes can be defined by via modifying various graph parameters. For instance, given k ∈ N,
we can define

• the class of graphs of maximum vertex degree at most k;

• the class of graphs of diameter k;

• the class of clique number at least k;

• the class of graphs whose vertices can be partitioned into k independent sets.

9.2.1 Hereditary Classes
A class of graphs X is hereditary if it is closed under taking induced subgraphs. That is, if G ∈ X, then
G \ v ∈ X for all v ∈ V (G).

Given any class of graphs X, not necessarily hereditary, the unique minimal (with respect to inclusion)
hereditary class containing X is called the hereditary closure of X. This class can be obtained by adding
to X all induced subgraphs of graphs in X.

An important property of hereditary classes is that they admit forbidden induced subgraph characteri-
sations. More precisely, given a set of graphs M , we define Free(M) to be the set of graphs containing
no graphs from M as an induced subgraph, and we say that the graphs in M are forbidden induced
subgraphs for the class Free(M), or that the graphs in Free(M) are M -free.

Theorem 9.2.1. A class of graphs X is hereditary if and only if there is a set of graphs M such that
X = Free(M).

Proof. Suppose X = Free(M) for some set of graphs M . Let G ∈ X and let H be an induced subgraph
of G. Then, H is M -free, since otherwise G contains a forbidden graph from M . So, H ∈ X and hence
X is hereditary.

Conversely, if X is hereditary, then X = Free(M), where M is the set of all graphs not in X. ■

Example. Consider the set X of all complete graphs. Clearly, X is hereditary, and X = Free(M) with
M being the set of all non-complete graphs.

However, we can also see that X = Free(K2), since a graph G is complete if and only if K2 ̸< G. That
is, if and only if G has no pair of non-adjacent vertices. △

Given a hereditary class X, a graph G is a minimal forbidden induced subgraph if G /∈ X and every
proper induced subgraph of G belongs to X. We denote the set of all minimal forbidden induced
subgraphs for a hereditary class X as MFIS(X).
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Theorem 9.2.2. For any hereditary class X,

X = Free
(
MFIS(X)

)
Moreover, MFIS(X) is the unique minimal set with this property.

Proof. Let G ∈ X. Then, by definition, all induced subgraphs of G belong to X, and hence no graph
from MFIS(X) is an induced subgrpah of G, since none of them belong to X. So, G ∈ Free

(
MFIS(X)

)
,

and hence X ⊆ Free
(
MFIS(X)

)
.

For the reverse containment, let G ∈ Free
(
MFIS(X)

)
, and suppose for a contradiction that G /∈ X.

Let H be a minimal induced subgraph of G not in X. Then, H ∈ MFIS(X), contradicting that G ∈
Free

(
MFIS(X)

)
. So, G ∈ X, and hence Free

(
MFIS(X)

)
⊆ X.

This establishes the required equality.

Now, suppose MFIS(X) is not minimal, so X = Free(N) and MFIS(X) ̸⊆ N for some set of graphs N .
Let H ∈ MFIS(X) \ N . Because H ∈ MFIS(X), it is minimal, so any proper induced subgraph of H
belongs to X = Free(N). But, we have H /∈ N , so H ∈ Free(N) = X = Free

(
MFIS(X)

)
, contradicting

that H ∈ MFIS(X). ■

Theorem 9.2.3. Free(M1) ⊆ Free(M2) if and only if for every graph G ∈M2 there is a graph H ∈M1

such that H is an induced subgraph of G.

Proof. Let Free(M1) ⊆ Free(M2) and suppose for a contradiction that there exists G ∈M2 such that all
induced subgraphs of G are not in M1. Then, by definition, we have G ∈ Free(M1), so G ∈ Free(M2),
contradicting that G ∈M2.

Conversely, suppose that every graph in M2 contains an induced subgraph from M1. Suppose for a
contradiction that Free(M1) ̸⊆ Free(M2) and let G ∈ Free(M1) \ Free(M2). Since G /∈ Free(M2), G
contains an induced subgraph H ∈ M2. Then, H contains an induced subgraph H ′ from M1, so H ′ is
an induced subgraph of G in M1, contradicting that G ∈ Free(M1). ■

9.2.1.1 Exercises

• Determine which of the following classes of graphs are hereditary:

– complete graphs;

– connected graphs;

– k-regular graphs;

– chordless paths;

– chordless cycles;

– graphs of diameter k;

– graphs of independence number at most k;

– graphs whose vertices can be partitioned into two cliques.

• Show that the union of two hereditary classes is itself a hereditary class.

• Show that the intersection of two hereditary classes is itself a hereditary class.

• Show that if X = Free(M) and Y = Free(N), then X ∩ Y = Free(M ∪N).

• Show that if X = Free(M), then X = Free(M).

• Show that the class Free(K3,K3) does not contain any graphs with more than 5 vertices.
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• Let X be the class of graphs with maximum vertex degree at most 2.

– Is X hereditary?

– What can we say about the structure of graphs in X? In particular, what do connected graphs
in this class look like?

– Find MFIS(X).

• Given a class of graphsX, we defineX to be the class of complements of graphs inX. Determine for
which of the following classes X the intersection X ∩X is hereditary and for which the intersection
is finite:

– the class of connected graphs;

– the class of disconnected graphs;

– the class of graphs with at most 3|V (G)| edges.

9.2.2 Hereditary Classes with Small Forbidden Induced Subgraphs

As we have already seen, Free(K2) is the class of complete graphs. Similarly, Free(K2) is the class of
empty graphs. We describe some other simple classes of graphs defined by small forbidden induced
subgraphs.

Lemma 9.2.4. A graph is P3-free if and only if it is a disjoint union of cliques. That is, every connected
component of G is a clique.

Proof. If G is a disjoint union of cliques, then any three vertices in a clique must form a K3 ̸= P3 as an
induced subgraph.

Conversely, let G be P3-free and suppose that G contains a connected component C that is not a clique.
Since C is not a clique, there are two vertices u,v ∈ C that are not adjacent, but since C is connected,
there are paths connecting them. Select a shortest (i.e. chordless) path connecting u and v. This path
contains at least 2 edges, so G contains a P3, contradicting that G is P3-free. ■

A graph G is complete multipartite if the vertices of G can be partitioned into independent sets such
that any two vertices belonging to different independent sets are adjacent. Equivalently, G is complete
multipartite if and only if G is a disjoint union of cliques.

Corollary 9.2.4.1. A graph is complete multipartite if and only if it is P3-free.

If the number of parts in a complete multipartite graph is two, then the graph is called complete bipartite.
A complete bipartite graph with two parts of size n and m is denoted by Kn,m. A complete bipartite
graph of the form K1,n is called a star.

Example.

K3,4 K1,8

△
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Corollary 9.2.4.2. A graph is complete bipartite if and only if it is (P3,K3)-free.

Proof. Neither P3 nor K3 are complete bipartite graphs, so a complete bipartite graph must be (P3,K3)-
free.

Conversely, if a graph is P3-free, then it is complete multipartite by the previous corollary, and if the
graph is also K3-free, then the number of parts cannot be larger than 2, since otherwise a K3 arises, so
the graph is complete bipartite. ■

Corollary 9.2.4.3. A graph G is (P3,K3)-free if and only if ∆(G) ≤ 1.

Proof. P3 and K3 both contain vertices of degree 2, so if ∆(G) ≤ 1, then G is necessarily (P3,K3)-free.

Conversely, if G is P3-free, then every connected component of G is a clique, and if G is K3-free, then
every component has size at most 2, so every vertex has degree at most 1. ■

Corollary 9.2.4.4. A graph G is (P3,2K2)-free if and only if its vertex set can be partitioned into two
subsets C and I such that C is a clique and I is a set of isolated vertices.

Proof. Neither P3 nor 2K2 admit such a decomposition, so if G does, it is necessarily (P3,2K2)-free.

If G is P3-free, then every connected component of G is a clique, and if G is 2K2-free, then at most one
of the connected components of G has more than one vertex. This connected component forms C, and
the rest of the vertices form I. ■

A paw is the unique (up to isomorphism) graph with the degree sequence (1,2,2,3):

Lemma 9.2.5. Every connected paw-free graph is either K3-free or P3-free.

Proof. Suppose that a connected paw-free graph G contains a K3 induced on vertices a,b,c, and let
x ∈ V (G) \ {a,b,c}. Then, x cannot be adjacent to exactly one of a,b,c, since G[a,b,c,x] would be an
induced paw.

Suppose that x is adjacent to none of a,b,c. Since G is connected, there exists a path connecting x to
the K3. Without loss of generality, suppose that x is a vertex closest to the K3 with no neighbours in
{a,b,c}. Then, x is adjacent to a vertex y with neighbours in {a,b,c}. By the above, y cannot be adjacent
to exactly one of the vertices, and x is the closest vertex adjacent to none of the vertices, so y is adjacent
to at least 2 of {a,b,c}. But then, the two neighbours of y along with y and x induce a paw in G.

Denote by Vab, Vac, and Vbc the subsets of V (G) consisting of vertices with two neighbours in {a,b,c},
and denote by V3 the remaining vertices of G, i.e., those adjacent to all three vertices in {a,b,c}. Then,

• each of the Vij are independent sets, since if, for example, Vab contains two adjacent vertices x,y,
then G[a,c,x,y] is an induced paw;

• any two vertices in different sets are adjacent, since if, for example, x ∈ Vab ∪ V3 is not adjacent to
y ∈ Vbc, then G[a,b,x,y] is an induced paw;

• G[V3] is P3-free, since if G[V3] contains a P3 induced by x,y,z, then G[a,x,y,z] is an induced paw.

■
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9.2.2.1 Exercises

• Characterise the structure of graphs in the class:

– Free(P3,K4);

– Free(P3) ∩ Free(P3);

– Free(P3) ∪ Free(P3).

• Show that Free(P3,K2 + 2K1) = Free(K2) ∪ Free(K2) ∪ Free(P3,K3).

• Show that Free(P3,K1,3) = Free(K2) ∪ Free(P3,K3).

• Let X be the class of graphs in which the neighbourhood of each vertex is an independent set.

– Prove that X is hereditary.

– Determine MFIS(X).

• Show that Free(K3) ∪ Free(P3) ∪ Free(P3) ⊆ Free(paw). Does the reverse containment hold?

9.2.3 Speed of Graph Properties
There are two ways to count the number of graphs satisfying some given property. We can count
unlabelled graphs, i.e. up to isomorphism, or labelled graphs. In a labelled n-vertex graph, the vertex
set is given by [n], and two labelled graphs are distinct if they have different sets of edges. That is, if
there is at least one pair of vertices u,v ∈ [n] that are adjacent in one graph but not in the other.

We are interested in counting the number of n-vertex graphs satisfying a graph property P .

Generally, counting unlabelled graphs is much more difficult, but even for labelled graphs, this question
is often highly non-trivial.

We denote by P (n) the set of n-vertex labelled graphs in P . The cardinality |P (n)| considered as a
function of n, is called the speed of P . Very few exact speeds are known, with only asymptotic values or
bounds are available for most graph properties.

9.2.3.1 Exercises

• Find the number of labelled and unlabelled n-vertex graphs:

– with n = 20 and 188 edges;

– which are complete bipartite (an empty graph counts as complete bipartite);

– which are complements of chordless paths;

– which are chordless cycles, n ≥ 3;

– in the class Free(P3,P3);

– in the class Free(K3,K3), n > 5.

• Determine the speed of:

– all graphs;

– complete graphs;

– paths;

– stars;

– graphs with one edge;
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– graphs with k edges;

– Free(P3,K3);

– Free(P3,2K2);

– Free(P3,K3).

9.2.4 Acyclic Graphs
A connected acyclic graph is called a tree.

Theorem 9.2.6. The following statements are equivalent for a graph T :

(i) T is a tree;

(ii) Any two vertices in T are connected by a unique path;

(iii) T is minimally connected. That is, T is connected but T \ e is disconnected for any e ∈ E(T );

(iv) T is maximally acyclic. That is, T is acyclic but T + uv contains a cycle for any non-adjacent
vertices u,v ∈ V (T );

(v) T is connected and |E(T )| = |V (T )| − 1;

(vi) T is acyclic and |E(T )| = |V (T )| − 1.

Proof. (i)→ (ii): Since trees are connected, any two vertices must be connected by at least one path. If
there were two or more, then concatenating one path with another in reverse yields a cycle.

(ii)→ (i): If any two vertices in T are connected by a path, T is connected, and since the path is unique,
T is acyclic.

(ii) → (iii): Suppose T is not minimally connected, so there is an edge e = ab in T such that T \ e is
connected. That is, a and b are connected in T \ e by a path P . But then, P and e are two distinct
paths connecting a and b in T .

(iii) → (ii): Since T is connected, any two vertices in T are connected by a path. This path is unique,
since otherwise there would exist an edge e in T belonging to one of the paths but not the other(s) such
that T \ e is connected.

(i)→ (iv): Let u,v be non-adjacent vertices in T . Since T is connected, there is a path P connecting u
and v. Then, this path with the edge uv is a cycle in T + uv.

(iv) → (i): It suffices to show that the T is connected. Suppose otherwise, and let u,v be vertices of T
in different connected components. Then, T + uv has no cycles.

(iii) → (v): We induct on n := |V (T )|. For n = 1,2 this is obvious. Suppose that n > 2 and that the
result holds for all smaller graphs.

Let T be a tree on n vertices, and let e = ab ∈ E(T ). By (iii), T \ e is disconnected. Let T1 and T2 be
the connected components of T \ e. T1 and T2 are trees, and since each of them have fewer vertices than
T , we have by the inductive hypothesis that |E(T1)| = |V (T1)| − 1 and |E(T2)| = |V (T2)| − 1. Then,

|E(T )| = |E(T1)|+ |E(T2)|+ 1 (9.1)

=
(
|V (T1)| − 1

)
+
(
|V (T2)| − 1

)
+ 1 (9.2)

=
(
|V (T1)|+ |V (T2)|

)
− 1 (9.3)

= |V (T )| − 1 (9.4)

completing the induction.
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(v)→ (i): Given T , we construct the graph T ′ by deleting any edge from any cycles in T , and repeating
until T is acyclic. Since deleting edges in a cycle does not disconnect the graph, T ′ is connected, so
|E(T ′)| = |V (T ′)| − 1.

However, we did not delete any vertices from T when constructing T ′, so |V (T )| = |V (T ′)|. Then,

|E(T )| = |V (T )| − 1

= |V (T ′)| − 1

= |E(T ′)|

so T = T ′, and T is acyclic, and is hence a tree.

(i) → (vi): It suffices to show that |E(T )| = |V (T )| − 1. We induct on n := |V (T )|. For n = 1, the
trivial graph on 1 vertex has 0 edges, so the result holds. Suppose n > 1 and that the result holds for
all smaller graphs.

Let T be a tree on n+ 1 vertices. Since T is acyclic, it contains at least one leaf vertex v. Let T ′ be the
graph obtained from T by deleting v. By the inductive hypothesis, T ′ has n− 1 edges. Adding v and its
edge back in, we have that T has n edges.

(vi) → (i): It suffices to show that T is connected. Denote by T1, . . . ,Tk the connected components of
T . Each component is a tree, and hence for each component Ti, we have |E(Ti)| = |V (Ti)| − 1. Then,

|E(T )| =
k∑
i=1

|E(Ti)|

=

k∑
i=1

(
|V (Ti)| − 1

)
=

k∑
i=1

(
|V (Ti)|

)
− k

= |V (T )| − k

But, |E(T )| = |V (T )| − 1, so k = 1 and T is connected. ■

Corollary 9.2.6.1. Every tree T on at least 2 vertices has at least 2 vertices of degree 1.

Proof. By Euler’s handshaking lemma and the previous theorem,∑
v∈V (T )

deg(v) = 2|E(T )|

= 2
(
|V (T )| − 1

)
= 2|V (T )| − 2

so at least 2 vertices are of degree 1. ■

A graph with all connected components trees is called a forest. That is, a forest is an acyclic graph
without any connectedness requirements.
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9.2.5 Exercises
• Let T1,T2, . . . ,Tk, k > 1, be pairwise intersecting subtrees of a tree T . Show that there is a vertex

of T contained in all the subtrees.

• Let T1 = (V,E1) and T = (V,E2) be two trees on the same vertex set. Show that the graph
G = (V,E1 ∪ E2) has a vertex of degree at most 3.

• We define the mean degree of a graph G as

dmean(G) :=
1

|V (G)|
∑

v∈V (G)

deg(v)

Express the number of vertices of a tree in terms of the mean degree.

• Let T be a tree with n vertices, and suppose that each vertex of T has degree at least 1. Find a
formula for the number of vertices of degree 1 in T .

• Show that a tree has exactly two vertices of degree 1 if and only if it is a chordless path.

• Find the hereditary closure of the class of trees.

• Determine which of the following graphs are forests:

– Pn;

– Cn;

– Kn;

– K1,n;

– paw;

– Pn;

– Cn;

– Kn;

– K1,n;

– co-paw.

• Prove that the class of forests is hereditary.

• Characterise the structure of P4-free forests and trees.

• Characterise, in terms of minimal forbidden induced subgraphs, the class of:

– forests whose connected components are stars;

– forests whose connected components are chordless paths;

• Let Q be the hereditary closure of the set of all hypercubes. Show that Q is a superclass of the
class of forests.

9.2.6 The Prüfer Code
Every labelled graph can be described by listing its edges, or pairs of vertices. So, every tree on n vertices
can be described by listing 2(n− 1) labels. In fact, we can do better.

Let T be a tree with vertices {1,2, . . . ,n}. Let a1 be the smallest leaf in T , and let b1 be its unique
neighbour. By deleting a1 from T , we obtain a new tree, T1. Now, let a2 be the smallest leaf in T1, and
let b2 be its unique neighbour. By deleting a2 from T1, we obtain a new tree T2.
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Proceeding in this way, in n− 2 steps, we obtain the tree Tn−2 with a single edge an−1bn−1. Also, note
that the sequence a1b1,a2b2, . . . ,an−1bn−1 contains all edges of T . We define the Prüfer code of T to be
the sequence of vertices

P (T ) := b1,b2, . . . , bn−2

We claim that the Prüfer code P (T ) is sufficient to compute the numbers a1,a2, . . . ,an−1,bn−1, and
therefore, to recover the tree T .

Lemma 9.2.7. A tree is uniquely recoverable from its Prüfer code.

Proof. By the construction of a1, no vertex smaller than a1 can be a leaf in T .

Also, each vertex v that is not a leaf in T has at least two neighbours in T (by definition). Since at the
last step we are left with a single edge and two vertices, at least one of these neighbours must be deleted
in say, the ith step. Then, this deleted neighbour is ai and hence v = bi is in P (T ). So, every vertex
that is not a leaf in T appears in P (T ).

It follows that a1 is precisely the smallest label not in P (T ), since any smaller labels cannot be leaves,
and any non-leaf vertices are in P (T ).

Suppose now that we have recovered a1, . . . ,ai−1, and consider the tree Ti−1. This tree corresponds to
the suffix P (Ti−1) = bi,bi+1, . . . ,bn−2 of the code.

Arguing similarly to before, no vertex smaller than ai can be a leaf in Ti−1, and any vertex that is not
a leaf in Ti−1 appears in P (Ti−1) = bi,bi+1, . . . ,bn−2. It follows that ai is precisely the smallest unused
label (i.e. not in {a1,a2, . . . ,ai−1}) not in P (Ti−1) = {bi,bi+1, . . . ,bn−2}. That is, ai is the smallest label
in {1,2, . . . ,n} \

(
{a1, . . . ,ai−1} ∪ {bi,bi+1, . . . ,bn−2}

)
.

This allows us to recursively recover the a1, . . . ,an−2, and the remaining two labels an−1 and bn−1 are
then the two remaining numbers in {1,2, . . . ,n} \ {a1, . . . ,an−2}. ■

Theorem 9.2.8 (Cayley). The number of labelled trees with n vertices is nn−2.

Proof. The Prüfer code of a tree with n vertices is a word of length n−2 over an alphabet of n letters, so
the total number of such words is nn−2. We have already seen above that a tree can be recovered from
its code uniquely, so P is injective, but we claim further than the Prüfer code is furthermore a bijection
between trees and these words.

The decoding procedure above is applicable to any sequence b1,b2, . . . ,bn−2 of labels from {1,2, . . . ,n},
producing numbers a1,a2, . . . ,an−1,bn−1 from the same set from which we may we construct the graph
with edges a1b1,a2b2, . . . ,an−1bn−1. It remains to show that this graph is a tree.

Denote by Gi the graph with vertices {1,2, . . . ,n} and edges {aibi, . . . ,an−1bn−1}. The graph Gn−1

has a single edge and no cycles, so it is a tree. The number ai is distinct from the following numbers
ai+1, . . . ,an−1 by construction, and also from the numbers bi+1, . . . ,bn−1 by the decoding algorithm, so
ai has degree 1 in Gi, so adding ai to Gi+1 to form Gi does not add any cycles. So, G1 has no cycles.
Also, since G1 has n vertices and n− 1 edges, it is connected and hence a tree. ■

9.2.7 Exercises
• Determine the number of labelled and unlabelled trees with 5 vertices.

• Determine the number of labelled forests with n vertices and at most 2 connected components.
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9.3 Rooted Trees

A rooted tree is a tree with a designated vertex v0 called the root. Each vertex vi is connected to the root
by a unique path vi,vi−1, . . . ,v1,v0, and we say that vi−1 the parent of vi, and vi is the child of vi−1.

The height of a rooted tree is the distance of from the root to the furthest leaf.

A binary tree is a rooted tree in which every vertex has at most two children. A binary tree is full if
every non-leaf has exactly two children, and a full binary tree is complete if all leaves are at the same
distance from the root.

9.3.1 Exercises
• Determine the number of leaves in a complete binary tree of heigh h.

• Determine the maximum number of vertices in a binary tree of height h.

• Determine the minimum height of a binary tree with n vertices.

• Determine the number of vertices of degree 3 in a binary tree with t leaves.

• What is the number of labelled rooted trees with n vertices?

• Let T be a binary tree with k leaves. For i = 1,2, . . . ,k, let ℓi denote the length of the path
connecting the ith leaf to the root. Show that

k∑
i=1

2−ℓi ≤ 1

9.4 Cographs and Modular Decomposition

9.4.1 P4-free Graphs – Cographs
A graph G is called complement reducible or cograph, if every induced subgraph of G with at least 2
vertices is either disconnected or the complement to a disconnected graph.

Theorem 9.4.1. A graph is a cograph if and only if it is P4-free.

Proof. Since neither P4 nor its complement is disconnected, every cograph is P4-free.

Conversely, let G be P4-free. We show that G is a cograph by induction on n := |V (G)|. ■
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Chapter 10

Number Theory

“Mathematics is the queen of sciences, and number theory is the queen of
mathematics.”

— Carl Friedrich Gauss

Number theory is the branch of mathematics that studies the natural numbers, and by extension, the
integers and integer-valued functions.

Unlike in set theory, the set of natural numbers excludes 0 by convention in number theory. This is
because many theorems in number theory would otherise require an additional clause stipulating “except
0”. To denote the positive elements of a set, we superscript a plus symbol to the set. For instance, we
write N+ = {n ∈ N : n > 0} to represent this set of natural numbers that excludes zero. This is the same
set as Z+ = {x ∈ Z : x > 0}, the positive integers. We also write superscript a star to represent the
non-zero elements of a set. For example, Z∗ represents the non-zero integers. The non-zero naturals and
the positive naturals coincide, so N+ = N∗. Note that this star notation is not completely standardised,
and sometimes represents the non-negative elements of a set. It can also denote the unit group of a field.
Here, it will always represent the non-zero elements of a set, to match with its usage in abstract algebra
and ring theory.

The operations of addition and multiplication are both associative and commutative over N, making it
a commutative semiring. Adding in inverses to get Z, we have a commutative ring.

10.1 Divisibility

Apart from the identity elements 0 and 1, natural numbers do not generally have additive or multiplicative
inverses. The lack of multiplicative inverses in particular means that we cannot generally divide a natural
number b by another natural number a to get another natural number, k. That is, given b and a ̸= 0,
there is no guarantee that we can find some natural k such that b = ka.

If such a k does exist, we say that b is divisible by a, though, in number theory, we prefer to reverse this
and say that a divides b, and we write a|b. If k does not exist, then a does not divide b, and we write
a ∤ b.

If a|b, then a is a factor or divisor of b, while b is called the dividend. A number greater than 1 whose only
factors are 1 and itself is called prime. Non-primes greater than 1 are called composite. The remaining
naturals, 0 and 1, are neither prime nor composite by convention, again allowing us to avoid “except 0
and 1” clauses in theorems that concern prime numbers. In some situations – particularly algebraic ones
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– we prefer to classify 1 separately as a unit. If a number has exactly two prime factors, then the number
is semiprime.

The same definition of divisiblity extends readily to the integers, by letting a divide b if there exists an
integer k such that b = ka. This gives a|b if and only if |a| divides |b|.∗

This definition does have some odd consequences. For instance, −7 is considered a prime with this
definition of divisibility. −1 is another number which gets a special classification as a unit, along with 1.

For any a,b,c ∈ Z with a ̸= 0,

1. a|a;

Proof. a = 1 · a. ■

2. a|0;

Proof. 0 = 0 · a. ■

3. (Transitivity) If a|b and b|c, then a|c;

Proof. a|b, so b = ka for some integer k. b|c, so c = jb for some integer j. Then, c = jb = j(ka) =
jka = (jk)a, and jk is an integer, so a|c. ■

4. If a|b and a|c, then a|bn+ cm for all m,n ∈ Z;

Proof. b = ka and c = ja. Then, bn + cm = kan + jam = a(kn + jm), and (kn + jm) is integer
for all integers n,m, so a|bn+ cm. ■

5. a|b if and only if an|bn for all n ∈ Z∗;

Proof. Suppose a|b, so b = ka for some integer k. Then, for all n ̸= 0, bn = k(an), so an|bn,
completing the forward direction.

Now suppose an|bn, so bn = kan. Then, if n ̸= 0, we have b = ka, so a|b, completing the backward
direction. ■

6. If a,b ∈ Z, b ̸= 0 and a|b, then |a| ≤ |b|;

Proof. a|b, so b = ka and |b| = |ka| = |k||a|. Because b ̸= 0, k ̸= 0 so |k| ≥ 1. Suppose |a| > |b|.
Since |k| ≥ 1, |b| = |k||a| > |k||b| > |b| implying |b| > |b|, which is a contradiction. It follows that
|a| ≯ |b| so |a| ≤ |b|. ■

7. (Euclid’s Lemma) If p is prime, then p|ab if and only if p|a or p|b.

Proof. Difficult. The proof is left for later (§10.1.5), as a corollary of Bézout’s identity (§10.1.3). ■

10.1.1 Division Algorithm
If m does not divide n, then trying to divide n things into m equal piles will always leave some things
left over. In this case, we use an extended version of division that allows for these remainders. We write
n = qm+ r, where q is the quotient of m and n, and r is the remainder satisfying 0 ≤ r < m. If r = 0,
then we just have the same thing as before. This form of integer division with quotients and remainders
is known as Euclidean division.

The equation n = qm + r is guaranteed to have solutions in q and r by the division algorithm, which
gives unique values for both q and r that satisfy 0 ≤ r < |m| given any integers n and m ̸= 0.

∗ We can already see a problem with the divisibility symbol: |a|||b| is not particularly readable, even if we make the
middle line bigger, |a|

∣∣|b|. For this reason, when dealing with absolute values, we generally just say |a| divides |b|, rather
than writing it symbolically.
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For positive m, we can separately write the quotient as
⌊
n
m

⌋
, the floor functions making it clear that the

quotient should be an integer. For negative m, we use the ceiling instead,
⌈
n
m

⌉
.∗ For the remainder, we

use modular notation, which we will explore in depth later, and we write n (mod m).

For non-negative n and m, we can find q and r by setting q to the greatest integer less than
∣∣ n
m

∣∣, and r
to n− qm.

We can do this more methodically, however, with the division algorithm.

Algorithm 1 Division Algorithm

1: procedure division(n,m)
2: if n < m then
3: q ← 0
4: r ← n
5: return q,r
6: else
7: q,r ← division(n−m,m)
8: return q + 1,r
9: end if

10: end procedure

If n < m, we set q = 0 and r = n. Otherwise, we compute q1 and r1 for n −m and m. Every time we
return a value from the call stack, we increment the quotient by 1.

In other words, we repeatedly subtract m from n until we get n < m, in which case, we know q = 0 and
r = n. Then, we count up how many times we subtracted m away from n, which is exactly the value of
q.

This algorithm is very much unoptimised, as we are dividing by recursively subtracting, but the main
thing is that it works, and that we can prove that the algorithm works correctly.

We need to prove that q and r exist, and are unique.

Theorem (Division Algorithm). Let n,m be integers with m ̸= 0. Then, there exist unique integers q
and r such that 0 ≤ r < |m| and n = qm+ r.

Proof. We prove existence through strong induction on n, considering three cases.

Suppose n ≥ 0 and m > 0. If n < m, then q = 0 and r = n satisfies n = qm + r and 0 ≤ r < m. Now
suppose values for q and r exist for all numbers up to but not including some fixed arbitrary n ≥ m.

So, if n ≥ m, then n −m ≥ 0 and n −m < n, so from the induction hypothesis, there exists q′ and r
such that n−m = q′m+ r and 0 ≤ r < m. Then, letting q = q′ + 1, we have,

n = (n−m) +m

= q′m+ r +m

= (q′ + 1)m+ r

= qm+ r

so q and r exist when n ≥ 0 and m > 0.

∗ This function is sometimes written as [x] (§34). This division definition is one of the few cases where this “round
towards zero” function is used.
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Next, suppose n < 0 and m > 0. Then, there exists q′ and r′ with 0 ≤ r′ < m such that −n = q′m+ r′

by the induction hypothesis. If r′ = 0, we let q = −q′ and r = 0, so,

n = −(−n)
= −(q′m+ r′)

= qm+ r

If r′ ̸= 0, then let q = −(q′ + 1) and r = m− r′, so,

n = −(−n)
= −(q′m+ r′)

= −(q′m+m−m+ r′)

= −((q′ + 1)m− (m+ r′))

= −(−qm− r)
= qm+ r

so in both cases, q and r that satisfy the requirements exist.

Finally, suppose m < 0. By the inductive hypothesis, there exist q′ and r such that n = q′(−m) + r,
where 0 ≤ r < −m. Let q = −q′. Then,

n = q′(−m) + r

= (−q′)m+ r

= qm+ r

So, in all cases, q and r exist.

However, we have yet to show that q and r are unique. For uniqueness, suppose n = qm+ r = q′m+ r′,
where 0 ≤ r < |m| and 0 ≤ r′ < |m|. Without loss of generality, suppose r ≤ r′. Then,

q′m+ r′ = qm+ r

r′ − r = qm− q′m
r′ − r = (q − q′)m

so m|r′ − r. Then, there exists some integer k such that r′ − r = k|m|. If k = 0, then r′ = r, so q′ = q.

Otherwise, k ̸= 0. r′ ≥ r, so the left side is non-negative. As |m| is non-negative, if k ̸= 0, then k ≥ 1.
So, r′ ≥ r′ − r = k|m| ≥ |m| so r′ ≥ |m|, contradicting that r′ < |m|. It follows that k = 0, r′ = r, and
q′ = q, so r and q are unique. ■

10.1.2 Euclidean Algorithm
If a,b,c ∈ Z, and c ̸= 0, then c is a common divisor of a and b if c|a and c|b. Additionally, if at least one
of a and b is non-zero, then we can define the greatest common divisor or gcd of a and b as the largest
possible integer which divides both a and b. That is, d is the greatest common divisor of a and b if,

• d|a;

• d|b;

• If c|a and c|b, then c|d.

We can extend the division algorithm to find the greatest common divisor of two numbers by applying
it repeatedly. This algorithm is the Euclidean algorithm.
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Algorithm 2 Euclidean Algorithm

1: procedure gcd(n,m)
2: q,r ←division(n,m)
3: if r = 0 then
4: return m
5: else
6: q,r ←division(m,r)
7: end if
8: end procedure

We call the division algorithm on n and m to find q0 and r0 such that n = q0m+ r0 and 0 ≤ r0 < m. If
r0 = 0, then we know m|n so gcd(n,m) = m. Otherwise, we call the division algorithm on m and r0 to
find q1 and r1 such that m = q1r0 + r1 and 0 ≤ r1 < r0. If r1 = 0, then gcd(n,m) = r1. If again, r1 ̸= 0,
we continue the process, giving the system of equations,

n = q0m+ r0

m = q1r0 + r1

r0 = q2r1 + r2

r1 = q3r2 + r3

...

rn−2 = qnrn−1 + rn

rn−1 = qn+1rn + 0

The last non-zero remainder, rn, is the greatest common divisor of a and b.

A related notion to common divisors are common multiples. For two integers a and b, a common multiple
is an integer k such that both a|k and b|k. The least common multiple or lcm of a and b is the smallest
possible integer that both a and b divide. That is, m is the least common multiple of a and b if,

• a|m;

• b|m;

• If a|c and b|c, then m|c.

If the greatest common divisor of two numbers is 1, then the two numbers are relatively prime or coprime.

10.1.3 Bézout’s Identity
Bézout’s identity says that the greatest common divisor of two numbers can be written as a linear
combination of those two numbers. That is, there always exists integers x and y such that gcd(a,b) =
ax+ by. x and y are called the Bézout coefficients of a and b.

Theorem (Bézout’s Identity). If a and b are non-zero integers, then there exists integers x and y such
that gcd(a,b) = ax+ by.

Proof. Let a and b be non-zero integers. Let S = {ax + by : x,y ∈ Z ∧ ax + by > 0}. S is non-empty,
because it contains at least one of a and −a with x = ±1 and y = 0. Since S is a non-empty set of
positive integers, it has a least element by the well-ordering principle (§6.11.4), d = ax′ + by′.

Using the division algorithm, we are guaranteed that there exists integer q and r such that a = dq + r
with 0 ≤ r < d. Then,

r = a− qd
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= a− q(ax′ + by′)

= a(1− qx′)− b(qy′)

so r ∈ S ∪ {0}. However, d is the smallest element of S, but 0 ≤ r < d, so r ̸∈ S, r ∈ {0}, and r = 0.

It follows that d is a divisor of a. Similarly, d is also a divisor of b, so d is a common divisor of a and b.

Now, suppose c is also a common divisor of a and b. That is, there exists u and v such that a = cu and
b = cv. Then,

d = ax′ + by′

= cux′ + cvy′

= c(ux′ + vy′)

so c|d. Since d > 0, c ≤ d, so d is the greatest common divisor of a and b. ■

With Bézout’s identity in mind, we can also define two numbers n and m to be coprime if and only if
there exists integers x and y such that ax+ by = 1.

Note that Bézout’s identity doesn’t actually give us values for x and y, only guaranteeing that such
values exist. We can extend the Euclidean algorithm further into the aptly named extended Euclidean
algorithm to find these values for x and y.

10.1.4 Extended Euclidean Algorithm
We can find x and y through a series of backsubstitutions through the quotients and remainders, which
is generally how it is done by hand, but we also have an algorithm to do this more efficiently.

In the standard Euclidean algorithm, only the remainders are kept after each iteration, while the quotients
are discarded. In the extended Euclidean algorithn, we use the quotients to generate two other sequences
which give us the Bézout coefficients.

With a and b as inputs, the standard Euclidean algorithm computes a sequence, q1, . . . ,qk of quotients,
and a sequence, r0, . . . ,rk+1 of remainders such that,

r0 = a

r1 = b

...

rn+1 = rn−1 − qnrn
...

with the constraint 0 ≤ rn+1 < |rn| uniquely defining qn and rn+1 from rn−1 and rn.

In the extended Euclidean algorithm, we add two additional sequences,

r0 = a

r1 = b

...

rn+1 = rn−1 − qnrn

s0 = 0

s1 = 1

...

sn+1 = sn−1 − qnsn

t0 = 1

t1 = 0

...

tn+1 = tn−1 − qntn

again, with the constraint 0 ≤ rn+1 < |rn|.

These sequences similarly stop when rn+1 = 0 and gives rk as the greatest common divisor, as before.
However, the values of sn and tn can also be returned to give the Bézout coefficients. That is, gcd(a,b) =
asn + btn.

Notes on Mathematics | 256



Number Theory Modular Arithmetic

Additionally, we can find the quotients of a and b with these coefficients with sn+1 = ± b
gcd(a,b) and

tn+1 = ± a
gcd(a,b) .

Furthermore, if a,b > 0 and gcd(a,b) ̸= min(a,b), then,

|si| ≤
⌊

b

2 gcd(a,b)

⌋
|ti| ≤

⌊
a

2 gcd(a,b)

⌋
for all 0 ≤ i < n, implying that the coefficients the algorithm returns are the minimal pair of coefficients.

For a more recursive implementation: if a = 0, gcd(a,b) = b with x = 0 and y = 1. Otherwise, if a > 0,
let b = qa+ r, with 0 ≤ r < m, and recursively call the algorithm on r and a toget x′ and y′ such that
rx′ + by′ = gcd(r,b) = gcd(a,b). Then, substituting r = b − qa gives gcd(a,b) = x′(b − qm) + y′a =
(y′ − x′q)m+ x′a, so x = y′ − x′q and y = x′.

10.1.5 Euclid’s Lemma
Theorem (Euclid’s Lemma). Let p be prime. Suppose p|ab. Then, p|a or p|b.

Some equivalent formulations of the lemma are as follows:

• If p ∤ a and p ∤ b, then p ∤ ab.

• If p ∤ a and p|ab, then p|b.

We instead prove a generalisation of Euclid’s lemma, from which the original immediately follows.

Theorem (Euclid’s Lemma). If n|ab and n is coprime with a, then n|b.

Proof. Suppose n|ab and that n and a are coprime. Then, by Bézout’s identity, there exists integers x
and y such that nx + ay = 1, so nxb + ayb = b. The first term is divisible by n, while the second is
divisible by ab, which is assumed to be divisible by n. It follows that their sum, b, is also divisible by n.

If n is prime, then either n|a or n and a are coprime, so n|b, giving the original lemma. ■

Bézout’s identity was not known at Euclid’s time. The original proof is rather difficult to read, partially
due to the lack of modern algebraic notation, the lemma being proved by comparing ratios of lengths.
However, the lemma can also be proven just by using the Euclidean algorithm and strong induction. We
give a shorter proof using ideals in a later section (§10.3.3).

Euclid’s lemma also shows that Zp has no zero divisors: non-zero numbers a and b such that ab = 0. In
Zm with non-prime m, then m is composite,∗ so two factors a and b exist such that ab = m ≡ 0.

10.2 Modular Arithmetic

Modular arithmetic is a system of a arithmetic for integers that is restricted to remainders under division
by some fixed integer called the modulus. One familiar example is in timekeeping, where the numbering
of hours wraps back around once you go past 12. In mathematics, we would describe this as arithmetic
modulo 12.

From the division algorithm, for every pair of integers n and m ̸= 0, there is a unique remainder r with
0 ≤ r < |m|, and n = qm+r for some q. We can define an equivalence relation (§4.4.9) called congruence
using these remainders.

For some fixed modulus, two numbers, n and n′, are congruent they have the same remainder when
divided by the modulus, and we write n ≡m n′ or n ≡ n′ (mod m), where m is the modulus. Or

∗ m can technically be a unit, i.e. 1, if the ring is the trivial ring, but then the multiplicative and additive identities
coincide, so no non-zero elements exist, so zero divisors also do not exist for the trivial ring.
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equivalently, n ≡ n′ (mod m) if and only if there exists some integer k such that n = n′ + km – they
differ only by exact integer multiples of the modulus.

Congruence is a very important equivalence relation, and thus has some additional terminology to dis-
tinguish it from others. The equivalence class of an integer n under congruence modulo m is called
the congruence class, residue class, or residue of that integer, and is written [n]m, or n̄m. From the
definition of congruence, we see [n]m = {. . . ,n− 2m,n−m,n,n+m,n+ 2m, . . .}. Furthermore, the sets
[0]m,[1]m, . . . ,[m − 1]m partition the integers, and the set of residue classes, {[0]m,[1]m, . . . ,[m − 1]m},
defines the integers mod m, and is denoted∗ Zm or Z/mZ.

Zm behaves very similarly to Z, with addition, subtraction, and multiplication all being well-defined,
as we will soon show. This makes Zm a commutative ring, but unlike Z, Zm is a finite ring. As we
will see, when m is prime, division is also well-defined, so Zp is a finite or Galois field for any prime p.
This also means that the set Zm with addition always has an (abelian) group structure, while Zm with
multiplication is only a group for prime m.

We define arithmetic operations on residue classes in Zm just as we defined arithmetic operations on
integers – as equivalence classes on ordered pairs of naturals. Given residue classes [x]m and [y]m, we
define [x]m + [y]m = [x + y]m, where the addition on the right side is normal integer addition in Z.
Because every element of a residue class is equivalent in every way we care about, we tend to just use
a single element in the class to represent the entire class. Above, x and y are representatives of their
respective residue classes. Generally, we select the representative to be in the range 0 ≤ x ≤ m (only one
element per class lies within that range), making it clear that we are using remainders modulo m. This
allows us to write things like 10 + 4 = 2 (mod 12). Another notation that is common in group theory
is 10 +12 4 = 2, as this moves the “modulo” into the operation itself, so we’re operating on ordinary
numbers. That is, instead of “regular” addition on residue classes, [a] + [b] (mod m), it’s “modular”
addition on regular numbers, a+m b. These structures are, however, isomorphic, so for number theory,
the distinction is immaterial.

But first, we should verify that this definition of addition is indeed well-defined. In particular, the
definition should work regardless of which representative is picked.

To prove this, we start with an alternative characterisation of congruence.

Lemma 10.2.1. Let x,y ∈ Z and m ∈ N+. Then, x ≡ y (mod m) if and only if m|x− y.

Proof. Suppose x ≡ y (mod m), so x and y have the same remainder under divison by m. That is,
x = qm+r and y = sm+r for some integers q and s, and 0 ≤ r < m. Then, x−y = (q−s)m+(r−r) =
(q − s)m, so m|x− y, completing the forward direction.

Now, suppose m|x − y, so x − y = km for some integer k. From the division algorithm, we can write
x = qm+ r and y = sm+ t, where 0 ≤ r < m and 0 ≤ t < m. Then, x− y = (q − s)m+ (r − t) = km,
so r − t = 0 and r = t, so x ≡ y (mod m), completing the backward direction. ■

Theorem 10.2.2. If x ≡ x′ (mod m) and y ≡ y′ (mod m), then x+ y ≡ x′ + y′ (mod m).

Proof. From the previous lemma, m|x − x′ and m|y − y′, so m|(x − x′) + (y − y′), which rearranges to
m|(x + y) − (x′ + y′). Applying the previous lemma in reverse, we have x + y ≡ x′ + y′ (mod m), as
required. ■

∗ The former notation can be confusing, because another number system in number theory, the p-adic numbers, are also
denoted Zp, where p is an integer.

The latter notation also nice because it suggests the structure of the set itself: it is the set of integers, divided by a
multiple of the integers. This notation also has connections to quotient groups and quotient rings in abstract algebra
(§12.9.1).

However, the former notation is also much shorter to write, and is equally, if not even more, popular than the latter – at
least in number theory.
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We similarly define −[x]m = [−x]m and [x]m · [y]m = [x · y]m. Similar arguments to the ones above show
that these definitions also give well-defined operations on residue classes.

All the usual properties of addition, subtraction, and multiplication are inherited from Z; commutativity
and associativity of addition and multiplication, distributivity, etc., all apply, making Zm a commutative
ring.

Because [x]m + [y]m = [x + y]m and [x]m · [y]m = [x · y]m for all x and y, the remainder operation,
x 7→ x (mod m) is a homomorphism (§12.4) from Z to Zm. This means that it doesn’t matter when we
perform modulo operations when converting an expression in Z to the corresponding equation in Zm, so,
instead of doing (185 + 512) · (23 + 16) + 256 = 27 439 ≡ 1 (mod 2), we can apply the modulus before
addition, instead giving (1 + 0) · (1 + 0) + 0 (mod 2) ≡ 1 (mod 2), which you may find easier.

This property is what defines a general congruence relation: a congruence relation is any equivalence
relation over an algebraic structure that is compatible with the structure, in the sense that the opera-
tions on that structure when applied to equivalent elements yield equivalent elements. So, the modulo
congruence relation satisfies:

• a ≡ a (mod m) (reflexivity);

• a ≡ b (mod m) if and only if b ≡ a (mod m) (symmetry);

• If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m) (transitivity);

• If a ≡ b (mod m) and c ≡ d (mod m), then a + c ≡ b + d (mod m) (compatibility with ring
addition);

• If a ≡ b (mod m), then ac ≡ bc (mod m) for c ∈ Z (compatibility with ring multiplication);

• If a ≡ b (mod m), then an ≡ bn (mod m) for n ∈ Z;

• a ≡ 0 (mod m) if and only if m|a.

Proving these properties is left as an exercise for the reader.

With these operations, we can solve congruence equations. The set {n : 0 ≤ n < m− 1} is called the set
of least residues modulo n. Solving a congruence equation means finding the least residues that satisfy
that equation.

For example, the equation x ≡ 23 (mod 3) is solved by x ≡ 2 (mod 3), because 23 and 2 are equivalent
modulo 3. We can also add or subtract any multiple of m from either side of an equivalence, because
that doesn’t change the remainder modulo m.

Addition and subtraction are also easy to deal with because the operations are inverse and are both are
well-defined over Zm. For instance, x+6 ≡ 12 (mod 4) can be reduced to x ≡ 6 (mod 4) by subtracting
6 from both sides, so we see x ≡ 2 (mod 4) solves the equation.

Now, recall that division is not always well defined over Zm. This makes multiplication trickier to deal
with, because solutions may not exist, or multiple solutions exist. For example, 10x ≡ 5 (mod 12)
does not have any solutions, while the equation 2x ≡ 10 (mod 14) has solutions x ≡ 5 and x ≡ 12
(2 · 12 = 24 ≡ 10 (mod 14)). Note that simply dividing both sides of the original equation by 2 misses
the x ≡ 12 solution.

We can actually tell which will be the case using the greatest common divisor of the modulus and the
coefficient of the desired variable.

Let a,b ∈ Z, m ∈ N+ and let d = gcd(a,m). Then,

• If d ∤ b, then ax ≡ b (mod m) has no solutions.

• If d|b, then ax ≡ b (mod m) has exactly d solutions in the set of least residues modulo m.
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and the rule for cancelling is as follows:

• If ka ≡ kb (mod m) and gcd(k,m) = d, then a ≡ b
(
mod m

d

)
.

So, for the equation, 2x ≡ 10 (mod 14), we find gcd(2,14) = 2, so we divide everything, including the
modulus, by 2 to get x ≡ 5 (mod 7), which is equivalent to x ≡ 5,12 (mod 14).

If we know ax ≡ b (mod m) has solutions, and we have already reduced it down by cancelling, we can
also find the multiplicative inverse of a. The multiplicative inverse of a modulo m is an integer p that
satisfies ap ≡ 1 (mod m). As in abstract algebra, we also write a−1 for the multiplicative inverse of a.

The multiplicative inverse exists if and only if a and m are coprime, or equivalently, gcd(a,m) = 1. This
is because, if there exists some d > 1 that divides both a and m, then it will continue to divide aa′ and
m for any a′ ̸= 0. So in particular, xx′ cannot be congruent to 1 modulo m since qm + 1 and m don’t
share any common factors for any value of q.

The set of residue classes [x]m where gcd(x,m) = 1 is writen as Z∗
m. For prime p, Z∗

p includes all non-zero
elements of Zp since gcd(x,p) = 1 for all x not equal to 0 or a multiple of p. This means that Zp is a
field. Specifically, because it is finite in cardinality, it is a finite or Galois field. Zp is not, however, an
ordered field. Because numbers wrap around the modulus, there is no way to define an ordering relation
≺ such that ≺ has translational and scaling invariance.

Unlike addition, subtraction, and multiplication, division in Zp doesn’t map directly from a correpsonding
operation in Z or Q the way addition, subtraction, and multiplication do. For example, 4 · 4 = 16 ≡
1 (mod 5), so 4−1 = 4, so we could write 3

4 = 3 · 4−1 ≡ 3 · 4 ≡ 2 (mod 5). However, if we compute 3
4 first,

in Q, for example, there is no natural mapping from Q to Z5 that sends 3
4 to 2. We could try define a

function,

f

(
p

q

)
= pq−1 (mod 5)

which would work for many rationals, including 3
4 , but we run into problems with fractions like 3

5 , where
the denominator does not have an inverse in Z5.

When solving congruence equations, we can generally reduce equations down to situations where the
coefficient on the desired variable and the modulus are coprime, as gcd(a,m)|b whenever the solution has
equations.

We can then find these inverses using Bézout’s identity.

If a and m are coprime, then there exists integers p and q such that

ap+mq = 1

ap = 1−mq
ap ≡ 1 (mod m)

so a and p are multiplicative inverses.

We can then multiply both sides of the equation, ax ≡ b (modm) by p. Because a and p are multiplicative
inverses, they are equivalent to 1, giving x ≡ bp (mod m).

Example. Solve 75x ≡ 12 (mod 237).

gcd(75,237) = 3, so we can cancel the equation down to 25x ≡ 4 (mod 79). Now, we use the Euclidean
algorithm to find gcd(25,79),

79 = 3 · 25 + 4

25 = 6 · 4 + 1

4 = 4 · 1 + 0
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so gcd(25,79) = 1 and there is a unique solution modulo 79.

Next, we use backsubstitution to find the Bézout coefficients.

25− 6(4) = 1

25− 6(79− 3(25)) = 1

25− 6(79) + 18(25) = 1

19(25)− 6(79) = 1

19(25) = 1 + 6(79)

19(25) ≡ 1 (mod 79)

so 19 and 25 are multiplicative inverses modulo 79. So,

25x ≡ 4 (mod 79)

19 · 25x ≡ 19 · 4 (mod 79)

x ≡ 76 (mod 79)

△

10.2.1 Chinese Remainder Theorem
The Chinese remainder theorem states that, if you know the remainders from the Euclidean division of
an integer n by several other pairwise coprime integers, then you can determine uniquely the remainder
of the division of n by the product of those integers.

For example, if we know that the remainder of n divided by 3 is 2, the remainder of n divided by 5 is
3, and the remainder of n divided by 7 is 2, since 3, 5 and 7 are pairwise coprime, then even without
knowing the value of n, we can determine that the remainder of n divided by 3 · 5 · 7 = 105 is 23. More
importantly, this tells us that if n is a natural less than 105, then n must be exactly 23.

Theorem (Chinese Remainder Theorem). Let {mi}ki=1 be integers greater than 1 such that gcd(mi,mk) =
1 for all i,j, i ̸= j. That is, the mi are pairwise coprime.

If {ni}ki=1 are integers such that 0 ≤ ni < mi for all 1 ≤ i ≤ k, then there is a unique integer x such
that the remainder of the Euclidean division of x by mi is ni for all 1 ≤ i ≤ k and 0 ≤ x <

∏k
i=1mi.

This statement is helpful because it tells us what a solution has to be whenever it is smaller than the
product of the moduli.

Example. Solve x3 ≡ 53 (mod 120).

We factor 120 into 3 · 5 · 8, so,

x3 ≡ 53 (mod 3)

x3 ≡ 2 (mod 3)

x ≡ 2 (mod 3)

x3 ≡ 53 (mod 5)

x3 ≡ 3 (mod 5)

x ≡ 2 (mod 5)

x3 ≡ 53 (mod 8)

x3 ≡ 5 (mod 8)

x ≡ 5 (mod 8)

The first two congruences together give x ≡ 2 (mod 15), so x− 2 ≡ 0 (mod 15) and x− 2 ≡ 3 (mod 8),
so we’re looking for a number of the form 8n+3 that is divisible by 15, vastly reducing the search space.
Quickly plugging in values for n, we have, 3,11,19,27,35,43,51,59,67,75, so 75 is our number. It follows
that x ≡ 77 (mod 120). △

The Chinese remainder theorem can also be stated in terms of congruence relations, which is the form
that we will prove.
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Theorem (Chinese Remainder Theorem). Let {mi}ki=1 be pairwise coprime integers greater than 1, and
let N =

∏k
i=1mi. If {ni}ki=1 are any integers, then the system,

x ≡ n1 (mod m1)

x ≡ n2 (mod m2)

...

x ≡ nk (mod mk)

has solutions, and solutions are congruent modulo N .

Proof. Suppose x and y are solutions to the congruences. As x and y give the same remainder when
divided by the mi, their difference, x− y is a multiple of each mi. Because the mi are pairwise coprime,
their product, N , also divides x − y, so x and y are congruent modulo N . If x and y are non-negative
and less than N , then they can only be congruent modulo N if x = y, so this solution is unique.

The map x (mod N) 7→ (x (mod m1),x (mod m2), . . . ,x (mod mk)) maps the congruence classes of
division modulo N to sequences of congruence classes modulo mi. Because solutions are unique up to
congruence modulo N , this map is injective. Furthermore, because the domain and codomain of the map
have the same cardinality, the map is also surjective, proving existence of solutions. ■

The proof above shows the existence of solutions non-constructively, and is included here because it
is short. Constructive proofs that provide algorithms to calculate x do exist, but the algorithms are
generally rather complicated to do by hand. One such algorithm is provided at the end of this section.

In abstract algebra, the theorem is commonly stated in terms of rings and morphisms.

Theorem (Chinese Remainder Theorem). The map,

x (mod N) 7→ (x (mod n1),x (mod n2), . . . x (mod nk))

is a ring isomorphism, between the ring of integers modulo N , and the direct product of the rings of
integer modulo ni. That is,

Z/NZ ∼= Z/n1Z× Z/n2Z× · · · × Z/nkZ

For example, 3 and 4 are coprime, so every integer n ∈ [0,11] can be represented uniquely as pairs of
numbers (n1,n2), where n1 = n (mod 3) and n2 = n (mod 4). We can give these in a table as follows:

n n1 n2

0 0 0
1 1 1
2 2 2
3 0 3
4 1 0
5 2 1
6 0 2
7 1 3
8 2 0
9 0 1
10 1 2
11 2 3
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This gives a factorisation of Z12 as Z3 ×Z4. This doesn’t just mean we can represent elements of Z12 as
elements in Z3×Z4 – the Chinese remainder theorem states that this factorisation is an isomorphism, so
it is compatible with the ring structure. So, we can do arithmetic on these pairs in Z3 × Z4 and get the
same answers as if we did the arithmetic in Z12. For example, 7 ∈ Z12 is represented as (1,3) ∈ Z3×Z4,
and 5 is represented by (2,1). So, to multiply 7 by 5 in Z12, we could instead multiply (1,3) by (2,1)
componentwise in Z3 × Z4, giving (1 · 2,3 · 1) = (2,3), which we see represents 11 in Z12, matching the
expected result of 7 · 5 = 35 ≡ 11 (mod 12).

This formulation of the theorem is very powerful, particularly in computer science, as it allows us to
transform equations with a very large modulus into exceedingly simple systems of equations with much
smaller moduli.

10.2.1.1 Constructive Proof

For a constructive proof, we first ease in with a proof of the two equation variant of the congruence
equation form.

Theorem (Chinese Remainder Theorem). Let m1 and m2 be integers greater than 1 such that gcd(m1,m2) =
1. That is, the m1 and m2 are coprime. Then, any pair of equations,

x = n1 (mod m1)

x = n2 (mod m2)

has a unique solution x with 0 ≤ x ≤ m1m2.

Proof. We observe that, if a|b, then (x (mod b)) (mod a) ≡ x (mod a), because x ≡ x− qb (mod b) for
some integer q, so (x (mod b)) (mod a) ≡ (x (mod a)) − (qb (mod a)) ≡ x (mod a), since any multiple
of b is also a multiple of a, so qb ≡ 0 (mod a) for all q.

Now, since m1 and m2 are coprime, Bézout’s identity allows us to find multiplicative inverses for
m1 (mod m2), and m2 (mod m1). So, we have m′

1 and m′
2 such that m′

1m1 ≡ 1 (mod m2) and
m′

2m2 ≡ 1 (mod m1).

We claim that the solution is given by n = (n1m
′
2m2 + n2m

′
1m1) (mod m1m2).

We verify that this n satisfies the first equation as follows:

n (mod m1) = ((n1m
′
2m2 + n2m

′
1m1) (mod m1m2)) (mod m1)

= (n1m
′
2m2 + n2m

′
1m1) (mod m1)

= (n1 · 1 + n2m
′
1 · 0) (mod m1)

= n1 (mod m1)

= n1

and, through an almost identical calculation, we verify that n (mod m2) = n2.

This shows existence of solutions.

We have just given an algorithm for generating a solution for any pair, so we know that our function
is surjective. There are also exactly m1m2 possible choices for (n1,n2) and for solutions n, so, if some
pair has more than one solution, then another must have none, so it follows that our function must be
injective, and is therefore bijective, so solutions are unique. ■

The main idea is that m′
2m2 acts like 1 (mod m1), but like 0 (mod m2), and vice versa for m′

1m1, so
we have the “basis vectors” (1,0) and (0,1), and we can then get arbitrary solutions for (n1,n2) just by
adding up sufficient copies of each basis vector.

We can now constructively prove the general congruence equation form of the theorem.
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Theorem (Chinese Remainder Theorem). Let {mi}ki=1 be integers greater than 1 such that gcd(mi,mk) =
1 for all i,j, i ̸= j. That is, the mi are pairwise coprime. Then, any system of equations,

x = ni (mod mi)

has a unique solution x with 0 ≤ x ≤
∏k
i=1mi.

Proof. The solution can be computed using the formula,

x =

 k∑
i=1

ni
∏
i̸=j

(
m−1
j (mod mi)

)
mj

(mod

k∏
i=1

mj

)

For any fixed l,

x (mod ml) =

 k∑
i=1

ni
∏
i ̸=j

(
m−1
j (mod mi)

)
mj

(mod

k∏
i=1

mj

)

=

 k∑
i=1

ni
∏
i ̸=j

(
m−1
j (mod mi)

)
mj

 (modml)

=

nk · 1 +∑
i ̸=l

(ni · 0)


= nk

For uniqueness, the same argument from before still applies. ■

10.2.2 Fermat’s Little Theorem
To deal with powers, we have another theorem to help us.

Theorem (Fermat’s Little Theorem). If p is prime and p ∤ a, then ap−1 ≡ 1 (mod p), or equivalently,
ap ≡ a (mod p).

Proof. Consider the set of least residues G = {1,2,...,p − 1} under multiplication modulo p (×p). Mul-
tiplication is closed and associative over Z/pZ, 1 is the identity element, and Bézout’s identity guar-
antees that every element has an inverse as p is prime, so (G,×p) is a group. Let a ∈ G, k = |a| and
H = ⟨a⟩ = {1,a,a2...,ak−1}. (H,×p) forms a subgroup of G of order k. By Lagrange’s theorem (§12.4.10),
k divides |G| = p−1, so p−1 = nk for some n ∈ Z+. Thus, ap−1 = ank = (ak)n ≡ 1n = 1 ≡ 1 (mod p). ■

Fermat’s little theorem can help us find multiplicative inverses with powers. If a is a positive natural, p
is prime, and p ∤ a, then, ap−2 is a multiplicative inverse of a modulo p;

Example. What is the remainder when 21000 is divided by 13?

212 = 1 (mod 13), and 12 · 83 = 996, so,

21000 = 2996 · 24

= (212)83 · 24

≡ 1 · 24 (mod 13)

= 16

≡ 3 (mod 13)

△
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Example. Solve x103 = 4 (mod 11).

x11 ≡ x (mod 11) and 11 · 9 = 99, so,

x103 = (x11)9 · x4

≡ x9 · x4 (mod 11)

= x13

= x11 · x2

≡ x · x2 (mod 11)

= x3

so now, we need to solve x3 ≡ 4 (mod 11), which we can do by inspection, giving x ≡ 5 (mod 11) as the
solution. △

10.2.3 Euler’s Theorem
We can extend this further with the use of Euler’s totient function, ϕ(n). ϕ(n) counts the number of
naturals up to n that are coprime to n. That is, ϕ(n) = |Z∗

n|. These coprime numbers are called the
totatives of n.

There are several formulae for computing ϕ(n), but we first prove several lemmata.

Lemma (Multiplicativity of ϕ(n)). If gcd(m,n) = 1, then ϕ(m)ϕ(n) = ϕ(mn)

Proof. Let A, B and C be the sets of positive integers coprime to and less thanm, n, andmn, respectively,
so |A| = ϕ(m), |B| = ϕ(n), and |c| = ϕ(mn). By the Chinese remainder theorem, there is a bijection
between A×B and C. ■

Lemma (Prime arguments of ϕ(n)). If p is prime and k ≥ 1, then,

ϕ(pk) = pk − pk−1

= pk−1(p− 1)

= p

(
1− 1

p

)
Proof. Because p is prime, gcd(pk,m) can only be powers of p, 1,p,p2, . . . ,k, with gcd(pk,m) ̸= 1 if and
only if p|m. That is, m ∈ {p,2p,3p, . . . ,pk−1p = pk}, and there are pk−1 such multiples not greater than
pk. It follows that the other pk − pk−1 numbers are all relatively prime to pk. ■

Theorem (Euler’s Product Formula).

ϕ(n) = n
∏
p|n

(
1− 1

p

)

Proof. If n > 1, then, by the fundamental theorem of arithmetic, there is a unique factorisation of
n = pk11 p

k2
2 · · · pkrr , where p1 < p2 < · · · < pr are prime numbers, and every ki ≥ 1.

Repeatedly applying the multiplicative property and the formula for prime arguments yields,

ϕ(n) = ϕ(pk11 )ϕ(pk22 ) · · ·ϕ(pkrr )

= pk11

(
1− 1

p1

)
pk22

(
1− 1

p2

)
· · · pkrr

(
1− 1

pr

)
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= pk11 p
k2
2 · · · pkrr

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(
1− 1

pr

)
= n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(
1− 1

pr

)

■

Exercise. Prove Euler’s product formula without using the multiplicative property of ϕ(n), instead using
the inclusion-exclusion principle on the set of least residues modulo n.

The totient function gives a generalisation of Fermat’s little theorem:

Theorem (Euler’s Theorem). If n and a are coprime, then aϕ(n) ≡ 1 (mod n).

Proof. Consider the set of residue classes modulo n coprime to n under multiplication modulo n (×n).
Multiplication is closed and associative, 1 is the identity element, and Bézout’s identity guarantees that
every element has an inverse as every number is coprime to n. It follows that (G,×n) is a group with
|G| = ϕ(n). Let a ∈ G, k = |a| and H = ⟨a⟩ = {1,a,a2...,ak−1}. (H,×p) forms a subgroup of G of
order k. By Lagrange’s theorem (§12.4.10), k divides |G| = ϕ(n), so ϕ(n) = nk for some n ∈ Z+. Thus,
aϕ(n) = ank = (ak)n ≡ 1n = 1 ≡ 1 (mod p). ■

Corollary 10.2.2.1. If x ≡ y (mod ϕ(n)), then ax ≡ ay (mod n).

Proof. x ≡ y (mod ϕ(n)), so x = y + kϕ(n) for some integer k. Then,

ax = ay+ϕ(n)k

= ay(aϕ(n))k

≡ ay1k (mod n)

≡ ay (mod n)

If n is prime, this is also a corollary of Fermat’s little theorem. ■

10.2.4 The Fundamental Theorem of Arithmetic
Theorem 10.2.3 (Fundamental Theorem of Arithmetic). Let n > 0 be an integer. Then, there is a
unique sequence of primes p1 ≤ p2 ≤ · · · ≤ pk such that n = p1p2 · · · pk.

In this case, we call the sequence p1,p2, . . . ,pk the prime factorisation of n.

Proof. Showing that at least one such sequence exists is easily done with strong induction. If n = 1, the
empty sequence suffices, as the empty product returns the multiplicative identity, 1. If n is prime, then
we take p1 = n, and we are done. Otherwise, n is composite, so n = ab for some naturals a and b. Then,
n = p1p2 . . . pkq1q2 . . . ql where the pi are the prime factorisation of a, and qi are the prime factorisation
of b, which are given by the inductive hypothesis.

This argument shows existence, but not uniqueness, of the sequence. We can show uniqueness with
another strong induction combined with Euclid’s lemma. If n = 1, then any non-empty sequence of
primes gives a product greater than 1, so the empty sequence is the unique factorisation of 1. Now, if
n is prime, then any sequence that differs from p1 = n would imply that n has multiple factors, so n
would be composite, which is a contradiction. It follows that the prime factorisation of any prime is just
the prime itself. This provides base cases for n = 1, n = 2, and n = 3, as well as any other larger prime
values of n.
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Now, suppose n is the least integer such that there exists two sequences {pi}ki=1 and {qi}li=1 of primes
such that n =

∏k
i=1 pi =

∏l
i=1 qi. p1 divides

∏l
i=1 qi, so p1 divides some qi by Euclid’s lemma. Without

loss of generality, suppose p1 | q1. As p1 and q1 are both prime, we have p1 = q1, so we may cancel them
in the original factorisations, obtaining, n =

∏k
i=2 pi =

∏l
i=2 qi. But these are distinct factorisations of

an integer smaller than n, contradicting the construction of n. It follows that no such n exists, and every
integer has just one unique factorisation. ■

10.2.4.1 FTA and gcd

Because factorisations are unique, we can compute gcd(a,b) by factorising a and b into their prime
sequences, then calculate the product of the primes that lie in the intersection of the two sequences.
This is the algorithm taught at school. Without uniqueness, this algorithm doesn’t work: we could
factorise a and b in the wrong way such that the intersection doesn’t give us the greatest common
divisor. For very large integers, computing prime factorisations quickly becomes impractical, so the
Euclidean algorithm is a better option.

We similarly compute the least common multiple lcm(a,b) by taking the maximum of the exponents on
each prime that appears in the factorisation of a and b, which is again, the algorithm generally taught at
school. For larger integers, it is more efficient to calculate lcm(a,b) = ab

gcd(a,b) , since that avoids having
to factorise a and b.

One way to think about this, is that we can represent any n ∈ N+ as a sequence of exponents, where the
ith element is the exponent of the ith prime number. For example, 21 = 3 · 7 = 20 · 31 · 50 · 71 (followed
by an infinite tail of primes with 0 exponent), so we can represent 21 with the sequence (0,1,0,1,0, . . .),
and 120 = 23 · 31 · 51, so we can represent 120 with the sequence (3,1,1,0,0, . . .).

Taking the gcd of two numbers is then the same as taking the componentwise min of the corresponding se-
quences, while taking the lcm corresponds to the componentwise max. So, gcd(21,120) = (0,1,0,0,0, . . .) =
31 = 3, while lcm(120,126) = (3,1,1,1,0, . . .) = 23 · 31 · 51 · 71 = 840.

10.2.4.2 Prime Factorisations & RSA Encryption

For very, very, large integers, even the Euclidean algorithm quickly becomes much too slow, and comput-
ing prime factorisations, particularly of semiprimes, turns out to be a very difficult problem. So difficult,
in fact, that it lies at the core of many encryption algorithms. The idea is that, if you have two very large
prime numbers, then you can check their product very easily, but if you are just given the product, there
is no algorithm to find the two factors better than just guessing and checking: it is a one-way function
– something (relatively) quick to calculate given some inputs, but is extremely difficult to reverse back
the other way to find the inputs, given just the output.

For instance, a 250 digit (829 bits) number∗ took 2 700 CPU core-years to factorise. The most commonly
used encryption algorithm, RSA, uses 1 024 bits as a minimum, with 2 048 or 4 096 bit primes being
common.

RSA relies on the fact that (xe)d ≡ x (modm) whenm is semiprime, de ≡ 1 (mod ϕ(m)) and 0 ≤ x < m.†

∗ This number is RSA-250. The RSA numbers are a set of very large semiprimes that were released to encourage
research into computational number theory and the practical difficulty of factoring large integers. More than half of the
RSA numbers remain unfactorised, despite the list being over 30 years old.

† This fact doesn’t quite follow immediately from Euler’s theorem, because Euler’s theorem only says that xϕ(m) ≡
1 (mod m) when gcd(x,m) = 1. However, we can use the Chinese remainder theorem to prove that xde = xk(p−1)(q−1)+1 ≡
x (mod m) holds even if gcd(x,pq ̸= 1), as long as p and q are distinct primes.

The idea is that Zpq factorises into Zp×Zq , so we can represent x ∈ Zpq as an ordered pair (xp,xq), where xp = x (mod p)

and xq = x (mod q). Then, xde
p =

(
xp−1
p

)k(q−1)
· xp ≡ xp (mod p), because either xp ≡ 0 (mod p) and the product is

also 0, or xp ̸≡ 0 (mod p), so Euler’s theorem gives xp−1 ≡ 1 (mod p). The same reasoning applies to q, so we have,(
xde
p ,xde

q

)
= (xp,xq), so xde ≡ x (mod m) by the Chinese remainder theorem.

All of the above assumes that gcd(x,m) ̸= 1, as is overwhelmingly likely to be the case. But what happens if our message
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So, we can encrypt some information, encoded as an integer 0 ≤ x < m, by raising it to the power of e
modulo m, then decrypt it by raising the result to the power of d modulo m. As far as we understand,
releasing e and m reveals no useful information about d, provided that e and m are chosen carefully.

The protocol for RSA specifically is as follows: the receiver selects extremely large primes p and q
(remember that x has to be less than their product, so smaller primes necessitate more data chunking),
then calculates d and e such that de = 1 (mod (p − 1)(p − 2)), and m = pq. They then publish m,
without revealing the factors p and q, and e.

A sender encrypts a message x by calculating xe modulom. Because x and e are generally extremely large
numbers, this is computationally expensive, but there exist algorithms that speed up exponentiation and
Euclidean division. For instance, we can compute xe in stages by repeatedly squaring x and taking the
product of the appropriate powers to reach e in binary. To decrypt xe, the recipient similarly computes
(xe)d (mod m), which is often done with the Chinese remainder theorem in most implementations.

If you don’t have the private key however, to get x back from xe, you would need to calculate ϕ(m), which
requires knowing the factors of m. Interestingly enough, the difficulty of this problem is only presumed,
and hasn’t been mathematically proven – it is completely possible that there exists an algorithm that
efficiently computes the factors of a number, or an algorithm that computes ϕ(m) without factoring m.
Discovering one would immediately break almost all modern asymmetric encryption, but as of yet, no
such algorithms have been discovered.

This cryptographic system means that we can always keep d, the private key, to ourselves, and we never
have to send it to whoever we want to talk to privately, so there is no opportunity for it to be intercepted
or damaged. Meanwhile, the person who wants to send us an encrypted message just needs our values
of e and m, the public keys. Because everyone knows them, we don’t need to care about them being
hidden away or encrypting the public keys themselves. This system is a type of encryption system called
public-key cryptography or asymmetric cryptography.

As an analogy, we have a padlock which can be locked by any public key, which we give to everyone, but
only unlocked by our private key. In particular, the public key cannot unlock the padlock. For someone
to send us a message, they just get ahold of our public keys, lock their message with a padlock, and send
it off to us. If we want to send a reply, we just get ahold of the sender’s public keys, and send it in the
same way. One of the strengths of this system is that the private keys never leave our hands, making
them more secure, and the public keys don’t have to be communicated secretly, or through an expensive
secure channel.∗

In contrast, symmetric-key cryptography only has a single key, that has to be transmitted between the
sender and recipient before any messages are sent. In this system, there is a padlock that can both locked
and unlocked by a single key. For a someone to send a message to us, we need to give them the key,
across a hopefully secure channel, which they can use to lock their message before sending it to us. To
reply, we just use the same key to lock our messages.

As a practical example of using RSA, let us pick p = 7 and q = 13, so m = 91. ϕ(m) = (p−1)(q−1) = 72.
Next, we pick e coprime to ϕ(m), say, e = 5. 5 · 29 = 72 · 2 + 1 ≡ 1 (mod ϕ(m)), so d = 29 works. Note

just happens to give a gcd not equal to 1? Because m is semiprime, the only way that can happen is if m|x, and by Euclid’s
lemma, we find that p|x or q|x. This actually breaks the encryption, as we, the sender, can now recover the factors of m
by taking gcd(x,m), computing the other factor, then using them to compute d.

∗ If you are wondering if someone could replace the public keys of the sender with their own public keys, then decrypt,
read, and re-encrypt the message before sending it to us, the recipient, the answer is yes.

This is called a man-in-the-middle attack, and is generally defended against through the use of signed certificates or the
Transport Layer Security protocol, where we allow a trusted third party to authenticate our keys, so an interceptor cannot
re-encrypt messages with their own unauthenticated keys.

The point is, even if the public key is known by other parties, any attacker still wouldn’t be able to decrypt an already-
encrypted message, whereas a compromised shared key in symmetric-key encryption is disastrous.

So, while some security is still needed, it’s nowhere near as much as would be required to send a key in symmetric-key
cryptography.
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that computing d required us knowing ϕ(m), which also required us knowing p and q. There is no known
way to compute d given just m and e.∗

Now, say our message, x, is the number 11. Using e = 5 and m = 91, we want to compute 115 (mod 91).
We could do this by calculating 115, then dividing by 91 and checking the remainder, but this is compu-
tationally expensive, both in terms of memory and resources, since we’re calculating and storing massive
numbers, only to reduce the result to something less than 91. This is more of a problem for actual
implementations using primes bigger than 5 or 11, but it’s still preferable to reduce our workload when
computing by hand.

To calculate the remainder, we instead use the square and multiply algorithm. This process basically
works by repeatedly squaring our number to quickly reach large exponents, and performing the modulo
reduction at every stage to keep the numbers (relatively) small in memory. Then, once we have enough
powers of powers of 2, we multiply the right ones together. In practice, this is done extremely using
bit-shifts and binary expansions, but we’ll just do it by inspection here.

111 = 11

112 = 121

≡ 30

114 ≡ 302

= 900

≡ 81

115 = 114 · 11
≡ 81 · 11
= 891

≡ 72 (mod 91)

When the recipient, who knows d, receives the encrypted message 72, they can decrypt the message into
the original by computing 7229:

721 = 72

722 = 5184

≡ 88

724 ≡ 882

≡ (−3)2

= 9

728 ≡ 92

= 81

7216 ≡ 812

≡ (−10)2

= 100

≡ 9

7229 = 7216 · 728 · 724 · 721

∗ No known classical way. We have quantum algorithms (see Shor’s algorithm) for factoring numbers in polynomial
time, but sufficiently powerful quantum computers have not yet been constructed to implement this algorithm in practice.

We can simulate quantum computations on classical computers, but qubits tend to grow in size exponentially when stored
classically, and we begin to run into other problems, making this simulation just as bad as other brute-force factorisation
methods.
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≡ 9 · 81 · 9 · 72
= 812 · 72
≡ (−10)2 · 72
= 100 · 72
≡ 9 · 72
= 648

≡ 11 (mod 91)

Note that all of our computation is done in Z91, saving us from having to actually compute 7229 in Z
and only taking the remainder at the end.

For actual usage, m needs to be large enough that it is computationally infeasible to recover p and q
from m. As mentioned earlier, m is usually 2 048 or 4 096 bits long, and p and q are generally between
10308 and 10617 in size.

10.3 Ideals of the Integers

In the previous section, we proved the fundamental theorem of arithmetic, which states that natural
numbers have prime factorisations, and that those factorisations are unique up to reordering and multi-
plication by a unit.

A similar property holds in the integers. However, the fundamental theorem of arithmetic does not
hold in all number systems. For instance, in the system Z[

√
−5] = {a + b

√
−5 : a,b ∈ Z}, we have

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5), so the number 6 has two distinct factorisations.

To solve this, we use ideal numbers, or ideals.

Ideals are covered more generally and abstractly in §12.9.1, but for now, we will deal with ideals in the
ring of integers.

A subset S ⊆ Z is an ideal in the integers if,

• S ̸= ∅: S is non-empty,

• ∀m,n ∈ S : m+ n ∈ S: S is closed under addition,

• ∀k ∈ Z∀m ∈ S : k ·m ∈ S: S is closed under multiplication by an integer.

Lemma 10.3.1. Ideals are closed under negation.

Proof. Since S is closed under multiplication, if m ∈ S, then (−1) ·m = −m ∈ S. ■

This lemma gives a much simpler characterisation of ideals in Z:

Lemma 10.3.2. A subset S ⊆ Z is an ideal in the integers if and only if

• S ̸= ∅: S is non-empty,

• ∀m,n ∈ S : m− n ∈ S: S is closed under subtraction.

Proof. Suppose S is an ideal, so S is non-empty. Let m,n ∈ S. By Lemma 10.3.1, −n ∈ S, and since S
is closed under addition by definition, we have m+(−n) = m−n ∈ S, completing the forward direction.

Now, suppose S ⊆ Z is non-empty and closed under subtraction. Fix m ∈ S. Then, m−m = 0 ∈ S, so
0−m = −m ∈ S and S is closed under negation.
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Let m,n ∈ S, By closure under negation, −n ∈ S, and by closure under subtraction, m−(−n) = m+n ∈
S, so S is also closed under addition.

It remains to show that S is closed under multiplication any integer k. Fix m ∈ S. We induct on k. As
shown above, 0 ∈ S, so the proposition holds for k = 0. Now, suppose km ∈ S. Since S is closed under
addition, km +m = k(m + 1) ∈ S, completing the inductive step, so km ∈ S for any k ∈ N. But since
S is closed under negation, −km ∈ S for all k ∈ N. ■

Here are a few subsets of the integers which are ideals:

• The trivial ring, {0}.

• The set of integers, Z.

• The set of even integers, 2Z.

• The set of integers divisible by 3, 3Z.

In fact, all ideals in the integers are of the form kZ,k ∈ N. We also write this ideal as (k), and we call k
the generator of the ideal, because the ideal can be generated by multiplying every integer by k.

Theorem 10.3.3. If S ⊆ Z is an ideal, then there exists a unique k ∈ N such that S = kZ = {kn : n ∈
Z} = (k).

Proof. If S = {0}, then take k = 0 and we are done.

Otherwise, there is a non-zero element m ∈ S, so −m ∈ S by closure under negation. Let S+ ⊂ S be
the set of positive elements of S. Exactly one of m and −m lies in S+, so S+ is non-empty. By the
well-ordering principle (§6.11.4) there exists a unique least element, k.

Since S is an ideal, S is closed under multiplication by integers, so for all n ∈ Z, nk ∈ S, so kZ ⊆ S.

Now, fix m ∈ S, so m = qk + r for some q ∈ Z and 0 ≤ r < k. Since k ∈ S, qk ∈ S by closure of
multiplication by integers and m − qk = r ∈ S by closure of subtraction. If r ≥ 0, then r ∈ S+, but
r < k, contradicting that k is the least element of S. It follows that r = 0, so m = qk ∈ kZ and S ⊆ kZ.

Because both kZ ⊆ S and S ⊆ kZ, S = kZ. It remains to show that this k is unique. Suppose
S = kZ = lZ with k ̸= l. Without loss of generality, suppose 0 < k < l. Then, k ∈ kZ but k ̸∈ lZ as l is
the least positive element of lZ. It follows that kZ ̸= lZ, contradicting that S = kZ = lZ, so k = l. ■

This theorem shows that there is a bijection between the ideals of Z and the set of natural numbers:

Theorem (Ideals of Integers Equivalent to Natural Numbers). Let S be the set of ideals of Z. Then,
the mapping ψ : N→ S defined by,

∀k ∈ N : ψ(k) = (k)

is a bijection.

That is, every ideal is generated by a unique natural, and every natural generates a unique ideal.

There is an interesting relationship between divisibility of integers and set inclusion of ideals.

Theorem 10.3.4. Let m,n ∈ Z, Then, m|n if and only if (m) ⊇ (n).

Proof. If m|n, then m|kn for any k ∈ Z, so (m) ⊇ (n), completing the forward direction.

Conversely, if (m) ⊇ (n), then n ∈ (m), so m|n, completing the backward direction. ■
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10.3.1 Operations on Ideals
We now give two operations on ideals.

Let I and J be ideals in Z.

• I ∩ J = {n ∈ Z : n ∈ I ∧ n ∈ J} is the intersection of I and J .

• I + J = {i+ j ∈ Z : i ∈ I, j ∈ J} is the sum of I and J .

The intersection of two ideals is a subset of the two ideals, but the sum of two ideals is a superset of the
two ideals.

Lemma 10.3.5.

1. I ∩ J is a subset of both I and J .

2. I and J are subsets of I + J .

Proof.

1. Let x be in I ∩ J . Then, x ∈ I and x ∈ J by the definition of I ∩ J , so we have x ∈ I. As the
choice of x was arbitrary, ∀x ∈ I ∩ J , x ∈ I so I ∩ J ⊆ I. By symmetry, I ∩ J ⊆ J .

2. Because J is an ideal, it is closed under negation, so 0 ∈ J . Then, I = {i+0 ∈ Z : i ∈ I} ⊆ {i+ j ∈
Z : i ∈ I, j ∈ J} = I + J , so I ⊆ I + J . By symmetry, J ⊆ I + J .

■

Theorem 10.3.6. Suppose I, J , and K are ideals of Z. Then,

1. I ∩ J and I + J are ideals of Z.

2. K ⊆ I and K ⊆ J if and only if K ⊆ I ∩ J .

3. I ⊆ K and J ⊆ K if and only if I + J ⊆ K.

These latter two properties can also be stated informally as,

2. I ∩ J is the “largest” ideal contained in both I and J .

3. I + J is the “smallest” ideal containing both I and J .

Proof.

1. Both I and J are closed under subtraction, so 0 is in both I and J . It follows that I ∩ J and I + J
both also contain 0 and are therefore non-empty.

Suppose m,n ∈ I∩J , so m,n ∈ I and m−n ∈ I. Similarly, m−n ∈ J . It follows that m−n ∈ I∩J ,
so I ∩ J is closed under subtraction. Since I ∩ J is non-empty and is closed under subtraction, it
is an ideal.

Suppose m,n ∈ I + J , so m = a + c and n = b + d with a,b ∈ I and c,d ∈ J . By closure of
subtraction, a− b ∈ I and c− d ∈ J , so (a− b)− (c− d) ∈ I + J .

(a− b)− (c− d) = (a+ c)− (b+ d) = m− n, so m− n ∈ I + J . Since I + J is non-empty and is
closed under subtraction, it is an ideal.

2. Suppose K is a subset of both I and J , so for any k ∈ K, k ∈ I and k ∈ J . Then, k ∈ I ∩ J so
K ⊆ I ∩ J .

Suppose K ⊆ I ∩ J . By Lemma 10.3.5, I ∩ J is a subset of both I and J , so K is also a subset of
both I and J .
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3. Suppose that both I and J are subsets of K. For any i ∈ I ⊆ K and j ∈ J ⊆ K, we have i ∈ K
and j ∈ K so i+ j ∈ K by closure of addition. It follows that I + J ⊆ K.

Suppose I + J ⊆ K. By Lemma 10.3.5, I and J are both subsets of I + J , so I and J are both
subsets of K.

■

10.3.2 GCDs and LCMs with Ideal Operations
We can link the notion of an ideal with greatest common divisors and least common multiples with the
following theorem:

Theorem 10.3.7. Let m,n ∈ Z, gcd(m,n) = g, and lcm(m,n) = l

1. mZ+ nZ = gZ

2. mZ ∩ nZ = lZ

Proof.

1. mZ and nZ are both ideals, so their sum is also an ideal, and by Theorem 10.3.3, there exists a
unique natural k that generates this ideal, so mZ + nZ = kZ. By Lemma 10.3.5, mZ ⊆ kZ and
nZ ⊆ kZ, so k|m and k|n, and k is a common divisor of both m and n. By Theorem 10.3.6,
mZ+nZ is contained in every ideal containing mZ and nZ, so k is divisible by any other common
divisor of m and n. It follows that k is the greatest common divisor of m and n.

2. By Theorem 10.3.3, mZ ∩ nZ = kZ for some unique natural k. By Lemma 10.3.5, we deduce that
k is a common multiple of m and n, and by Theorem 10.3.6, k must be the least common multiple.

■

10.3.3 Bézout’s Identity with Ideals
Using ideals, we can give a much shorter proof of Bézout’s identity.

Theorem (Bézout’s Identity). If a and b are non-zero integers, then there exists integers x and y such
that gcd(a,b) = ax+ by.

Proof. By Theorem 10.3.7, we have aZ+ bZ = gZ, where g = gcd(a,b), so g ∈ aZ+ bZ and there exists
p ∈ mZ and q ∈ Z such that g = p + q. Since p ∈ mZ, there exists some x ∈ Z such that p = ax, and
similarly, there exists some y ∈ Z such that q = by, so g = ax+ by, as required. ■
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Chapter 11

The Real Numbers

“In mathematics the art of proposing a question must be held of higher value than
solving it.”

— Georg Cantor, Doctoral thesis

Abstract algebra is the study of sets equipped with operations, called algebraic structures. In this
chapter, we will be introduced to the notion of a field through the axiomatisation of the real numbers.
In the next chapter, we will explore some other structures known as groups and rings, before combining
these in with fields. These two chapters should be read in succession, as a pair.

11.1 Axiomatisation of the Real Numbers

Due to their ubiquity, we should take an aside to further discuss the characterisation of the real numbers.

The set of real numbers, R, is probably the most commonly used number system in all of mathematics,
their importance overshadowed only possibly by the complex numbers. Some important subsets of the
real numbers are the naturals, N = {0,1,2, . . .}, the integers, Z = {. . . ,−2,−1,0,1,2, . . .}, and the rationals,
Q, which include all the real numbers which can be written as the ratio of two integers, p

q . Any real
number with a terminating or recurring decimal is representable as such a ratio. However, some numbers,
such as

√
2 = 1.414 . . ., e = 2.718 . . ., and π = 3.141 . . . don’t ever terminate or repeat.

We also have the irrationals, which are the real numbers which are not rational. There isn’t a standard
symbol for the set of irrationals, and we often just write R \Q for this set, but Q′ would also generally
be understood to represent this set, given sufficient context. We also have algebraic numbers,† which are
numbers that can be written as the root of a polynomial with rational coefficients, and the transcendental
numbers, which are numbers that are non-algebraic. Some transcendental numbers we commonly use
are π, e and ln 2.

Beyond the reals, we have the complex numbers, C, which are intimately linked to many functions we
normally use. Next, we have the quaternions, H,‡ which adds three imaginary units to form a non-

† The algebraic numbers are sometimes denoted A, but this symbol is usually denoted for a different structure called the
adele ring.

‡ Q is already reserved for the rationals, so H is used to honour their discoverer, William Hamilton.
Famously, Hamilton had been struck by a flash of inspiration whilst out on a walk, and carved the quaternion formula

i2 = j2 = k2 = ijk = −1

into the Brougham bridge as he paused on it. It is now an annual event called the Hamilton Walk to walk from Dunsink
Observatory to the bridge in remembrance of this discovery.

At the time of their discovery, quaternions were the main language used to describe topics such as kinematics and
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commutative 4 dimensional number system highly useful in modelling rotations and computer graphics.
Next are the octonions, O, which are a non-associative 8 dimensional number system with 7 imaginary
components. There are further general extensions to the complex numbers, called the hypercomplex
numbers, each one with twice the dimension of the previous extension.

As with any mathematical structure, the real numbers may be characterised by a list of axioms. There are
many equivalent axiomatisations of the reals. We have already constructed the reals with Dedekind cuts
in §4.5.4, and we will see another construction in §34.3.4. Here, we will give an axiomatic construction
of the reals as a type of field .

11.2 Field Axioms

We will quickly list the axioms symbolically, then focus on each one individually.

Given a set S, a binary operation on S is a function that takes two elements of S, called the operands or
arguments of the operation, and returns another element of S: it is closed over S. That is, it is a binary
function S × S → S.

A field is a set, K, together with two elements, 0K ̸= 1K ∈ K, and two binary operations, · : K×K → K
and + : K×K → K, called multiplication and addition, respectively, that satisfies the following axioms:

(A1) ∀a,b ∈ K : a+ b = b+ a (commutativity of addition);

(A2) ∀a,b,c ∈ K : a+ (b+ c) = (a+ b) + c (associativity of addition);

(A3) ∃0K ∈ K such that ∀a ∈ K, a+ 0K = 0K + a = a (existence of additive identity);

(A4) ∀a ∈ K : ∃(−a) ∈ K such that a+ (−a) = (−a) + a = 0K (existence of additive inverses);

(M1) ∀a,b ∈ K : a · b = b · a (commutativity of multiplication);

(M2) ∀a,b,c ∈ K : a · (b · c) = (a · b) · c (associativity of multiplication);

(M3) ∃1K ∈ G such that ∀a ∈ K, a× 1K = 1K × a = a (existence of additive identity);

(M4) ∀a ∈ K : ∃(a−1) ∈ K \ {0} such that a ∗ (a−1) = (a−1) ∗ a = 1K (existence of multiplicative
inverses);

(D) ∀a,b,c ∈ K : (a+ b)c = ac+ bc (distributivity of multiplication over addition);

(ND) 0K ̸= 1K (non-degeneracy).

Where there is no room for confusion, we write ab for a · b, and 0 and 1 for 0K and 1K , respectively. We
often denote general fields with K or F . The symbol F is reserved for a certain type of finite field.

Additionally, we may call elements of a field, numbers, to distinguish them from elements of other
structures, say, groups.

11.2.1 Axioms for Addition
The first four field axioms are about the binary operation called addition, denoted with the symbol +.
Again, it should be emphasised that this is just a symbol, and that any operation that satifies these
axioms is a valid addition over a field.

These four axioms can more concisely expressed as “Addition over a field satisfies the axioms of an abelian
group” (§12.3).

Maxwell’s equations – which we now describe with vectors. In fact, the real component of a quaternion is called the scalar
part, and the imaginary components, the vector part.
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A1 (Commutativity of addition). For all numbers in a field,

a+ b = b+ a

Any operation that satisfies this axiom is commutative. Commutativity allows us to ignore the order of
arguments of an operation.

We’ve seen a few examples of commutative operations before – ∧, ∨, ∩, ∪, etc. – and a few of non-
commutative as well – →, × (Cartesian product), −, etc.

A2 (Associativity of addition). For all numbers in a field,

a+ (b+ c) = (a+ b) + c

Any operation that satisifes this axiom is associative. Associativity means that repeated applications of
an operation chained together can be evaluated in any order we want. This allows us to ignore brackets
and write a+ b+ c for a+ (b+ c) = (a+ b) + c.

Again, we’ve seen a few examples of associative and non-associative operations, for example, ∧, and ×
(Cartesian product), respectively.

A3 (Existence of additive identity). There exists a number, denoted 0K , such that, for all numbers a,

a+ 0K = 0K + a = a

When the field and operation are clear, we may just write 0 for 0K .

Any object which satisfies this axiom is called an identity element or a neutral element for its operation.
The term identity element is often shortened to just identity when there is no room for confusion, as in
the case of additive identity or multiplicative identity, but the identity implicitly depends onthe binary
operation it is associated with.

For example, the identity element for function composition is the aptly-named identity map, which is
x 7→ x. Composing this function with any other function from either side leaves the function unchanged,
so it is the identity element for function composition.

This definition of identity can actually be further split into two types. Let S be a set, and + be a binary
operation over S. An element, e ∈ S is a left identity if e + s = s for all s ∈ S, and a right identity if
s + e = s for all s ∈ S. If e is both a left and right identity, we call it a two-sided identity, or just an
identity. Because addition is commutative, additive identities must be two-sided.

Identities for an operation are unique:

Lemma 11.2.1. ∀a : e+ a = a+ e = a ∧ f + a = a+ f = a→ e = f

Proof. Suppose e and f are distinct identities for the operation denoted by +. Then, e+ f = e, because
f , being an identity, is a right identity. But e+ f = f because e, being an identity, is a left identity, so
both e+ f = e = f , so e = f , and the identity is unique. ■

A4 (Existence of additive inverses). For each number, a, there exists a number (−a) such that,

a+ (−a) = (−a) + a = 0K

where 0K is the additive identity.

For convenience, we write a+ (−b) as a− b (a minus b), encoding our idea of subtraction.
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The number (−a) is called the (additive) inverse of a. However, since we often like to use the word
“inverse” for multiplicative inverses, we call the additive inverse, the negative or minus of a.

Like identities, inverses can be categorised into left and right inverses. Let + be a binary operation over
a field K. If a+ b = 0K , then a is a left inverse of b, and b is a right inverse of a.

Inverses are also unique:

Lemma 11.2.2. If a+ b = b+ a = 0, then a = −b.

Proof.

a+ b = 0

a+ b+ (−b) = 0 + (−b)
a+ (b+ (−b)) = 0 + (−b)

a+ 0 = −b
a = −b

■

Every element is also equal to it the inverse of its inverse: that is,

Lemma 11.2.3. ∀a : a = −(−a).

Proof.

a+ (−a) = 0

a+ (−a) + (−(−a)) = 0 + (−(−a))
a+ ((−a) + (−(−a))) = (−(−a))

a+ 0 = −(−a)
a = −(−a)

This proof is perhaps clearer in multiplicative notation, as shown below. ■

11.2.2 Axioms for Multiplication
The next four axioms concern a binary operation called multiplication, denoted with the symbol ·. We
often omit the symbol ·, and just write ab for a · b. This convention will be used wherever there is no
room for confusion. Also note that we always denote multiplication on fields with ·, and never ×.

These four axioms can more concisely expressed as “Multiplication over a field, minus the additive identity
element, satisfies the axioms of an abelian group” (§12.3).

M1 (Commutativity of multiplication). For all numbers in a field,

a · b = b · a

M2 (Associativity of multiplication). For all numbers in a field,

a · (b · c) = (a · b) · c
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M3 (Existence of multiplicative identity). There exists a number, denoted 1K , such that, for all numbers
a,

a · 1K = 1K · a = a

The proof for the uniqueness of multiplicative identities works exactly the same as for additive identities:

Lemma (Uniqueness of additive identities). ∀a : ea = ae = a ∧ fa = af = a→ e = f .

Proof. Suppose e and f are both multiplicative identities. Then, ef = e as f is the identity. But ef = f ,
as e is also the identity, so ef = e = f , so e = f and the identity is unique. ■

M4 (Existence of multiplicative inverses). For each number, a ̸= 0K , there exists a number a−1 such
that,

a · a−1 = a−1 · a = 1K

where 1K is the multiplicative identity.

For convenience, we often write a · b−1 as a
b , encoding our idea of division. 0 is not guaranteed to have

a multiplicative inverse, so expressions such as a
0 are undefined.

The number a−1 is called the multiplicative inverse of a, often shortened to just inverse.

Multiplicative inverses are similarly unique:

Lemma (Uniqueness of multiplicative inverses). For all a and b, if ab = ba = 1, then a = b−1.

Proof.

ab = 1

abb−1 = 1b−1

a(bb−1) = b−1

a(1) = b−1

a = b−1

■

Every element is also equal to it the inverse of its inverse:

Lemma 11.2.4. ∀a : a = (a−1)−1

Proof.

a(a−1) = 1

a(a−1)(a−1)−1 = 1(a−1)−1

a1 = (a−1)−1

a = (a−1)−1

■
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11.2.3 Axiom of Distributivity
D (Distributivity of multiplication over addition). For all numbers a, b and c,

(a+ b)c = ac+ bc

The additive identity 0K also has a special role in multiplication as a consequence of this distribution
axiom: it is an annihilator , an element that gives 0K when multiplied by anything.

Proof.

0 + 0 = 0

a · (0 + 0) = a · 0
a · 0 + a · 0 = a · 0

a · 0 + a · 0 + (−(a · 0)) = a · 0 + (−(a · 0))
a · 0 + (a · 0− a · 0) = a · 0− a · 0

a · 0 = 0

■

A similar argument shows that if a · b = 0, then a = 0 or b = 0.

Proof. Suppose a · b = 0, but a ̸= 0, so a−1 exists by axiom A4. Then,

a · b = 0

a−1 · a · b = a−1 · 0
b = 0

■

We can also show

a · (−b) = −(a · b) (1)
(−a) · b = −(a · b) (2)

(−a) · (−b) = a · b (3)

Proof. For (1),

a · 0 = 0

a · (b+ (−b)) = 0

a · b+ a · (−b) = 0

−(a · b) + (a · b+ a · (−b)) = −(a · b) + 0

(−(a · b) + a · b) + a · (−b) = −(a · b)
0 + a · (−b) = −(a · b)

a · (−b) = −(a · b)

(2) is identical, with a and −b replaced with their negations.

For (3),

(−a) · 0 = 0
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(−a) · (b+ (−b)) = 0

(−a) · b+ (−a) · (−b) = 0

−(a · b) + (−a) · (−b) = 0

(a · b) + (−(a · b)) + (−a) · (−b) = (a · b) + 0

(−(a · b) + a · b) + (−a) · (−b) = a · b
0 + (−a) · (−b) = a · b

(−a) · (−b) = a · b

Noting that we use (2) to move from the third line to the fourth. ■

A special case of (2) is that multiplying by −1 is equivalent to negation:

Corollary 11.2.4.1. ∀a : (−1) · a = −a

Proof. Using (3), (−1) · a = −(1 · a) = −a. ■

0 being the annihilator element is one of the reasons why we can’t define 0−1, thus disallowing division
by 0. If 0−1 was an element of the field, then, for any a and b in the field, we would have,

a · 0 = b · 0
(a · 0) · 0−1 = (b · 0) · 0−1

a · (0 · 0−1) = b · (0 · 0−1)

a · 1 = b · 1
a = b

11.2.4 Axiom of Non-Degeneracy
ND (Non-Degeneracy).

0K ̸= 1K

This condition prevents the set {e} from being a field, where e is both the additive and multiplicative
identity. This use useful because it also prevents e = 0 from having an inverse (itself). This is similar
to 1 not being a prime number: if we let the single element set be a field, many field theorems end up
having to stipulate “unless F = {e}”.

11.2.5 Examples of Fields
These axioms we have stated characterise a field. The real numbers are a field, but not all fields are the
real numbers.

For instance, Q, R, and C are all fields. If you are familiar with classical constructions, the set of numbers
you can construct with a straightedge and compass also forms a field.

On the other hand, N is not a field as additive inverses do not exist. (The additive identity doesn’t exist
either, if you exclude 0 from the naturals.) Z is not a field either, as not every non-zero element has a
multiplicative inverse.

However, the integers modulo p is a (finite, or Galois) field for any prime p, commonly denoted Fp or
Zp. In particular, F2 is frequently used in computer science, as many logic operations that apply to bits
can be converted to operations applying to elements of F2 (for example, adding two elements is the same
as taking the XOR of those elements, and multiplying two elements is the same as taking the AND of
those elements).
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11.3 Order Axioms

To obtain the real numbers, and the real numbers only, we add a few more axioms.

This means that, as well as the binary operations of addition and multiplication, the field is equipped
with a total ordering relation (§4.4.8).

Notice that C and Fp do not have any relations defined on them that are total orders. For the former,
in particular, suppose 0 ≺ i. Then, 0i ≺ ii, so 0 ≺ −1, which already looks somewhat problematic, but,
suppose we continue with this anyway. Then, 0 ≺ −1 implies 1 = 0+ 1 ≺ −1 + 1 = 0, so 1 ≺ 0 ≺ 1, and
our ordering falls apart. Assuming i ≺ 0 runs into similar problems, so there can’t be an ordering over
the complex numbers.

The axioms we use to describe this ordering is as follows:

(C) ∀a,b ∈ K : a ≤ b ∨ b ≤ a (Comparability∗);

(A) ∀a,b ∈ K : a+ (b+ c) = (a+ b) + c (Antisymmetry);

(T) ∀a,b,c ∈ K : a ≤ b ∧ b ≤ c→ a ≤ c (Transitivity);

(TI) ∀a,b,c ∈ K : a ≤ b→ a+ c ≤ b+ c (Translational invariance);

(SI) ∀a,b,c ∈ K : a ≤ b ∧ 0 ≤ c→ a · c ≤ b · c (Scaling invariance).

For further discussion of the first three axioms, see §4.4.5.

The latter two axioms describe how ≤ interacts with addition and multiplication – addition and multi-
plication both preserve order.

We only define the single relation ≤ like this. a ≥ b is defined to be b ≤ a, a < b is a ≤ b ∧ a ̸= b, and
a > b is b ≤ a ∧ a ̸= b.

Additionally, if a > 0, we say that a is positive. If a < 0, a is negative. If a ≥ 0, a is non-negative. If
a ≤ 0, a is non-positive, though this term does seem to be rarer.

Other properties of ≤ can be derived from these axioms.

Lemma 11.3.1 (Reflexivity). ∀x : x ≤ x.

Proof. Apply the comparability axiom with a = b = x ■

Lemma 11.3.2 (Trichotomy). ∀x,y : x < y ⊻ x = y ⊻ x > y. That is, for any numbers a and b, exactly
one of x < y, x = y and x > y holds.

Proof. We first show that at least one holds. From the comparability axiom, at least one of x ≤ y and
x ≤ y holds. If x = y, we are done. Otherwise, x ̸= y, so exactly one of x ≤ y and y ≤ x holds as well,
which is the definition of <, so exactly one of x < y and y < x holds, given that x ̸= y.

If x = y, then x ̸< y and y ̸< x, because they are both defined to hold only when x ̸= y, so if x = y,
then it is the only one which holds. Next, suppose x < y and y < x both hold, but x ̸= y. Then, x ≤ y
and y ≤ x, so by antisymmetry, x = y, contradicting our assumption. So, at most one holds. ■

Trichotomy allows us to treat x ̸< y and x ≥ y as equivalent.

Lemma 11.3.3. ∀a : a ≥ 0→ −a ≤ 0: if a ≥ 0, then −a ≤ 0.

∗ As mentioned previously (§4.4.2), we can alternatively write this as x ⪋ y for all x and y under ≤.
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Proof.

a ≥ 0

a+ (−a) ≥ 0 + (−a)
0 ≥ −a
−a ≤ 0

The second line holds by the axiom of translational invariance, while last line is justified by the definition
of ≥. ■

Lemma 11.3.4. ∀a,b : a ≥ b↔ a− b ≥ 0: for all a and b, a ≥ b if and only if a− b ≥ 0.

Proof.

a ≥ b
a+ (−b) ≥ b+ (−b)

a− b ≥ 0

and the reverse direction,

a− b ≥ 0

a− b+ b ≥ 0 + b

a ≥ b

■

Lemma 11.3.5. ∀a,b : a ≥ 0 ∧ b ≥ 0→ a+ b ≥ 0: if a ≥ 0 and b ≥ 0, then a+ b ≥ 0.

Proof. a ≥ 0, so 0 ≥ −a by Lemma 11.3.3. So, b ≥ 0 ≥ −a, and b ≥ −a by transitivity. By TI,
b+ a ≥ −a+ a, and with A1, a+ b ≥ 0. ■

Theorem 11.3.6. ∀a,b,c,d : a ≥ b ∧ c ≥ d → a + c ≥ b + d: for all a, b, c and d, if a ≥ b and c ≥ d,
then a+ c ≥ b+ d.

Proof. By Lemma 11.3.4, a ≥ b→ a− b ≥ 0 and c ≥ d→ c−d ≥ 0. Now, apply Lemma 11.3.5 to obtain
(a− b) + (c− d) ≥ 0, and add b+ d to both sides (TI) to get a+ c ≥ b+ d. ■

This theorem allows us to add together different inequalities.

Lemma 11.3.7. ∀a,b : a ≤ b→ −b ≤ −a: if a ≤ b, then −b ≤ −a.

Proof. Subtract a+ b from both sides. ■

Theorem 11.3.8. ∀a,b,c ≤ 0 : a ≤ b→ a · c ≥ b · c: if a ≤ b and c ≤ 0, then a · c ≥ b · c.

Proof. From Lemma 11.3.3, −c ≥ 0, so by SI, −c·a ≤ −c·b. By Lemma 11.3.7, c·a ≥ c·b, as required. ■

This theorem tells us that multiplying an inequality by a negative number reverses the direction of the
inequality.
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11.4 Completeness Axiom

Total ordering alone still doesn’t fully determine set of reals: the set of rationals, as well as being a field,
also has a well-defined total ordering.

The property that characterises the reals, is completeness: the idea that there aren’t any “gaps” or
“missing points” in the real numbers, as opposed to the rationals, which has gaps at every irrational
number.

There are many ways to add one last axiom to separate the reals from the rationals. We have already
seen Dedekind completeness when we defined real numbers to be generated by some Dedekind cut. We
will also see Cauchy completeness in §34, but here, we will use the least upper bound property.

11.4.1 Least Upper Bound Property
Let S be a non-empty set of real numbers. A real number x is an upper bound of S if x ≥ s for all s ∈ S.
A real number y is the least upper bound or supremum of S if y is an upper bound, and y ≤ x for all
upper bounds x of S. The supremum of a set is unique (see §34.3.2) so we are justified in saying the
least upper bound, rather than a least upper bound.

We define the lower bound and greatest lower bound or infimum similarly.

LU (Least upper bound property). A set, R, has the least upper bound property if for every subset
S ⊆ R, if S is non-empty and has an upper bound, then S has a supremum in R.∗

The least upper bound of a set S, if it exists, is written supS. Similarly, the greatest lower bound is
written inf S, and is equal to − sup{−s : s ∈ S} (proof §34.3.2). A consequence of the least upper bound
property is that any non-empty subset of the reals that has a lower bound also has a real infimum.
Within the real numbers, neither the supremum nor infimum are defined for empty or unbounded sets.

The infimum and supremum of a set S do not have to lie within the set. For example, if S = {x ∈ R :
x < 0}, then supS = 0, but 0 ̸∈ S.

The rationals do not satisfy the least upper bound property. For example, the set {x ∈ Q : x2 < 2} is a
subset of the rationals. However, its least upper bound is

√
2, which is not within the set of rationals.

A consequence of having least upper bounds is that real numbers do not get too big or too small.

Theorem 11.4.1 (Archimedean property). ∀x,y ∈ R : 0 < x < y → ∃n ∈ N : n · x > y: For any two
real numbers 0 < x < y, there exists a natural n such that n · x > y.

Proof. Suppose there exists two real numbers 0 < x < y such that nx ≤ y for all n ∈ N. Then, n ≤ x
y

for all n ∈ N, so x
y is an upper bound of the naturals. From the least upper bound property, it follows

that there exists z = supN. The number z − 1 is less than z, so it is not an upper bound of N, so there
exists natural numbers such that n > z − 1. However, this implies that n+ 1 > z, contradicting that z
is the supremum of N. It follows that our original assumption is false. ■

This property excludes infinitesimals – non-zero numbers that are smaller than every positive rational
number – from existing. It also prevents the existence of a real number that is larger than every positive
rational number from existing.

Completeness is discussed further in the chapter for real analysis, in §34.3

∗ This one is a mess symbolically: a set, R, has the least upper bound property if,

∀S ⊆ R : [S ̸= ∅ ∧ (∃x ∈ R : ∀s ∈ S : x ≥ s)] → ∃y ∈ R : ∀s ∈ S : y ≥ s ∧ (∀x∀s ∈ S : x ≥ s ↔ y ≤ x)

Notes on Mathematics | 284



The Real Numbers Completeness Axiom

11.4.1.1 Existence of Real Roots

Using the least upper bound property, we can prove many theorems about real numbers. For instance,
we can prove that every positive number, x, has a unique positive nth root. That is, for every positive
x, there exists r > 0 such that rn = x, and we write x

1
n = n

√
x = r to represent this number.

In fact, without the least upper bound property (or another axiom equivalent to completeness), we can’t
prove this at all, since our number system would then only consist of the rational numbers, where positive
roots do not always exist.

Theorem 11.4.2. Let x ∈ R+ be a positive real number. For each natural number, n ≥ 1, there exists
r ∈ R+ such that rn = x. That is, every positive real number has a unique positive real nth root.

Proof. Given x, let S = {s ∈ R+ : sn ≤ x}.

Consider the number t = x
x+1 . Note that t < 1 and t < x. From the former, it follows that tn−1 < 1, so

tn < t, and from the latter, we have tn < t < x, so t ∈ S and S is non-empty.

Now, consider u = x+ 1. Now, u > 1 and u > x, so un−1 > 1 and un > u, similarly giving un > u > x,
so u is an upper bound of S.

As S is non-empty, and has an upper bound, it has a supremum by completeness. Let r = supS. We
claim that rn = x. We will prove this with trichotomy, and showing that the other two options, rn < x
and rn > x lead to contradictions.

First, a lemma.

Lemma 11.4.3. ∀a,b ∈ R : 0 < a < b→ ∀n : bn − an < (b− a)nbn−1.

Proof. If 0 < a < b, then ak < bk for all k. Then,

bk − ak = (b− a)(bk−1 + bk−2a+ · · ·+ bak−2 + ak−1)

< (b− a)(bk−1 + bk−1 + · · ·+ bk−1 + bk−1︸ ︷︷ ︸
k

)

< (b− a)kbk−1

■

Now, suppose rn < x. Let h < 1 be a real number such that

0 < h <
x− rn

n(r + 1)n−1

h always exists, because rn < x and x−rn > 0 is positive, and the denominator is the product of positive
terms, so the whole expression is positive.

Now, we apply the lemma with a = r and b = (r + h), and choose k = n, giving,

(r + h)n − rn < hn(r + h)n−1

<

(
x− rn

n(r + 1)n−1

)
n(r + h)n−1

<

(
x− rn

n(r + 1)n−1

)
n(r + 1)n−1

< x− rn

(r + h)n < x
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so (r + h) ∈ S. However h is positive, so r < r + h, contradicting that r is an upper bound of S. It
follows that the assumption that rn < x is false.

Instead, suppose rn > x, and let

h =
rn − x
nrn−1

We note that,

r >
r

n
=

rn

nrn−1
>
rn − x
nrn−1

= h > 0

Again, we apply the lemma, this time with a = r − h and n = r, and choose k = n, giving,

rn − (r − h)n < hnrn−1

<

(
rn − x
nrn−1

)
nrn−1

< rn − x
−(r − h)n < −x

x < (r − h)n

so (r−h) is an upper bound of S. However, since h > 0, r−h < r, contradicting that r is the supremum.
It follows that the assumption that rn > x is false.

Since rn ̸< x and rn ̸> x, it follows that rn = x by trichotomy. ■

11.4.2 Arithmetic
It is technically possible to show that all the arithmetic operations and algorithms taught at school all
work in R, purely working from the axioms.

This is, however, extremely tedious, and even rather difficult. For example, even proving that 1 is a
positive number takes a bit of work.∗

Just as we mostly skipped over the construction of the rationals in the introductory chapter for set
theory, we’ll similarly skip over this process here and assume that all the algorithms and methods
previously learnt all work. For instance, we don’t need to use the definition of multiplicative inverses
and distributivity to conclude that 1

2 + 1
3 = 5

6 .

11.4.3 Algebraic Closure
In each of the number systems we have constructed so far, N, Z, Q and R, there exist polynomials with
coefficients written in those sets which have roots that lie outside of those sets.

As some specific examples,

x+ 1 = 0 Coefficients in N, but roots in Z
2x− 1 = 0 Coefficients in Z, but roots in Q
x2 − 2 = 0 Coefficients in Q, but roots in R
x2 + 1 = 0 Coefficients in R, but roots in C

But we stop here. This is because the field of complex numbers, C is algebraically closed : if you write a
polynomial with complex coefficients, all the roots will be at most, complex.

∗ Suppose 1 ≤ 0. Then, by Theorem 11.3.8, 1 · 1 ≥ 0 · 1, so 1 ≥ 0. Since 1 ̸= 0 by the axiom of non-degeneracy, 1 ≤ 0
and 1 ≥ 0 cannot both hold, contradicting the axiom of antisymmetry. It follows that 0 < 1, so 1 is a positive number.
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11.5 Algebraic Structures

A slight distinction should be made here. The “real numbers” can both refer to the set of numbers
themselves, and the ordered field, as we have constructed them in the previous chapter.

The real numbers, as in the ordered field, is an example of an algebraic structure, or just an algebra.∗
An algebraic structure consists of a non-empty set called the underlying set, carrier set or domain, a
collection of operations on the set of finite arity, typically binary, and a finite set of identities, or axioms,
that these operations must satisfy. In the case of the real numbers, the set is the set of real numbers,
the operations are 0,†, 1, +, and · and the axioms are as defined previously.

A substructure is a structure whose domain is a subset of a bigger structure, and whose functions
and relations are also restricted to this domain. We can also call the main structure an extension or
superstructure of its substructure. A subalgebra is a substructure that is closed.

Substructures inherit all the properties of their superstructures that don’t depend on the existence of
specific elements in the domain of the superstructure that aren’t otherwise specified to exist by the
operations or axioms. For example, any general substructure of the ordered field of real numbers will
still have; addition and multiplication being commutative and associative; multiplication distributing
over addition; and 0 and 1 are still identities, but other axioms may start to fail.

Some notable substructures of the reals are:

• {0}. If we don’t specify that 0 ̸= 1, but include both addition and multiplication, we get an
algebraic structure called the trivial ring. If we also only include one of the operations we get a
different algebraic structure called the trivial group.

• {0,1}. If we do require that 0 ̸= 1, and include only multiplication, we get an algebraic structure
called a semigroup. A semigroup is a set equipped with an associative operation, and no other
requirements. It turns out that there are only 5 structurally distinct semigroups on two element
sets. This one is called semigroup ({0,1},∧).

• The natural numbers N. If you specify your structure to have 0, 1, and addition, closure then forces
you to add the rest of the naturals numbers into your set, as addition gives 0,1,1 + 1,1 + 1+ 1, . . .,
forming the naturals.

Additive and multiplicative inverses do not exist, but the naturals are still totally ordered.

The natural numbers along with addition and multiplication is a type of algebraic structure called
a semiring.

The naturals with just addition or just multiplication is a structure called a commutative monoid .
A monoid is a set equipped with an associative operation that has identity elements – in other
words, a semigroup, but with identities; or, a group, but without inverses.

• The integers Z. We get this structure by additionally requiring additive inverses, so closure forces
us to get the negative integers by repeatedly adding the inverse of 1 to itself, as −1,−1 + (−1),−
1 + (−1) + (−1), . . .

We still don’t have multiplicative inverses, but the order axioms are still satisfied.

The integers along with addition and multiplication is a commutative ring. A ring is a generalisation
of a field which doesn’t require multiplication to be commutative (in this case, our multiplication
does happen to be commutative, hence the commutative ring), and doesn’t require multiplicative
inverses. The integers with just addition is a group. Groups and rings are discussed in more detail
in §12.

∗ We will not use this second name, because there is an algebraic structure similar to a vector space called an “algebra”.
We will continue using “algebraic structure”.

† Again, this is similar to how we defined constants in logic as zero-arity function symbols (§2.3.2).
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• The dyadic rationals D. These are numbers of the form m2−n with integer m and n – rational
numbers where the denominator are a power of 2.

These numbers aren’t used as much in maths outside of very specialised and advanced topics, but
they are important for computer science, because almost all numbers are represented like this in
computers, given their binary nature.

Like the integers, multiplicative inverses still don’t exist, so the dyadic rationals are also a (com-
mutative) ring. This also makes it an overring of the integers, or equivalently, the integers are a
subring of the dyadic rationals.

• The rationals, Q. If we insist on multiplicative inverse, we get the numbers that can be written
as p

q with integer p and q. Unless we put a few restrictions on p and q, we actually get a few
duplicates, since these representations are not unique.

The rationals form an ordered field, like the reals, which makes it a subfield of R – and is in fact the
smallest such subfield. It can also be called the field of fractions of Z, which is a notion formalised
in §12.13.2.

One issue that should be addressed is that the natural numbers as we defined in §4.5 are not elements of
R as defined in terms of Dedekind cuts. The former definition of natural numbers are finite ordinals while
the latter are downward-closed sets of rationals, themselves expressed as ordered pairs of N×N. Similarly,
the integer elements of Q are ordered pairs of the form (n,1) with n ∈ N, rather than elements of N itself.
Additionally, the Peano construction of the naturals builds them up from 0 and repeated applications of
a successor operation S, without any sets in sight. So how can we say things like N ⊆ Q ⊆ R ⊆ C?

We resolve this with isomorphisms (§12.4.1). The idea is that there are bijections between each different
method of construction that preserve the behaviour of 0, 1, +, and ·, and that’s all that really matters in
terms of the structure of these sets – if they all behave in exactly the same way in every way that matters
for our purposes, it doesn’t really make sense to distinguish them by their composition. Otherwise, it
would be like saying two sentences are only the same in meaning if they are written in the exact same
font – the differences with respect to semantics are only superficial in nature.

{∅,{∅},{∅,{∅}},{∅,{∅},{∅,{∅}}}, . . .}
{(0,1),(1,1),(2,1),(3,1), . . .}
{{(p,q) : p < 0},{(p,q) : p < 1},{(p,q) : p < 2},{(p,q) : p < 3}, . . .}
{0,S0,SS0,SSS0, . . .}

~w�
{0, 1, 2, 3, . . .}

These sets are all isomorphic.

Isomorphisms are an integral part of abstract algebra, and mathematics as a whole. In fact, they’re why
all of these axioms exist: if we can prove some random object follows a set of axioms, then every theory
built from those axioms will apply to that object. And conversely, if we want to prove a new result, we
do it in terms of axioms, or objects that are defined entirely in terms of those axioms. Doing it this way,
anyone else can use your theorems, provided they can prove that their object follows your axioms, or the
axioms of the objects you used to build your theorem.
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So, “which of the sets above is really the natural numbers?” isn’t really the right question. None of
them are. The natural numbers are a set of axioms, which can be exhibited by various distinct – but
equivalent – structures.
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Chapter 12

Introduction to Abstract Algebra

“There is no branch of mathematics, however abstract, which may not some day be
applied to phenomena of the real world.”

— Nikolai Lobachevsky, The Foundations of Geometry

We begin this chapter with an exploration into the algebraic structures known as groups. It is recom-
mended that you read the immediately preceding chapter (or at least, the final section of the last chapter)
before reading this chapter, as the final section provides some context for the study of abstract algebra.

12.1 Introduction

12.1.1 Groups as Symmetries
When we say that a face is symmetric, we mean that you can reflect it across a vertical line, and the
resulting face looks the same as the original. A symmetry describes any type of transformation, an
action, that can be performed on an object such that the object is invariant in some way.

But moving on, something like a hexagon is also symmetric, but in more ways. We can rotate it in 5
distinct ways, and reflect it in 6. Even something like an line has translational symmetry. Infinitely
many, in fact.

The set of these actions on an object, is a group (kind of). The fact that such a generic name is reserved
for this rather seemingly specific type of collection hints at just how significant and fundamental they
are.

For a face, we take the reflection action, and the identity action of doing nothing, and we have a group
called C2. A hexagon, we take the 5 rotations, 6 reflections, and again, the identity, and we have a group
called D6.

Now, when we said that the object has to be invariant under the action, we didn’t really define precisely
what structure has to be invariant. That’s because this definition can vary, resulting in different groups.

For D6, we only allow rigid transformations of the hexagon. We could be more restrictive, and say we
only allow rotations; we care about the orientation of the hexagon. This smaller collection of only 6
actions also forms a group, called C6.
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a

bc

d

e f

t
b

cd

e

f a

An example of an action of C6 and D6 acting on 6 points,
preserving the hexagonal structure of the points.

But we could be looser with our definition of invariance. The most general (or rather, lack of) structure
we could have, is to simply consider the ways we can rearrange the six vertices of the hexagon without
actually caring about the hexagon itself; that is, we consider the ways to permute six points amongst
themselves. This is a larger group with 720 actions, called S6.

• • • • • •

An example of an action of S6 acting on 6 points.

While this is nice and all, what is far more interesting is how we can combine actions together.

Let’s simplify our object of consideration down to a square, our group of interest now being D4. To
make things clearer, an asymmetric chiral image has also been placed into the square to help keep track
of transformations. Here are two transformations, a 90◦ anticlockwise rotation and a reflection in the
vertical axis, applied to a square.

a b

cd

r

b c

da

a b

cd

s

b a

dc

The two actions have been labelled as r and s for convenience.

This little bit of abstraction allows us to do some more interesting things. What happens if we apply
them one after the other?
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a b

cd

r

b c

da

s

c b

ad

a b

cd

s

b a

dc

r

a d

cb

Notice how we get different results depending on the order in which we apply the transformations. That
is, these particular transformations are not commutative. We also note that final squares can both also
be reached in a single transformation of the original square:

a b

cd

p

c b

ad

a b

cd

q

a d

cb

So, because these diagonal reflections give the same overall effects as the rotation and vertical reflection,
we could say “vertical reflection, plus 90◦ anticlockwise rotation is the same as a reflection in the upwards
diagonal”.

We could do this for every possible transformation on a square. For compactness, we do this on a
multiplication grid, filling in each square with little diagrams. For the sake of me not having to draw 80
little squares with arrows in LATEX, this table is omitted.

Instead, we can use the labels, and write,

r ◦ s = p

s ◦ r = q

(We read right to left for composition. This notation stems from function notation; (r ◦ s)(S) = r(s(S)),
so we apply s first.)

More generally, we...
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12.1.2 Abstraction
Denote the identity transformation as e, rotations of 90◦, 180◦ and 270◦ as ρ0, ρ1 and ρ2, respectively,
and the reflections in the vertical axis, upwards diagonal, horizontal axis and downwards diagonals as,
σ0, σ1, σ2 and σ3, respectively.

Then, we have,

e ρ0 ρ1 ρ2 σ0 σ1 σ2 σ3
e e ρ0 ρ1 ρ2 σ0 σ1 σ2 σ3
ρ0 ρ0 ρ1 ρ2 e σ1 σ2 σ3 σ0
ρ1 ρ1 ρ2 e ρ0 σ2 σ3 σ0 σ1
ρ2 ρ2 e ρ0 ρ1 σ3 σ0 σ1 σ2
σ0 σ0 σ3 σ2 σ1 e ρ2 ρ1 ρ0
σ1 σ1 σ0 σ3 σ2 ρ0 e ρ2 ρ1
σ2 σ2 σ1 σ0 σ3 ρ1 ρ0 e ρ2
σ3 σ3 σ2 σ1 σ0 ρ2 ρ1 ρ0 e

with the elements that label the rows, the nearer factor, being applied first, and the elements that label
the columns, the further factor, applied second.

Notice how the identity transformation is in every row and every column. That corresponds to the fact
that every transformation can be undone by another action, which seems like a fairly obvious result: we
can always undo an action by playing it in reverse, which is just another action. We also note that the
identity transformation, combined with anything else just gives that other transformation back.

This Cayley table presents all the information we could need about the possible actions on the square,
all together in a compact form.

Now, we forget about the square. Forget that we defined ρ0 as the label for the 90◦ rotation of a square,
and treat each element purely symbolically, as an abstract object in and of itself.

This is analogous to how we write regular multiplication tables. We don’t draw n dots in the rows and
m dots in the columns, then rectangles of n by m dots to represent their products; we write them purely
symbolically using numbers.

You probably even find these symbols easier to deal with than the dots they came from. This abstraction
for multiplication, or more generally, for numbers and counts, lets us think about numbers in new and
different ways. For instance, if 4× 5 comes from adding up 4 sets of 5 objects, what does 1.5× 2 mean?
Or 3×−12? Or, if exponentiation comes from repeated multiplication, what does 3

1
2 or even eiπ mean?

The relationship numbers have with counts, and all the associated operations, is very much analogous
to groups and the symmetry actions we considered in the previous section. In fact, all of the sets and
transformations in the previous sections are not technically groups (though we will continue to refer to
them as such just for now), instead being group actions. When we talk about groups, we really mean
this purely abstract table of relationships of elements, without the underlying object and actions.

When we write “3”, we often don’t refer to a literal collection of 3 specific objects. The symbol, “3” is just
that – an abstract symbol. The symbol isn’t really helpful by itself unless we define it in relation to other
numbers, like the way it adds or multiplies with other numbers. Again, you could do this all with counts
and triplets of things, but most of us are comfortable with just manipulating the symbols. In much the
same way, the elements in the table above, to a group theorist, doesn’t represent a specific transformation
on a square that preserve some given structure. They’re symbols, useful only when defined in relation
to other symbols, like σ2 ◦ ρ0 = σ1. What makes a group, a group, is the way these elements combine
with each other.

This point is crucial for a good intuitive understanding of groups. In the next section, we formalise
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the definition of a group using the group axioms.∗ Out of context, they seem extremely arbitrary and
specific, but, with the knowledge of group actions, they are trivial consequences of this underlying idea
of symmetric actions.

12.1.3 Isomorphisms
We said earlier that using numbers instead of counts lets us do more interesting things. But what can
we do with abstract groups over group actions?

Consider the group of rotations on a cube, and the group of permutations on 4 points.

These groups, at first, might seem very different. The former, you could think of as a set of rotations
acting upon 8 vertex points in three dimensions in such a way that preserves the distance and orientation
structure between all of them. The latter, we have no structure at all being preserved on just 4 points.

It turns out, however, that these two groups are the same, in the sense that their Cayley tables are
identical. Anything you can say about one of these groups, will also apply to the other. For example,
there are 8 distinct permutations that cycle 3 elements, so you get back to the identity after three
applications of that permutation. There are also 8 rotations of the cube which have this property of
returning to the identity after 3 applications. If you want to explore this connection a bit more, try
considering the 4 inner diagonals of the cube (§12.6.2).

We say that the group of rotations of a cube and the permutation group of 4 points are isomorphic.

More formally, two groups are isomorphic if there is a bijective map between the elements of the first
group and the second that preserves the group operation, somewhat similarly to order-types of sets being
equivalent if there is a bijective map that preserves order.

In this case, preserving the group operation just means that there exists a map such that, if we compose
two rotations of a cube, a and b, to get c, then composing the matching permutations a′ and b′ gives c′,
for all possible choices of a and b.

Now, the group of permutations seems a lot easier to deal with than the group of rotations of a cube.
We can store each permutation as a list of 4 numbers, and drawing each permutation is a lot easier than
a cube rotating, especially when composing them together.

Because abstract groups and isomorphisms don’t represent the symmetries of a specific object, instead
representing an abstract way that things can even be symmetric, groups come up in lots of places that
don’t immediately bring symmetry to mind. Similar to how vector spaces can be useful anywhere you
have some notion of adding and scaling some objects, groups are often useful anywhere you have some
notion of multiplying two things together to get a third. Abstraction is discussed in more detail in §33.6.

Group isomorphisms let us prove powerful and very general results about a wide variety of groups, by
proving they are isomorphic to others.

For example, one proof for the insolubility of the quintic, the Abel-Ruffini theorem, relies on group theory.

Recalling the factor theorem, we can rewrite a polynomial in terms of its roots:

ax5 + bx4 + cx3 + dx2 + ex+ f = 0

(x− r0)(x− r1)(x− r2)(x− r3)(x− r4) = 0

We can permute the order of these brackets without changing the equation itself, so these permutations
on the roots of a quintic form a group isomorphic to S5.

∗ This usage of the word “axiom” is different from the axioms in symbolic logic and set theory. There, an axiom meant a
statement that is assumed to be true. Here, it just means a list of rules that define a type of object. If we can prove that
something follows those rules, then all the theorems of group theory will apply.
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Similar to how integers break down into products of primes, we have ways of breaking down groups into
products of smaller, indivisible simple groups, though this is far beyond the scope of this document.

If a permutation group decomposes into the product of certain groups, Cn (we met one of these earlier!),
then a formula for the roots of the polynomial can exist. Quadratics, cubics and quartics all do this, and
general formulae for the roots of those polynomials do indeed exist.

However, S5 has a different type of group in its decomposition – one which can never be made from
polynomial solutions built from elementary functions, proving that a quintic formula cannot exist. In
fact, the roots of almost all quintics cannot be written in closed form using elementary functions.

Obviously a massive amount of detail is being glossed over, but the point is, we can prove an extremely
obscure fact about polynomials by determining the structure of the prime decomposition of a group.

And even more on abstraction, note that we’ve really abstracted the word “symmetry” as well. In
common parlance, it usually just means a line you can reflect an object over or a point to rotate around
to make it “look the same”. But here, it’s just any type of transformation that preserves some property
of some object. This might seem like mathematicians have taken a perfectly descriptive word, and
generalised it until it is meaningless outside of this application, but this turns out to be a very helpful
idea in general. Bijections, isomorphisms, homeomorphisms and diffeomorphisms all fit the definition of
symmetry, allowing us to apply theorems about symmetries to this wide range of transformations.

12.1.4 Symmetries & Conservations
You might not be surprised that groups, being fundamentally about symmetries, apply widely in physics.
Noether’s theorem, says that every conservation law corresponds to some kind of symmetry – to some
kind of group.

Remember when we said that a symmetry is just any transformation that preserves some kind of invari-
ant? Well, we can take energy to be our invariant, and consider a system to have a symmetry under a
transformation if the total energy of the objects in the system remains the same.

Noether’s theorem tells us that spatial translational symmetry corresponds to conservation of momentum,
rotational symmetry with angular momentum, and temporal translational symmetry to conservation of
energy. Using this, we can easily determine whether a given system will conserve some given quantity.

For example, consider a bunch of particles all travelling through space. A shifted version of the same
system of particles with the same velocities has the same energy, so this system is symmetric with respect
to translation. Noether’s theorem then tells us that this system of particles as a whole will conserve
momentum, regardless of whether they collide with each other or not. Shifting a particle orbiting the
Earth in its orbit doesn’t change its energy state either, so we know that angular momentum is preserved.
Shifting an object closer to the Earth, however, changes its gravitational potential energy, so we know
that momentum is not conserved when dealing with a gravity field. The temporal translational symmetry
is harder to demonstrate, but has many applications in quantum mechanics.

And it isn’t just these conservations: the conserved quantities are “generators” of the transformation,
and we can calculate what generator gives any given transformation. If you find some new exotic system,
and discover that it is symmetric with respect to some transformation, Noether’s theorem allows you to
calculate some quantity that is being conserved in that system.

12.2 Terminology for Groups

Before we move onto groups proper, there is some preamble and background necessary to get out of the
way first. We also recall some terminology from buried within previous sections.
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12.2.1 Sets
• A set is a collection of elements.

• The empty set, denoted ∅, is the set with no elements.

• You should be familiar with N, Z, Q, R, C and Rn and related operations over those sets.

• R[x] is the set of polynomials with real coefficients. Z[x], etc., are defined similarly.

See §4 or §6 for a more introductory discussion of sets.

12.2.1.1 Binary Operations

Given a set S, a binary operation on S is a function that takes two elements of S, called the operands or
arguments of the operation, and returns another element of S: it is closed over S. That is, it is a binary
function S × S → S.

If ∗ is some binary operation on S we say that ∗ is,

• commutative on S if a ∗ b = b ∗ a for all a,b ∈ S;

• associative on S if (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a,b,c ∈ S.

If a binary operation is commutative, its Cayley table over a set is symmetric across the diagonal.

12.2.1.2 Functions

• Given two sets, X and Y , a function, f , maps unique elements from X to Y . This is written as
f : X → Y . X is the domain of f , and Y is the codomain of f .

• Two functions, f : X → Y and g : A → B are equal if X = A, Y = B and f(x) = g(x) for all
x ∈ X.

• Let A, B and C be sets, and f : A → B, g : B → C be functions. The composition of f and g,
written g ◦f is defined as g(f(x)). Note that the function on the right of the composition is applied
first, as per function notation.

• Composition is an associative operation.

• A function, f : X → Y , is injective if, for all a,b ∈ X, a ̸= b → f(a) ̸= f(b), or equivalently,
f(a) = f(b)→ a = b.

• A function, f : X → Y , is surjective if for all y ∈ Y , ∃x ∈ X such that f(x) = y.

• A function is bijective if it is both injective and surjective.

Theorem 12.2.1. A function is invertible if and only if it is bijective.

Proof. Let f : X → Y be a function, and let g be the inverse of f . Let a,b ∈ X such that f(a) = f(b).
Then, g(f(a)) = g(f(b)) → a = b, so f is injective. Now, let y ∈ Y . As g is the inverse of f , g(y) is a
member of X. But f(g(y)) = y, so y has an origin element in X, so f is surjective. It follows that f is
bijective, completing the forward direction.

Now, let f : X → Y be a bijective function. As f is bijective, ∀ y ∈ Y,∃x ∈ X such that f(x) = y.
Define g(y) = x.

Let x ∈ X so f(x) = y ∈ Y . Then, g(f(x)) = g(y) = x. Let y ∈ Y . Then, g(y) = x ∈ X, so
f(g(y)) = f(x) = y. It follows that g is the inverse of f , completing the backwards direction. ■
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12.2.2 Matrices
We assume some background knowledge of matrix algebra. See §33 for a more introductory approach to
matrices.

Matrix arithmetic is as usual:

• Addition is associative and commutative;

• Multiplication is associative and non-commutative;

• Multiplication distributes over addition.

Theorem 12.2.2. For any square matrices A and B,

det(AB) = det(A) det(B)

Proof. §33.2.3 ■

Theorem 12.2.3. If A is invertible, then it has non-zero determinant.

Proof. AA−1 = I, and I has determinant 1, which is non-zero, so A and A−1 must both have non-zero
determinant. ■

Theorem 12.2.4. If A has non-zero determinant, then it is invertible.

Proof. Exercise.

(Method) Multiply a generic matrix by its generic inverse and show that you get the identity. ■

12.3 Group Axioms

A group, (G,∗) is a set, G, equipped with a binary operation, ∗ : G ×G → G, that obeys the following
axioms:

• ∀a,b ∈ G, a ∗ b ∈ G (closure);

• ∀a,b,c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c (associativity);

• ∃e ∈ G such that ∀a ∈ G, a ∗ e = e ∗ a = a (existence of identity);

• ∀a ∈ G,∃(a−1) ∈ G such that a ∗ (a−1) = (a−1) ∗ a = e (existence of inverses).

We can also write idG for the identity for clarity (and also to mark which group the identity is from
if multiple groups are being considered). If the operation is additionally commutative, that is, ∀a,b ∈
G, a ∗ b = b ∗ a, then the group is abelian.

Recalling our group action perspective from the first section, you can see where all of these properties
come from. Performing one action followed by another is just another action, giving closure. Associativity
is a trivial property as well; doing action a, then (b and c), is clearly the same as doing (a and b), then
c. Similarly, doing nothing always preserves your structure, since your object already has to have the
structure in the first place, and you can always undo an action just by playing it in reverse, giving
identities and inverses.

Example.

• Z, Q, R, C, any ring R, and any field K form an (abelian) group under addition.

• The set of non-zero elements of a field K, K∗ = K \ {0K}, forms a group under multiplication.
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△

We define multiplicative notation for groups as follows:

• The group operation is omitted, so a ∗ b is written as ab;

• The identity is often written as 1 or 1G, instead of e or id;

• If n ∈ N, then an = a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸
n

;

• If n = 0, an = 1G;

• If n is a negative integer, an = (a−n)−1;

• (a−1)n = a−n;

• (am)n = amn;

• (am)(an) = am+n;

• If the group is abelian, (ab)n = (an)(bn).

Abelian groups are more commonly written in additive notation:

• The group operation is written as +;

• The identity is often written as 0 or 0G, instead of e or id;

• If n ∈ N, then na = a+ a+ · · ·+ a︸ ︷︷ ︸
n

;

• If n = 0, na = 0G;

• The inverse of g is written as −g instead of g−1.

• If n is a negative integer, na = −n(−a);

• n(−a) = −na;

• n(ma) = (m× n)a;

• (ma) + (na) = (m+ n)a;

• If the group is abelian, n(a+ b) = na+ nb.

12.3.1 Basic Properties
Theorem (Cancellative Property). Let G be a group and let a,b,g ∈ G. Then,

(i) ga = gb→ a = b;

(ii) ag = bg → a = b.

Proof. For (i),

ga = gb

g−1(ga) = g−1(gb) [Existence of inverses]

(g−1g)a = (g−1g)b [Associativity]
idG a = idG b

a = b [Identity]

(ii) is proved similarly by right multiplying by g−1. ■

Notes on Mathematics | 298



Introduction to Abstract Algebra Group Axioms

In future proofs, we will omit brackets and not explicitly refer to associativity in the interest of space.

Lemma (Uniqueness of Identity). The identity of a group is unique.

Proof. Suppose e and f are identities of a group, G. ef = e, as f is the identity. But ef = f , as e is
also the identity, so ef = e = f , so e = f and the identity is unique. ■

Lemma (Uniqueness of Inverse). Every element of a group has a unique inverse.

Proof. Suppose a and b are both inverses of g, so ga = idG = gb. By the cancellative property, a = b. ■

Lemma (Two-Sided Identity). If eℓ is a left identity for a group G – that is, eℓg = g for all g ∈ G –
and er is a right identity for G, then eℓ = er = idG.

Proof. eℓer = er as eℓ is a left identity, and eℓer = eℓ as er is a right identity, so eℓ = eℓer = er = idG. ■

Lemma (Two-Sided Inverse). If ℓ is a left inverse for an element g – that is, ℓg = idG – then ℓ is the
(two-sided) inverse of g. Similarly, if r is a right inverse for g, then it is a (two-sided) inverse of g.

Proof. ℓg = idG as ℓ is a left inverse of g, so,

ℓg = idG

ℓg = g−1g

ℓgg−1 = g−1gg−1

ℓ = g−1

As the choice of ℓ was arbitrary, all left inverses of g are equal. The proof for right inverses is similar. ■

Theorem (Distribution of Inversion). For all a,b ∈ G, (ab)−1 = b−1a−1.

Proof.

(ab)−1ab = idG

(ab)−1abb−1 = idG b
−1

(ab)−1a = b−1

(ab)−1aa−1 = b−1a−1

(ab)−1 = b−1a−1

■

Theorem (Involutivity of Inversion). For all a,b ∈ G,

(a−1)−1 = a

Proof.

idG = aa−1

idG(a
−1)−1 = aa−1(a−1)−1

(a−1)−1 = a(a−1(a−1)−1)

(a−1)−1 = a idG

(a−1)−1 = a

■
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Theorem 12.3.1. For all a ∈ G and all n ∈ N, an ∈ G.

Proof sketch. a0 = 1 by the definition of a0, which is in G by the existence of identity axiom. For positive
n, induct on n using closure, and for negative n, use the previous result combined with the existence of
inverses axiom. ■

12.3.2 Order
Let (G, ∗ ) be a group. The cardinality of the underlying set G is called the order of the group, denoted
|G|.

Let g ∈ G. The order of g, denoted |g| or o(g) is the least integer n > 0 such that gn = idG. If no such
n exists, then g has infnite order and we write |g| =∞.

Note that if g has infinite order, then gi ̸= gj for all i ̸= j, or else if gi = gj for some i < j, then
gj−i = idG by the cancellative property, so the order of g divides j − i and is hence finite. Similarly, if g
has finite order n, then gi ̸= gj for all i ̸= j ∈ [0,n].

Lemma 12.3.2. |g| = 1 if and only if g = idG.

Proof. id1G = idG. Conversely, for all idG ̸= g ∈ G, g1 = g ̸= idG. ■

Lemma 12.3.3. If |g| = n, then gk = 1 if and only if n|k.

Proof. Suppose n ∤ k, so k = qn+ r for some q,r ∈ N with 0 < r < n (by the division algorithm). Then,

gk = gqn+r

= (gn)qgr

= idqG g
r

= gr

and since 0 < r < n, gr ̸= gn = idG.

Conversely, suppose n|k so k = qn. Then,

gk = gqn

= (gn)q

= idqG
= idG

■

Theorem 12.3.4. For every g ∈ G, |g| divides |G|.

Proof. Follows from Lagrange’s theorem (§12.4.10). ■

Theorem 12.3.5. If |G| = n, then gn = 1 for all g ∈ G.

Proof. Let a be the order of g, so ga = 1. By Lagrange’s theorem, a divides n, so n = ab for some integer
b. So, gn = gab = (ga)b = 1b = 1. ■

Notes on Mathematics | 300



Introduction to Abstract Algebra Group Axioms

12.3.3 Subgroups
Let (G,∗) be a group, and let H be a subset of G. Furthermore, suppose that (H,∗) is also a group.
(H,∗) is then a subgroup of (G,∗), and we write H ≤ G to denote this relation.

To show that a subset H ⊆ G is a subgroup of G, it suffices to show that H is non-empty, is closed under
∗, and that every element has an inverse in H.

Theorem (Two-Step Subgroup Test). If (G,∗) is a group and H ⊆ G, then (H,∗) is a subgroup of G if
and only if,

(i) H ̸= ∅;

(ii) a,b ∈ H → a ∗ b ∈ H;

(iii) a ∈ H → a−1 ∈ H.

Proof. Every subgroup H clearly fulfils these three conditions for the forward implication.

For the reverse implication, we verify the four axioms. Closure is given by the condition (ii), while
associativity is inherited from the main group, as the operation in H is just the restriction of the
operation in G. The existence of an inverse element follows from condition (iii). The existence of the
identity element follows from taking a,b to both be the identity in condition (ii), or by taking b to be
a−1. ■

The test is named the two-step test because H is often assumed to be non-empty, so the first condition
need not be checked.

This suggests a shorter test still:

Theorem (One-Step Subgroup Test). If (G, ∗ ) is a group and H ⊆ G, then (H, ∗ ) is a subgroup of G
if and only if,

1. H ̸= ∅;

2. a,b ∈ H → ab−1 ∈ H;

Proof. Every subgroup H clearly fulfils these three conditions for the forward implication.

For the reverse implication, we verify the four axioms. Associativity is again inherited from the main
group.

Since H is non-empty, there exists an element x ∈ H. Taking a = x and b = x gives x ∗ x−1 = idG ∈ H,
so the identity element is in H.

Inverses follow from taking a = idG and b = x, giving idG ∗ x−1 = x−1 ∈ H.

Let x,y ∈ H. Then, as inverses exist, y−1 ∈ H, and so we may take a = x and b = y, giving
x ∗ (y−1)−1 = x ∗ y ∈ H, and hence H is closed. ■

Theorem 12.3.6. The following results hold for all groups:

(i) The intersection of two subgroups is also a subgroup.

(ii) The union of two subgroups is generally not a subgroup.

(iii) The group itself, G, and the trivial group, {idG}, are always subgroups of G.

Proof. (i) Let H ≤ G and K ≤ G. idG ∈ H and idG ∈ K, so H ∩K is non-empty as it also contains
idG. Since H ≤ G, xy−1 ∈ H for all x,y ∈ H, and similarly for K. Suppose a,b ∈ H ∩K so a,b ∈ H
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and a,b ∈ K. Then, ab−1 ∈ H and ab−1 ∈ K, and hence ab−1 ∈ H ∩K, so H ∩K is a subgroup by the
one-step test. ■

Any subgroup not equal to G is a proper subgroup, while any subgroup not equal to {idG} is a non-trivial
subgroup.

Theorem 12.3.7. If H is a subgroup of G, and |G| is finite, then |H| divides |G|.

Proof. Corollary of Lagrange’s theorem (§12.4.10). ■

12.4 Homomorphisms

A homomorphism between two arbitrary structures is a map that preserves the stucture.

Homomorphism sometimes have additional names for specific structures. For example, a homomorphism
between sets is called a function, a homomorphism between vector spaces is called a linear transformation,
and a homomorphism between probability spaces is called a measurable function. For groups, we simply
have group homomorphisms.

Suppose that A and B are sets, and that ∗ and ◦ are binary operations defined over A and B, respectively.
If the map f : A→ B obeys,

f(x ∗ y) = f(x) ◦ f(y)

for all x,y ∈ A, then we say that f preserves the operation or is compatible with the operation.

More generally, a map f : A→ B preserves operations µA and µB of arity k defined on A and B if,

f(µA(a1,a2, . . . ,ak)) = µB(f(a1),f(a2), . . . ,f(ak))

for all a1,a2, . . . ak ∈ A.

If a map preserves all operations over an algebraic structure, then it is a homomorphism. Note that this
includes nullary functions – that is, constants. For example, if a structure requires an identity element,
then the identity element of the first structure must be mapped to the corresponding identity element
of the second. For instance, all vector space homomorphisms must preserve the zero element, which is
why all linear transformations fix the origin in place. Field homomorphisms must preserve both addition
and multiplication operations, and map the additive and multiplicative identities to other additive and
multiplicative identities.

Let (G,◦) and (H,∗) be groups. A function, ϕ : G → H is a group homomorphism between G and
H if ϕ(a ◦ b) = ϕ(a) ∗ ϕ(b) for all a,b ∈ G. Note that we do not specifically demand that the group
homomorphism preserves the identity in this case, as this is already implied by the structure preserving
requirement:

idH ∗ ϕ(g) = ϕ(g)

= ϕ(idG ◦ g)
= ϕ(idG) ∗ ϕ(g)

so idH = ϕ(idG) by the cancellative property.

Example. The real numbers have group structure under addition, (R,+), and the positive real numbers
have group structure under multiplication, (R+,· ). The exponential function, x 7→ ex satisfies ex+y =
ex · ey, so the exponential function is a group homomorphism from (R,+) to (R+,· ). △

Group homomorphisms also map inverses to inverses:

Theorem 12.4.1. If ϕ : G→ H is an isomorphism, then ϕ(g−1) = ϕ(g)−1 for all g ∈ G.
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Proof. For all g ∈ G,

idH = ϕ(idG)

= ϕ(gg−1)

= ϕ(g) · ϕ(g−1)

so ϕ(g−1) is the inverse of ϕ(g) in H, giving ϕ(g−1) = ϕ(g)−1. ■

Lemma 12.4.2. If H ≤ G, then the inclusion map ϕ : H ↪→ G defined by h 7→ h for all h ∈ H is a
homomorphism. If H = G, then it is furthermore an (identity) isomorphism.

Some specific kinds of homomorphisms have a special names. For instance, an injective homomorphism
is also called a monomorphism, and a surjective homomorphism is called an epimorphism. In further
abstract algebra, when considering structures too large to be sets (and hence injectivity and surjectivity
are not well-defined notions), monomorphisms and epimorphisms are instead defined in terms of left and
right cancellative properties.

12.4.1 Isomorphisms
If the inverse of a homomorphism is a homomorphism, or equivalently, if the homomorphism is a bijec-
tion,∗ then it is called an isomorphism. If an isomorphism exists between G and H, we say that G and
H are isomorphic, and we write G ∼= H to denote this relation. It is easy to check that isomorphism is
an equivalence relation.

The Cayley tables for isomorphic finite groups look identical, up to relabelling of variables. In fact,
isomorphic objects are completely indistinguishable from the viewpoint of the structure that is being
preserved.

Example. In the previous example, the homomorphism between (R,+) and (R+,· ) given by the expo-
nential function is actually an isomorphism, because the inverse function, the natural logarithm, satisfies
ln(x ·y) = ln(x)+ln(y), and is also a homomorphism. We then say that (R,+) and (R+, ·) are isomorphic
groups and we write (R,+) ∼= (R+, · ). △

Isomorphisms capture the idea that objects can be functionally equivalent, where this function is just
whatever property we care about. For groups, this property is the group structure. Earlier, when we
constructed the naturals in several ways, this property is that the numbers obey the Peano axioms or
Robinson arithmetic, or whatever. If two sets behave in the same way in every way that matters for
whatever we’re trying to do, we don’t really need to distinguish them, so we can just slap on the label
of isomorphic, and prove results in terms of the properties that they share. Otherwise, it would be like
saying two sentences are only the same in meaning if they are written in the exact same font – the
differences with respect to semantics are only superficial in nature.

Lemma 12.4.3. If ϕ : G→ H is an isomorphism, then ϕ(g−1) = ϕ(g)−1 for all g ∈ G.

Proof. For all g ∈ G,

idH = ϕ(idG)

= ϕ(gg−1)

= ϕ(g) · ϕ(g−1)

∗ This is only equivalent for algebraic structures. For non-algebraic structures, bijectivity and having an inverse homo-
morphism are not necessarily the same thing. For instance, a homomorphism between topological spaces is a continuous
map, but the inverse of a bijective continuous map is not necessarily continuous.
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so ϕ(g−1) is the inverse of ϕ(g) in H, giving ϕ(g−1) = ϕ(g)−1. ■

Theorem 12.4.4. If ϕ : G→ H is an isomorphism, then |g| = |ϕ(g)| for all g ∈ G.

Proof. If |g| is infinite, then gk is distinct for all k ∈ Z. Then, ϕ(gk) = ϕ(g)k must also be distinct for
all k ∈ Z, so |ϕ(g)| is infinite.

Conversely, suppose n = |g| is finite.

ϕ(g)n = ϕ(gn)

= ϕ(idG)

= idH

so |ϕ(g)| ≤ n = |g|. Now, let m = |ϕ(g)|, so

ϕ(gm) = ϕ(g)m

= idH

= ϕ(idG)

and since ϕ is an isomorphism, it is injective, so gm = idG and hence |ϕ(g)| = m ≤ |g|. Then,

|ϕ(g)| ≤ |g| ≤ |ϕ(g)|

so |ϕ(g)| = |g|. ■

12.4.2 Endomorphisms
An endomorphism is a homomorphism whose domain and codomain coincide. That is, a homomorphism
from an algebraic structure to itself. We don’t use these as much in group theory , but they are especially
important in linear algebra, where endomorphisms are changes of basis transformations (§33.5), and
furthermore, the set of endomorphisms on any algebraic structure X has monoidal structure (or even
group or ring structure in certain cases) under composition, denoted End(X).

Furthermore, the set of endomorphisms of a vector space itself has ring structure. For vector spaces of
finite dimension, this ring of endomorphisms is isomorphic to the ring of square matrices of the same
dimension – this is exactly what allows us to write every linear transformation as a square matrix (proving
this fact is set as an exercise in §33.7).

12.4.3 Automorphisms
An automorphism is an endomorphism that is also an isomorphism.

The set of automorphisms of an algebraic structure X has group structure under composition, and is
called the automorphism group of the structure, denoted Aut(X). The automorphism group is a subset
of the endomorphism monoid.

For example, the general linear group, GLn(K) can be characterised as the automorphism group of a
vector space of dimension n, over a field, K.

12.4.4 Morphisms
More generally, we can consider any kind of mappings between any kind of objects that compose asso-
ciatively and admit an identity mapping. This is the topic of study of category theory, which is discussed
in §51.

Notes on Mathematics | 304



Introduction to Abstract Algebra Homomorphisms

12.4.5 Cyclic Groups
Let S ⊆ G be a set of elements of G. H = ⟨S⟩ is then defined to be the minimal group that contains
all of S. That is, there are no subgroups of H that contain every element of S. S is then called the
generating set of H, or equivalently, we say that H is generated by S.

If S = {g} is a singleton set, thenH = ⟨S⟩ = ⟨g⟩ is given by {gn : n ∈ N} = {· · · ,(g−2),g−1, idH ,g,g
2,g3, · · · }.

If g ∈ G, then ⟨g⟩ is a subgroup of G.

If a group G can be written in this form – that is, G = ⟨g⟩ for a single element g – then we say that G
is cyclic, and that g is the generator of G. That is, a group is cyclic if and only if it is generated by a
single element (so cyclic groups are a special case of generated groups).

Example. All subgroups of Z under addition are cyclic, and are of the form kZ. △

Note that generators for a cyclic groups are not necessarily unique. That is, there may exist two distinct
elements of G, g and h, such that ⟨g⟩ = ⟨h⟩. For instance, Z is generated by both 1 and −1, and Z/pZ
with p prime is generated by every non-identity element.

Theorem 12.4.5. Cyclic groups are abelian.

Proof. Let G = ⟨g⟩ and let a,b ∈ G. Then,

a · b = gn · gm

= g · · · g︸ ︷︷ ︸
n

· g · · · g︸ ︷︷ ︸
m

= g · · · g︸ ︷︷ ︸
m

· g · · · g︸ ︷︷ ︸
n

= gm · gn

= b · a

by associativity. ■

Theorem 12.4.6. |⟨g⟩| = |g|.

Proof. Obvious from definition. ■

Lemma 12.4.7. In an infinite cyclic group, every generator has infinite order. In a finite cyclic group
of order n, every generator has order n.

We write Cn for the finite cyclic group of order n.

Theorem (Infinite Cyclic Groups). Every infinite cyclic group is isomorphic to the group of integers
under addition.

Proof. Suppose (G,×) is an infinite cyclic group with generator g. Define the map ϕ : (Z,+) → (G, · )
by n 7→ gn.

ϕ(a+ b) = ga+b

= ga · gb

= ϕ(a) · ϕ(b)

so ϕ is a homomorphism. Then, as G has infinite order, so does g and hence ga ̸= gb for all a ̸= b, so ϕ
is injective. As G is cyclic, every element can be written in the form gn for some n ∈ Z, which is exactly
the statement of surjectivity for ϕ. It follows that ϕ is an isomorphism. ■
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Corollary 12.4.7.1. Any two infinite cyclic groups are isomorphic.

Proof. As G was arbitrary, all infinite cyclic groups are isomorphic. ■

Theorem 12.4.8. Any two cyclic groups of equal order are isomorphic.

Proof. Let G and H be cyclic groups of finite order k with generators g and h, respectively. Define the
map ϕ : G→ H by gn 7→ hn. This map is clearly bijective by construction.

Let a,b ∈ G. As G is cyclic, a = gs and b = gt for some integers s,t.

ϕ(ab) = ϕ(gsgt)

= ϕ(gs+t)

= hs+t

= hsht

= ϕ(gs)ϕ(gt)

= ϕ(a)ϕ(b)

so ϕ is a homomorphism, and is hence an isomorphism. ■

Theorem 12.4.9. Cyclic groups are abelian.

Proof. Let G = ⟨g⟩ and let a,b ∈ G. Then,

ab = gngm

= gn+m

= gm+n

= gmgn

= ba

by associativity. ■

Theorem 12.4.10. If a group G has prime order p, then it is cyclic. That is, G ∼= Cp.

Proof. |G| ≥ 2 as p ≥ 2 is prime. Let g ∈ G \ {idG}. As g ̸= idG, |⟨g⟩| > 1. By Lagrange’s theorem, |⟨g⟩|
divides |G| = p, but p is prime, so |⟨g⟩| = |G|, and hence ⟨g⟩ = G. ■

12.4.6 Dihedral Groups
Let P be a regular n-sided polygon in the plane with n ≥ 3. The collection of isometries on P has group
structure under composition. This group is called the dihedral group of order 2n, and is denoted Dn.

These isometries consist of:

(i) n rotations through the angles 2πk/n for 0 ≤ k < n;

(ii) n reflections.

We label the vertices of P in order and consider these isometries as permutations on these vertices.
Then, the rotations are the elements ak, 0 ≤ k < n, where a = (1,2, . . . ,n) is the cyclic permutation
corresponding to the rotation by 2π/n, and the reflections are the elements akb, 0 ≤ k < n, where
b = (2,n)(3,n− 1)(4,n− 2) . . . is the reflection that passes through the vertex 1.
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In all cases, we have ba = an−1b = a−1b, so bak = an−kb = a−kb for 0 ≤ k < n. This allows us to find
the full Cayley table of this group expressed in this form as we can then perform any of the four basic
types of products:

(i) (ak)(al) = ak+l

(ii) (ak)(alb) = ak+lb

(iii) (akb)(al) = ak(bal) = aka−lb = ak−lb

(iv) (akb)(alb) = ak(bal)b = aka−lbb = ak−l

with all exponents taken modulo n.

12.4.7 Symmetric Groups
If X is any set, then the collection of permutations on X has group structure under composition. This
group is called the symmetric group on X, and is denoted Sym(X).

It doesn’t really matter what the elements of X actually are, since they just label the inputs and outputs
of the functions we’re interested in, so the structure really only depends on the cardinality of X:

Theorem 12.4.11. Suppose |X| = |Y | for two sets X and Y . Then, Sym(X) ∼= Sym(Y ).

We then write Sym(n) or Sn for the symmetric group on n elements.

The symmetric group is of extreme importance in theory, as they are some of the most general groups
possible and as such, it may not be surprising that every group is in some sense contained within a
symmetric group. More precisely, we will see later on that every group is isomorphic to a subgroup of a
symmetric group.

Because of its importance, we have specialised notation for writing elements of Sn.

12.4.7.1 Permutation Notation

We can write a permutation in Sn in Cauchy’s two-line notation as,(
1 2 3 · · · n
a b c · · · d

)
where the first line lists the elements of S, and the second lists their image. For example, a permutation
in S5 could be,

σ =

(
1 2 3 4 5
2 5 4 3 1

)
which represents the map defined by σ(1) = 2, σ(2) = 5, σ(3) = 4, σ(4) = 3, and σ(5) = 1.

To compose permutations in this notation, we write them next to each other, applying them right to
left, as per function notation. Simply follow where each element goes. For example,

ρ =

(
1 2 3
3 1 2

)
, µ =

(
1 2 3
1 3 2

)

ρµ =

(
1 2 3
3 1 2

)(
1 2 3
1 3 2

)
=

(
1 2 3
a b c

)
Looking at the rightmost permutation, 1 maps to 1, then 1 maps to 3, so a = 3. 2 maps to 3, then 3
maps to 2, so b = 2. 3 maps to 2, then 2 maps to 1, so c = 1.

To work out the inverse of a permutation written in Cauchy two-line notation, we just swap the first and
second rows.
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We can also write permutations in Sn in cycle notation.

Let A1,A2,A3, . . . ,Am be distinct elements of {1,2, . . . , n}. The cycle (A1,A2,A3, . . . ,Am) represents the
permutation that maps A1 to A2, A2 to A3, · · · , Am−1 to Am, Am to A1; and any elements not in the
cycle are fixed in place.

The number of elements in the cycle is the length of the cycle. A cycle of length 2 is additionally called
a transposition.

So, in S5, the cycle of length 3, (1,4,5) would map the ordering [1,2,3,4,5] to [5,2,3,1,4]. Note that
these are not the same as the rows from Cauchy’s two-line notation. The same permutation in two-line
notation is, (

1 2 3 4 5
4 2 3 5 1

)
Cycles are equivalent up to circular shifts, so, for example, (1,2,3) = (3,1,2) = (2,3,1) as in all 3 cases,
the cycle represents the mappings 1 7→ 2, 2 7→ 3, and 3 7→ 1.

Two cycles are disjoint if they do not contain any numbers in common. Disjoint cycles additionally
commute.

Every permutation can be written as a product of disjoint cycles.

Example. Write the following permutation as a product of disjoint cycles:

ρ =

(
1 2 3 4 5 6 7 8
5 7 1 4 8 2 6 3

)

We follow where 1 is mapped, then see where its image is mapped, etc., obtaining the chain of mappings,
1 7→ 5 7→ 8 7→ 3 7→ 1, so the first cycle is (1,5,8,3). Now, check the next element which doesn’t appear
in the cycle - in this case, 2. We then have the chain 2 7→ 7 7→ 6 7→ 2, so (2,7,6) is the next cycle.
Continuing, we have 4 7→ 4, and now every element is in some cycle, so we write ρ = (1,5,8,3)(2,7,6)(4).

Cycles of length 1 may be omitted as they do not affect the permutation, so ρ = (1,5,8,3)(2,7,6) is
another valid answer. △

Example. (Composing disjoint cycles)

σ = (1,3,10,9)(2,5,6)

τ = (4,3,10)(1,5,8)

What is στ?

Follow where 1 goes. Remember we read right to left as per function notation, so 1 7→ 5 in τ . Now,
apply σ to 5, so 5 7→ 6. Overall, we have στ(1) = 6.

Our cycle is (1,6, · · · ) so far. Now, we want to see where 6 maps to under στ , so we find τ(6) = 6, and
σ(6) = 2, so the cycle is now (1,6,2, · · · ), and we then follow 2. Repeat until every element is in a cycle.

Continuing in this way, we obtain στ = (1,6,2,5,8,3,9)(4,10). △

To invert a permutation given as a product of not necessarily disjoint-cycles, just write it backwards.
That is, reverse each cycle, then reverse the order of cycles.

Example. Let ρ = (1,4,3,7,6)(5,9,4,1)(9,2,4,8). What is ρ−1?

Writing out the cycles in reverse, we have ρ−1 = (8,4,2,9)(1,4,9,5)(6,7,3,4,1). △
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12.4.8 The Alternating Group & Transpositions
Theorem 12.4.12. Every permutation can be written as a product of transpositions.

Proof. Every permutation can be written as a product of disjoint cycles, so it suffice to show that cycles
can be written as products of transpositions. Then, (A1,A2,A3, . . . ,Am) = (A1,Am) · · · (A1,A3)(A1A2)

■

Example.
(1,2,3,4,5) = (1,5)(1,4)(1,3)(1,2)

△

Note that these transpositions are not disjoint, and do not commute. Furthermore, the transposition
decomposition of a permutation is not unique.

Let n ≥ 2 be an integer. Let x1,x2, . . . ,xn be variables, and let Pn be the polynomial Pn =
∏

1≤i≤j≤n xi−
xj .

For example,

P2 = x1 − x2
P3 = (x1 − x2)(x1 − x3)(x2 − x3)
P4 = (x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4)

...

Pn is called the nth Vandermonde polynomial.

Theorem 12.4.13. Let σ ∈ Sn, so σ(Pn) =
∏

1≤i≤j≤n xσ(i) − xσ(j). Let τ ∈ Sn be a transposition.
Then τ(Pn) = −Pn.

Proof. Let τ = (a,b). Any factor (xi − xj) without a or b inside is unchanged by τ . If both i = a and
j = b, then (xi − xj) 7→ (xj − xi) = −(xi − xj). Now, consider all other factors where only one of i and
j are equal to a or b. While (i < a and i < b) or (i > a and i > b), τ just swaps the position of the two
factors. Otherwise, the sign is switched. But the situation is symmetric, so each factor has a mirrored
pair, so no total sign change is effected from these factors. Thus, the only sign change is from when i = a
and j = b. ■

Every permutation can be written as a product of an even number of transpositions, or an odd number
of transpositions, but crucially, not both.

A permutation is even if it can be written as a product of an even number of transpositions, and similar
for odd.

The alternating group Alt(X) on a set X is the set of even permutations on X under composition. As
with Sym(X), the isomorphism classes of the alternating groups depend only on the cardinality of X, so
we write Alt(n) or An for the alternating group on n elements.

An is a clearly a subgroup of Sn as we can write An = {σ ∈ Sn : σ is even}, and it has order n!
2 .

12.4.9 Common Groups & Sets
We give a table of commonly occuring groups:

• Dn (the dihedral group) – the group of symmetries of a regular n-gon. |Dn| = 2n.

• Sn (the symmetric group) – the group of permutations of n points. |Sn| = n!.
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• An (the alternating group) – te group of even permutations of n points. |An| = n!
2 .

• Z/nZ – set of integers mod n under addition, or possibly multiplication if n is prime.∗

• Nth roots of unity – solutions of zn = 1 over the complex numbers under multiplication, sometimes
denoted Un, though this is non-standard notation.

• S1 or T (the circle group) – the set of complex numbers with magnitude 1 under multiplication.

• Map(A) – the set of functions from a set, A, to itself.

• Sym(A) – the set of bijections from a set, A, to itself. Sn = (Sym({1,2, . . . ,n}),◦).

• Mm×n(R) is the set of matrices with real entries. Mm×n(Z), etc., are defined similarly.

• GLn(R) (the general linear group) is the set of n×n matrices with non-zero determinants and real
entries, under matrix multiplication.

• SLn(R) (the special linear group) is the set of n×n matrices with unit determinant and real entries,
under matrix multiplication.

• SL2(Z) (the modular group) is the set of 2× 2 matrices with unit determinant and integer entries,
under matrix multiplication.

• SOn(R) (the special orthogonal group) is the set of n× n rotation matrices under matrix multipli-
cation.

12.4.10 Cosets
Let G be a group, H be a subgroup of G, and g be an element of G. The set gH = {gh : h ∈ H} is a
left coset of H, and Hg = {hg : h ∈ H} is a right coset of H. In the case of abelian groups written in
additive notation, we denote cosets by g +H rather than gH.

A coset of a subgroup has the same order as the subgroup, as inverses are unique.

Theorem 12.4.14. The following statements are equivalent for all g,k ∈ G:

(i) k ∈ gH

(ii) gH = kH

(iii) gk−1 ∈ H

Corollary 12.4.14.1. Two left cosets g1H and g2H in G are either equal or disjoint.

Proof. If g1H and g2H are not disjoint, then there exists some element k ∈ g1H ∩ g2H. But then
g1H = kH = g2H by the above theorem. ■

Example. 2Z is a subgroup of Z. What are the left cosets of 2Z in Z?

First, pick an element of Z. Say, 0. Add it to every element of 2Z:

0 + 2Z = {· · · ,0 + (−2),0 + (0),0 + (2), · · · } = 2Z

so 2Z is a left coset of 2Z in Z.

∗ The groups (Zn/Z,+) and (Z,+n) are technically slighly different, though they are isomorphic §12.4.1 and are func-
tionally identical. The set underlying the first group contains congruence classes with modularity built into the elements
themselves, while the set underlying the second group is just the integers, and the modularity is built into the operation
instead.
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Now, take 1 and add it to every element of 2Z:

1 + 2Z = {· · · ,1 + (−2),1 + (0),1 + (2), · · · }

This is distinct from the previous set, so this is a new coset.

Now, if we try 2 or anything else, we’ll find that we just land in one of our two previous cosets. In fact,
these two cosets partition Z, so we know we have them all. Thus, the left cosets of 2Z in Z are 2Z and
1 + 2Z. △

Lemma 12.4.15. If H is finite, then all left cosets have exactly |H| elements. That is, |gH| = |H| for
all g ∈ G.

Proof. The map ϕ : H → gH defined by ϕ(h) = gh is a bijection by the cancellative property. ■

Let G be a group and H be a subgroup of G. The index [G : H] is defined to be the number of left
cosets (or right cosets, but not counting both) of H in G.

Example. What is the index [Z : 2Z]?

In the previous part, we found two cosets, so [Z : 2Z] = 2. △

Theorem (Lagrange). If H is a subgroup of a group G, then |G| = [G : H]|H|.

Proof. Let H be a subgroup of a group G, and define an equivalence relation R on all pairs of elements
x,y ∈ G such that xRy holds if and only if there exists h ∈ H such that x = yh. Under this equivalence
relation, the left cosets of H in G are equivalence classes, and therefore partition G into disjoint sets. The
mapping x 7→ ax is inverted by y 7→ a−1y, and therefore defines a bijection H → aH, so each left coset
aH has the same cardinality as H. The number of left cosets is the index, [G : H], so |G| = [G : H]|H|,
as required. ■

If the index and sizes of each set are interpreted as cardinal numbers, Lagrange’s theorem holds even if
some of the sets are infinite in size.

Corollary (Lagrange’s Theorem). The order of any element a of a finite group divides the order of the
group. Or equivalently, the order of any subgroup of a group divides the order of the group.

12.5 Normal Subgroups

A subgroup N of a group G is normal in G if gN = Ng for all g ∈ G, and we write N ◁G to denote this
relation.

For any group, G, the trivial subgroup, {idG}, is always a normal subgroup of G. G itself is also always
a normal subgroup of G. If these are the only normal subgroups, then G is a simple group.

Theorem 12.5.1. If H is a subgroup of a group G such that [G : H] = 2, then H is normal in G.

Proof. Since H has index 2, it has exactly two left cosets; H itself, and G \H. H also has exactly two
right cosets; H, and G \H. Thus, the left and right cosets of H coincide and H is normal. ■

We give an alternative characterisation of normal subgroups:

Theorem 12.5.2. If H is a subgroup of a group G such that ghg−1 ∈ H for all g ∈ G and h ∈ H, then
H is normal in G.
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That is, a subgroup N of a group G is normal if and only if it is invariant under conjugation (§12.6.2).
That is, the conjugation of any element of N by any element of G is always in N ; ghg−1 ∈ H for all g ∈ G
and h ∈ H. For this reason, normal subgroups are also sometimes called invariant or self-conjugate in
G.

This then gives various equivalent conditions for a subgroup to be normal:

• For all g ∈ G, the left and right cosets gN and Ng are equal;

• The set of left and right cosets of N in G are equal;

• N is a union of conjugacy classes of G;

• The image of conjugation of N by any element of G is a subset of N ;

• The image of conjugation of N by any element of G is equal to N .

(Some of these will be proved later.)

Theorem 12.5.3. Every subgroup of an abelian group is normal.

Proof. Let H be a subgroup of an abelian group G, and let g ∈ G. Let x ∈ gHg−1 so x = ghg−1 for
some h ∈ H. Then,

x = ghg−1

= hgg−1

= h

∈ H

so H is invariant under conjugation by any g and is hence normal. ■

12.5.1 Direct Products
Let G and H be groups. The direct product (group) G ×H of G and H is the group on the Cartesian
product of G and H,

{(g,h) : g ∈ G,h ∈ H}

of ordered pairs of elements from G and H, under the operations of G and H applied componentwise.
That is, we define the group operation ⋆ on G×H to be,

(g1,h1) ⋆ (g2,h2) = (g1 ∗ g2,h1 · h2)

where ∗ is the group operation on G, and · is the group operation on H. The identity element idG×H is
then given by (idG , idH), and the inverse of (g,h) is (g−1,h−1).

Theorem 12.5.4. Any group of order 4 is isomorphic to either C4 or C2 × C2.

Theorem 12.5.5. Any group of order 6 is isomorphic to either C6 or D3.

The quaternion group Q8 is a non-abelian group of order 8, isomorphic to the set of quaternion units
(and their inverses) under quaternion multiplication. That is, the set {1,i,j,k, − 1, − i, − j, − k} where
i2 = j2 = k2 = ijk = −1.

Theorem 12.5.6. Any group of order 8 is isomorphic to either C8 or C4 × C2, C2 × C2 × C2, D4, or
Q8.
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12.5.2 Quotient Groups
A quotient group or factor group is a group obtained by identifying similar elements of a larger group
together using an equivalence relation that preserves some of the group structure, with the rest of the
structure being “factored” out. For instance, the group of integers under addition modulo n, (Z/nZ,+)
or equivalently, (Z,+n), can be obtained from the group of integers under addition, (Z,+), by identifying
elements that differ by a multiple of n, and defining a group structure that operates on congruence classes
(§10.2) rather than individual elements.

Subgroups and quotient groups are dual notions, the two being the primary ways of constructing smaller
groups from a larger one. Any normal subgroup has a corresponding quotient group, formed by elim-
inating the distinction between elements of the subgroups. For any congruence relation on a group G,
the equivalence classes of the identity element is always a normal subgroup, N , of the original group,
while the other classes are precisely the cosets of that normal subgroup, and the corresponding quotient
group is G/N .

The reason why G/N is called a “quotient” group comes from an analogy with division of integers.
When dividing 12 by 3, we obtain the answer 4 because we can split a collection of 12 objects into 3
subcollections each containing 4 objects. Quotient groups follow a similar idea, but when “dividing”
groups, we end up with another group as the answer rather than a number, because groups have more
structure than arbitrary collections of objects.

When we have a quotient group, G/N , with N being a normal subgroup of a group G, the group structure
is used to form our subcollections – the cosets of N in G. Because we started with a group and normal
subgroup, the final quotient contains more structure than just the number of cosets (which is what
regular division yields), but instead has group structure itself (given an appropriate binary operation on
cosets, as we will now show).

Let N be a normal subgroup of a group G. We define G/N = {gN : g ∈ G} = {{gn : n ∈ N} : g ∈ G}
to be the set of all left cosets of N in G. Since the identity element e ∈ N , we have a ∈ aN . We define
a binary operation, ·, on G/N as aN · bN = (ab)N , where ab is the group operation applied to a and b.

Lemma 12.5.7. Let N be normal in G, and let g,h ∈ G. Then, the product of any element in the coset
gN with any element in the coset hN is an element in the coset (gh)N .

Proof. Let gn1 ∈ gN and hn2 ∈ hN . Then, by normality of N , gN = Ng, so n1h ∈ Nh is equal to some
element hn ∈ hN , and hence (gn1)(hn2) = g(n1h)n2 = g(hn)n2 = (gh)(nn2) ∈ (gh)N . ■

We claim that this binary operation is well-defined if and only if N is normal.

Suppose that N is normal, and xN = aN and yN = bN for some x,y,a,b ∈ N . That is, x and a (and y
and b, respectively), are possibly distinct representatives of the same coset. Because N is normal, every
left coset is equal to its corresponding right coset, so we can “commute” these products:

(ab)N = a(bN)

= a(yN)

= a(Ny)

= (aN)y

= (xN)y

= x(Ny)

= x(yN)

= (xy)N

so the operation does not depend on choice of representative of each left coset when N is normal.
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For the backward direction, suppose that the operation is well-defined for some subgroup N of a group
G. That is, for all xN = aN and yN = bN with x,y,a,b ∈ N , (ab)N = (xy)N .

Let n ∈ N and g ∈ G. Since eN = nN ,

gN = (eg)N

= (eN)(gN)

= (nN)(gN)

= (ng)N

so N = (g−1ng)N and (g−1ng) ∈ N . Since the choice of n and g was arbitrary, (g−1ng) ∈ N for all
n ∈ N and g ∈ G, so N is normal.

If A and B are subsets of a group G, we define their (internal) product AB to be the set {ab : a ∈ A,b ∈
B}. This allows us to more concisely state the previous discussion:

Lemma 12.5.8. If N is normal in G and gN and hN are cosets of N in G, then (gN)(hN) = (gh)N .

Proof. By the previous lemma, (gN)(hN) ⊆ (gh)N . Then, let n ∈ N , so (gh)n = (g idG)(hn) ∈
(gN)(hN) and (gh)N ⊆ (gN)(hN). ■

We can also verify that this operation on G/N is associative, that G/N has identity element N , and the
inverse of an element aN under this operation can always be represented by a−1N . It follows that the
set G/N with the operation aN · bN = (ab)N has group structure, and we call this group the quotient
group of G by N .

Theorem 12.5.9. Let N be normal in G. Then, the set G/N of left cosets gN of N in G forms a group
under internal multiplication called the quotient group of G by N .

Proof. By the previous lemma, (gN)(hN) = (gh)N , giving closure, and associativity is inherited from
associativity in G. Then, (1N)(gN) = (1g)N = gN = (g1)N = (gN)(1N) for all g ∈ G, so 1N is the
identity element, and (g−1N)(gN) = (g−1g)N = 1N , so (g−1)N is the inverse element of gN . ■

Additionally, because N is normal, the above definition with left cosets replaced with right cosets is
equivalent.

Also note that if G is finite, then |G/N | = [G : N ] = |G|/|N |.

Example. Consider the group of integers under addition modulo 6, G = {0,1,2,3,4,5}, and the subgroup,
N = {0,3}. Because G is abelian, N is normal. The set of left cosets has cardinality 3:

G/N = {a+N : a ∈ G} = {0 +N,1 +N,2 +N} = {{0,3},{1,4},{2,5}}

Along with the binary operation as defined above, this set has group structure. In this case, this quotient
group is isomorphic to the cyclic group of order 3. △

Theorem 12.5.10. If G is abelian or cyclic, then so is G/N

Proof. Exercise. ■

12.5.3 Kernels and Images
Let ϕ : G→ H be a group homomorphism. Then, the kernel ker(ϕ) of ϕ is the set of elements mapped
to idH . That is,

ker(ϕ) = {g ∈ G : ϕ(g) = idH}

The image im(ϕ) of ϕ is just its image as a function.
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Theorem (Trivial Kernel (Groups)). Let ϕ : G→ H be a group homomorphism. Then, ϕ is injective if
and only if ker(ϕ) = {idG}.

Proof. Since idG ∈ ker(ϕ), ϕ(idG) = idH . If ϕ is injective, then ker(ϕ) = {idG}. Conversely, suppose
ker(ϕ) = {idG}. Let g1,g2 ∈ G such that ϕ(g1) = ϕ(g2). Then,

idH = ϕ(g1)
−1ϕ(g1)

= ϕ(g1)
−1ϕ(g2)

= ϕ(g−1
1 g2)

so g−1
1 g2 ∈ ker(ϕ), and hence g−1

1 g2 = idG and g1 = g2, so ϕ is injective. ■

Theorem 12.5.11. Let ϕ : G → H be a group homomorphism. Then, ker(ϕ) is a normal subgroup of
G.

Theorem 12.5.12. Let N ◁ G be a normal subgroup. Then the map π : G → G/N defined by g 7→ gN
is a surjective homomorphism with kernel ker(π) = N .

Proof. For any a,b ∈ G, π(ab) = (ab)N = (aN)(bN) = π(a)π(b), so π is a homomorphism. Then, for
any gN ∈ G/N , gN = π(g), so π is surjective. Now, suppose π(g) = idG/N . Then,

π(g) = idG/N

gN = idGN

Since gN = idGN , idG−1g = g ∈ N , so ker(π) = N . ■

This homomorphism is called the quotient map, or natural or canonical homomorphism from G to G/N .

Theorem 12.5.13. Let ϕ : G → H be a group homomorphism. Then, im(ϕ) is a (not necessarily
normal) subgroup of H.

Proof. Let h1,h2 ∈ im(ϕ), so there exist g1,g2 ∈ G such that ϕ(g1) = h1 and ϕ(g2) = h2. Then,

h1h
−1
2 = ϕ(g1)ϕ(g2)

−1 = ϕ(g1g2) ∈ im(ϕ)

so im(ϕ) is a subgroup by the one-step test. ■

12.5.4 The Isomorphism Theorems
Theorem (First Isomorphism Theorem). Let ϕ : G→ H be a homomorphism with kernel ker(ϕ) = K.
Then G/K ∼= im(ϕ), and more precisely, there is a homomorphism ϕ̄ : G/K → im(ϕ) defined by
ϕ̄(gK) = ϕ(g) for all g ∈ G.

Proof. Clearly, im(ϕ̄) = im(ϕ), so ϕ̄ is surjective. Now, suppose gK = hK, so gh−1 ∈ K. Let k = gh−1,
so g = kh. Then, because k ∈ K = ker(ϕ), ϕ(g) = ϕ(k)ϕ(h) = ϕ(h), so ϕ̄ is a well-defined map.

Let aK,bK ∈ G/K. Then,

ϕ̄
(
(aK)(bK)

)
= ϕ̄

(
(ab)K

)
= ϕ(ab)

= ϕ(a)ϕ(b)

= ϕ̄(aK)ϕ̄(bK)

so ϕ̄ is a homomorphism.
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Finally, suppose gK ∈ ker(ϕ̄), so,

ϕ̄(gK) = idH

ϕ(g) = idH

so g ∈ ker(ϕ) = K ■

We can restate this theorem more precisely with a commutative diagram:

Theorem (First Isomorphism Theorem). Let ϕ : G → H be a homomorphism with kernel ker(ϕ) = K
and let π : G → G/K be the quotient map. Then, there is an isomorphism ϕ̄ : G/K → im(ϕ) such that
the following diagram commutes:

G G/ ker(ϕ)

im(ϕ)

ϕ
ϕ̄

π

Proof. Suppose aK = bK. Then, ϕ(aK) = ϕ(a)ϕ(K) = ϕ(a), and similarly for bK, so a = b. The
universal property of quotients then yields the unique well-defined map ϕ̄ : G/K → im(ϕ) such that
the diagram above commutes, and since ϕ and π are surjective, ϕ̄ = ϕ ◦ π is also surjective. Now,
suppose π(g) ∈ ker(ϕ̄). Then, from commutativity, idK = ϕ̄(π(g)) = ϕ(g), so g ∈ ker(ϕ), and hence
ker(ϕ̄) = {ker(ϕ)}, so ϕ̄ is injective. ■

The next two isomorphism theorems are less important, and are used mainly in more advanced group
theory.

Theorem (Second Isomorphism Theorem). Let G be a group, H ≤ G be a subgroup, and K ◁ G be a
normal subgroup. Then,

(i) HK = KH is a subgroup of G;

(ii) H ∩K is a normal subgroup of H;

(iii) H/(H ∩K) ∼= HK/K.

Proof. Exercise. See problem 49 in §12.7 for steps. ■

Theorem (Third Isomorphism Theorem). Let G be a group and let K ⊆ H ⊆ G. Suppose K and H
are both normal in G. Then,

(i) K is normal in H;

(ii) H/K is a normal subgroup of G/K;

(iii) (G/K)/(H/K) ∼= G/H.

Proof. Exercise. See problem 50 in §12.7 for steps. ■
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12.6 Group Actions

Many groups we have used so far arise naturally from sets of functions from some set to itself. For
instance, Sym(X) is the set of permutations on a set X; GLn(R) is the set of endofunctions on Rn; and
Dn is the set of isometries on the set of vertices of a regular n-gon. Informally, we’d might say that Sym
“acts on” the set X, GLn(R) “acts on” Rn; and Dn “acts on” the vertices of a regular n-gon. We can
formalise this notion with group actions.

Let G be a group, and X a set. A (left) action of G on X is a map · : G×X → X satisfying,

(A1) idG · x = x for all x ∈ X;

(A2) (gh) · x = g · (h · x) for all g,h ∈ G and x ∈ X.

Right group actions are defined similarly as maps X × G → X satisfying analogous properties, but we
will only consider left actions here.

Example.

• Sym(X) (and any subgroups, such as Alt(X)) acts on X by the map ρ · x = ρ(x).

• GLn(R) (and any subgroups, such as SLn(R)) acts on Rn by the matrix multiplication A ·v = Av.

△

In these examples, every element of the group induces a permutation on X, which is an element of
Sym(X). In fact, this is always the case:

Theorem 12.6.1. Let · be an action of a group G on a set X. For g ∈ G, define the map ϕ(g) : X → X
by ϕ(g)(x) = g ·x. Then, ϕ(g) ∈ Sym(X), and furthermore, ϕ : G→ Sym(X) is a group homomorphism.

This suggests an alternative characterisation of group actions as a homomorphism from a group to the
symmetric group on some target set.

The kernel of an action · of G on X is defined to be the kernel K = ker(ϕ) of the homomorphism
ϕ : G→ Sym(X) as defined in the above theorem. That is,

K = {g ∈ G : g · x = x for all x ∈ X}

If K = {idG}, we say that the action · is faithful.

Let (G, ∗ ) be a group. Then, taking X to be the set G underlying the group, the left regular action of
G on itself is the faithful action defined by g · x = g ∗ x.

For a faithful action with kernel K, G ∼= G/K, as the quotient is trivial. Then, the first isomorphism
theorem gives G/K ∼= imϕ ≤ Sym(X), so G ≤ Sym(X).

Theorem (Cayley). Every group is isomorphic to a subgroup of a symmetric group. Specifically, for
each g ∈ G, the left-multiplication map ℓg : G → G defined by x 7→ gx is a permutation on G, and the
map G → Sym(G) defined by g 7→ ℓg is an injective homomorphism, thus embedding G into a subgroup
of Sym(G).

12.6.1 Orbits and Stabilisers
Let · be an action of G on X. Define the relation ∼ on x,y ∈ X by x ∼ y if and only if there exists a
g ∈ G such that y = g · x. Then, ∼ is an equivalence relation, and the equivalence classes are called the
orbits of G on X. In particular, the orbits of a specific element x ∈ X, denoted by G · x or OrbG(x) is,

OrbG(x) = {y ∈ X : (∃g ∈ G : g · x = y)}
= {g · x : g ∈ G}
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An action of G on X is transitive if there is only a single orbit. Equivalently, an action is transitive if
for every x,y ∈ X, there exists g ∈ G such that y = g · x.

Given g ∈ G and x ∈ X such that g ·x = x, we say that x is a fixed point of g, or that g fixes x. For each
x ∈ X, the stabiliser (subgroup) of G with respect to x, denoted Gx or StabG(x), is the set of elements
in G that fix x. That is,

StabG(x) = {g ∈ G : g · x = x}

This is a subgroup of G, but not necessarily a normal one.

Theorem 12.6.2. Let G act on X and let x ∈ X. Then,
⋂
x∈X StabG(x) is the kernel of the action of

G on X.

Proof. For any g ∈ G, g ∈
⋂
x∈X StabG(x) if and only if g · x = x for all x ∈ X, which is the definition

of being in the kernel. ■

Theorem (Orbit-Stabiliser). Let a finite group G act on X, and let x ∈ X. Then,

|G| = |OrbG(x)| × | StabG(x)|

Proof. Let y ∈ OrbG(x), so there exists g ∈ G such that y = g · x, and let H = StabG(x). Now, suppose
an element g′ ∈ G satisfies y = g′ · x. Then,

g′ · x = y

g′ · x = g · x
g−1g′ · x = x

so g−1g′ fixes x, giving g−1g′ ∈ StabG(x) = H. Then, g′ ∈ gH, so the elements satisfying g′ · x = y
are exactly the elements of the coset gH, and as cosets of a set are equal in size, we have |gH| = |H| =
|StabG(x)|. It follows that for each y ∈ OrbG(x), there are exactly |StabG(x)| elements g′ of G such
that g′ · x = y, so the total number of such y must be |G|/|StabG(x)|. ■

12.6.2 Conjugation
Recall that the (left) regular action of a group (G, ∗ ) is the action of the group on itself under the group
operation, so g · x = g ∗ x. Another important action of G on itself is the conjugation action defined by,

g · x = gxg−1

for g,x ∈ G. The orbits of this action are called the conjugacy classes of G, and elements in the same
conjugacy class are said to be conjugate in G. We write ClG(x) for the orbit of x, or equivalently, the
conjugacy class containing x. That is,

ClG(x) = {gxg−1 : g ∈ G}

The stabiliser for this action with respect to x is the set of elements g ∈ G such that g · x = x, so,

g · x = x

gxg−1 = x

gx = xg

so the stabiliser is exactly the set of elements that commute with x. This subgroup is called the centraliser
of x in G, and is denoted CG(x). That is,

CG(x) = {g ∈ G : gx = xg}

Applying the orbit-stabiliser theorem then yields,
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Theorem 12.6.3. Let G be a finite group and let x ∈ G. Then,

|G| = |ClG(x)| × |CG(x)|

The kernel K of this action then consists of the elements that fix, and hence commute with, all elements
g ∈ G. This is called the centre of G, and is denoted Z(G). So,

Z(G) = {f ∈ G : fg = gf for all g ∈ G}

Note that g ∈ Z(g) if and only if ClG(g) = {g}.

Example. For any abelian group G,

• Z(G) = G;

• CG(g) = G;

• ClG(g) = {g}.

for all g ∈ G. △

Example. The symmetric group S3 has three conjugacy classes that partition its six permutations of
three objects:

• Identity (abc 7→ abc);

• Transposing two elements (abc 7→ acb,abc 7→ bac,abc 7→ cba);

• Cyclic permutations of three elements (abc 7→ cab, abc 7→ cab).

These three classes also correspond to the three ways of transforming a equilateral triangle: identity,
reflections and rotations, respectively. △

As mentioned previously (§12.1.3), the group of permutations on 4 points correspond to the group actions
of proper rotations on a cube. We can phrase this more precisely by saying that the proper rotations
of the cube, which can be characterised by the permutations of the inner diagonals, are described by
conjugations in S4. In this case, the 24 permutations are partitioned into 5 conjugacy classes.

In general, the number of conjugacy classes in the symmetric group Sn is equal to the number of integer
partitions (§10.4.3) of n, because each conjugacy class corresponds to exactly one partition of {1,2, . . . ,n}
into cycles, up to permutation of the elements of {1,2, . . . ,n}.

12.6.3 Conjugacy Classes in Symmetric Groups
Consider two permutations f,g ∈ Sym(X). Suppose one of the cycles in g is (x1,x2, . . . ,xr), so g(x1) = x2,
g(x2) = x3, etc. Then, fg(x1) = f(x2), so fgf−1

(
f(x1)

)
= fg(x1) = f(x2), and more generally,

fgf−1
(
f(xi)

)
= f(xi+1) for i taken modulo r. So, fgf−1 has a cycle (f(x1),f(x2), . . . ,f(xr)). This

applies to any cycle in g, so we obtain:

Theorem 12.6.4. Given a permutation g as a product of cycles, the conjugate fgf−1 of g by f is the
permutation given by the same product of cycles with each x ∈ X replaced with f(x).

Example. Let X = {1,2,3,4,5,6,7}, g = (1,5)(2,4,7,6), and f = (1,3,5,7,2,4,6). Then,

fgf−1 =
(
f(1),f(5)

)(
f(2),f(4),f(7),f(6)

)
= (3,7)(4,6,2,1)

△

A permutation has cycle type 2r23r34r4 . . . nrn . . . if it has exactly ri cycles of length i, for i ≥ 2.
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Example. The permutation (1,2,3)(4,5)(6,7)(8,9,10)(11,12,13,14),(15,16) has cycle type 233241 because
it has 3 cycles of length 2, 2 cycles of length 3, and 1 cycle of length 4. △

Theorem 12.6.5. Two permutations in Sym(X) are conjugate in Sym(X) if and only if they have the
same cycle type.

12.6.4 Conjugacy Classes in Alternating Groups
Recall that the alternating group An is the subgroup of Sn that consists of even permutations. The odd
and even permutations partition Sn, so the index of An in Sn is 2, so An is normal in Sn.

Theorem 12.6.6. Let g ∈ An. Then, either,

ClAn
(g) = ClSn

(g)

or

|ClAn
(g)| = 1

2
|ClSn

(g)|

hold.

12.6.5 Simple Groups
Recall that a non-trivial group G is simple if the only subgroups normal in G are G itself, and the trivial
group {idG}.

Theorem 12.6.7. Cyclic groups of prime order are simple.

Proof. By Lagrange’s theorem, the only possible order of their subgroups are 1 and p. Normality follows
from cyclic groups being abelian. ■

In fact, these are the only abelian simple groups possible:

Theorem 12.6.8. A simple abelian group is cyclic with prime order.

Proof. Let G be simple and abelian, and let g ∈ G \ {idG}. If |g| is infinite, then the subgroup generated
by g2 is non-trivial, as it contains g2 ̸= idG; and proper, as it does not contain g; so G is not simple. If
|g| is finite but composite, so |g| = ab, then the subgroup generated by ga is similarly non-trivial and
proper, so G is not simple. It follows that |g| is finite and prime, and furthermore, we have ⟨g⟩ = G, or
else ⟨g⟩ would be a non-trivial proper subgroup. ■

There are also finite non-abelian groups that are simple. General simple groups have been classified
into three main infinite families (with cyclic groups of prime order forming one of the families), and 26
separate groups that do not fit into any of the families, called the sporadic groups.

One of the other infinite families of simple groups consists of the alternating groups An for n ≥ 5.

Lemma 12.6.9. A subgroup H of a group G is normal in G if and only if H consists of a union of
conjugacy classes of G.

Proof. Recall that H is normal in G if and only if it is invariant under conjugation . That is, ghg−1 ∈ H
for all g ∈ G, h ∈ H. But this is just the statement that H is normal in G if and only if ClG(h) ⊆ H for
all h. ■
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12.6.6 Sylow’s Theorems
One corollary of Lagrange’s theorem is that the order of any subgroup H of a finite group G always
divides the order of G. One obvious converse question to ask is if a group G has subgroups of all orders
that divide |G|. This is true for some groups, like finite cyclic grops. However, it is not true in general:

Theorem 12.6.10. A4 has no subgroup of order 6.

Proof. Suppose A4 has a subgroup H of order 6. Groups of order 6 must be cyclic or dihedral, and A4

has no elements of order 6, so H ∼= S3, so H must have 3 elements of order 3. Specifically, H must
contain the identity element and 3 pairs of transpositions. But then these elements form a subgroup of
A4, so H contains a subgroup of order 4, contradicting Lagrange’s theorem. ■

Let G be a finite group of order pnm, where n is the largest power of the prime p that divides |G|, so m
is not divisible by p. A subgroup of G of order pn is a Sylow p-subgroup of G.

Theorem (Sylow’s Theorems). Let G be a finite group, p a prime, and |G| = pnm, where p ∤ m. Then,

(i) G has a Sylow p-subgroup, and any subgroup of G of order pa for 1 ≤ a ≤ n is contained in a Sylow
p-subgroup of G.

(ii) Any two Sylow p-subgroups of G are conjugate in G. That is, if H and K are Sylow p-subgroups
of G, then there exists an element g ∈ G such that gHg−1 = K.

(iii) The number r of Sylow p-subgroups of G satisfies r ≡ 1 (mod p) and r|m.

Let G be a group of order pnm with n ≥ 1 and p ∤ m. We define Sylp(G) to be the set of Sylow
p-subgroups of G,

Sylp(G) = {H ≤ G : |H| = pn}

and by Sylow’s first theorem, this set is always non-empty. It turns out that this set is closed under
conjugation:

Lemma 12.6.11. If P ∈ Sylp(G) and g ∈ G, then gPg−1 ∈ Sylp(G).

Now, consider the map · : G × Sylp(G) → Sylp(G) defined by g · H = gHg−1 for H ∈ Sylp(G). The
above lemma verifies the correctness of the codomain, but this map can furthermore be shown to be a
group action of G on Sylp(G). Now, OrbG(P ) = {gPg−1 : g ∈ G}, and by Sylow’s second theorem, this
action is transitive, so,

OrbG(P ) = Sylp(G)

Then, by the orbit-stabiliser theorem and Lagrange’s theorem, we have,

Lemma 12.6.12. |Sylp(G)| divides |G|/|P |.

Theorem 12.6.13. If there is only one Sylow p-subgroup of G, then it is normal in G.

12.6.7 Sylow’s Theorem and Simple Groups
Theorem 12.6.14. There are no simple groups of order 2 552.

Proof. Let G be a group of order 2 552 = 8 · 11 · 29.

Take p = 11, so |G| = 11× (8× 29) = 111× 232. The number of Sylow 11-subgroups, r, must divide 232
and satisfy r ≡ 1 (mod 11). Consider the factorisation 232 = 23 × 29; the factors of 232 are then: 1, 2,
4, 8, 29 ≡ 7, 58 ≡ 3, 116 ≡ 6, and 232 ≡ 1, so r = 1,232 are the possible solutions.

Notes on Mathematics | 321



Introduction to Abstract Algebra Group Actions

Now, if G has more than 1 Sylow 11-subgroup, then it must have 232 Sylow 11-subgroups. As 11 is
prime, these subgroups must be cyclic, so every non-identity element generates the group. It follows
that these subgroups intersect only at the identity element, so each subgroup contributes 10 elements of
order 11, so there must be 232× 10 = 2 320 elements of order 11 in G.

Now, take p = 29, so |G| = 29 × (8 × 11) = 291 × 88. By identical arguments as before, the number of
Sylow 29-subgroups must be 1 or 88, and again, as 29 is prime, each subgroup must be cyclic, so if there
is more than 1 Sylow 29-subgroup, then there are 88× 28 = 2 464 elements of order 28.

Now, by Sylow’s first theorem, there exist Sylow 29 and 11-subgroups. If there are more than one of
each, then we have 2 320 and 2 464 elements of order 11 and 29, respectively. But these values sum to
more than 2 552 = |G|, so we cannot simultaneously have more than 1 Sylow 29 and 11-subgroups. But
then, any unique Sylow p-subgroup is normal, so G cannot be simple. ■
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12.7 Exercises

These questions are in no particular order of subject. Some of the questions are significantly more
difficult than others, mostly those at the end, while some can be done in a single sentence – some are
solvable just by recalling and stating definitions of algebraic structures. Questions on permutations or
cycles have not been included, as you can easily come up with some random cycles of your own, and
check them using a CAS.

Don’t worry if you can’t complete some of the questions without help; they are designed to encourage
you to research and learn more by yourself.

1. Prove that the empty set cannot form a group.

2. Prove that R∗ (the set of non-zero reals) forms a group under multiplication.

3. Prove that Z forms a cyclic group under addition.

4. Prove that the identity element of a group is unique.

5. Prove that the inverse of an element in a group is unique.

6. Suppose that G is a group such that (ab)2 = a2b2 for all a,b ∈ G. Prove that G is abelian.

7. Suppose that G is a group such that (ab)3 = a3b3 for all a,b ∈ G, and that there are no elements
of order 3. Prove that G is abelian.

8. Suppose G is a group with prime order. Prove G is cyclic.

9. Suppose G is a cyclic group. Prove that G is abelian.

10. Suppose that G is a group such that g is self-inverse for all g ∈ G. Prove that G is abelian.

11. Let G be a group. Prove that |g| = |g−1| for all g ∈ G.

12. Let G be a group, and let a ∈ G. Prove that a commutes with a2.

13. Suppose G has even order.

(a) Prove there exists an element a ∈ G \ {idG} such that a2 = idG.

(b) Prove that there are an odd number of such elements.

14. Prove that the identity is the only idempotent element in a group. That is, prove that if g · g = g
for an element g ∈ G, then g = idG.

15. Prove that every element of a finite group has finite order.

16. Let G be a group with order n. Prove that gn = e for all g ∈ G.

17. Prove that, if G has no non-trivial subgroups, then G is finite with prime order.

18. Let G be a group of order p, where p is prime. Prove that G has p− 1 elements of order p.

19. Let G be a group, and denote by Aut(G) = {ϕ : G → G is an isomorphism}. Prove that Aut(G)
is a group under composition.

20. Let G be a group, and let a,b ∈ G such that a and b are self-inverse. Prove that a and b commute
if and only if ab is also self-inverse.

21. Prove that every finite group with more than two elements has a non-trivial automorphism.

22. Consider the set of 2× 2 matrices with entries in F2 and non-zero determinant.

(a) Prove that this set is a group under matrix multiplication.
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(b) Prove that this group is isomorphic to S3.

23. Prove that two cyclic groups of the same order are isomorphic to each other.

24. Find an example of a group G and an infinite subset H of G such that H is closed under the group
operation, but not under inversion.

25. Prove that (Q,+) is not cyclic.

26. Let H and K be subgroups of a group G. Prove that H ∪ K is a subgroup of G if and only if
H ⊆ K or K ⊆ H.

27. Let G = {x ∈ R|x ̸= −1}, and x ∗ y := x+ y + xy.

(a) Prove that (G,∗) is a group.

(b) Prove that (G,∗) is abelian.

(c) Prove that (G,∗) is isomorphic to (R∗,×).

28. Prove that every infinite cyclic group is isomorphic to (Z,+). (This proof is given earlier in this
document, but do give it a try yourself. It is an extremely useful result.)

29. Prove that (R∗,×) is not isomorphic to (Z,+).

30. Prove that (R+,×) is isomorphic to (R,+).

31. Prove that R/Z is isomorphic to S1.

32. Prove that (R,+) and (R2,+) are isomorphic (but do not attempt to construct the isomorphism).

33. Prove that (Z,+) and (Z2,+) are not isomorphic.

34. Prove that C∗ is isomorphic to S1 (but do not attempt to construct the isomorphism).

35. Does an infinite group exist such that every element of the group has finite order? If so, give an
example. Otherwise, prove the non-existence of such a group.

36. Let G1 and G2 be groups.

(a) Prove that H1 = G1 × {idG2} and H2 = {idG1} ×G2 are both subgroups of G1 ×G2.

(b) Prove that H1 and H2 are both normal in G1 ×G2.

(c) Prove that if h1 ∈ H1 and h2 ∈ H2, then h1h2 = h2h1.

37. Define f,g : R → R by f(x) = 1
x and g(x) = x−1

x . These functions generate a group G with the
binary operation given by composition. Prove that G ∼= S3.

38. Let m and n be coprime. Prove that there is no non-trivial group homomorphism from Zm to Zn.

39. Prove that GL2(R)/SL2(R) ∼= (R∗,×).

40. Prove that any group with order 9 is abelian. More generally, prove that any group with order p2,
where p is prime, is abelian. Give an example of a group of order p3 that is not abelian.

41. Prove that A5 is a simple group.

42. Prove that there are no simple groups of order 24.

43. Prove that the centre of a group is always a normal subgroup.

44. Let G be a group of order 2n. Suppose that exactly n elements of G have order 2, and that the
other n elements form a subgroup, H ⊂ G of order n.

(a) Prove that n is odd.
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(b) Prove that H is abelian.

45. Prove that if a group G has only one element of order 2, then this element is in the centre of G.

46. Let H and K be subgroups of a group G.

(a) Prove that H ∩K is a subgroup of G.

(b) By means of counterexample, prove that H ∪K is not necessarily a subgroup of G.

(c) Prove that if G is finite and the orders of H and K are coprime, then H ∩ K is the trivial
subgroup.

47. Let G be a finite group of order n such that every non-identity element has order 2.

(a) Prove that G is abelian.

(b) Let H be a subgroup of G, and let g ∈ G \H. Prove that H ∪ gH is a subgroup of G.

(c) Prove that |H ∪ gH| = 2|H|.

(d) Deduce that the order of G is a power of 2.

48. In this exercise, we prove Cayley’s theorem.

(a) For any element g of a group (G,∗), define the function fg : G → G by fg(x) = g ∗ x. Prove
that this function is a bijection by considering the function induced by the inverse element
g−1, and hence deduce that these functions are elements of Sym(G).

(b) Prove that the set K = {fg : g ∈ G} is a subgroup of Sym(G).

(c) Define the function T : G→ Sym(G) by g 7→ fg. Prove that T is a group homomorphism.

(d) Prove that T is injective by considering the identity element of G and hence deduce Cayley’s
theorem.

49. In this exercise, we prove the second isomorphism theorem. Let G be a group, H a subgroup of G,
and K a normal subgroup of G.

(a) Prove that HK = KH and H ∩K are subgroups of G.

(b) Prove that the mapping ϕ : H → HK/K defined by ϕ(h) = hK is a group homomorphism.

(c) Find the kernel of ϕ and deduce that ϕ is surjective.

(d) Apply the first isomorphism theorem and obtain the second isomorphism theorem.

50. In this exercise, we prove the third isomorphism theorem. Let G be a group, and let K ⊆ H ⊆ G
be subgroups. Suppose that K and H are normal in G.

(a) Prove that K is normal in H.

(b) Define the mapping ϕ : G/N → G/H by ϕ(gN) = g(H). Prove that ϕ is well-defined.

(c) Prove that ϕ is a group homomorphism, and by considering the subset relation of K and H,
further deduce that ϕ is surjective.

(d) Find the kernel of ϕ, and apply the first isomorphism to obtain the third isomorphism theorem.

12.7.1 Solutions
1. Groups require an identity element, so the empty set is not a group.

2. Multiplication of non-zero reals yields reals, so R∗ is closed. Associativity is a basic property of
multiplication, the identity is given by 1 ∈ R∗, and the multiplicative inverse of a real number
r ∈ R∗ is given by 1

r , which is also in R∗.
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3. Any element n ∈ Z can be written as 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n

, so Z = ⟨1⟩ is cyclic.

4. Suppose e and f are identity elements of a group G. ef = e because f is an identity, and hence
a right identity for e, and ef = f because e is an identity, and hence a left identity for f . Then,
e = ef = f , and the identity is unique.

5. Let b and c be inverses of a. Then, ab = idG = ac and by the cancellative property, b = c, so the
inverse of a is unique. Alternatively,

b = b idG

= b(ac)

= (ba)c

= idGc

= c

6. abab = (ab)2 = a2b2 = aabb. Then,

ab = (a−1a)ab(bb−1)

= a−1(aabb)b−1

= a−1(abab)b−1

= (a−1a)ba(bb−1)

= ba

7. ababab = (ab)3 = a3b3. Then,

ababab = a3b3

a−1ababab−1 = a−1a2b2b−1

baba = a2b2

(ba)2 = a2b2 (1)

for any a,b ∈ G. Now, consider the expression xyx−1y−1 (this is the commutator of x and y).
Applying (1) with b = xy and a = x−1y−1, we have:

(xyx−1y−1)2 = (x−1y−1)2(xy)2

Now apply (1) with b = x−1 and a = y−1 on the left, and b = x and a = y on the right:

=
(
(y−1)2(x−1)2

)
(y2x2)

= y−2x−2y2x2

= y−2(x−2y2)x2

Apply (1) with a = x−2 and b = y2:

= y−2(yx−1)2x2

= y−2(yx−1)(yx−1)x2

= y−2yx−1yx−1x2

= y−1x−1yx

so we have

(xyx−1y−1)2 = y−1x−1yx (2)
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for any x,y ∈ G. Swapping variables again, we square (2) to obtain:

(ghg−1h−1)4 = (h−1g−1hg)2

Applying (2) on the right side with x = h−1 and y = g−1, we have,

(ghg−1h−1)4 = ghg−1h−1

(ghg−1h−1)3 = idG

for any g,h ∈ G. Since G does not contain any elements of order 3, it follows that ghg−1h−1 = idG
and hence gh = hg.

8. Let G be a group of prime order, and let g ∈ G \ {idG}. By Lagrange’s theorem, the order of ⟨g⟩
divides the order of G. As G is of prime order, ⟨g⟩ is either equal to G or the trivial subgroup, but
⟨g⟩ contains g ̸= idG, so the latter cannot hold.

9. Let a,b ∈ G. Because G is cyclic, a = gn and b = gm for some integers n and m and generator
element g. Then,

ab = gngm

= g · g · g · · · g︸ ︷︷ ︸
n

· g · g · g · · · g︸ ︷︷ ︸
m

= gn+m

= g · g · g · · · g︸ ︷︷ ︸
m

· g · g · g · · · g︸ ︷︷ ︸
n

= gngm

= ba

10. Consider the element ab ∈ G.

ab = (ab)−1

= b−1a−1

= ba

11. Let a ∈ G and an = idG for some integer n. Then,

idG = (aa−1)n = an(a−1)n = idG(a
−1)n = (a−1)n

so |a−1| ≤ |a|. The same argument with a and a−1 reversed shows |a| ≤ |a−1|.

12. a · a2 = a · (a · a) = (a · a) · a = a2 · a.

13. We prove the two statements together. Note that the requirement that g2 = idG is equivalent to
g = g−1 for any element g, so the identity element and the elements of order 2 are the only elements
in G equal to their own inverse elements.

G = {idG} ∪ {g : |g| = 2} ∪ {g1,g−1
1 ,g2,g

−1
2 , . . . ,gk,g

−1
k }

where gi are elements of order greater than 2. Because the gi have orders greater than two, the
elements gi and g−1

i are distinct, so the final set has even cardinality, and {idG} has odd cardinality.
Because G has odd order, it follows that the set {g : g2 = idG} has an odd number of members.

In particular, 0 is not an odd number, so {g : g2 = idG} cannot be the empty set, and hence
contains at least one element, a.
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14. Suppose g is idempotent. Then,

gg = g

ggg−1 = gg−1

g = idG

15. Let g ∈ G, and consider the sequence of elements

g,g2,g3,g4,g5, . . .

Because G is finite, gn = gm for at least one pair of distinct n,m ∈ Z. Without loss of generality,
suppose n < m. Then,

gn = gm

gng−n = gmg−n

idG = gm−n

16. Let g ∈ G have order a, so ga = idG. By Lagrange’s theorem, a divides |G|, so |G| = ab for some
integer b and hence g|G| = gab = (ga)b = idbG = idG.

17. The trivial group only has a proper subgroup, so G cannot be trivial.

Suppose G is infinite, so it contains non-identity elements. Let g ∈ G \ {idG}. Then, ⟨g⟩ is a
non-trivial subgroup of G.

Otherwise, suppose G is finite with composite order n = ab, and again let g ∈ G\{idG}. If ⟨g⟩ ≠ G,
we are done. Otherwise, the order of g is ab, so ⟨ga⟩ is a non-trivial subgroup of G.

18. Let g ∈ G \ {idG}. The order of g must divide p, but p is prime so |g| = 1 or |g| = p. g is not the
identity, so the former cannot hold, and hence all non-identity elements, of which there are p− 1,
have order p.

19. The composition of two isomorphisms is again an isomorphism; isomorphisms are just special
functions, so associativity is inherited from set functions; the identity mapping is an automorphism
and acts as an identity under composition; and isomorphisms also have, by definition, an inverse
isomorphism. Hence Aut(G) is a group.

20. Suppose that a and b commute. Then,

ab = ba

= b−1a−1

= (ab)−1

Conversely, suppose ab is self-inverse. Then,

ab = (ab)−1

= b−1a−1

= ba

21. Suppose G is non-abelian, so there exists g,h ∈ G such that gh ̸= hg. Consider the conjugation
map ϕ : G → G defined by x 7→ gxg−1 for a fixed g. Proving this is a group homomorphism is
straightforward, and its inverse is given by conjugation by g−1. Now, suppose this conjugation
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mapping is trivial. Then, h = ϕ(h) = ghg−1, and hence gh = hg, contradicting our choice of g and
h. Hence ϕ is a non-trivial automorphism of G.

Now, suppose G is a finite abelian group of order n > 2. Since G is abelian, the map ϕ : G → G
given by x 7→ x−1 is an automorphism. If ϕ is trivial, then x = ϕ(x) = x−1, so x2 = idG. If G has
an element of order greater than 2, then we are done. Otherwise, all elements of G have order at
most 2, so

G ∼= (Z/2Z)n

and since |G| > 2, we have n > 1. Then, the map ψ : (Z/2Z)n → (Z/2Z)n defined by
(x1,x2,x3 . . . ,xn) 7→ (x2,x1,x3 . . . ,xn) is a non-trivial automorphism of G.

22.
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12.8 Rings

A ring is a triple, (R,+ , · ), where R is a set and + and · are binary operations R×R→ R such that:

(R0) R is closed under ×;

(R1) R is an abelian group under +;

(R2) · is associative on R;

(R3) · left and right distributes over +;

(R4) R contains an identity under ×.

or in more detail,

(R0) ∀a,b ∈ R, a · b ∈ R (closure of · );

(R1) (R,+) is an abelian group (additive group);

(R2) ∀a,b,c ∈ R, a · (b · c) = (a · b) · c (associativity of · );

(R2) ∀a,b,c ∈ R, (a+ b) · c = a · c+ b · c and a · (b+ c) = a · b+ a · c (left and right distributivity);

(R3) ∃1R ∈ R such that ∀a ∈ R, a · 1R = 1R · a = a (existence of multiplicative identity).

We call the operation denoted by + addition, and the operation denoted by × multiplication or product
(regardless of what the operations actually are). We also call the additive identity 0R the ring zero, as
it is also the zero element for the multiplication operation.

Triples satisfying only axioms R0 to R3 are sometimes called rngs (as in, rings without identity), and
in contrast, rings with identity are called unital rings to distinguish them from rngs. Whenever “ring” is
used without qualification, we will assume that it is a unital ring.

A ring (R,+ ,×) is furthermore a commutative ring if it satisfies:

(R5) × is commutative on R.

Note that the “commutative” part of the name “commutative ring” refers to commutativity of multipli-
cation, as commutativity of addition is required in all rings regardless. However, rings notably do not
require multiplicative inverses.

Example.

• The set {0} under the trivial operations 0 + 0 = 0 and 0 · 0 = 0 forms the zero or trivial ring.

• Z, Q, R, and C are commutative rings under their usual addition and multiplication operations.

• Z/nZ or Zn is a commutative ring under addition and multiplication modulo n for all naturals
n ∈ N.

• If R is a ring, the set R[x] of polynomials in indeterminate x and coefficients in R is another ring
under the usual addition and multiplication of polynomials, called a polynomial ring.

• If R is a ring, then the set Mn×n(R) of n × n matrices with entries in R is another ring. Matrix
rings are generally non-commutative, and in fact, are commutative if and only if R is the trivial
ring, or R is commutative and n = 1.

△

Let (R,+ , · ) be a ring, and let S be a subset of R. Furthermore, suppose that (S,+ , · ) is also a ring.
(S,+ , · ) is then a subring of (R,+ , · ).
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To show that S is a subring of R, it suffices to show that S contains the identity of + and · , is closed
under + and · , and that every element has an inverse in S under +. More symbolically, if R is a ring,
then S ⊆ R is a subring if and only if,

• 0R ∈ S (additive identity);

• 1R ∈ S (multiplicative identity);

• If a,b ∈ S then a+ b ∈ S (closure under +);

• If a,b ∈ S then a · b ∈ S (closure under ×);

• If a ∈ S then (−a) ∈ S (additive inverses).

Associativity is inherited from the main ring, and you do not have to check for multiplicative inverses.

We can collapse some of these properties together:

Theorem (Subring Test). If (R,+ , · ) is a ring and S ⊆ R, then (S,+ , · ) is a subring of R if and only
if,

1. (S,+) is a subgroup of (R,+);

2. a,b ∈ S → ab ∈ S;

3. 1R ∈ S.

Proof. The reverse direction is trivial. Conversely, suppose the three conditions above hold for a subset
S ⊆ R. We verify the ring axioms:

(R0) Closure follows directly from condition 2.

(R1) (S,+) is an abelian group as it is a subgroup of an abelian group by condition 1.

(R2) Associativity is inherited from R as S ⊆ R.

(R3) Distributivity is inherited from R as S ⊆ R.

(R4) Multiplicative identity follows directly from condition 3.

■

Example.

• Z[i] = {a+ bi : a,b ∈ Z} is a subring of C called the ring of Gaussian integers.

• Z
[√

2
]
=
{
a+ b

√
2 : a,b ∈ Z

}
is a subring of R.

• The set { a

2n
: a ∈ Z,n ∈ Z≥0

}
is a subring of Q called the ring of dyadic rationals.

△

These examples show that it can be easier to describe a ring by expressing it as a subring of a different
known ring, as we avoid having to define the multiplication and addition operations, and do not have to
verify associativity and distributivity.

Theorem 12.8.1. The intersection of subrings of a ring R is itself a subring of R.
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12.8.1 Morphisms
A (ring) homomorphism between two rings (R,+ ,·) and (S,⊕ ,⊙) is a function ϕ : R→ S that preserves
the structure of R. That is,

• ϕ(a+ b) = ϕ(a)⊕ ϕ(b);

• ϕ(a · b) = ϕ(a)⊙ ϕ(b);

• ϕ(1R) = 1S .

Additive inverses and the additive identity are also part of the preserved structure, but they are not
explicitly specified as they follow from these three conditions.

If the inverse of a ring homomorphism is a homomorphism, or equivalently, if the homomorphism is a
bijection, then it is called a (ring) isomorphism. If an isomorphism exists between R and S, we say that
R and S are isomorphic (rings), and we write R ∼= S to denote this relation. Again, isomorphism is an
equivalence relation.

Like with groups, an injective ring homomorphism is also called a monomorphism, and a surjective
homomorphism is called an epimorphism.

Example.

• For each n ∈ N, the map x 7→ x (mod n) is a ring homomorphism Z→ Zn.

• The map z 7→ z is a ring isomorphism C→ C.

• If R is any ring and S is a subring of R, then for each element α ∈ R, the map ϕα : S[x] → R
defined by f 7→ f(α) is a ring homomorphism known as the evaluation map (at α).

• If ϕ : R → S is a ring homomorphism, then there is an induced homomorphism ψ : R[x] → S[x],
defined by,

•

ψ(anx
n + · · ·+ a1x+ a0) = ϕ(an)x

n + · · ·+ ϕ(an)x+ ϕ(a0)

△

Let ϕ : R → S be a ring homomorphism. Then, the kernel ker(ϕ) of ϕ is its kernel when treated as
a group homomorphism between the additive groups of R and S. That is, the set of elements that are
mapped to the additive identity:

ker(ϕ) = {r ∈ R : ϕ(r) = 0S}

The image im(ϕ) of ϕ is just its image as a function.

We have similar results for ring homomorphisms as we had for group homomorphisms:

Theorem (Trivial Kernel (Rings)). Let ϕ : R→ S be a ring homomorphism. Then, ϕ is injective if and
only if ker(ϕ) = {0r}.

Proof. See §12.5.3. ■

Theorem 12.8.2. Let ϕ : R→ S be a ring homomorphism. Then, im(ϕ) is a subring of S.

Proof. Follows from the subring test. ■
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Note that the kernel of a ring homomorphism is not necessarily a subring of the target ring. For example,
the kernel of the homomorphism ϕ : Z→ Zn is the set nZ, which does not contain 1 for all n ≥ 2.

Let R and S be rings. The direct product (ring) R× S of R and S is the ring on the Cartesian product
of R and S,

{(r,s) : r ∈ R,s ∈ S}

of ordered pairs of elements from R and S, under the two operations of R and S both applied compo-
nentwise. That is,

(r1,s1) + (r2,s2) = (r1 + r2,s1 + s2)

(r1,s1) · (r2,s2) = (r1 · r2,s1 · s2)

where + and · on the left are the ring operations on R× S, and the two + and · operations on the right
are the appropriate ring operations on R and S. The multiplicative identity element 1R×S is then given
by (1R,1S); the additive identity 0R×S by (1R,1S); and the additive inverse of (r,s) by (−r,− s).

Notice that R and S are not generally isomorphic to subrings of R×S in general, even under the obvious
projection mapping. For instance, R can be thought of as the elements of R× S of the form (r,0S), and
these elements do indeed define a ring isomorphic to R, but its multiplicative identity element is (1R,0S),
which is not the identity of R× S, so this ring is not a subring of R× S.

Theorem (Chinese Remainder Theorem). Zn × Zm ∼= Znm if and only if n and m are coprime.

By induction, we can extend this result to,

Corollary 12.8.2.1. If n = pa11 · p
a2
2 · · · p

ak
k is a factorisation of n into k distinct primes, then,

Zn ∼= Zpa1
1
× Zpa2

2
× · · · × Zpak

k

Theorem 12.8.3. Let R be a ring and a,b ∈ R. Then,

(i) a · 0 = 0 · a = 0;

(ii) a · (−1) = (−1) · a = −a.

Proof. For (i),

a · 0 = a · (0 + 0)

= a · 0 + a · 0

so a · 0 = 0 by the cancellative property in the group (R,+), and similarly, 0 · a = 0.

For (ii),

(−1) · a+ 1 · a = (−1 + 1) · a
= 0 · a
= 0

so (−1) · a = −a by uniqueness of inverses in the group (R,+), and similarly, a · (−1) = −a. ■

Theorem (Uniqueness of Multiplicative Identity). The multiplicative identity of a ring is unique.

Proof. Suppose 1 and 1′ are multiplicative identities of R. Then, 1 = 1 · 1′ = 1′. ■

Theorem (Coinciding Identities). Let R be a ring, and suppose that the additive and multiplicative
identities coincide, so 0 = 1. Then, R is the trivial ring.
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Proof. For all a ∈ R, a = a · 1 = a · 0 = 0. ■

If a ring is not the trivial ring, we also say that it is a non-zero ring.

12.9 Quotient Rings

12.9.1 Ideals
We previously covered ideals as subsets of the integers (§10.3), but ideals are defined more generally as
special subsets of any ring.

For an arbitrary ring, (R,+ ,· ), let (R,+) be its additive group. A subset I ⊆ R is a left ideal in R if,

• (I,+) is a subgroup of (R,+),

• For every r ∈ R and every x ∈ I, r · x ∈ I,

A right ideal is defined similarly, with r · x ∈ I being replaced with x · r ∈ I in the second requirement,
and a two-sided ideal, or just ideal, is a left ideal that is also a right ideal. If the ring is commutative,
then the definitions of left, right and two-sided ideals coincide.

So, an ideal is a subset of the ring that is a group under the ring addition restricted to the subset and
absorbs multiplication from one or both sides.

Theorem 12.9.1. An ideal I of a ring R contains 1R only when I = R.

Theorem 12.9.2. If ϕ : R→ S is a ring homomorphism, then ker(ϕ) is an ideal in R.

Proof. ker(ϕ) is an additive subgroup of R when ϕ is considered as a group homomorphism. Then, if
r ∈ ker(ϕ) and x ∈ R, then,

ϕ(x · r) = ϕ(x) · ϕ(r)
= ϕ(x) · 0S
= 0S

so x · r ∈ ker(ϕ). Similarly, r · x ∈ ker(ϕ), so ker(ϕ) absorbs multiplication as well, and is hence an ideal
in R. ■

When R is a commutative ring, the subset,

{ra : r ∈ R}

consisting of all multiples of a in R is an ideal of R. This ideal is called the principal ideal generated by
a, and is denoted (a), aR, or Ra.

For an arbitrary ring, the principal ideal (a) is equal to the set of finite sums,{
k∑
i=1

riasi : ri,si ∈ R

}

Theorem 12.9.3. If R is commutative, then (a) = R if and only if a is a unit of R.

We now consider how ideals arise in the specific case of construction of integer subrings under modulo
arithmetic.

Consider the ring of integers modulo n, Z/nZ, given n ∈ Z, also noting that the ring of integers is
commutative. We obtain Z/nZ by “wrapping” the line of integers around into a loop such that various
integers become identified together, subject to two constraints:
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• n must identify with 0, since n is congruent to 0 modulo n.

• The resulting structure must be a ring.

The second constraint forces additional identifications, and determines the precise way in which Z is
wrapped around. The notion of an ideal arises when we ask what set of integers is forced to identify
with 0.∗ Unsurprisingly, the set of integers congruent to 0 modulo n, nZ = {nm : m ∈ Z}, satisfies
this. That is, Z must be wrapped around itself infinitely many times so that the integers . . . ,n · (−2),n ·
(−1),n · (+1),n · (+2) . . . all align with 0. If we consider what properties this set must satisfy to ensure
that Z/nZ is a ring, then we obtain the above definition of an ideal.

We can construct similar structures from any commutative ring, R: start with an arbitrary element
x ∈ R, then identify with 0 all elements of the set xR = {xr : r ∈ R}. This set is always an ideal, and
furthermore, it is the smallest ideal that contains x, called the ideal generated by x, denoted (x) or ⟨x⟩.
More generally, we can take any subset S ⊆ R, and identify with 0 all elements in the ideal generated
by S the smallest ideal (S) such that S ⊆ (S). The ring we obtain after identification depends only on
the ideal (S), and not on the set S. That is, several subsets may generate the same ideal, but each ideal
generates a unique ring.

So, an ideal I of a commutative ring R captures the information required to obtain the ring of elements R
modulo a given subset S ⊆ R. The elements of I are, by definition, the elements of R that are congruent
to 0. That is, they are the elements that are identified with 0 in the resulting ring. This ring is called
the quotient of R by I, and is denoted R/I.

We can see that ideals are to rings what normal subgroups are to groups in that we can quotient a ring
by an ideal to generate another ring, just like how groups can be factored through by a normal subgroup.

Intuitively, the definition of an ideal gives two conditions necessary for I to contain all elements designated
as “zeros” by R/I:

• I is an additive subgroup of R, so the zero 0R of R is a zero 0R in I as well. Furthermore, if
x1,x2 ∈ I are “zeros” (they obey the ring axioms in the same manner as 0), then x1 − x2 ∈ I is a
“zero” too.

• Any element r ∈ R multiplied by a “zero” x ∈ I returns another “zero”, rx ∈ I.

It turns out that these two conditions are also sufficient for I to contain all the necessary “zeros”. That
is, no other elements have to be designated as “zero” in order for R/I to be a ring.

We can formalise this with relations. Given a ring, R, and a two-sided ideal I in R, we define a equivalence
relation ∼ on R such that a ∼ b if and only if a− b is in I. It turns out that ∼ is actually a congruence
relation on R, and if a ∼ b, we say that a and b are congruent modulo I. The congruence class of an
element a ∈ R is given by [a] = a+ I = {a+ r : r ∈ I}. This congruence class is also sometimes written
as amod I, and is called the residue class of a modulo I.

Since an ideal I of a ring R is a subgroup of (R,+), we can consider its cosets I + a for a ∈ R. We
already know that these form a quotient group under the addition operation defined by,

(I + a1) + (I + a2) = I + (a1 + a2)

But to define a ring structure, we also require a multiplication operation.

Theorem (Quotient Ring). Let I be an ideal of R. Then, the set R/I of cosets I + a of I in R forms
a ring under the addition operation in the quotient group, and the multiplication,

(I + a) · (I + b) = I + (a · b)

∗ Elements other than 0 must also be identified – for example, the elements 1+nZ must be identified with 1, the elements
2 + nZ with 2, and so on. However, these are determined uniquely by nZ since Z is an additive group.
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where + and · on the right hand side are the ring operations. The proof that these operations are well-
defined is omitted, as it is almost identical to the earlier proof (§12.5.2) for the operation on quotient
groups.

The zero element (additive identity) of R/I is then given by [0] = (0R + I) = I, and the multiplicative
identity is [1R] = (1R + I).

Example. The quotient ring Z/(n) = Z/nZ is isomorphic to the ring Zn of residues modulo n, with the
isomorphism Zn → Z/nZ given by x 7→ x+ nZ. △

Theorem 12.9.4. Let I be an ideal of a ring R. Then, the map π : R → R/I defined by π(a) = I + a
is a surjective ring homomorphism with kernel I called the quotient map.

The isomorphism theorems for groups also apply similarly to rings, but we only state the first one here:

Theorem (First Isomorphism Theorem). Let ϕ : R → S be a homomorphism with kernel ker(ϕ) = I.
Then R/I ∼= im(ϕ), and more precisely, there is a homomorphism ϕ̄ : R/I → im(ϕ) defined by ϕ̄(I+a) =
ϕ(a) for all a ∈ R.

12.9.2 Integral Domains
Let R be a ring, and let a,b ∈ R. If a and b are both non-zero and satisfy ab = 0, then a and b are called
(left and right, respectively) zero divisors.

A ring R is an (integral) domain if,

(i) R is commutative;

(ii) R is not the trivial ring;

(iii) R has no zero divisors; that is, if a,b ∈ R, then a · b = 0→ (a = 0 ∨ b = 0).

That is, an integral domain is a non-zero commutative ring in which the product of any two non-zero
elements is non-zero.

Example.

• The rings Z, Q, R, and C are integral domains.

• Subrings of integral domains are also integral domains, so Z[i] and Z
[√

2
]

are also integral domains.

△

Again, it can be easier to describe integral domains as subrings of other known integral domains.

Theorem 12.9.5. Zn is an integral domain if and only if n is prime.

Proof. If n = 1, then Zn ∼= {0}. If n = ab is composite, then ab = 0 with a,b ̸= 0 in Zn. If n is prime
and a,b ∈ Zn, then a and b are coprime to n, and hence ab is coprime to n by multiplicativity of gcd, so
n does not divide ab, and ab ̸= 0 in Zn. ■

12.9.3 Units
An element, a, of a ring R is a unit if it has a two-sided inverse under multiplication. That is, there
exists some b ∈ R such that a · b = b · a = 1.

Note that in any non-trivial ring, the additive identity 0R is not a unit.

The unit group of R is the group formed by the set {a ∈ R : a is a unit in R} under the ring multiplication
operation, denoted R∗.
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Example. In Q, R and C, every non-zero element, k, has a multiplicative inverse, 1
k ∈ Q,R,C, so the

units are the non-zero elements. Q∗, R∗ and C∗ are therefore Q \ {0}, R \ {0} and C \ {0}, respectively.

However, in Z, 1
k is an integer only for k = ±1, so the units in Z are ±1. Z∗ is therefore {−1,1}.

In Zn, an element a ∈ Zn is a unit in Z/nZ if and only if a and n are coprime (by the Euclidean algorithm
and Bézout’s identity), so Z∗

n = {a : gcd(a,n) = 1}. △

A non-trivial ring R is called a division ring if R \{0R} is a group under multiplication. That is, if every
non-zero element is a unit, or, if R \ {0R} = R∗.

12.10 Fields

Using our new terminology from ring theory, we can shorten the list of axioms given in §11.2 by defining
fields in terms of rings or groups.

A field is a commutative division ring. So, in total, (F,+ ,×) is a field if,

• (F,+) is an abelian group with additive identity 0F ;

• (F \ {0F },×) is an abelian group with multiplicative identity 1F ;

• 0F ̸= 1F (the non-degeneracy condition);

• Multiplication distributes over addition.

The non-degeneracy condition is there just to exclude the trivial ring {0} from being a field, as many
field theorems do not apply well to the trivial ring.

Equivalently, (F,+ ,×) is a field if (F,+) is an abelian group with additive identity 0F , (F \ {0F },×) is
an abelian group with multiplicative identity 1F , 0F ̸= 1F and multiplication distributes over addition.

Theorem 12.10.1. Let a ∈ Z/nZ. Then a is a unit in Z/nZ if and only if a and n are coprime.

This implies that for any prime p, the quotient division ring Z/pZ is always a field.

Example.

• Q, R, and C are fields.

• For any prime p, Z/pZ is a finite or Galois field, sometimes denoted Fp or GF(p).

• F2 in particular, is known as the binary field. In the context of computer science and Boolean
algebra, 0 and 1 in this field are often alternatively denoted by true and false, or ⊤ and ⊥ instead,
respectively. Addition in this field is simply the XOR operation §2.2.1.

• The smallest non-prime Galois field is the field with four elements, denoted F4 or GF(4), consisting
of four elements, 0, 1, α, and 1+α, where 0 is the additive identity, 1 is the multiplicative identity,
α and 1 + α satisfy α2 = 1 + α, and x+ x = 0 for all x ∈ F4.

0 and 1 correspond exactly to their counterparts in F2, so F4 is a field extension of F2, and
furthermore, F4 can also be constructed as the quotient field, F2[X]/(X2 +X + 1).

• A number that is a root of a non-zero polynomial in one variable with integer (or equivalently,
rational) coefficients is called an algebraic number. These are discussed in more detail later, but
the countable set A of algebraic numbers forms a field and satisfies Q ⊂ A ⊂ R.

• In classical construction geometry, we can construct geometric figures using only an infinite idealised
unmarkable ruler called a straightedge and an idealised compass that has no minimum or maximum
radius. Given a line segment of unit length, the set of lengths that can be constructed using a finite
sequence of straightedge-and-compass constructions is called the set of constructible numbers, and
indeed, this set is a field. Not all real numbers are constructible; for instance, the length of a side
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of a cube of volume 2 – that is, 3
√
2 – is famously∗ not a constructible number; and 3

√
2 is even

algebraic, so the constructible numbers are a subfield of the algebraic numbers as well as the real
numbers.

It turns out that the constructible numbers can equivalently be characterised algebraically as the
subset of the real numbers that can be described by formulae that combine integers using finitely
many operations of addition, subtraction, multiplication, multiplicative inverse, and square roots
of non-negative integers. In fact, we can restrict the integers in these formulae with to be only 0
or 1. With this characterisation of constructible numbers, we see that numbers like

√
2 =
√
1 + 1

are constructible† (and geometrically, this is simply the diagonal of a unit square), so this field is
also a field extension of the rationals.

△

Theorem 12.10.2. Every field is an integral domain.

Proof. Let F be a field. Suppose there exist x,y ∈ F \ {0} such that xy = 0. As F is a field, x ̸= 0 has
a multiplicative inverse x−1, so,

xy = 0

x−1xy = 0

y = 0

contradicting the definition of y. ■

Lemma (Cancellative Properties in Domains). Let R be an integral domain, and let x,y,c ∈ R. If,

• c ̸= 0;

• cx = cy or xc = yc,

then x = y.

Proof.

cx = cy

cx− cy = 0

c(x− y) = 0

Since R is a domain, and k ̸= 0, we must have x− y = 0, so x = y. The proof for xc = yc is similar. ■

Theorem 12.10.3. Every finite integral domain is a field.

Proof. Let R = {0R = r0,r1,r2, . . . ,rn} be a finite domain. By the previous lemma, for a fixed i > 0, the
n products rirj for 1 ≤ j ≤ n are distinct and non-zero, and since there are only n possible values, they
all occur exactly once. In particular, this means that rirj = 1R for some j, so R is a field. ■

∗ This is known as doubling the cube or the Delian problem, and is an ancient geometric problem.
This problem often comes along with another two geometric problems: squaring the circle, and angle trisection, both of

which have also been since proven impossible.
Squaring the circle, or the quadrature of the circle, is the task of constructing a square with the same area as a given

circle, again, only using straightedge-and-compass constructions. Doing so requires constructing the square root of π –
which is a non-algebraic, or transendental , number. As the constructible numbers are a subfield of the algebraic numbers,
this is impossible.

Angle trisection is the task of constructing an angle that is one-third of a given arbitrary angle. In some special cases,
this is possible, but in general, the required angle is not constructible. For instance, if we are given an angle of π/3 radians
– 60◦ – then we would again have to construct a quantity dependent on π.

† The non-constructibility of 3
√
2 in the doubling the cube problem follows from this algebraic characterisation. In

particular, its minimal polynomial over Q is degree 3, so this cube root cannot be computed from integers by a finite
sequence of these operations.
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Let R be a ring. If there exists a positive integer n such that nx = 0 for all x ∈ R, then, then we call
the minimal such positive integer the characteristic of R. If no such positive integer exists, then the
characteristic is 0.

Example.

• Q and Z have characteristic 0.

• Zn has characteristic n.

• The polynomial ring R[x] has the same characteristic as R.

△

Let R be a non-trivial commutative ring. An element r ∈ R is nilpotent if rn = 0 for some positive
integer n.

12.11 Polynomial Rings

Let R[x] be a polynomial ring over a ring R. If an element f ∈ R[x] has the form,

f = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

with an ̸= 0, then we define the degree deg(f) of f to be n, and an is the leading coefficient of f . If
an = 1, then f is a monic polynomial.

Note that non-zero constant polynomials consisting of a single element of R have degree 0, and the degree
of the zero polynomial is undefined, although some texts take it to be −1 or −∞.

Theorem 12.11.1. If R is an integral domain, then so is R[x].

Theorem 12.11.2. If R is an integral domain, then the units of R and R[x] coincide.

Note that these properties can fail if R is not an integral domain. For example, Z4 is not a integral
domain as 2 · 2 = 4 ≡ 0 in Z4. Then, the polynomial f = 2x+ 1 ∈ Z4[x] gives f · f = 4x2 + 4x+ 1 ≡ 1,
so f is a unit in Z4[x] \ Z4.

We can also define polynomial rings in multiple variables. We write R[x1, . . . ,xn] for the ring of poly-
nomials in n independent commuting indeterminates x1, . . . ,xn with coefficients in R. A monomial in
this ring is an expression of the form xα1

1 xα2
2 · · ·xαn

n , where α1, . . . ,αn are non-negative integers, and a
polynomial in this ring is a linear combination of these monomials with coefficients in R.

Note that we can also build up a polynomial ring in multiple variables as a chain of polynomial rings
in single variables. For instance, if S = R[x1], then R[x1,x2] = S[x2], and so on. By induction on the
previous 2 theorems, if R is an integral domain, then R[x1, . . . ,xn] is an integral domain and the units
of R and R[x1, . . . ,xn] coincide.

Lemma 12.11.3. R[x1, . . . ,xn] is commutative if and only if R is commutative.

12.11.1 Polynomial Division
Throughout this section, F will be a field.

Theorem (Polynomial Divison with Remainder). For any f,g ∈ F [x] with g non-zero, there exist
q,r ∈ F [x] such that f = qg + r, where either r = 0 or deg(r) < deg(g).

Theorem (Remainder Theorem). Let f = f(x) ∈ F [x]. Then, for a ∈ F , f(a) = 0 if and only if (x−a)
divides f .
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Proof. By the previous proposition,

f(x) = g(x)(x− a) + r(x)

Since deg(x− a) = 1, r = 0 or deg(r) < 1, so r ∈ F is a constant polynomial. Then,

f(a) = g(a)(a− a) + r

= r

■

Corollary 12.11.3.1. If f ∈ F [x] is not the zero polynomial, then f(a) = 0 for at most deg(f) distinct
values of a ∈ F . That is, a polynomial of degree d has at most d roots.

Proof. By induction on deg(f). If deg(f) = 0, then f is a constant non-zero function, so f(a) ̸= 0. If
otherwise deg(f) > 0 and f has no roots, we are done.

Now, suppose f(a) = 0 for some a ∈ F , so f = g(x− a) with with deg(g) = deg(f)− 1. If we then have
f(b) = 0, then either a = b, or g(b) = 0, in which case, there are at most deg(f)− 1 such values of b by
the inductive hypothesis. ■

Theorem 12.11.4. Let F be a field. Then, all finite subgroups of the unit group F ∗ are cyclic.

Corollary 12.11.4.1. If p is prime, then the set Zp \ {0} = {1,2, . . . ,p}, under multiplication modulo p,
is a cyclic group of order p− 1.

12.12 Principal Ideal Domains

The ring R will be an integral domain (and is hence commutative) for this section.

Recall that in a commutative ring, the principal ideals are those of the form (a) = aR for some fixed
a ∈ R.

A domain R is a principal ideal domain (PID) if every ideal of R is principal.

Theorem 12.12.1. For every field F , the polynomial ring F [x] is a principal ideal domain.

Various familiar properties of divisibility that hold in Z hold in more general PIDs. But first, we need
to extend the notion of divisibility to general integral domains.

Let x,y ∈ R. We say that x divides y if y = xr for some r ∈ R, and we write x|y to denote this relation.

Lemma 12.12.2. The following statements are equivalent in an integral domains R:

(i) x|y;

(ii) y ∈ (x);

(iii) (y) ⊆ (x).

Proof. (i)→ (ii): If x|y, then y = xr for some r ∈ R, so y ∈ (x) = {xt : t ∈ R}.

(ii)→ (iii): If y ∈ (x), then y = xr for some r ∈ R, so

(y) = {yt : t ∈ R}
= {(xr)t : t ∈ R}
= {x(rt) : t ∈ R}
⊆ {xk : k ∈ R}
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= (x)

(iii)→ (i) y ∈ {yt : t ∈ R} ⊆ {xr : r ∈ R}, so y = xr for some r ∈ R and x|y. ■

Let x,y ∈ R. If both x|y and y|x, then x and y are associate in R, and we write x ∼ y.

Lemma 12.12.3. The following statements are equivalent in an integral domains R:

(i) x ∼ y;

(ii) (y) = (x);

(iii) There exists a unit q ∈ R such that x = qy.

Example.

• In Z, the only units are ±1, so x ∼ y if and only if |x| = |y|.

• If F is a field, then the units in F [x] are the non-zero constants, so x ∼ y if and only if x = ay for
some a ∈ F \ {0}, so every polynomial is associate to a unique monic polynomial.

△

Let x,y ∈ R. A greatest common divisor gcd(x,y), also called a highest common factor, is an element
d ∈ R such that,

(i) d|x and d|y;

(ii) if k|x and k|y for some k ∈ R, then k|d.

so a greatest common divisor is a maximal element with respect to the partial ordering induced by
divisibility.

A least common multiple lcm(x,y) is an element m ∈ R such that,

(i) x|m and y|m;

(ii) if x|k and y|k for some k ∈ R, then m|k.

so a least common multiple is a minimal element, as above. Greatest common divisors and least common
multiples are dual notions. Note that gcd(0,x) = x and lcm(0,x) = 0 for any x ∈ R.

Note that a greatest common divisor is not unique. For example, in Z, 2 and −2 are both greatest
common divisors of 4 and 6. Any two greatest common divisors must divide each other, and are hence
associate. Similar statements hold for least common multiples. So, gcds and lcms and are unique up to
the associate relation.

Proving existence of gcds is more difficult. In arbitrary integral domains, they do not always exist, but
in PIDs, they do, and in fact, for the PID Z this is exactly the statement of Bézout’s identity.

Theorem 12.12.4. If R is a PID, then lcm(x,y) and gcd(x,y) exist for all x,y ∈ R. Furthermore, there
exist r,s ∈ R such that gcd(x,y) = rx+ sy.

12.12.1 Prime and Irreducible Elements
There are two different ways to characterise prime numbers, but these definitions lead to distinct notions
in arbitrary domains.

Let r ∈ R \ {0}. Then, r is irreducible if,

(i) r is not a unit;

(ii) if r = ab, then either a or b is a unit.
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Let r ∈ R \ {0}. Then, r is prime if,

(i) r is not a unit;

(ii) if r|ab, then r|a or r|b.

Theorem 12.12.5. If R is a domain, then every prime is also irreducible.

In general, the converse does not hold in an arbitrary integral domain, but it does in a PID.

Theorem 12.12.6. If R is a PID, then every irreducible is also prime.

Together, these theorems show that prime and irreducible elements coincide in PIDs.

An integral domain R is a factorisation domain (FD) if each non-unit x ∈ R \ {0} admits a factorisation
x = r1 · r2 · · · rn, where the ri are irreducible.

A factorisation domainR is furthermore a unique factorisation domain (UFD) if for any two factorisations∏n
i=1 ri =

∏m
i=1 si = x of a non-unit x ∈ R \ {0}, we have n = m, and there exists a permutation σ ∈ Sn

such that ri ∼ sσ(i) for all i.

Theorem 12.12.7. If R is a UFD, then every irreducible is also prime.

So, prime and irreducible elements also coincide in UFDs.

Lemma 12.12.8. A PID is a FD.

Theorem 12.12.9. If R is an FD in which all irreducibles are prime, then R is a UFD. In particular,
every PID is a UFD.

Theorem 12.12.10. Any finite collection of elements in a UFD has a gcd and an lcm.

12.12.2 Number Fields
An ideal I of a ring R is maximal if I ̸= R, but if J is any ideal of R such that I ⊆ J ⊆ R, then I = J ,
or J = R.

Theorem 12.12.11. An ideal I in a commutative ring R is maximal if and only if R/I is a field.

Theorem 12.12.12. For a ̸= 0, the principal ideal (a) in a PID R is maximal if and only if a is
irreducible.

If F is a field, and f ∈ F [x] has degree deg(f) > 0, then the elements of the quotient ring F [x]/(f)
correspond to polynomials in F [x] with degree less than f , where multiplication is done modulo f .

When f is irreducible, the previous two theorems imply that F [x]/(f) is a field. The case F = Q is
particularly important as Q[x]/(f) is isomorphic to a subfield of CC.

An element α ∈ C is algebraic over Q if it satisfies a polynomial f(α) = 0 for some f ∈ Q[x] with
deg(f) > 0. An element that is not algebraic is called transcendental.

Recall that for any α ∈ C, the evaluation map ϕα : Q[x]→ C, defined by f 7→ f(α), is a ring homomor-
phism. Here, there are two cases to consider; whether α is algebraic or not.

If α is transcendental, then there are no polynomials f ∈ Q[x] such that f(α) = 0, so ker(ϕα) contains
only the zero polynomial, and so, by the first isomorphism theorem, we have im(ϕα) ∼= Q[x]. If α is
algebraic, then there exists a non-zero polynomial f ∈ Q[x] such that f(α) = 0, so f ∈ ker(ϕα), and
since ker(ϕα) is an ideal of the PID F [x], ker(ϕα) must be a principal ideal, so there is some m ∈ F [x]
such that ker(ϕα) = (m).

This polynomial m is not necessarily unique, but any two distinct values must divide each other and
thus be associate in F [x]. By multiplying by constants, we can assume that m is monic, and this monic
polynomial is unique and is called the minimal polynomial of α over Q.
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Theorem 12.12.13. If α is algebraic in C, then there is a unique non-zero irreducible monic polynomial
m ∈ Q[x] such that m(α) = 0.

By the first isomorphism theorem, we then have,

im(ϕα) ∼= Q[x]/(f)

and since f is irreducible, (f) is a maximal ideal, and hence Q[x]/(f) is a field, so im(ϕα) is a subfield
of C, denoted Q(α).

Fields of this type are called number fields.

12.13 Polynomials

A field F is algebraically closed if for every f(x) ∈ F [x] with degree deg(f) > 0, there exists a ∈ F such
that f(a) = 0.

Example.

• C is an algebraically closed field.

• The subfield A = {a ∈ C : ∃f ∈ Q[x],f(a) = 0} ⊂ C of C of algebraic numbers is also an
algebraically closed field.

△

Theorem 12.13.1. If F is an algebraically closed field, then the irreducibles in F [x] are exactly the
polynomials of degree 1, so each irreducible is associate to (x− a) for a unique a ∈ F .

12.13.1 Eisenstein’s Criterion
It is difficult to check polynomials in Z[x] for irreducibility, but Eisenstein’s criterion provides an sufficient
(but not necessary) condition for irreducibility that is often simpler to use.

Let R be a UFD. Then, note that if a non-constant polynomial f ∈ R[x] is irreducible, its coefficients
need to be jointly coprime, as, if a is a non-unit in R that divides all the coefficients of f , then a is a
non-unit in R[x] that divides f .

A non-zero polynomial f = anx
n + · · ·+ a1x+ a0 ∈ R[x] is primitive if gcd0≤i≤n(ai) = 1.

So, any non-zero f ∈ R[x] can be written as af0 where a ∈ R is the gcd of the coefficients of f and f0 is
primitive.

Theorem (Eisenstein’s Criterion). Let R be a UFD, and let f = anx
n + · · · + a1x + a0 ∈ R[x] be a

primitive polynomial. If there exists a prime p ∈ R such that,

• p ∤ an;

• p | ai for 0 ≤ i < n;

• p2 ∤ a0,

or,

• p2 ∤ an;

• p | ai for 0 ≤ i < n;

• p ∤ a0,

then f is irreducible in R[x].
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Example. 3x3 + 10x2 + 12x + 2 is irreducible in Z[x] as gcd(3,10,12,1) = 1, and Eisenstein’s criterion
applies with p = 2. △

12.13.2 Fields of Fractions
Let R be an integral domain, and define the set,

W = R× (R \ {0})
= {(x,y) ∈ R×R : y ̸= 0}

We define an equivalence relation on W by (a,b) ∼ (c,d) if and only if a · d = b · c. Then, the equivalence
classes of an element (a,b) is called a fraction, and is denoted a

b .

Let Q(R) be the set of equivalence classes of W .

Theorem 12.13.2. If R is an integral domain, then Q(R) is a field under the operations,

a

b
+
c

d
=
a · d+ b · c

b · d
a

b
· c
d
=
a · c
b · d

and the map π : R→ Q(R) defined by r 7→ r
1 is an injective ring homomorphism.

The field Q(R) is called the field of fractions of an integral domain R.

Example.

• Q(Z) = Q

• Q(F [x]) is the field of rational functions p/q, p,q ∈ F [x],q ̸= 0, in one variable x, commonly denoted
by F (x).

△

12.13.3 Gauss’ Lemma
Lemma 12.13.3. The product of two primitive polynomials is primitive.

Proof. Let f = a0 + a1x+ · · ·+ amx
m and g = b0 + b1x+ · · ·+ bnx

n be primitive, and fg = c0 + c1x+
· · ·+ cm+nx

m+n.

If fg is not primitive, then some non-unit of R divides all the coefficients ci of fg. This non-unit has a
least one irreducible factor, so some irreducible p ∈ R divides ci for 0 ≤ i ≤ m+ n.

Since f is primitive, p cannot divide every ai, so suppose that p|ai for 0 ≤ i < k, but p ∤ ak for some
k ≥ 0. Similarly, choose ℓ ≥ 0 such that p|bi for 0 ≤ i < ℓ, but p ∤ aℓ.

We have ck+ℓ =
∑k+ℓ
i=0 aibk+ℓ−i, where we take any undefined coefficients to be 0. Since p is a prime that

does not divide ak or bℓ, it does not divide akbℓ, but p does divide every other term in this sum. So,
p ∤ ck+ℓ, which is a contradiction. ■

Theorem 12.13.4. Let R be a UFD with a field of fractions Q = Q(R). Then, a primitive polynomial
in R[x] is irreducible if and only if it is irreducible in Q[x].

Proof. Let f ∈ R[x] be primitive. If deg(f) = 0, then f is a unit in R, and is irreducible in neither R[x]
nor Q[x]. Otherwise, suppose that f = gh for some non-units g,h ∈ R[x]. By primitivity, deg(f) > 0
and deg(h) > 0, so, if f is reducible in R[x], then it is also reducile in Q[x].

Conversely, suppose that f is primitive and reducible in Q[x], so f = gh for some non-units g,h ∈ Q[x],
and again, we have deg(f) > 0 and deg(h) > 0.
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Let a1 be the least common multiple of all the denominators of the coefficients of g(x), so a1g ∈ R[x].
Now, let a2 be the greatest common divisor of all the coefficients of a1g(x), and define a = a1

a2
. Then,

a ∈ Q, and ag ∈ R[x] with ag primitive.

Similarly define b = b1
b2
∈ Q with bh ∈ R[x] and bh primitive. So, by the previous lemma, f ′ = abgh = abf

is primitive and hence a2b2f ′ = a1b1f , with f and f ′ both primitive.

So, a1b1 and a2b2 are both equal to the greatest common divisor of the coefficients of a1b1f , and by
uniqueness of the greatest common divisor, a1b1 and a2b2 are associate in R. But, then u = ab = a1b1

a2b2

is a unit in R, and f = (ag)(u−1bh) is a factorisation of f in R[x], so f is reducible in R[x]. ■

In particular, we have Gauss’ lemma:

Lemma 12.13.5 (Gauss). A primitive irreducible polynomial in Z[x] is irreducible in Q[x].

Corollary 12.13.5.1. If R is a UFD, then there are two distinct types of irreducibles in R[x]; irreducible
elements in R, and primitive elements in R[x] that are irreducible in Q[x].

Proof. This follows from integral domains sharing units with their polynomial rings (Theorem 12.11.2),
Gauss’ lemma, and the fact that a polynomial of non-zero degree in R[x] that is not primitive is reducible.

■

Theorem 12.13.6. If R is a UFD, then so is R[x].

Proof. Clearly, we can factorise any f ∈ R[x] into a product of irreducible elements of R and irreducible
primitive polynomials in R[x]. For uniqueness, suppose that

k∏
i=1

(pi) ·
n∏
i=1

fi =

ℓ∏
i=1

(qi) ·
m∏
i=1

gm

are two factorisations of the same polynomial in R[x], where the pi and qi are irreducible in R, and
the fi and gi are irreducible primitive polynomials in R[x]. By Theorem 12.13.4, the fi and gi are also
irreducible elements of the field of fractions Q[x] of R, whereas the pi and qi are units in Q[x].

Q[x] is a PID, so it is a UFD, and hence n = m, and, after permuting the gi if necessary, fi and gi are
associates in Q[x] for 1 ≤ i ≤ n; that is, for each i, we have gi = aifi for some ai ∈ Q. But then, ai = bi

ci
,

with bi,ci ∈ R, and bifi = cigi.

Since fi and gi are primitive, ci and bi are both greatest common divisors of the coeficients of cifi, so bi
and ci are associates in R, and hence the ai are all units in R. We can now cancel the fi and conclude
that

k∏
i=1

pi =

ℓ∏
i=1

(qi) · a

where a =
∏n
i=1 ai is a unit in R. We then have k = ℓ as R is a UFD, so, after permuting the qi if

necessary, pi and qi are associates for all i. ■

Example.

• Z[x] is a UFD, but is not a PID as (2) + (x) is not principal.

• By induction on the previous theorem, R[x1,x2, . . . ,xn] is a UFD for any n > 0 for any UFD R.

△
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12.14 Exercises

These questions are again in no particular order of subject. Some of the questions are significantly more
difficult than others, mostly those at the end, while some can be done in a single sentence – some are
solvable just by recalling and stating definitions of algebraic structures.

1. Prove that the empty set cannot form a ring.

2. Prove that the trivial ring is commutative.

3. Prove that the set of 2× 2 matrices with,

(a) integer entries forms a ring.

(b) integer entries does not form a field.

(c) integer entries and non-zero determinant, along with the 2×2 zero matrix, still does not form
a field.

4. Prove that Z is a ring under addition and multiplication.

5. Prove that Z/4Z is a ring under addition and multiplication modulo 4.

6. Prove that 2Z and 3Z are not isomorphic as rings.

7. Prove that Z[i]/(1 + i) is isomorphic to Z/2Z.

8. Determine all ring homomorphisms Z×Z→ Z. (Find all of them, and prove there are no others.)

9. Determine all ring homomorphisms Z→ R where R is an arbitrary ring.

10. Let (R, + ,×) be a ring, and suppose the additive identity is 0R. Prove that ∀x ∈ R, 0R × x =
x× 0R = 0R. That is, prove that the additive identity is also the zero element for the ring product
(hence also justifying the name, “ring zero” for this element).

11. Give an example of a non-commutative ring.

(a) Give an example of a finite non-commutative ring.

(b) What is order of the smallest possible non-commutative ring?

12. Prove that complex conjugation is a ring homomorphism C→ C.

13. Prove that there is no ring homomorphism Z/nZ→ Z for any n ≥ 1.

14. Suppose that R is a ring such that for all elements a,b,c ∈ R, ca = cb implies a = b. Prove that R
is commutative.

15. Let R and S be rings, and suppose ϕ : R→ S is a surjective ring homomorphism. Prove that the
image of an ideal of R under f is an ideal of S.

16. Let R be a ring. Prove that the following statements are equivalent:

(i) R is a field.

(ii) The only ideals of R are (0) and R.

(iii) All ring homomorphisms ϕ : R→ S are injective for any ring S.

17. Let R be a commutative ring, and consider the polynomial ring R[x,y]. Let (x) be the principal
ideal of R[x,y] generated by x. Prove that R[x,y]/(x) is isomorphic to R[y] as a ring.

18. Let I be a non-zero ideal of the Gaussian integers, Z[i]. Prove that Z[i]/I is finite.
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19. Let ϕ : R → S be a ring homomorphism, and let I be a prime ideal of S. Prove that f−1[I] is a
prime ideal of R.

20. Let R be an integral domain, and let I be an ideal of R. Prove or disprove the statement that R/I
is also an integral domain.

21. Prove that for each positive integer n, the polynomial(
n∏
i=1

(x− i)

)
− 1

is irreducible over Z.

22. Let F be a finite field of characteristic p. Prove that the number of elements of F is pn for some
positive integer n.

23. Prove that the only field automorphism of R is the identity map.

24. Prove all algebraically closed fields are infinite.

25. Prove that the quotient ring Z[i]/(1 + i)Z[i] is a field.

26. Let R be a non-trivial ring, and suppose that a,b ∈ R are elements such that ab = 1R.

(a) Prove that if a or b is not a zero divisor, then ba = 1R.

Now suppose that ba ̸= 1R.

(b) Prove that 1− ba is idempotent.

(c) Prove that bn(1− ba) is nilpotent for all positive integer n.

(d) Prove that R has infinitely many nilpotent elements.

27. Is it possible for the equation x + x = 1 to have more than one solution in x in a not necessarily
commutative ring R?

28. Find a polynomial of degree 2 over Z/4Z that has 4 roots.

29. Compute the characteristics of the following rings:

(a) Z;

(b) Q;

(c) Z/nZ;

(d) Z/2Z× Z/4Z× Z/10Z;

(e) Z[i]/(1 + i), where i is the imaginary unit;

(f) Z[ω]/(2− 5ω) where ω is a primitive third root of unity.

30. Prove that the characteristic of any field is either zero or prime.

31. Find a ring R that that satisfies Z ⊆ R ⊆ Q.

32. Let R be any commutative ring.

(a) Prove that if f,g ∈ R[x], and g is monic, then there exist q,r ∈ R[x] with f = gq + r, where
either r = 0 or deg(r) < deg(g).

(b) By means of a counterexample, show that the previous statement does not hold if we do not
require that g is monic.
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33. Let ϕ : Z[x]→ R be a ring homomorphism defined by f 7→ f
(√

3
)
. Prove that ker(ϕ) is a principal

ideal in Z[x].

34. Let R be a finite commutative ring. Prove that every prime ideal of R is a maximal ideal of R.

35. Let R be a PID, and let a ∈ R be a non-zero non-unit element. Prove that the following statements
are equivalent:

(a) The ideal (a) is maximal.

(b) The ideal (a) is prime.

(c) The element a is irreducible.

36. Prove that the polynomial xn−2 is irreducible over Q using Eisenstein’s criterion, and hence deduce
that n

√
2 is irrational for all integers n ≥ 2.

37. Prove that Z[x]/(n) is isomorphic to (Z/nZ)[x].

38. Let R be a ring, and let x be an nilpotent element of R. Prove that 1R + x and 1R − x are units.

39. Let R be a commutative ring, and define

Nil(R) = {r ∈ R : ∃n ≥ 1,rn = 0R}

to be the subset of nilpotent elements of R.

(a) Prove that Nil(R) is an ideal of R.

(b) Show by means of a counterexample that ifR is not commutative, then Nil(R) is not necessarily
an ideal of R.

(c) Prove that if r ∈ Nil(R), then 1R − r is invertible in R.

(d) Prove that Nil(R) is contained in the intersection of all prime ideals of R.

(e) Prove that Nil
(
R/Nil(R)

)
= {0R}

40. Determine all rings that have equal cardinality and characteristic.
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Group Theory

“One should never try to prove anything that is not almost obvious.”
— Alexander Grothendieck

13.1 Glossary

H ≤ G H is a subgroup of G.

H ⊴ G H is a normal subgroup of G.

gH A coset of H in G; the set gH = {gh : g ∈ G}.

G/H The set of left cosets of H in G; the set {gH : g ∈ G}.

G/N The quotient or factor group of G by N ; the set of left cosets of a normal subgroup
N in G, equipped with the operation gN ◦ hN = ghN

[G : H] The index of H in G; the cardinality |G/H|; the number of distinct left cosets of H
in G.

gh The conjugation of h by g; the element ghg−1.

gH The conjugation of a subset H ⊆ G by an element g ∈ G; the set gHg−1 = {ghg−1 :
h ∈ H}.

NG(H) The normaliser of H in G; the set {g ∈ G : gHg−1 = H}. The normaliser is always
a subgroup of G.

CG(x) The centraliser or commutant of x in G; the set of elements that commute with x;
the set {g ∈ G : gx = xg}. The centraliser is always a subgroup of G.
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Z(G) The centre of G; the set of elements that commute with all elements of G; the set
{g ∈ G : ∀h ∈ G : gh = hg}. The centre is always a normal subgroup in G.

Cl(x), Gx The conjugacy class of x; the set {gxg−1 : g ∈ G}.

OrbG(x) The orbit of x in G; the set of possible images of x under an action; the set {g · x :
g ∈ G}.

StabG(x) The stabiliser of x in G; the set of elements that fix x; the set {g ∈ G : g · x = x}.
The stabiliser is always a subgroup of G.

fixX(g) The set of fixed points of g; the set {x ∈ X : g · x = x}.

Sylp(G) The set of Sylow p-subgroups of G.

Fp(G) The set {x ∈ G : x ̸= 1G and |x| is a power of p}.

|G|p The highest power of p that divides G; if |G| = pnm, then |G|p = pn.

H ⋉ϕ K The semidirect product of H and K; the set H×K equipped with the multiplication
(h1,k1) · (h2,k2) := (h1h2,ϕh−1

2
(k1)k2), where ϕ : H → Aut(K) is a homomorphism

and ϕ(h) = ϕh.

[g,h] The commutator of g and h; the element ghg−1h−1.

[G,G] The commutator subgroup of G; the subgroup generated by
〈
[g,h]

∣∣ g,h ∈ G〉.
[H,K] The commutator subgroup of H and K, given H,K ≤ G; the subgroup generated

by
〈
[h,k]

∣∣ h ∈ H,k ∈ K〉.
Gab The abelianisation of G; the abelian quotient group G/[G,G].

G(n) The nth derived subgroup of G, where G(0) = G and G(n) =
[
G(n−1),G(n−1)

]
for

n ∈ N.
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13.2 Review

Recall that a group is a pair (G,◦), consisting of an underlying set G and a group operation ◦ : G×G→ G
that satisfies the following properties:

(G1) ∀a,b,c ∈ G : (a ◦ b) ◦ c = a ◦ (b ◦ c) (associativity);

(G2) ∃1G ∈ G,∀g ∈ G : g ◦ 1G = 1G ◦ g = g (existence of identity);

(G3) ∀g ∈ G,∃g−1 ∈ G : g ◦ g−1 = g−1 ◦ g = 1G (existence of inverses).

The group is furthermore abelian if the group operation additionally satisfies

(A) ∀a,b ∈ G : a ◦ b = b ◦ a (commutativity).

When the context is clear, we will usually omit the operation and simply say that G is a group.

Sometimes, closure of ◦ over the set G is also included as an axiom, but this is implicit in ◦ being an
operation over G.

It follows from these axioms that the identity element and the inverse of any given element g are unique,
so we are justified in calling them the identity and the inverse of g.

The number of elements in a group G is called the order of G, and is denoted by |G|. (This coincides
with the cardinality of the underlying set, so the notation is meaningful.)

Theorem 13.2.1 (Basic Properties of Groups).

• If ga = gb or ag = bg, then a = b (cancellative property);

• The identity element 1G is unique;

• For every element g, the inverse g−1 is unique;

• If eℓ is a left identity (i.e. eℓg = g for all g ∈ G), and/or er is a right identity, then eℓ = 1G = er;

• If ℓ is a left inverse for an element g (i.e. ℓg = 1G), and/or r is a right inverse for g, then
ℓ = g−1 = r;

• For all a,b ∈ G, (ab)−1 = b−1a−1;

• For all g ∈ G, (g−1)−1 = g.

13.2.1 Symmetric Groups
Let X be a finite set. We write Sym(X) for the set of bijections f : X → X. This set has group structure
under composition:

(G1) For any functions f,g,h ∈ Sym(X) and x ∈ X,
(
(f ◦ g) ◦ h

)
(x) = f

(
g(h(x))

)
=
(
f ◦ (g ◦ h)

)
(x);

(G2) The identity function idX is the identity element;

(G3) The inverse function f−1 for a function f is also its inverse in the group.

This group is called the symmetric group on X, and its elements are called permutations.

The symmetric group is abelian if and only if |X| ≤ 2.

13.2.1.1 Cycle Notation

Let a1,a2, . . . ,ar be distinct elements of a set X. The cycle (a1,a2, . . . ,ar) represents the permutation
f ∈ Sym(X) with

• f(ai) = ai+1 for 1 ≤ i < r;
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• f(ar) = a1;

• f(b) = b for b ∈ X \ {a1,a2, . . . ar}.

The empty cycle () is a cycle, corresponding to the identity permutation idX .

Two cycles (a1, . . . ,ar) and (b1, . . . ,bs) are disjoint if {a1, . . . ,ar} ∩ {b1, . . . ,bs} = ∅.

Note that the representation of a permutation in cycle notation is not unique. For instance, (1,2,3) =
(3,1,2) = (2,3,1).

Theorem 13.2.2.

•
∣∣Sym(X)

∣∣ = |X|!.
• Every permutation in Sym(X) can be expressed as a product of disjoint cycles.

Moreover, this product is unique in the sense that if f ∈ Sym(X) has representations f = f1 · · · fm =
g1 · · · gn, where the fi and gi are disjoint cycles of length greater than 1, then m = n and
{f1, . . . ,fm} = {g1, . . . ,gn}.

13.2.2 General Linear Groups
Let K be a field and n be a positive integer. We define the set GLn(K) to be the set of invertible n× n
matrices with entries in K. Under the operation of matrix multiplication, this set forms a group called
the general linear group of dimension n over K.

Recall that if K is a field (or more generally, a ring), then the characteristic of K is the smallest positive
number p such that

p1K = 1K + · · ·+ 1K︸ ︷︷ ︸
p

= 0K

if such a number exists, and 0 otherwise. In the finite case, such a number will always exist, and moreover,
this number is prime. The characteristic also satisfies

|K| = pn

for some positive integer n.

Theorem 13.2.3. Let K be a finite field, and let q = |K|. Then,

∣∣GLn(K)
∣∣ = q(

n
2)

n∏
i=1

(qi − 1)

13.2.3 Orders of Elements
In multiplicative notation, we write gn to mean the n-fold iteration of the group operation on g. If n = 0,
then gn = 1G, and if n < 0, then gn = (g−1)n.

Let G be a group, and let g ∈ G. The order of g, denoted by |g| is the smallest positive integer n such
that gn = 1G, if such a number exists, and ∞ otherwise:

|g| :=

{
min{n ∈ Z+ : gn = 1G} ∃n ∈ Z+ : gn = 1G

∞ otherwise

Theorem 13.2.4.

• The identity element 1G is the unique element of order 1.

• For all g ∈ G, |g| = |g−1|.
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Proof. Clearly, 1G has order 1. Now suppose an element e ∈ G also has order 1. Then, e = e1 = 1G, so
e = 1G.

Suppose |g| = n. Then, (g−1)n = (gn)−1 = (1G)
−1 = 1G, so |g−1| = n. ■

Lemma 13.2.5. Let G be a group and let a,b ∈ G have finite order. Then,

(i) If ℓ ∈ Z+, then aℓ = 1G if and only if n divides ℓ;

(ii) If m ∈ Z+, then |am| = |a|/ gcd(|a|,m);

(iii) If a and b commute, then |ab| divides lcm(|a|,|b|);

(iv) If a and b commute and ⟨a⟩ ∩ ⟨b⟩ = {1G}, then |ab| = lcm(|a|,|b|).

Proof.

(i) If n = |a| divides ℓ, then ℓ = nr for some integer r, so aℓ = (an)r = (1G)
r = 1G.

Conversely, if aℓ = 1G, then by the Euclidean algorithm, ℓ = qn+ r for some q ∈ Z and 0 ≤ r < n.
Then, 1G = aℓ = aqn+r = (an)qar = ar. Since n is the minimum positive integer such that
an = 1G, and r < n, we have r = 0.

(ii) If m divides n = |a|, then n = mℓ for some integer ℓ, so amℓ = 1. Then, by (i), n divides mℓ, so
|a|/m divides ℓ. Thus, the order of am is the least positive integer ℓ such that |a|/m divides ℓ, so
|am| = |a|/m if m divides |a|.

More generally, let k = gcd(n,m), so for some integer s, we have,

m = ks
mn

k
= sn

so (am)n/k = (an)s = 1G, so |am| divides n/k by (i).

We also have k = sn+ tm for some integers s,t by Bézout’s lemma, so ak = asnatm = atm. But,

atm|am| = (amn
m

)t = 1G

so |atm| = |ak| divides |am| by (i). We also have |ak| = |a|/k from above, so |a|/k divides |am|. It
follows that |a|/k = |am| as required.

(iii) Let ℓ = lcm(|a|,|b|). Then, (ab)ℓ = aℓbℓ = 1G, so ab has finite order, and |ab| divides ℓ by (i).

(iv) Let n = |ab|. Then 1G = (ab)n = anbn so an = (b−1)n = b−n, so an ∈ ⟨b⟩. But, an ∈ ⟨a⟩, so
1G = an ∈ ⟨a⟩ ∩ ⟨b⟩ = {1G}. Similarly, bn = 1G. So, |a| and |b| divide n by (i), so lcm(|a|,|b|) ≤ n,
so (iii) gives |ab| = lcm(|a|,|b|).

■

13.2.4 Subgroups
A subset H ⊆ G of a group G is a subgroup of (G,◦) if (H,◦) is itself a group, and we write H ≤ G to
denote this relation.

Lemma 13.2.6. Let H ⊆ G be a non-empty subset. Then, H ≤ G if and only if for all g,h ∈ H, we
have gh−1 ∈ H.

Given an element g ∈ G, the (cyclic) subgroup generated by g is the subgroup defined by

⟨g⟩ := {gi : i ∈ Z}

and we say that g is a generator of G. Conversely, a group is called cyclic if it is in this form.
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Lemma 13.2.7. If G = ⟨g⟩ is cyclic, then |G| = |g|.

More generally, given a non-empty subset S ⊆ G, the subgroup generated by S is the subgroup defined
by

⟨S⟩ := {sϵ11 s
ϵ2
2 · · · sϵmm : m ∈ N,si ∈ S,ϵi ∈ {±1}}

That is, the subgroup containing all linear combinations of elements in S. If S = {s1, . . . ,sn}, then we
also write ⟨S⟩ = ⟨s1, . . . ,sn⟩ for this subgroup.

13.2.4.1 Cosets

Given a subgroup H ≤ G of a group G and an element g ∈ G, the left coset gH of H in G is the set

gH = {gh : h ∈ H} ⊆ G

Lemma 13.2.8. Let G be a group and H ≤ G a subgroup. Then, the following are equivalent for all
g,k ∈ G:

(i) k ∈ gH;

(ii) gH = kH;

(iii) g−1k ∈ H.

Proof. (i) → (ii): Note that hH = H for all h ∈ H. Now, if k ∈ gH, then k = gh for some h ∈ H, so
kH = (gh)H = g(hH) = gH.

(ii)→ (iii): Because H is a subgroup, 1G ∈ H, so k = k1G ∈ kH. If kH = gH, then also k ∈ gH, so for
some h ∈ H, k = gh, so g−1k = h ∈ H.

(iii)→ (i): If g−1k = h ∈ H, then k = gh ∈ gH. ■

Let G be a group and H ≤ G be a subgroup. Define the relation ∼H on G with g ∼H h if and only if
gH = hH.

Corollary 13.2.8.1. ∼H is an equivalence relation on G.

Lemma 13.2.9. Let G be a group and H ≤ G be a subgroup. Then,

(i) For all g,h ∈ G, either gH = hH or gH ∩ hH = ∅;

(ii) If {giH}i∈I is the set of ∼H-equivalence classes in G, then

G =
⊔
i∈I

giH

Proof. Since ∼H is an equivalence relation, distinct ∼H -equivalence classes are pairwise disjoint and
partition G. Both parts follow. ■

Theorem 13.2.10 (Lagrange). Let G be a finite group and let H ≤ G be a subgroup. Then, |H| divides
|G|. Specifically,

|G| = |G : H||H|

Proof. The left cosets of H in G partition G by the previous lemma. Also, each left coset gH is
equinumerous to H since h 7→ gh is a bijection H → gH (with inverse given by h 7→ g−1h), and the
number of left cosets is the index [G : H]. The result follows. ■

Let G be a group and H ≤ G be a subgroup.

Notes on Mathematics | 354



Group Theory Review

• The set of left cosets of H in G is denoted by G/H := {gH : g ∈ G}.

• The number of distinct left cosets of H in G (i.e. the cardinality |G/H|) is called the index of H
in G, and is denoted by [G : H]. If G is finite, then

[G : H] = |G|/|H|

Corollary 13.2.10.1. Let G be a finite group and let g ∈ G. Then |g| divides |G|.

Proof. The subgroup ⟨g⟩ has order |g|. The result follows from Lagrange’s theorem. ■

13.2.5 Normal Subgroups

Lemma 13.2.11. Let H ≤ G be a subgroup of a group G, and let g ∈ G. Then, gH = gHg−1 =
{ghg−1 : h ∈ H} is a subgroup of G.

Let G be a group and let H ≤ G be a subgroup.

• H is normal in G if gHg−1 = H for all g ∈ G, and we write H ⊴ G to denote this relation.

• The normaliser of H in G, is the subgroup of G defined by

NG(H) := {g ∈ G : gHg−1 = H}

Note that H is normal in G if and only if NG(H) = G.

Theorem 13.2.12. Let G be a group and let H ≤ G be a subgroup. Then,

(i) H is normal in G if and only if gHg−1 ⊆ H for all g ∈ G;

(ii) If [G : H] = 2, then H is normal in G;

(iii) H ⊴ NG(H) ≤ G;

(iv) G ⊴ G;

(v) {1G} ⊴ G.

A non-trivial group G is simple if the only normal subgroups of G are {1G} and G.

Given subsets A,B ⊆ G of a group G, we write AB := {ab : a ∈ A,b ∈ B} for the internal product of A
and B. In general, this is not a subgroup, even if A and B are both subgroups.

Lemma 13.2.13. Let N be normal in G, and let g,h ∈ G. Then, (gN)(hN) = ghN .

Let N be normal in G. Then, the binary operation ◦ : G/N×G/N → G/N defined by (gN)◦(hN) = ghN
is called the natural binary operation of G/H.

With the natural binary operation ◦, (G/N,◦) is a group called the quotient or factor group of G by N .

13.2.6 Group Homomorphisms
Let (G,◦) and (H,∗) be groups.

A map ϕ : G→ H is a group homomorphism if ϕ(g ◦ h) = ϕ(g) ∗ ϕ(h) for all g,h ∈ G.

If ϕ is a homomorphism and has an inverse (or equivalently, is bijective), then φ is an isomorphism, and
we say that G and H are isomorphic, written as G ∼= H. An isomorphism from a group to itself is also
called an automorphism.
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We define the kernel and image of a homomorphism ϕ as the sets

ker(ϕ) := {g ∈ G : ϕ(g) = 1G}
im(ϕ) := {ϕ(g) : g ∈ G}

Let N be normal in G. A the map π : G → G/N defined by π(g) = gN is a surjective homomorphism
called the quotient map or natural homomorphism from G to G/N .

Theorem 13.2.14. If n and m are coprime, then Cn × Cm ∼= Cnm.

Theorem 13.2.15 (First Isomorphism Theorem). Let G and H be groups, and let ϕ : G → H be a
group homomorphism. Then,

(i) ker(ϕ) ⊴ G;

(ii) im(ϕ) ≤ H;

(iii) G/ ker(ϕ) ∼= im(ϕ).

Theorem 13.2.16 (Second Isomorphism Theorem). Let G be a group, H ≤ G a subgroup, and N ⊴ G
be normal in G. Then,

(i) NH = HN ≤ G;

(ii) H ∩N ⊴ H;

(iii) H/(H ∩N) ∼= NH/N .

Theorem 13.2.17 (Third Isomorphism Theorem). Let G be a group, and let N,K ⊴ G be normal in G
with N ⊆ K ⊆ G. Then,

(i) K/N ⊴ G/N ;

(ii) (G/N)/(K/N) ∼= G/K.

Theorem 13.2.18 (Correspondence Theorem). Let G be a group, and let N ⊴ G be normal in G. Then,
there is a bijection between the subgroups of G containing N and the subgroups of G/N . More precisely,
the map

f : {S : S ≤ G/N} → {S : N ≤ S ≤ G} : S 7→ S/N

is a bijection, and moreover, this map sends normal subgroups to normal subgroups.

13.3 Permutation Groups

Let X be a set. A subgroup of Sym(X) is called a permutation group on X.

For g ∈ Sym(X), the support of g is the set

supp(g) := {x ∈ X : g(x) ̸= x}

and for a permutation group G, the support of G is the set

supp(G) := {x ∈ X : g(x) ̸= x}

If G = ⟨g⟩ ≤ Sym(X), then supp(⟨g⟩) = supp(g). Also note that if

g = (a1, . . . ,am1) · · · (amt−1+1, . . . ,amt)

is a product of disjoint cycles, then

supp(g) = {a1, . . . ,am1
,am1+1, . . . ,amt−1+1, . . . ,amt

}
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Theorem 13.3.1. Let X be a finite set. Then,

(i) Disjoint cycles in Sym(X) commute;

(ii) If f = (a1, . . . ,ar) ∈ Sym(X) is a cycle of length r, then f has order |f | = r.

More generally, if f = f1 · · · fm is a product of disjoint cycles, then f has order

|f | = lcm
(
|f1|, . . . ,|fm|

)
(iii) Let f = (a1, . . . ,ar) ∈ Sym(X) and g ∈ Sym(X). Then,

gf = gfg−1 =
(
g(a1), . . . ,g(ar)

)
Let n ≥ 3 and set X = {1, . . . ,n}. Define the permutations σ,τ ∈ Sym(X) by

σ := (1, . . . ,n)

τ :=

⌊n
2 ⌋∏
i=1

(i,n− i+ 1)

Then, the dihedral group D2n of order 2n is the subgroup of Sym(X) generated by σ and τ .

Example. If n = 8, then
D16 =

〈
{(1,2,3,4,5,6,7,8),(1,8)(2,7)(3,6)(4,5)}

〉
△

Lemma 13.3.2. If H,K ≤ G with H = ⟨A⟩ finite and K = ⟨B⟩ for some subsets A,B ⊆ G, then
K ⊆ NG(H) if and only if ba ∈ H for all a ∈ A and b ∈ B.

Theorem 13.3.3. Let n ≥ 3 and D2n =
〈
{σ,τ}

〉
. Then,

(i) |D2n| = 2n;

(i) ⟨σ⟩ ⊴ D2n, and |⟨σ⟩| = n. In particular, D2n is not simple.

Let X be a finite set. A permutation f ∈ Sym(X) is even if it has an even number of cycles of even
length in its decomposition into disjoint cycles, and is odd otherwise.

Equivalently, a permutation is even if it can be decomposed into an even number of not necessarily
disjoint transpositions and odd otherwise.

The set Alt(X) := {f ∈ Sym(X) : f is even} is the alternating group on X, and is a subgroup of Sym(X)
of order |X|!/2. That is, [Sym(X) : Alt(X)] = 2.

Theorem 13.3.4. If X and Y are finite sets with |X| = |Y |, then Sym(X) ∼= Sym(Y ).

Proof. For any bijection F : Y → X, the homomorphism ϕ : Sym(X) → Sym(Y ) defined by ϕ(f) =
F−1 ◦ f ◦ F is an isomorphism. ■

We write Sn for the symmetric group on the set {1, . . . ,n}. By the previous theorem, Sym(X) ∼= Sn
whenever |X| = n.
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13.3.1 Group Actions
Let G be a group and X a set. A (left) group action of G on X is a map · : G×X → X such that

(i) (gh) · x = g · (h · x) for all g,h ∈ G and x ∈ X;

(ii) 1G · x = x for all x ∈ X.

In this case, we say that G acts on X or that X is a G-set.

Three important group actions are as follows:

• Left-multiplication:

Let G be a group and take X = G. Then, g · x := gx defines an action of G on itself:

(i) (gh) · x = (gh)x = g(hx) = g · (h · x);

(ii) 1G · x = 1Gx = x.

• Conjugation:

Let G be a group and take X = G. Then, g · x := gxg−1 defines an action of G on itself:

(i) (gh) · x = (gh)x(gh)−1 = ghxh−1g−1 = g · (hxh−1) = g · (h · x);

(ii) 1G · x = 1Gx1
−1
G = x.

• Action on Cosets:

Let G be a group and H ≤ G be a subgroup. Take X = G/H := {gH : g ∈ G} to be the set of left
cosets of H in G. Then, g · (xH) = (gx)H defines a group action on this set of cosets:

(i) (gh) · xH = g(hxH) = g · (hxH) = g · (h · xH);

(ii) 1G · xH = (1Gx)H = xH.

Theorem 13.3.5 (Group Action Induces Homomorphism into Symmetric Group). Let · be an action of
a group G on a set X. For g ∈ G, define the map ϕ(g) : X → X by ϕ(g)(x) = g ·x. Then, ϕ(g) ∈ Sym(X)
and ϕ : G→ Sym(X) is a homomorphism.

Proof. For any g,h ∈ G and x ∈ X,

ϕ(gh)(x) = (gh) · x
= g · (h · x)
=
(
ϕ(g)ϕ(h)

)
(x) ■

Let · be an action of a group G on a set X. The kernel of the action · , denoted ker(G,X, · ), is defined
to be the kernel of the homomorphism ϕ : G→ Sym(X) as defined above:

ker(G,X, · ) := {g ∈ G : ∀x ∈ X, g · x = x} ⊆ G

The image of the action · , denoted im(G,X, · ) is the image of ϕ:

im(G,X, · ) := {ϕ(g) : g ∈ G} ⊆ Sym(X)

Note that by the first isomorphism theorem, we have

• ker(G,X, · ) ⊴ G;

• im(G,X, · ) ≤ Sym(X).
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The action · is faithful if the kernel is trivial, ker(G,X, · ) = {1G}, and trivial if the kernel is the entire
group, ker(G,X, · ) = G.

Example.

(i) The left-multiplication action of a group on itself is always faithful.

(ii) The conjugation action of a group on itself is trivial if and only if gxg−1 = x for all g,x ∈ G. That
is, if and only if G is abelian.

(iii) If G acts on the set G/H of cosets of a subgroup H ≤ G, then the action is trivial if and only if
gH = H for all g ∈ G. That is, if and only if H = G.

So, if H is a proper subgroup of G, then ker(G,G/H, · ) is a proper normal subgroup of G.

△

Theorem 13.3.6. If · is a faithful action of G on X, then G is isomorphic to a subgroup of Sym(X).

Proof. As · is faithful, we have G/ ker(G,X, · ) = G/{1G} ∼= G, so by the first isomorphism theorem,

G ∼= G/ ker(G,X, · )
∼= im(G,X, · )
≤ Sym(X)

■

Let · be an action of a group G on a set X, and let x ∈ X.

The orbit of x in G is the set of possible images of x under the action:

OrbG(x) := {g · x : g ∈ G} ⊆ X

The stabiliser of x in G is the set of elements of G that fix x:

StabG(x) := {g ∈ G : g · x = x} ⊆ G

The centraliser or commutant of x in G is the set of elements that commute with x:

CG(x) := {g ∈ G : gx = xg}

(This notion is independent from group actions.)

Lemma 13.3.7. The stabiliser and centraliser of any element g ∈ G are subgroups of G.

The centre of G is the set of elements of G that commute with every element of G:

Z(G) = {g ∈ G : ∀h ∈ G : gh = hg}

Note that
Z(G) =

⋂
g∈G

CG(g)

so, as an intersection of subgroups, the centre is itself a subgroup (and is in fact normal in G).

Example. We compute the orbits and stabilisers of the three group actions from before.

• Left-multiplication (X = G, g · x := gx):

For any y ∈ X = G, we have y−1x ∈ G, so y = (y−1x) · x and y ∈ OrbG(x), so OrbG(x) = X for
all x ∈ X. Also, g · x = gx = x if and only if g = 1G, so StabG(x) = {1G} for all x ∈ G.
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• Conjugation (X = G, g · x := gxg−1):

The orbit OrbG(x) = {gxg−1 : g ∈ G} of an element x ∈ X under conjugation is also called the
conjugacy class of x in G, also written as Cl(x) or Gx.

For any g ∈ G, g · x = gxg−1 = x if and only if gx = xg, so StabG(x) = CG(x) for all x ∈ X = G.
Also,

ker(G,X, · ) = {g ∈ G : ∀x ∈ X : g · x = x}
= {g ∈ G : ∀x ∈ X : gxg−1 = x}
= Z(G)

• Action on Cosets (X = G/H, g · (xH) = (gx)H):

The stabiliser of xH ∈ X is

StabG(xH) = {g ∈ G : g · xH = xH}
= {g ∈ G : (gx)H = xH}
= {g ∈ G : (x−1gx)H = H}
= {g ∈ G : x−1gx ∈ H}
= {xgx−1 ∈ G : xx−1gxx−1 ∈ H}
= {xgx−1 ∈ G : g ∈ H}
= xHx−1

= xH

Also, if xH,yH ∈ X, then (yx−1) · xH = yH, so OrbG(xH) = X for all xH ∈ X.

△

Theorem 13.3.8. Let · be an action of a group G on a set X, and let x ∈ X. Then,

(i) StabG(X) ≤ G;

(ii)
⋂
x∈X StabG(x) = ker(G,X, · ).

Theorem 13.3.9 (Orbit-Stabiliser). Let G be a group acting on a finite set X and let x ∈ X. Then,

|OrbG(x)| = [G : StabG(x)] =
|G|

|StabG(x)|

Corollary 13.3.9.1. Let G be a finite group acting on a set X. Then,

(i) For all x,y ∈ X, either OrbG(x) = OrbG(x), or OrbG(x) ∩OrbG(y) = ∅. That is, orbits partition
X.

(ii) |OrbG(x)| divides |G|.

Proof.

(i) Define a relation ∼ on X such that x ∼ y if and only if y = g · x for some g ∈ G. This relation is
reflexive, by taking g = 1G; symmetric, by taking inverses; and transitive, by multiplying the given
g values with the group operation.

So, ∼ is an equivalence relation. The result then follows immediately from equivalence classes
partitioning sets.
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(ii) Follows immediately from the orbit-stabiliser theorem.

■

Theorem 13.3.10 (Cayley). Every finite group G is isomorphic to a subgroup of a symmetric group.

Proof. The kernel of the left-multiplication action of G on itself is the set

ker(G,G, · ) = {g ∈ G : ∀x ∈ X : gx = x}

For any g ∈ G such that gx = x for all x ∈ G, we have g1G = 1G, so g = 1G, and hence the kernel is
trivial, so the action is faithful. The result then follows from Theorem 13.3.6. ■

Theorem 13.3.11. Let G be a finite group with |G| = pn for a prime p and n ≥ 1. Then, |Z(G)| > 1.

Proof. By Corollary 13.3.9.1, |Gx| = |OrbG(x)| divides |G|, so |Gx| is a power of p.

By definition, Z(G) = {x ∈ G : |Gx| = 1}. Suppose |Z(G)| = 1, so only one conjugacy class has
cardinality 1, and the rest have cardinality pai . Since orbits partition G, the cardinality of G is equal to
the sum of the cardinalities of the orbits:

|G| = 1 + pa1 + · · ·+ pak

However, this has residue 1 modulo p, contradicting that |G| = pn ≡ 0 (mod p). ■

Corollary 13.3.11.1. Let G be a finite group with |G| = pn for a prime p and natural n. Then,

(i) If n = 2, then G is abelian.

(ii) If n = 3, then either G is abelian, or |Z(G)| = p.

Theorem 13.3.12 (Cauchy). Let G be a finite group and let p be a prime divisor of |G|. Then, G has
an element of order p. Moreover, the number of elements of G of order p is congruent to −1 modulo p.

Theorem 13.3.13. Let G be a finite group and let H,K ≤ G. Then,

|HK| = |KH| = |H||K|
|H ∩K|

Theorem 13.3.14. Let G be a finite group and let H,K ≤ G. Then,

|G : H ∩K| ≤ |G : H||G : K|

13.3.2 Fixed Points
Let G be a group acting on a set X, and let g ∈ G.

An element x ∈ X is a fixed point if g · x = x. The set of all fixed points for a given g ∈ G is denoted by

fixX(g) := {x ∈ X : g · x = x}

An element g ∈ G is fixed point free if fixX(g) = ∅.

Lemma 13.3.15 (Burnside). Let G be a finite group acting on a finite set X, and let X/G := {OrbG(x) :
x ∈ X} be the set of orbits in G. Then,

|X/G| = 1

|G|
∑
g∈G
|fixX(g)|
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This lemma was stated and proved by Burnside in his 1897 book on finite groups, but attributed it to
Frobenius, 1887. However, even before Frobenius, the result was known to Cauchy in 1845. Consequently,
this lemma is sometimes called the lemma that is not Burnside’s, or just the not-Burnside lemma.

Proof. First, the sum can be rewritten as∑
g∈G
|fixX(g)| =

∣∣{(g,x) ∈ G×X : g · x = x
}∣∣

=
∑
x∈X
|StabG(x)|

Then, by the orbit-stabiliser theorem,

|StabG(x)| =
|G|

|OrbG(x)|
so ∑

x∈X
|StabG(x)| =

∑
x∈X

|G|
|OrbG(x)|

= |G|
∑
x∈X

1

|OrbG(x)|

Let Y be the set of distinct orbits in X. Note that X is partitioned by its orbits, so,

= |G|
∑

A∈X/G

∑
x∈A

1

|OrbG(x)|

= |G|
∑

A∈X/G

∑
x∈A

1

|A|

= |G|
∑

A∈X/G

1

= |G||X/G|

and the result follows. ■

The action of G on X is transitive if for any two points x,y ∈ X, there exists g ∈ G such that g · x = y.
Or equivalently, if G only has one orbit, or OrbG(x) = X for all x ∈ X.

Corollary 13.3.15.1. If a finite group G acts transitively on a finite set X with |X| > 1, then G
contains a fixed point free element.

Proof. Suppose G does not contain any fixed point free elements, so |fixX(g)| ≥ 1 for all g ∈ G. Then,
G acts transitively, so |X/G| = 1, and Burnside’s lemma gives

|G| =
∑
g∈G
|fixX(g)|

= |fixX(y)|+
∑

g∈G\{1G}

|fixX(g)|

= |X|+
∑

g∈G\{1G}

|fixX(g)|

≥ |X|+ |G| − 1

so 1 ≥ |X|, contradicting that 1 < |X|. ■
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13.4 The Sylow Theorems

Lagrange’s theorem states that if H is a subgroup of a finite group G, then |H| divides |G|. Does the
converse hold? That is, if G is a finite group, and r divides |G|, then does G contain a subgroup H of
order r?

In general, this is not the case. For instance, if G is a non-abelian finite simple group, then G has no
subgroup of order |G|/2. Such a subgroup H would have index 2 in G and would be a proper normal
subgroup of G; also, G is non-abelian, so |G| > 2 and 1 < |H| < |G|, contradicting that G is simple.

We write |G|p to denote the highest power of p that divides G. That is, if |G| = pnm with p,m coprime,
then |G|p = pn.

• A subgroup H ≤ G is a p-subgroup of G if |H| is a power of p.

• Let P ≤ G and suppose |P | = |G|p. Then, P is called a Sylow p-subgroup of G.

• We write SylP (G) to denote the set of Sylow p-subgroups of G.

Example. Take G = S4. We have |G| = 4! = 23 · 3, so |G|2 = 23 and |G|3 = 3.

1. P = {1G,(1,2,3),(3,2,1)} has order |P | = 3 = |G|3, so P is a Sylow 3-subgroup of G;

2. K4 = {1G,(1,2)(3,4),(1,3)(1,4),(1,4)(2,3)} has order |K4| = 2 ̸= |G|2, so K4 is a 2-subgroup of G,
but not a Sylow 2-subgroup;

3. D8 = ⟨σ,τ⟩ with σ = (1,2,3,4) and τ = (1,4)(2,3) has order |D8| = 8 = |G|2, so D8 is a Sylow
2-subgroup of G.

4. A4 is not a p-subgroup of G for any prime p.

5. The trivial subgroup {1G} is a Sylow p-subgroup for all prime p.

△

Theorem 13.4.1 (Sylow). Let G be a finite group with order |G| = pnm with p,m coprime. Then,

1. G has at least one Sylow p-subgroup.

2. All Sylow p-subgroups of G are conjugate. That is, if H and K are Sylow p-subgroups of G, then
there exists an element g ∈ G such that gHg−1 = K.

3. Any p-subgroup of G is contained in a Sylow p-subgroup of G.

4. The number r of Sylow p-subgroups of G satisfies r ≡ 1 (mod p) and r | m.

13.4.1 Applications
By Sylow theorem 2, G acts on Sylp(G) by conjugation, and for any P ∈ Sylp(G), OrbG(P ) = Sylp(G).
The stabiliser of P under conjugation is then the normaliser:

StabG(P ) = {g ∈ G : g · P = P}
= {g ∈ G : gPg−1 = P}
= {g ∈ G : gP = Pg}
= NG(P )

Corollary 13.4.1.1. Let G be a finite group, p be a prime divisor of |G|, and P ∈ Sylp(G). Then,

(i) |Sylp(G)| = [G : NG(P )];

(ii) |Sylp(G)| divides |G|/|G|p;
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(iii) P ⊴ G if and only if |Sylp(G)| = 1. That is, unique Sylow p-subgroups are normal.

Proof.

(i) By the orbit-stabiliser theorem

|Sylp(G)| = |OrbG(P )|
= [G : StabG(P )]

= [G : NG(P )]

(ii) Since P ≤ NG(P ), by Lagrange’s theorem, |NG(P )| = |P ||NG(P ) : P |. Then,

|Sylp(G)| = [G : NG(P )]

=
|G|

|NG(P )|

=
|G|

|P |[NG(P ) : P ]

which divides |G|
|P | =

|G|
|G|p .

(iii) P ⊴ G if and only if G = NG(P ). Then, by the orbit-stabiliser theorem,

|OrbG(P )| =
|G|

|StabG(P )|

|Sylp(G)| =
|G|

|NG(P )|

so G = NG(P ) if and only if |SylP (G)| = 1.

■

Corollary 13.4.1.2. Let G be a finite group and let p be a prime divisor of |G|. Define the set

Fp(G) := {x ∈ G : x ̸= 1G and |x| is a power of p}

Then,

(i)

Fp(G) =
⋃

P∈Sylp(G)

(P \ {1G})

(ii) |Fp(G)| ≥ |G|p − 1, with equality if and only if |Sylp(G)| = 1;

(iii) If |G|p = p, then |Fp(G)| = |Sylp(G)|(p− 1), with equality if and only if |Sylp(G)| = 1.

13.4.1.1 Proving Groups of a Particular Order are Not Simple

Example. Let G be a group of order 20 = 22 × 5. Can G be simple?

By Sylow’s first theorem, G has Sylow 5-subgroups. By Sylow’s fourth theorem, the number r of Sylow
5-subgroups divides 22 and satisfies r ≡ 1 (mod 5). It follows that r = 1 is the only value that satifies
this requirement, so G has a unique Sylow 5-subgroup, which must be normal in G and hence G cannot
be simple. △

Example. Let G be a group of order 48 = 24 × 3. Can G be simple?
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By Sylow theorem 1, G has Sylow 2-subgroups and Sylow 3-subgroups. By Sylow’s fourth theorem, the
number r of Sylow 2 subgroups divides 3 and satisfies r ≡ 1 (mod 2). We must have r = 1,3, so G has
either 1 or 3 Sylow 2-subgroups.

If there is only 1 Sylow 2-subgroup, then it is normal in G. Otherwise, G has 3 Sylow 2-subgroups
and G acts non-trivially (and transitively) on Syl2(G) by conjugation. This action induces a non-trivial
homomorphism ϕ : G→ S3 (as in Theorem 13.3.5).

By the first isomorphism theorem G/ ker(ϕ) ∼= im(ϕ), so by Lagrange’s theorem,

|G/ ker(ϕ)| = |im(ϕ)|
|G|/|ker(ϕ)| = |im(ϕ)|
|G|/|im(ϕ)| = |ker(ϕ)|

Because ϕ is non-trivial, 1 < | im(ϕ)| ≤ |S3| = 6, so 48
6 ≤ |ker(ϕ)| <

48
1 and hence ker(ϕ) is a non-trivial

normal subgroup of G. △

Example. Let G be a group of order 2 552 = 8× 11× 29. Can G be simple?

Take p = 11, so |G| = 11× (8× 29) = 111× 232. The number of Sylow 11-subgroups, r, must divide 232
and satisfy r ≡ 1 (mod 11). Consider the factorisation 232 = 23 × 29; the factors of 232 are then: 1, 2,
4, 8, 29 ≡ 7, 58 ≡ 3, 116 ≡ 6, and 232 ≡ 1, so r = 1,232 are the possible solutions.

Now, if G has more than 1 Sylow 11-subgroup, then it must have 232 Sylow 11-subgroups. As 11 is
prime, these subgroups must be cyclic, so every non-identity element generates the group. It follows
that these subgroups intersect only at the identity element, so each subgroup contributes 10 elements of
order 11, so there must be 232× 10 = 2 320 elements of order 11 in G.

Now, take p = 29, so |G| = 29 × (8 × 11) = 291 × 88. By identical arguments as before, the number of
Sylow 29-subgroups must be 1 or 88, and again, as 29 is prime, each subgroup must be cyclic, so if there
is more than 1 Sylow 29-subgroup, then there are 88× 28 = 2 464 elements of order 28.

Now, by Sylow’s first theorem, there exist Sylow 29 and 11-subgroups. If there are more than one of
each, then we have 2 320 and 2 464 elements of order 11 and 29, respectively. But these values sum to
more than 2 552 = |G|, so we cannot simultaneously have more than 1 Sylow 29 and 11-subgroups. But
then, any unique Sylow p-subgroup is normal, so G cannot be simple. △

13.4.1.2 Proving a Particular Group is Simple

Corollary 13.4.1.3. Let G be a finite group and let p be a prime divisor of |G|. Define the set

Fp(G) := {x ∈ G : x ̸= 1G and |x| is a power of p}

Then,

(i) Let N be normal in G. If x ∈ N , then Gx ⊆ N .

(ii) Let N be normal in G and suppose p does not divide [G : N ]. Then,

(a) Sylp(N) = Sylp(G);

(b) Fp(G) = Fp(N).

Theorem 13.4.2. A5 is simple.

Proof. Suppose for a contradiction that A5 has a non-trivial proper subgroup N . By Lagrange’s theorem,
|N | divides |A5| = 5!/2 = 60, so the prime factors of |N | are 2, 3 and 5.

Now, note that
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• A5 has 24 elements of order 5 – these are the 5-cycles, and there are P 5
5 = 5!

(5−5)! = 120 permutations
of 5 elements from {1,2,3,4,5}. Dividing by 5 to account for cyclic shifts, there are 120

5 = 24 such
elements.

• A5 has 20 elements of order 3 – these are the 3-cycles, and there are P 5
5 = 5!

(5−5)! = 120 permutations
of 5 elements from {1,2,3,4,5}

• A5 has 15 elements of order 2 – are those of the form (ab)(cd) for a,b,c,d distinct elements of
{1,2,3,4,5}. There are P 5

4 = 5!
(5−4)! permutations of 4 elements from 5, but 2 ways to cyclic shift

within each cycle, and 2! ways to permute the cycles themselves, so there are 120
2·2·2! = 15 elements

of order 2.

Suppose p divides |N | for p = 3 or p = 5. Then, p does not divide [G : N ], so by Corollary 13.4.1.3(i),
Fp(G) = Fp(N).

If p = 3, then Fp(N) = Fp(G) = 20, so |N | ≥ 21. Since |N | divides 60 and is less than 60, |N | = 30.
Similarly, if p = 5, then Fp(N) = Fp(G) = 24, so |N | ≥ 25. Again, we must have |N | = 30.

So, if 3 or 5 divide |N |, then |N | = 30 and both 3 and 5 divide |N |, so F3(N) = 20 and F5(N) = 24.
But then, |N | = 30 > 20 + 24, which is a contradiction.

Now suppose neither 3 nor 5 divide |N |. Then, |N | divides 4 by Lagrange’s theorem, so by Cauchy’s
theorem, there exists x ∈ N with order 2. By Corollary 13.4.1.3(ii), we then have 4 = |N | ≥ |Gx| =
15. ■

13.4.2 Simplicity of An

Lemma 13.4.3.

(i) Let n ≥ 3 and let Xn be the set of 3-cycles in Sn. Note that Xn ⊆ An since 3-cycles decompose
into a pair (i.e. an even number) of transpositions. Then, An = ⟨Xn⟩.

(ii) Let n ≥ 5. Then, any two 3-cycles are conjugate in An.

Lemma 13.4.4. For n ≥ 5, any non-identity permutation σ ∈ An has a conjugate σ′ such that σ ̸= σ′

and σ(i) = σ′(i) for some i ∈ {1,2, . . . ,n}.

Theorem 13.4.5. An is simple for all n ≥ 5.

Proof. We induct on n. We already have that A5 is simple, so assume n ≥ 6.

An acts on the set Xn = {1,2, . . . ,n} in the natural way. For each i ∈ Xn, define

Hi := StabAn
(i) ∼= An−1

and by the inductive hypothesis, Hi
∼= An−1 is simple. Note that Hi contains a 3-cycle containing 3

points of Xn other than i.

Suppose A has a non-trivial proper subgroup N ◁ An. Take any non-identity permutation σ ∈ N . By
the previous lemma, there exists a conjugate σ′ ∈ N such that σ ̸= σ′ and σ(i) = σ′(i) for some i ∈ Xn.

Since normal subgroups are closed under conjugation, σ′ ∈ N , so σ−1σ′ ∈ N , σ−1σ′ ̸= 1An , and
σ−1σ′(i) = i. Thus σ−1σ′ ∈ Hi and so N ∩Hi ̸= {1An}.

Now, N ◁An so N ∩Hi ◁Hi by the second isomorphism theorem. But, Hi ⊆ N contains a 3-cycle, so by
Lemma 13.4.3(ii), N contains all 3-cycles of An. The result then follows from Lemma 13.4.3(i). ■
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13.5 Classifying Groups of Small Order

13.5.1 Semidirect Products
Given two groups H and K, their cartesian product H ×K has group structure by applying the group
operations pointwise. This group is called the (external) direct product of H and K.

This extends naturally to any arbitrary collection of groups, with the product operation applied pointwise
on each coordinate.

Theorem 13.5.1. Let H and K be normal subgroups of a group G such that G = HK and H∩K = {1G}.
Then,

(i) hk = kh for all h ∈ H and k ∈ K, so if H and K are both abelian, then G is abelian;

(ii) G ∼= H ×K.

Recall that an automorphism of a group G is an isomorphism G→ G. The set Aut(G) of automorphisms
of G has group structure under function composition and is called the automorphism group of G.

Let H and K be groups, and let ϕ : H → Aut(K) be a homomorphism. Write ϕh for ϕ(h) and define a
binary operation · : (H ×K)× (H ×K)→ H ×K by

(h1,k1) · (h2,k2) := (h1h2,ϕh−1
2
(k1)k2)

Then, (H ×K, · ) has group structure and is called the (external) semidirect product of H and K with
respect to ϕ, denoted by H ⋉ϕ K.

Example. Three important semidirect products are generated by homomorphisms as follows:

• The trivial homomorphism:

Let H and K be any groups. Then, the map ϕ : H → Aut(K) defined by ϕ(h) = idK is the trivial
homomorphism, and the resulting semidirect product operation is given by

(h1,k1) · (h2,k2) = (h1,h2,ϕh−1
2
(k1)k2)

= (h1,h2, idK(k1)k2)

= (h1,h2,k1k2)

so
H ⋉ϕ K ∼= H ×K

• The inversion homomorphism:

Let H = C2 = ⟨c⟩ and let K be any abelian group. Then, the map ϕ : H → Aut(K) defined by
ϕ(1H) = idK and ϕ(h) = (k 7→ k−1) (i.e. the identity element is sent to the identity automorphism,
and every other element is sent to the inversion automorphism) is a homomorphism.

If K ∼= Cn, then the resulting semidirect product is isomorphic to the dihedral group of order 2n:

C2 ⋉ϕ Cn ∼= D2n

• The conjugation homomorphism:

Let G be a group and let H ≤ G and K ⊴ G. Then, the map ϕ : H → Aut(K) defined by
ϕ(h) = (k 7→ hkh−1) is a homomorphism.

This last homomorphism will be useful with the following lemma:

△
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Lemma 13.5.2. Let G be a group and let H ≤ G and K ⊴ G. If G = HK and K ∩H = {1G}, then

G ∼= H ⋉ϕ K

Proof. ■

Example. Let n ≥ 3 be an integer, and consider the dihedral group G = D2n = ⟨σ,τ⟩, where

σ := (1, . . . ,n)

τ :−
⌊n

2 ⌋∏
i=1

(i,n− i+ 1)

Let K = ⟨σ⟩ = {1G,σ,σ2, . . . ,σn−1} and H = ⟨τ⟩ = {1G,τ}. Recall that τσ = τστ−1 = σ−1, so τk = k−1

for all k ∈ K.

Since |τ | = 2, |σ| = n, and D2n = K ⊔ τK, we have G = HK and H ∩K = {1G}, so by the previous
lemma, we have G ∼= H ⋉ϕ K, where ϕ is the inversion homomorphism. △

Lemma 13.5.3. Let G be a non-abelian finite group and suppose that

1. G has a cyclic subgroup K of order n := |G|/2;

2. G \K contains an element G of order 2;

3. If i ∈ {0,1, . . . ,n− 1} satisfies i2 ≡ 1 (mod n), then i ≡ ±1 (mod n).

Then,
G ∼= D2n

Example. The following are some examples of positive integers n that satisfy the third hypothesis of the
previous lemma.

• For n = 6, 02,12,22,32,42,52 ≡ 0,1,4,3,4,1 (mod 6), so i2 ≡ 1 (mod 6) if and only if i = 1,5 ≡
±1 (mod 6).

• Let n = p where p is prime. Then,

i2 = 1

i2 − 1 = 0

(i− 1)(i+ 1) = 0

Since Z/pZ is a field, it has no zero divisors, so either i− 1 = 0 or i+ 1 = 0, so i2 = 1 if and only
if i = ±1 in Z/pZ.

• Let n = p2 where p is prime.

If p = 2, we have 02,12,22,32 ≡ 0,1,0,1 (mod 4), so i2 ≡ 1 (mod 4) if and only if i = 1,3 ≡
±1 (mod 4).

Otherwise, suppose p is odd and let i ∈ {0,1, . . . ,p2−1} such that i2 ≡ 1 mod p2. Then, p2 divides
(i− 1)(i+ 1).

Since p is odd, it divides at most one of the factors, because if it divided both, it would also divide
their difference (i + 1) − (i − 1) = 2, contradicting that p is odd. So, p2 also divides at most one
of the factors.

So, p2 divides i − 1 or i + 1. Then, since 0 ≤ i ≤ p2 − 1, the only possibilities are i = 1,p2 − 1 ≡
±1 (mod p2).

△
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13.5.2 Semidirect Products of Abelian and Cyclic Groups
We consider the following special case of semidirect products: let G be a finite group with |G|/2 odd,
and suppose G has an abelian normal subgroup K of order |G|/2.

The commutator of two elements g,h ∈ G is the element [g,h] := ghg−1h−1. Similarly, we define the
subgroup [K,x] :=

〈
{[k,x] : k ∈ K}

〉
.

Lemma 13.5.4 (Fitting).

(i) xa = xax−1 = a−1 for all a ∈ [K,x];

(ii) K = CK(x)× [K,x];

(iii) G ∼=
(
H ⋉ϕ [K,x]

)
× CK(x), where ϕ : H → Aut

(
[K,x]

)
is the inversion homomorphism.

13.5.3 Abelian Groups
Theorem 13.5.5 (Fundamental Theorem of Finite Abelian Groups). Let G be a finite abelian group.
Then, there exist divisors d1, . . . ,dr of |G| such that d1 | d2 | · · · | dr and

G ∼=
r⊕
i=1

Zdi

13.5.4 Groups of order p, p2, or 2p, for prime p

Lemma 13.5.6. If |G| = p with p prime, then G ∼= Cp.

Proof. Take any non-identity element g ∈ G. By lagrange’s theorem, |g| divides |G| = p. Since g ̸= 1G,
|g| = p so G = ⟨g⟩. ■

Lemma 13.5.7. If |G| = p2 with p prime, then either G ∼= Cp2 or G ∼= Cp × Cp.

Proof. We have already proved that all groups of order p2 are abelian (Corollary 13.3.11.1), so G is
abelian. The fundamental theorem of finite abelian groups then gives the result. ■

Lemma 13.5.8. If |G| = 2p with p ̸= 2 prime, then either G ∼= C2p or G ∼= D2p.

Proof. If G is abelian, then G ∼= C2 × Cp ∼= C2p by the fundamental theorem of finite abelian groups.

Otherwise, G is non-abelian. Let P ∈ Sylp(G). The number r of Sylow p-subgroups divides 2 and
satisfies r ≡ 1 (mod p), so since p ̸= 2, we must have r = 1, so P ⊴ G.

Since p is odd, it follows that all elements of G of order 2 lie in G \ P . Also, since Z/pZ is a field, the
only solutions of the equation i2 − 1 = 0 are congruent to ±1 modulo p. Then, Lemma 13.5.3 gives that
G ∼= D2p, as required. ■

13.5.5 Groups of order 2p2, for odd prime p

Let p ̸= 2 be prime, H = C2, and K = Cp × Cp. Let ϕ : H → Aut(K) be the inversion homomorphism.
The group H ⋉ϕ K is then called the generalised dihedral group of order 2p2 and is denoted by GD2p2 .

Lemma 13.5.9. If |G| = 2p2 with p ̸= 2 prime, then G is isomorphic to one of the following:

• C2p2 ;

• Cp × C2p;

• Cp ×D2p;

Notes on Mathematics | 369



Group Theory Classifying Groups of Small Order

• D2p2 ;

• GD2p2 .

13.5.6 Groups of order pq, for prime p,q with p < q and p ∤ q − 1

Lemma 13.5.10. Let |G| = pq with p,q prime, satisfying p < q and p ∤ q − 1. Then, G ∼= Cpq.

Proof. The number r of Sylow p-subgroups divides q and satisfies r ≡ 1 (mod p). If r = q, then
q ≡ 1 (mod p), so q − 1 ≡ 0 (mod p), contradicting that p does not divide q − 1. Thus, r = 1.

Similarly, the number s of Sylow q-subgroups divides p and satisfies s ≡ 1 (mod q). Since p < q, p is
already a least residue modulo q, so s = p leads to a contradiction p ≡ 1 (mod q), so s = 1.

So, G has a normal Sylow p-subgroup, say H, and a normal Sylow q-subgroup, say K. By Lagrange’s
theorem, H ∩K = {1G}. By Theorem 13.3.13,

|HK| = |H||K|
|H ∩K|

=
pq

1
= pq = |G|

so G = HK. Then, by Theorem 13.5.1, G ∼= H × K. Note that, being of prime order, H and K are
both cyclic. Let H = ⟨h⟩ and K = ⟨k⟩. These generators commute, so |hk| = |h||k| = pq = |G|, so
G = ⟨xy⟩ = Cpq, as required. ■

We have now classified all groups of the following orders:

1,2,3,4,5,6,7,9,10,11,13,14,15,17,18

We will not classify groups of order 16, as there are too many, but we will now classify groups of order
8 and 12.

13.5.7 Groups of order 8

We have already seen a non-cyclic group of order 8, namely D8. We now define another.

The quaternion group Q8 is the group of unit basis quaternions under quaternion multiplication:

Q8 := {1,i,j,k,−1,−i,−j,−k}

That is,

• 1q = q1 = q and (−1)q = q(−1) = −q for all q ∈ Q8;

• ij = −ji = k, jk = −kj = i, and ki = −ik = j;

• 12 = 1, and i2 = j2 = k2 = ijk = −1.

The quaternion group can also be defined as the group with presentation

Q8 := ⟨i,j,k | i2 = j2 = k2 = ijk⟩

where the identity is denoted 1, the element i2 = j2 = k2 = ijk is denoted −1, and the elements i3, j3,
and k3 are denoted −i, −j, and −k, respectively.

Lemma 13.5.11.

(i) Z(Q8) = {±1}.

(ii) G has 1 element of order 2, namely −1, and 6 elements of order 4, namely ±i, ±j, and ±k.

(iii) G = ⟨i,j⟩ = ⟨j,k⟩ = ⟨k,i⟩.
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(iv) Q8 ̸∼= D8 since D8 has 5 elements of order 2 and 2 elements of order 4.

Lemma 13.5.12. If |G| = 8, then G is isomorphic to one of the following:

• C2 × C2 × C2;

• C4 × C2;

• C8;

• D8;

• Q8.

13.5.8 Groups of order 12

We have already seen some non-cyclic groups of order 12, namely D12 and A4. We now define another.

Let H = C4 = ⟨h⟩ and K = C3. Define ϕ : H → Aut(K) by ϕ(hi) = (k 7→ k(−1)i). The resulting
semidirect product H ⋉ϕ K is called the dicyclic group of order 12, denoted by Dic12.

Lemma 13.5.13. If |G| = 12, then G is isomorphic to one of the following:

• C3 × C2 × C2
∼= C6 × C2;

• C12;

• D12;

• A4;

• Dic12.

13.5.9 Unique Simple Group of Order 60

Theorem 13.5.14. If |G| = 60, then G ∼= A5.

13.6 Soluble Groups

13.6.1 Composition Series
We write H < G or H ⪇ G to mean that H is a proper subgroup of G, and similarly, H ◁ G or H |⪇ G
to mean that H is a proper normal subgroup of G.

A composition series of a group G is a sequence of nested normal subgroups (Gi)
r
i=1 satisfying

{1G} = G0
|⪇ G1

|⪇ G2
|⪇ · · · |⪇ Gr = G

such that Gi/Gi−1 is simple for each 1 ≤ i ≤ r, and r is called the length of the series.

Example.

1. Let p ̸= 2 be prime and let G = D2p = ⟨σ,τ⟩. Let G0 = {1G}, G1 = ⟨σ⟩ ∼= Cp, and G2 = G. These
groups satisfy the normality requirements, and the quotients are given by G1/G0

∼= G1
∼= Cp,

G2/G1
∼= ⟨τ⟩ ∼= C2, which are both simple. Thus,

{1G} |⪇ ⟨σ⟩ |⪇ D2p

is a composition series of length 2.
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2. Let n ≥ 5, and let G = Sn. Let G0 = {1G}, G1 = An, and G2 = Sn. These groups satisfy the
normality requirements, and the quotients are given by G1/G0

∼= G1
∼= An, G2/G1

∼= C2, which
are both simple. Thus,

{1G} |⪇ An |⪇ Sn

is a composition series of length 2.

3. Let G = D8 = ⟨σ,τ⟩. Let G0 = {1G}, G1 = ⟨σ2⟩, G2 = ⟨σ⟩, and G3 = D8. These groups satisfy
the normality requirements, and the quotients are all isomorphic to C2, which is simple, so

{1G} |⪇ ⟨σ2⟩ |⪇ ⟨σ⟩ |⪇ D8

is a composition series of length 3.

△

Note that if G is the trivial group, then the series

{1G} = G0 = G

is a composition series of G of length 0.

Theorem 13.6.1. Every finite group has a composition series.

Corollary 13.6.1.1. Let G be a finite group and let N ⊴ G. Suppose that

{1G} = N0
|⪇ N1

|⪇ · · · |⪇ Nr = N

{1G} =
X0

N
|⪇
X1

N
|⪇ · · · |⪇ Xs

N
=
G

N

are composition series for N and G/N , respectively, where each Xi in the second series is a subgroup of
G containing N . In particular, X0 = N and Xs = G.

Then,
{1G} = N0

|⪇ N1
|⪇ · · · |⪇ Nr = N = X0

|⪇ X1
|⪇ · · · |⪇ Xs = G

is a composition series for G of length r + s.

13.6.2 Jordan-Hölder Theorem
Two composition series I and II of a group G

{1G} = A0
|⪇ A1

|⪇ · · · |⪇ Ar = G (I)

{1G} = B0
|⪇ B1

|⪇ · · · |⪇ Bs = G (II)

are equivalent and write I ∼ II if r = s and there is a bijection

f : {Ai/Ai−1 : 1 ≤ i ≤ r} → {Bi/Bi−1 : 1 ≤ i ≤ s}

such that Ai/Ai−1
∼= f(Ai/Ai−1) for each 1 ≤ i ≤ r.

Theorem 13.6.2 (Jordan-Hölder). Let

{1G} = A0
|⪇ A1

|⪇ · · · |⪇ Ar = G (I)

{1G} = B0
|⪇ B1

|⪇ · · · |⪇ Bs = G (II)

be two composition series of a finite group G. Then, I ∼ II.
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This theorem implies that, up to isomorphism, the quotients Gi/Gi−1 and the length r of any composition
series of a finite group G are invariants of that group.

Let
{1G} = G0

|⪇ G1
|⪇ G2

|⪇ · · · |⪇ Gr = G

be a composition series for a finite group G, with uniqueness up to equivalence given by the Jordan-
Hölder theorem. Then, the quotient groups Gi/Gi−1 for 1 ≤ i ≤ r are called the composition factors of
G, and r is called the composition length of G.

A finite group is soluble if it is trivial or if its composition factors are all cyclic groups of prime order (or
equivalently, simple abelian groups).

Example.

(i) Let G be a finite abelian group. Then, any quotient of any subgroup of G is abelian, so any
composition factor of G is a simple abelian group, i.e. a cyclic group of prime order. Thus, all
abelian groups are soluble.

(ii) Let n ≥ 5 and consider An. Then, An is a non-abelian simple group, so it has precisely one
composition factor, namely itself, which is non-abelian. Thus, An is not soluble for any n ≥ 5.

△

Lemma 13.6.3. Let G be a finite group and let N be normal in G. Then, G is soluble if and only if
both N and G/N are soluble.

Proof. Write CF(G) for the (multi)set of composition factors of G. By Corollary 13.6.1.1 and the Jordan-
Hölder theorem,

CF(G) = CF(N) ∪ CF(G/N)

Thus, G is soluble if and only if both N and G/N are soluble. ■

Example. Let G = D2n = ⟨σ,τ⟩ and let N = ⟨σ⟩ ⊴ G. N is abelian and |G/N | = 2, so G/N is abelian,
so both are soluble, and hence G is soluble. △

13.6.3 Commutators

Recall that the commutator of two elements g,h ∈ G is the element [g,h] := ghg−1h−1. Note that
[g,h] = 1G if and only if g and h commute.

Example. Consider the alternating group A5.[
(1,2,4),(1,3,5)

]
= (1,2,4)(1,3,5)(1,2,4)−1(1,3,5)−1

= (1,2,4)(1,3,5)(4,2,1)(5,3,1)

= (1,2,3)

More generally, if {x,a,b,c,d} = {1,2,3,4,5},[
(x,a,b)(x,c,d)

]
= (x,a,b)(x,c,d)(b,a,x)(d,c,x) = (x,a,c)

△

The commutator subgroup [G,G] is the subgroup of G generated by all of its commutators:

[G,G] :=
〈
[g1,g2]

∣∣ g1,g2 ∈ G〉
More generally, if H,K ≤ G, we define

[H,K] :=
〈
[h,k]

∣∣ h ∈ H,k ∈ K〉
to be the commutator subgroup of H and K.
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Example.

1. In any abelian group G, [g,h] = 1G for all g,k ∈ G, so the commutator subgroup [G,G] = ⟨1G⟩ =
{1G} is trivial.

2. Let G = A5. As seen in the example above, every 3-cycle in A5 is the commutator of some pair of
3-cycles. But A5 is generated by 3-cycles, so [A5,A5] = A5.

△

The abelianisation Gab of a group G is the quotient G/[G,G].

Theorem 13.6.4. For any group G,

(i) [G,G] ⊴ G;

(ii) Gab is abelian.

(iii) If N is normal in G and G/N is abelian, then [G,G] ≤ N

Proof. (i) For all g,h,j ∈ G,

g[h,k]g−1 = ghkh−1k−1g−1

= gh(g−1g)k(g−1g)h−1(g−1g)k−1g−1

= (ghg−1)(gkg−1)(gh−1g−1)(gk−1g−1)

= (ghg−1)(gkg−1)(ghg−1)−1(gkg−1)−1

= [ghg−1,gkg−1]

∈ [G,G]

For a general element [h1,k1][h2,k2] · · · [hr,kr] ∈ [G,G], we have,

g[h1,k1][h2,k2] · · · [hr,kr]g−1 = g[h1,k1](g
−1g)[h2,k2](g

−1g) · · · (g−1g)[hr,kr]g
−1

=
(
g[h1,k1]g

−1
)(
g[h2,k2]g

−1
)
· · ·
(
g[hr,kr]g

−1
)

∈ [G,G]

so [G,G] ⊴ G.

(ii) We prove a more general statement: a quotient group G/N is abelian if and only if every commu-
tator is in N . That is, if and only if [G,G] ⊆ N .

Let g,h ∈ G. Then,

(gN)(hN) = (hN)(gN)

(gN)(hN) = (hN)(gN)N

(gN)−1(hN)−1(gN)(hN) = N

[gN,hN ] = N

[g,h]N = N

[g,h] ∈ N

where we used that N is the identity in G/N on the second line. So, gH and hN commutes if
and only if [g,h] ∈ N , so G/N is abelian if and only if [g,h] ∈ N for all g,h ∈ G. In particular,
if N = [G,G], then every commutator is in N be definition of the commutator subgroup, so
Gab = G/[G,G] is abelian.

(iii) Proved in part (ii).

■
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Corollary 13.6.4.1. A group G is abelian if and only if [G,G] = {1G}.

Given a group G, define G(0) := G and recursively define the nth derived subgroup as

G(n) :=
[
G(n−1),G(n−1)

]
for each n ∈ N. Then, the descending series

G(0) ≥ G(1) ≥ G(2) ≥ · · · ≥ G(n) ≥ G(n+1) ≥ · · ·

is called the derived series of G.

By definition, we have

•
(
G(n)

)(m)
= G(n+m);

• H(n) ≤ G(n) for all H ≤ G.

Theorem 13.6.5. Let G be a finite group. Then, G is soluble if and only if G(n) = {1G} for some
n ∈ N.

Proof. Suppose G is soluble. We induct on |G|.

If |G| = 1, then G is trivial, as is G(0). Suppose otherwise that |G| > 1 and define N := [G,G] ⊴ G.
Then, N is soluble by Lemma 13.6.3, as it is a normal subgroup of a soluble group.

By definition of solubility, G has a composition series

{1G} = G0
|⪇ G1

|⪇ · · · |⪇ Gr = G

where all the composition factors Gi/Gi−1 are cyclic with prime order. In particular, G/Gr−1 is cyclic
and hence abelian, so [G,G] = N ≤ Gr−1, giving |N | < |G|. So, N (m) = {1G} for some m ∈ N by the
inductive hypothesis. Since G(n) = [G,G](n−1) by definition, it follows that Gm+1 = {1G} as required.

Now, for the reverse implication, suppose that G(n) = {1G} for some n ∈ N. We induct on |G|.

If |G| = 1, then G is trivial and hence soluble. Suppose otherwise that |G| > 1 and again define
N := [G,G] ⊴ G. If N = G, then G(n) = [G,G](n−1) = G(n−1) = · · · = G(1) = G(0) = G, which
contradicts the inductive hypothesis. So, N |⪇ G.

Since N (n−1) = [G,G](n−1) = G(n) = {1G}, N is soluble by the inductive hypothesis. Also, G/N =
G/[G,G] = Gab is abelian and hence soluble. So, G is also soluble by Lemma 13.6.3. ■

A previous result gave that normal subgroups of a soluble group are soluble, but this theorem implies
that any subgroup of a soluble group is soluble.

Corollary 13.6.5.1. If G is a finite soluble group, and H ≤ G, then H is soluble.

Proof. Since G is soluble, G(n) = {1G} for some n ∈ N. Since H(n) ≤ G(n), we must have H(n) = {1G},
so H is soluble. ■

13.6.4 Examples of Soluble Groups
Theorem 13.6.6. Let G be a group of order pn for some prime p and n ∈ N. Then, G is soluble, and
furthermore, all composition factors of G are isomorphic to Cp.
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Proof. We proceed by strong induction on |G|.

If |G| = p1 = p, then G ∼= Cp is cyclic of prime order, so G is soluble with composition length 1, and its
composition factor is Cp.

Assume that |G| = pn > p and that the result holds for all groups of order less than |G|. Then, by
Theorem 13.3.11, the centre Z := Z(G) is non-trivial. The centre Z is abelian and hence soluble. Also,
G/Z is soluble by the inductive hypothesis, so G is soluble by Lemma 13.6.3. ■

Theorem 13.6.7. Let G1 and G2 be finite soluble groups. Then, G := G1 ×G2 is soluble.

Proof. Consider the projection homomorphism π1 : G → G1. Define N := ker(π) = {1G1
} × G2

∼= G2,
so N is soluble.

Also, im(π) = G1 is soluble, so by the first isomorphism theorem,

G/ ker(π) ∼= im(π)

G/N ∼= G1

and hence G/N is soluble, so G is soluble by Lemma 13.6.3. ■

Corollary 13.6.7.1. Let G1, . . . ,Gt be finite soluble groups. Then, G := G1 × · · · ×Gt is soluble.

Proof. Induction on the previous result. ■
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Galois Theory



Chapter 15

Representation Theory

In this chapter, we study groups by their representations as matrices or linear transformations, and their
associated modules.



Chapter 16

Symmetric Functions and Integrable Prob-
ability
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Geometric Group Theory



Chapter 18

Reflection Groups

“We share a philosophy about linear algebra: we think basis-free, we write basis-free,
but when the chips are down we close the office door and compute with matrices like
fury.”

— Paul Halmos, Celebrating 50 Years of Mathematics

18.1 Reflection Groups

Let V be a finite-dimensional vector space over R. A form ⟨ · , · ⟩ : V × V → R is

• symmetric if ⟨x,y⟩ = ⟨y,x⟩ for all x,y ∈ V ;

• bilinear if ⟨αx + βy,z⟩ = α⟨x,z⟩ + β⟨y,z⟩ and ⟨x,αy + βz⟩ = α⟨x,y⟩ + β⟨x,z⟩ for all x,y ∈ V and
α,β ∈ R;

• positive definite if ⟨x,x⟩ ≥ 0 for all x ∈ V , with equality if and only if x = 0V .

All the forms we will consider will be symmetric and bilinear.

A space equipped with a form satisfying the three properties above is called a Euclidean space.

Example. V = R2 with
〈
(x1,x2),(y1,y2)

〉
= x1y1 − x1y2 − x2y1 + 2x2y2 is a Euclidean space. △

Example. V = Rn with ⟨x,y⟩ = x · y =
∑
i xiyi is the standard Euclidean space, denoted by En. △

Via the Gram-Schmidt process, every Euclidean vector space V has an orthonormal basis – that is, a
basis (ei)

n
i=1 of unit vectors (∥ei∥ = 1) that are pairwise orthogonal (ei · ej = 0 for i ̸= j). Thus, we can

find an isomorphism V → En preserving the bilinear form.

Example. In the non-standard Euclidean space above,[
1
0

]
,

[
1
1

]
is such a basis. △

The general linear group GL(V ) of a vector space V is the group of linear automorphisms of V with the
operation of composition.

GL(V ) := Aut(V )

=
{
(T : V → V ) : T is linear and bijective

}
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If V has dimension n < ∞, then this is isomorphic to the group of n × n invertible matrices with the
operation of matrix multiplication.

The orthogonal group O(V ) of a vector space V is the subgroup of the general linear group consisting of
transformations that preserve the bilinear form

O(V ) :=
{
T ∈ GL(V ) :

〈
T (x) · T (y)

〉
= ⟨x,y⟩

}
Because vector norms are defined in terms of bilinear forms, e.g. ∥x∥ =

√
⟨x,x⟩, orthogonal transforma-

tions T ∈ O(V ) also preserve vector norms: ∥x∥ = ∥T (x)∥ for any x ∈ V .

Let x ∈ V be non-zero. We define the map Sx : V → V by

Sx(z) := z − 2
⟨x,z⟩
⟨x,x⟩

x

This is always an element of O(V ). Note also that Sx(x) = −x.

An element T ∈ O(V ) is a reflection if the set of fixed points V T := {v ∈ V : T (v) = v} is an
(n− 1)-dimensional subspace of V .

Example. The map Sx is a reflection, and the fixed subspace is the orthogonal complement {x}⊥. △

The next lemma shows that all reflections are of this form.

Lemma 18.1.1. Let V be a Euclidean space. Let T be a reflection, and let x ∈ (V T )⊥ be non-zero.
Then, T (x) = −x and T = Sx.

Proof. Let v ∈ V T , so v = T (v). Then,
〈
v,T (x)

〉
=
〈
T (v),T (x)

〉
= ⟨v,x⟩ = 0, so v and T (x) are

orthogonal, i.e., T (x) ∈ (V T )⊥.

Since dim
(
(V T )⊥

)
= dim(V )− dim(V T ) = 1, T (x) = αx for some α ∈ R. Then, since x is non-zero,

⟨x,x⟩ = ⟨T (x),T (x)⟩
= ⟨αx,αx⟩
= α2⟨x,x⟩

since x ̸= 0, ⟨x,x⟩ ̸= 0, so α2 = 1. If α = 1, then T (x) = x and x ∈ V T , contradicting that x ∈ (V T )⊥.
Hence, α = −1, so T (x) = −x.

Now, suppose z ∈ V . Then, by linearity in the first argument,〈
z − ⟨x,z⟩
⟨x,x⟩

x, x

〉
= ⟨z,x⟩ − ⟨x,z⟩

⟨x,x⟩
⟨x,x⟩

= ⟨z,x⟩ − ⟨z,x⟩
= 0

so z − ⟨x,z⟩
⟨x,x⟩x ∈ {x}

⊥ = V T , and T
(
z − ⟨x,z⟩

⟨x,x⟩x
)
= z − ⟨x,z⟩

⟨x,x⟩x. So,

T (z) = T

(
z − ⟨z,x⟩
⟨x,x⟩

x+
⟨z,x⟩
⟨x,x⟩

x

)
= T

(
z − ⟨z,x⟩
⟨x,x⟩

x

)
+
⟨z,x⟩
⟨x,x⟩

T (x)

= z − ⟨z,x⟩
⟨x,x⟩

x− ⟨z,x⟩
⟨x,x⟩

x

= z − 2
⟨z,x⟩
⟨x,x⟩

x

Notes on Mathematics | 382



Reflection Groups Reflection Groups

= Sx(z)

■

From this lemma, we deduce

• Every reflection T in a Euclidean space is of the form Sx for some x determined uniquely up to
scaling. Such an x is called the root of the reflection T .

• For all non-zero x ∈ V , the map Sx is a reflection.

• Every reflection T is involutive, i.e., satisfies T 2 = idV .

A finite reflection group is a pair (G,V ) consisting of a Euclidean space V and a finite subgroup G < O(V )
generated by reflections, e.g. G =

〈
{Sx : Sx ∈ G}

〉
.

Example. The trivial group generated by no reflections forms the trivial reflection group (0,V ). △

Example.
(
{idR ,f},R

)
with f defined by x 7→ −x is a reflection group, with f = S1. △

Two reflection groups (G1,V1) and (G2,V2) are equivalent if there exists an isometry φ : V1 → V2 such
that φG1φ

−1 := {φTφ−1 : T ∈ G1} = G2, written as (G1,V1) ≃ (G2,V2).

Example. The reflection group
(
{idR2 ,S(0,1)},R2

)
generated by the reflection along the x-axis and the

reflection group
(
{idR2 ,S(0,1)},R2

)
generated by the reflection along the y-axis are equivalent, with the

isometry given by the rotation

φ =

[
0 1
−1 0

]
△

Example. Let x,y ∈ R2 be non-zero. Consider the group ⟨Sx,Sy⟩ generated by the reflections Sx and Sy.

As matrices, we have

det(SxSy) = det(Sx) det(Sy)

= (−1)2

= 1

so SxSy ∈ SO(2), i.e., is a rotation by some angle α (in fact, α is twice the angle between x and y). If
α
2π /∈ Q, then SxSy has infinite order and ⟨Sx,Sy⟩ is not finite. Otherwise, if α

2π = n
k for coprime integers

n,k ∈ Z, then SxSy is a rotation by 2πn
k and hence has order k. From this, we deduce that ⟨Sx,Sy⟩ is

isomorphic to the dihedral group Dih(k) of symmetries on the k-gon of order 2n (i.e. as generated by
the reflection σ = Sx and the rotation τ = SxSy). △

We define the group I2(k) as

I2(k) :=
(〈
S(1,0),S(cos(π

k ), sin(π
k )
)〉,R2

)
=
(
Dih(k),R2

)
with the subscript matching the dimension. Note that |I2(k)| = 2k.

Example. The symmetric group Sym(n) acts on {1, . . . ,n}. We can extend this action to Rn as follows.

Let (ei)
n
i=1 be a basis of Rn. For each permutation σ ∈ Sym(n), define Tσ : Rn → Rn by Tσ(ei) = eσ(i).

Then, σ 7→ Tσ defines a homomorphism Sym(n)→ O(Rn) and hence a subgroup of O(Rn).

The symmetric group Sym(n) is generated by the transpositions (i,j), i ̸= j, and T(i,j) = Sei−ej is a
reflection, so T(i,j)(ei − ej) = ej − ei = −(ei − ej). Now, any vector y ∈ (ei − ej)⊥ will have equal i and
j coordinates, and hence T(i,j)(y) = (y). Thus, this defines a finite reflection group

(
Sym(n),Rn

)
.
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However, note that the vector x = (1,1 . . . ,1) is fixed by any Tσ, so the orthogonal complement x⊥ :={
(a1, . . . ,an) :

∑
i ai = 0

}
is also invariant (i.e. permuting the summands doesn’t change its value) and

is isomorphic to Rn−1.

So, we can reduce
(
Sym(n),Rn

)
to
(
Sym(n),x⊥

)
≃
(
Sym(n),Rn−1

)
△

We define the group An−1 (unrelated to the alternating group) by:

An−1 :=
(
Sym(n),x⊥

)
≃
(
Sym(n),Rn−1

)
again, with the subscript matching the dimension. Note that |An| = (n+ 1)! and A2 = I2(3).

We define the group Bn by modifying An as:

Bn :=
(
⟨Sym(n), Sei

i=1,...,n

⟩,Rn
)

and also the group Dn as:
Bn :=

(
⟨Sym(n), Sei+ej

i ̸=j
⟩,Rn

)
Dn has index 2 in Bn.

18.2 Root Systems

Lemma 18.2.1. For any T ∈ O(V ),
TSxT

−1 = ST (x)

Proof. First, note

(TSxT
−1)
(
T (x)

)
= (TSxT

−1T )(x)

= (TSx)(x)

= T (−x)
= −T (x)

More generally,

(TSxT
−1)(z) = T

(
Sx(T

−1z)
)

= T

(
T−1z − 2

⟨T−1z,x⟩
⟨x,x⟩

x

)
= T (T−1z)− T

(
2
⟨T−1z,x⟩
⟨x,x⟩

x

)
= z − 2

⟨T−1z,x⟩
⟨x,x⟩

T (x)

= z − 2
⟨z,Tx⟩
⟨Tx,Tx⟩

T (x)

= ST (x)

where the last line follows from T ∈ O(V ) being orthogonal, i.e. ⟨u,v⟩ =
〈
T (u),T (v)

〉
. ■

The root system of a finite reflection group (G,V ) is the set

Φ(G,V ) :=
{
x ∈ V : Sx ∈ G,∥x∥ = 1

}
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Theorem 18.2.2. The root system of a finite reflection group (G,V ) satisfies the following properties:

(i) If x ∈ Φ(G,V ), then Rx ∩ Φ(G,V ) = {x,−x};

(ii) The cardinality of Φ(G,V ) is twice the number of reflections in G.

(iii) If T ∈ G and x ∈ Φ(G,V ), then T (x) ∈ Φ(G,V )

Proof.

(i) If x ∈ Φ(G,V ), then ∥x∥ = 1, so Rx ∩ Φ(G,V ) =
{
αx : α ∈ R,|a|∥x∥ = 1

}
= {x,−x}.

(ii) For each reflection Sx ∈ G, there are two elements x,− x ∈ Φ(G,V ).

(iii) If x ∈ Φ(G,V ), then Sx ∈ G. Then, for any T ∈ G, TSxT−1 = ST (x) ∈ G. Also, since T ∈ G < O(V )
is orthogonal, ∥T (x)∥ = ∥x∥ = 1. Hence, T (x) ∈ Φ(G,V ).

■

Example. I2(3) describes the symmetry of an equilateral triangle, so the roots are given by the unit
vectors on the lines of symmetry:

ΦI2(3) =
{
(1,0),(−1,0),

(
1
2 ,

√
3
2

)
,
(
− 1

2 ,−
√
3
2

)
,
(
1
2 ,−

√
3
2

)
,
(
− 1

2 ,
√
3
2

)}

(1,0)(−1,0)

(
− 1

2 ,
√
3
2

) (
1
2 ,

√
3
2

)

(
− 1

2 ,−
√
3
2

) (
1
2 ,−

√
3
2

)
△

18.2.1 Abstract Root Systems
More generally, any set of vectors Φ ⊆ V is a root system if:

(i) 0V /∈ Φ;

(ii) If x ∈ Φ, then Rx ∩ Φ = {x,−x};

(iii) If x,y ∈ Φ, then Sy(x) ∈ Φ.

Note that we do not require the vectors in an abstract root system to have unit norm, unlike the root
system associated to a finite reflection group.

Example. Φ1 = {−1,0,1}2 \
{
(0,0)

}
is a root system:
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(1,0)

(1,1)(0,1)(−1,1)

(−1,0)

(−1,−1) (0,−1) (1,−1)

△

Example. The following is a root system in R4:

Φ2 =
{
ei − ej : 1 ≤ i,j ≤ 4, i ̸= j

}
△

Example. The following is a root system in R4:

Φ3 =
{
ei − ej ,± ei : 1 ≤ i,j ≤ 4, i ̸= j

}
△

18.2.2 Simple Systems
A set Π ⊆ Φ is a simple system if

(i) Π is linearly independent;

(ii) For every x ∈ Φ, x =
∑
i αiyi for some yi ∈ Π and αi ∈ R satisfying αi ≥ 0 for all i, or αi ≤ 0 for

all i.

A simple system is similar to a basis in that it is linearly independent and it spans Φ, but with the
stronger requirement that these linear combinations have all positive or all negative coefficients.

Example. A simple system for the root system Φ1 defined in a previous example is given by

Π =
{
x1 = (1,0),x2 = (−1,1)

}

x1

x2 2x1 + x2x1 + x2

−x1

−2x1 − x2 −x1 − x2 −x2

△
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Example. A simple system for ΦI2(3) is given by

Π =
{
x1 = (1,0),x2 = (− 1

2 ,
√
3
2 )
}

x1

x2

−x1

x1 + x2

−x1 − x2 −x2

with △

Example. A simple system for the root system Φ2 defined in a previous example is given by

Π2 = {e1 − e2,e2 − e3,e3 − e4}

△

Example. A simple system for the root system Φ3 defined in a previous example is given by

Π2 = {e1 − e2,e2 − e3,e3 − e4,e4}

△

In the examples above, we note that the angle between the roots in a simple system is obtuse (at least,
for the examples we can visualise in R2). This turns out that this is a necessary condition for a set of
roots to be a simple system:

Lemma 18.2.3. Let Π be a simple system and suppose that x,y ∈ Π are distinct. Then, ⟨x,y⟩ ≤ 0.

Proof. Suppose otherwise that ⟨x,y⟩ > 0. Then, Sx(y) ∈ Φ is given by Sx(y) = y − 2 ⟨x,y⟩
⟨x,x⟩x = y − αx,

where α = 2 ⟨x,y⟩
⟨x,x⟩ > 0.

Since Π is linearly independent, 1y−αx is the unique representation of Sx(y) as a linear combination of
elements of Π. But then, we have coefficients 1 > 0 and −α < 0, contradicting that Π is simple. ■

This lemma makes it slightly easier to construct simple systems: once the first vector has been chosen,
we only have to consider vectors pointing in the opposite direction as candidates to be added to the
simple system. For instance, in the previous example, once we have picked x1, we only need to check the
two vectors on the left (obviously excluding −x1).

18.2.3 Ordered Vector Spaces
An ordered vector space is a vector space V equipped with a non-strict total ordering ≤ compatible with
the vector space structure. That is:

• ∀x,y,z ∈ V , if x ≤ y, then x+ z ≤ y + z (compatibility with vector addition);

• ∀x,y ∈ V,∀α ∈ R, if x ≤ y and α > 0, then αx ≤ αy;

• ∀x,y ∈ V,∀α ∈ R, if x ≤ y and α < 0 then αy ≤ αx (compatibility with scalar multiplication).
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We write x < y if x ≤ y and x ̸= y.

The lexicographical order on Rn is given by (x1, . . . ,xn) < (y1, . . . ,yn) if there exists k ∈ {1, . . . ,n} such
that xi = yi for i < k and xk < yk.

That is, compare the first components of the vectors using the usual ordering on R; in case of a tie,
compare the second components, and so on. In this way, the lexicographical ordering is a generalisation
of dictionary ordering to non-alphabetical symbols.

Example. The vectors in V = {−1,0,1}2 are lexicographically ordered as:

(−1,−1) < (−1,0) < (−1,1) < (0,−1) < (0,0) < (0,1) < (1,−1) < (1,0) < (1,1)

If we label −1 as a, 0 as b, and 1 as c and concatenate the components of each vector together, we have:

aa < ab < ac < ba < bb < bc < ca < cb < cc

matching the ordinary dictionary ordering of strings. △

Theorem 18.2.4. Every possible total ordering on Rn is a lexicographical ordering for some basis.

If ≤ is a total ordering on V , then for each x ∈ V \ {0}, either x < 0 < −x or −x < 0 < x, so every
ordered vector space V can be partitioned into three sets: namely, the elements strictly less than 0,
V− := {x ∈ V : x < 0}, the elements strictly greater than 0, V+ := {x ∈ V : x > 0}, and the singleton
containing the zero vector, {0}.

A positive system in a root system Φ is a subset Φ+ ⊂ Φ satisfying Φ+ = Φ ∩ V+, where V+ is induced
by some total ordering on V . Similarly, a negative system is a subset Φ− ⊂ Φ such that Φ− = Φ ∩ V−
for some total ordering on V .

Example. In the previous example, we saw the lexicographical ordering on V = {−1,0,1}2. A positive
system for the root system Φ1 = V \ {0} is then given by the elements greater than 0 = (0,0):

Φ+ =
{
(0,1),(1,−1),(1,0),(1,1)

}
△

Example. Another positive system is given by

Φ+ =
{
(1,−1),(1,0),(1,1),(0,−1)

}
with the ordering inducing the positive system given by the lexicographic ordering with respect to the
basis

{
(1,−1),(0,−1)

}
. △

18.2.4 Quasisimple Systems
A subset Ω ⊆ Φ+ is a quasisimple system if

(i) For each x ∈ Φ+, there exists a collection of scalar coefficients αi ≥ 0 such that x =
∑
i αiyi for

yi ∈ Ω;

(ii) Ω is minimal with respect to property (i).

Compared to simple systems, it is relatively easy to construct a quasisimple system:

Example. Consider the positive system

Φ+ =
{
z1 = (0,1),z2 = (1,−1),z3 = (1,0),z4 = (1,1)

}
from a previous example.

Clearly, the whole set {z1,z2,z3,z4} satisfies property (i).
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But, z4 = z1 + z3, so z4 may be replaced in any linear combination with z1 + z3, and all the coefficients
are still positive, so {z1,z2,z3} still satisfies (i).

Now, we note that z3 = z1 + z2, so again, we may remove z3 to obtain {z1,z2}.

At this point, we cannot remove any more vectors, so this set is minimal, and Ω = {z1,z2} is a quasisimple
system. △

Lemma 18.2.5. Let Ω be a quasisimple system and suppose that x,y ∈ Ω are distinct. Then, ⟨x,y⟩ ≤ 0.

Proof. Suppose ⟨x,y⟩ > 0. We have Sx(y) ∈ Φ and Sx(y) = y − 2 ⟨x,y⟩
⟨x,x⟩x = y − αx, with α > 0.

Suppose Sx(y) ∈ Φ+, so Sx(y) = y − αx =
∑
z∈Ω αzz for some scalars αz ≥ 0. Then,

y − αx = αyy +
∑

z∈Ω\{y}

αzz

(1− αy)y = αx+
∑

z∈Ω\{y}

αzz

if αy < 1, then dividing through by 1− αy gives:

y =
1

1− αy

αx+
∑

z∈Ω\{y}

αzz


y =

αx

1− αy
+

∑
z∈Ω\{y}

αz
1− αy

z

so we can express y as a linear combination with positive coefficients, so Ω \ {y} is a quasisimple system,
contradicting the minimality of Ω. So, αy ≥ 1. Then,

y − αyy = αx+
∑

z∈Ω\{y}

αzz

0 = (αy − 1)y + αx+
∑

z∈Ω\{y}

αzz

All the coefficients on the right are non-negative, and Ω ⊆ Φ+, so the right side is in V+. Since α > 0,
αx is non-zero, and hence the right side is non-zero, which is a contradiction.

Otherwise, Sx(y) ∈ Φ−, so Sx(y) = y − αx =
∑
z∈Ω−αzz for some scalars αz ≥ 0. Then,

y − αx =
∑
z∈Ω

−αzz

αx− y =
∑
z∈Ω

αzz

x− 1

α
y =

∑
z∈Ω

αz
α
z

so the previous argument applies, with the roles of x and y reversed. ■

Theorem 18.2.6. Every quasisimple system is a simple system.

Proof. Every root in Φ+ can be written as a non-negative linear combination L of roots in Ω. But then,
every root in Φ− can be written as the non-negative linear combination −L. So Ω satisfies property (ii)
of a simple system.
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We are left to show that Ω is linearly independent. Suppose there is a linear combination∑
z∈Ω

αzz = 0

with non-negative coefficients αz not all zero. Define the sets

A := {z ∈ Ω : αz > 0}, B := {z ∈ Ω : αz < 0}

and define the non-negative scalars βz := −αz. Sorting positive and negative coefficients, we have∑
z∈Ω
αz>0

αzz +
∑
z∈Ω
αz<0

αzz = 0

∑
z∈Ω
αz>0

αzz =
∑
z∈Ω
αz<0

−αzz

∑
z∈A

αzz =
∑
z∈B

βzz

Define the vector y to be equal to these sums, which is non-negative. Then,

0 ≤ ∥y∥2

= ⟨y,y⟩

=

〈∑
z∈A

αzz,
∑
z∈B

βzz

〉
=
∑
s∈A

∑
t∈B

αsβt⟨s,t⟩

The scalars are non-negative, and by the previous lemma, the forms are all non-positive, so the whole
sum is non-positive:

≤ 0

so the coefficients must be all zero, contradicting their construction. ■

Theorem 18.2.7. There is a bijection between positive systems and simple systems. Specifically, every
positive system contains a unique simple system, and every simple system is contained within a unique
positive system.

Proof. Let Φ+ be a positive system. Consider the set of all subsets of Φ+ satisfying property (i) of a
quasisimple system. Note that Φ+ itself satisfies this property, so this set is non-negative. Now, choose
one which is minimal, giving a quasisimple system, which is a simple system.

Suppose this process yields two distinct simple systems Π,Π′ ⊆ Φ+. Without loss of generality, we can
find x ∈ Π′ \Π. Because x ∈ Φ+ and Π is a simple system, there exists a linear decomposition

x =
∑
y∈Π

αyy

where the coefficients are all non-negative or all non-positive. Since x ∈ Φ+ is positive, the coefficients
must in fact be all non-negative. Also, at least one of the coefficients, say αy0 , is positive, as x is non-zero.

Because y ∈ Φ+ and Π′ is also a simple system, we can decompose each y as a linear combination

y =
∑
z∈Π′

βyz z
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again with all coefficients non-negative, since y ∈ Φ+. Again, at least one of the coefficients is positive
in each decomposition, since each y is non-zero. Then, we may rewrite the decomposition of x as

x =
∑
y∈Π

αyy

=
∑
y∈Π

αy

(∑
z∈Π′

βyz z

)

=
∑
y∈Π

(∑
z∈Π′

αyβ
y
z

)
z

=
∑
z∈Π′

∑
y∈Π

αyβ
y
z

 z

Since x ∈ Π′, and Π′ is linearly independent, we must have

∑
y∈Π

αyβ
y
z =

{
0 z ̸= x

1 z = x

As every term in this sum is positive,
∑
y∈Π αyβ

y
z ≥ αy0β

y0
z , so βy0z = 0 unless z = x. Then, we have

y0 = βy0x x. Since Φ ∩ Rx = {x,− x}, we have that y0 = x, giving a contradiction.

Now, given a simple system Π, we can extend it to a basis B of V . Then, take the lexicographic order
on V with respect to B. By construction, Π ⊂ V+, so Π ⊂ Φ+.

Uniqueness follows since every element of Φ is a sum of elements of Π with either non-negative or non-
positive coefficients. The sums with non-negative coefficients are in V+ and these give exactly Φ+. ■

Theorem 18.2.8. Let Φ ⊇ Φ+ ⊇ Π be a root system, a positive system, and a simple system, respectively.
Then, for all x ∈ Π and all y ∈ Φ+:

• if x ̸= y, then Sx(y) ∈ Φ+;

• if x = y, then Sx(y) = −x ∈ Φ−.

Proof. (ii) follows from roots being negated under their associated reflections.

Otherwise, assume x ̸= y, and let y =
∑
z∈Π αzz. Since y ∈ Φ+, αz ≥ 0 for all z, and also since y is

non-zero, at least one coefficient αz0 is non-zero. Thus,

Sx(y) = y − αx

= −αx+
∑
z∈Π

αzz

= (αx − α)x+
∑

z∈Π\{x}

αzz

If αx − α > 0, then this is a non-negative decomposition of Sx(y), so Sx(y) ∈ Φ+.

Otherwise, αx − α < 0, so this is a decomposition of Sx(y) into a linear combination with both positive
coefficients {αz}z ̸=x, and a negative coefficient αx − α.

But Sx(y) ∈ Φ, and Π is simple, so there also exists a non-negative or non-positive decomposition. So
Sx(y) has two distinct decompositions into linear combinations of vectors in Π, contradicting the linear
independence of Π. ■
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Intuitively, one might think that applying a reflection would perhaps swap all the vectors in the positive
and negative half-spaces V+ and V−, or something similar. But, this theorem tells us that only one of
these roots ever changes from being positive to negative: a root system captures a lot of information
about the set of reflections its roots generate.

Given a root system Φ, we define its associated group G as

G = ⟨Sx | x ∈ Φ⟩ ≤ O(V )

where V is the vector space containing Φ. This group acts on the root system Φ, since every element of
G is a composition of reflections, and root systems are closed under reflection.

We claim that this group is finite.

Lemma 18.2.9. If Φ+ is a positive system, then Sx(Φ+) is a positive system for any x ∈ Π.

Lemma 18.2.10. Let Π and Π′ be simple systems in Φ. Then, there exists g ∈ G such that g(Π) = Π′.

Proof. Let Φ+ and Φ′
+ be the associated unique positive systems for Π and Π, respectively, and let Φ−

and Φ′
− be the corresponding negative systems. We induct on k := |Φ+ ∩ Φ−|.

If k = 0, then Φ+ = Φ′
+, so Π = Π′ = idG(Π), since each positive system contains a unique simple

system.

Assume the result holds for some arbitrary fixed k ≥ 0. Then, k + 1 ≥ 1, so Φ+ ̸= Φ′
+. Now, pick

some x ∈ Π ∩ Φ′
−. Such an x exists, or else Π ⊆ Φ \ Φ′

− = Φ′
+, so Π = Π′, contradicting the inductive

hypothesis.

Now, consider Sx(Φ+). By the previous theorem, every root apart from x is invariant under this reflection,
and x alone is negated, so

Sx(Φ+) =
(
Φ+ \ {x}

)
∪ {−x}

Then,
Sx(Φ+) ∩ Φ′

− = (Φ+ ∩ Φ′
−) \ {x}

has cardinality k. ■

Theorem 18.2.11.

(i) G = ⟨Sx | x ∈ Π⟩;

(ii) For all y ∈ Φ, there exists x ∈ Π and g ∈ G such that y = g(x).

The first part of the theorem states that we can reduce the generating set from the entire root system Φ
to just a simple system Π ⊆ Φ. The second point says that every vector y in a root system is contained
within a simple system g(Π) for some g ∈ G. So in a way, a simple system contains almost as much
information as the entire root system.

Proof. Let x ∈ Φ, so x =
∑
r∈Π αrr. The height of x with respect to Π is defined as

h(x) :=
∑
r∈Π

αr

Define G0 = ⟨Sx | x ∈ Π⟩ ≤ G. Then, for some fixed arbitrary y ∈ Φ+, define Λy to be the intersection
of the orbit of y under G0 with Φ+:

Λy := G0 · y ∩ Φ+

= {g0(y) : g0 ∈ G0} ∩ Φ+
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Pick z ∈ Λy with minimal height. Since z ∈ Φ+, we have

z =
∑
x∈Π

αxx

with αx ≥ 0 for all x. Then,

0 ≤ ∥z∥2

= ⟨z,z⟩

=

〈
z,
∑
x∈Π

αxx

〉
=
∑
x∈Π

αx⟨z,x⟩

so ⟨z,x⟩ ≥ 0 for some x ∈ Π. Then,

Sx(z) = z − 2
⟨x,z⟩
⟨x,x⟩

x

Sx(z) = z − αx
h
(
Sx(z)

)
= h

(
z − αx

)
h
(
Sx(z)

)
= h

(
z
)
− α

since z has minimal height in Λy, Sx(z) /∈ Λy. Also, z is in the orbit G0 · y, so also Sx(z) ∈ G0 · y, and
hence Sx(z) ∈ Φ−. But, the only root that can change sign under the reflection Sx is x, so x = z, and x
is also in the orbit G0 · y. That is, there exists g ∈ G0 such that x = g · y, or y = g−1 · x, proving (ii).

Now, given y ∈ Φ, let x ∈ Π and g ∈ G0 be such that y = g · x. Then, gSxg−1 = Sg(x) = Sy, so any
reflection with a root in Φ can be expressed as the composition of a reflection Sx in Π ⊆ G0 and two
reflections g,g−1 ∈ G0. So G = G0. ■

The length of an element g ∈ G is defined as

ℓ(g) := min{n : ∃x1,x2, . . . , xn ∈ Π : g = Sx1
Sx2
· · ·Sxn

}

That is, the length of an element g is the minimum number of reflections required to compose into g.

• ℓ(g) = 0 if and only if g = 1G;

• ℓ(Sx) = 1 for all x ∈ Π.

While defined algebraically, this notion of length has geometric meaning, relating to root systems:

Theorem 18.2.12. For all g ∈ G,

ℓ(g) =
∣∣(g · Φ+) ∩ Φ−

∣∣
=
∣∣{x ∈ Φ+ : g · x ∈ Φ−}

∣∣
That is, the length of g is equal to the number of positive roots that become negative when g is applied
to them.

Proof. Define N(g) := (g · Φ+) ∩ Φ−, and n(g) := |N(g)|. The goal is to show that n(g) = ℓ(g).

We have:

• n(g) = n(g−1), as x 7→ −g · x is a bijection N(g) to N(g−1).
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• For each x ∈ Π,

n(Sxg) =

{
n(g) + 1 g−1 · x ∈ Φ+

n(g)− 1 g−1 · x ∈ Φ−

and

n(Sxg
−1) = n(gSx) =

{
n(g) + 1 g · x ∈ Φ+

n(g)− 1 g · x ∈ Φ−

We show that n(g) ≤ ℓ(g). Let g = Sx1
Sx2
· · ·Sxk

with k = ℓ(g). Then,

n(g) ≤ n(Sx1Sx2 · · ·Sxk
)

≤ n(Sx1Sx2 · · ·Sxk−1
) + 1

≤ n(Sx1Sx2 · · ·Sxk−2
) + 2

...

≤ n(Sx1
) + (k − 1)

≤ k
= ℓ(g)

Now, suppose n(g) < k, so there exists an index i ≤ k such that n(Sx1
Sx2
· · ·Sxi

) = n(Sx1
Sx2
· · ·Sxi−1

)−
1, so Sx1

Sx2
· · ·Sxi−1

(xi) ∈ Φ−. Pick j to be the maximum index such that Sxj
· · ·Sxi−1

(xi) ∈ Φ−, but
Sxj+1 · · ·Sxi−1(xi) ∈ Φ+. Thus,

Sxj+1 · · ·Sxi−1(xi) = xj

Let h = Sxj+1 · · ·Sxi−1 . Then, hSxih
−1 = Sxj , so SxjhSxi = hSxih

−1hSxi = h, so we can remove Sxj

and Sxi from the decomposition of g, contradicting that ℓ(g) = k. ■

Theorem 18.2.13. Let Π and Π′ be simple systems in Φ. Then, there exists a unique g ∈ G such that
gΠ = Π′.

Proof. Existence was proved in a previous theorem. For uniqueness, suppose g · Π = h · Π = Π′. Then,
h−1g · Π = Π. Now, consider the positive root system Φ+ associated to Π. Then, Φ+ = h−1g · Φ+, and
hence ℓ(h−1g) = 0, so h−1g = 1G, and g = h.

■

Corollary 18.2.13.1. There is a bijection between G and the set of simple systems in G.

Proof. Orbit-stabiliser theorem. ■

Corollary 18.2.13.2. Given a finite root system Φ ⊆ V ,
(
⟨Sx | x ∈ Φ⟩,V

)
is a finite reflection group

with order at most 2|Φ|.

So, we can convert a reflection group (G,V ) into a root system Φ(G,V ), and this corollary tells us that
we can recover (G,V ) from Φ(G,V ).

Conversely, if we start with an abstract root system Φ, we can convert this into a reflection group
(G,V ), and from there, obtain the root system Φ(G,V ), which will be equal to the set of roots in Φ, each
normalised to unit length.

Notes on Mathematics | 394



Reflection Groups Presentations of Groups

18.3 Presentations of Groups

18.3.1 Free Groups

Given a set X, a word w = x1x2 · · ·xn on X is a finite sequence of letters (xi)
n
i=1 ⊆ X ∪X−1, where a

letter is either an element of X or the formal inverse of an element of X, and we say that n is the length
of the word. Note that the empty sequence of length 0 is a word, denoted by ∅.

The concatenation of two words x1x2 · · ·xm and y1y2 · · · yn is the word x1 · · ·xmy1 . . . yn.

A word w′ is an elementary contraction of a word w if w = y1xx
−1y2 and w′ = y1y2, where y1,y2 are

(possibly empty) words and x ∈ X ∪X−1, and we write w ↘ w′. We also say that w is an elementary
expansion of w′ and write w′ ↗ w.

Two words a and b are equivalent if there are words w1, . . . ,wn such that a = w1 and b = wn and for
each i, either wi ↗ wi+1 or wi ↘ wi+1.

The free group F (X) on the set X is the set of equivalence classes of words in X. The group operation is
given by [w] · [w′] = [ww′], and the identity element is given by [∅], also denoted by ε or e. The inverse
of the element [x1x2 · · ·xn] is given by [x−1

m · · ·x−1
2 x−1

1 ].

A word is reduced if it does not admit an elementary contraction.

Theorem 18.3.1. Every element of F (X) is represented by a unique reduced word.

18.3.2 Presentations
The free group satisfies a universal property in the category of groups, namely, given any function
f : X → G from a set X to a group G, there is a unique homomorphism φ : F (X)→ G φ

(
[x]
)
= f(x).

That is, such that
F (X)

X

G

ι

f

φ

commutes. That is, homomorphisms F (X)→ G uniquely correspond to functions X → G.

Because of this, given a group G, we can always find a set X and a surjection F (X)↣ G.

Let G be a group and B ⊆ G be a subset. The normal subgroup generated by B, denoted ⟨⟨B⟩⟩, is
smallest normal subgroup of G containing b. Or equivalently,

⟨⟨B⟩⟩ :=
⋂

B⊆N⊴G

N

Because the intersection of normal subgroups is a normal subgroup, ⟨⟨B⟩⟩ is itself normal in G.

Lemma 18.3.2.

⟨⟨B⟩⟩ =

{
n∏
i=1

gib
±1g−1

i : n ∈ N,bi ∈ B,gi ∈ G

}

If N is a normal subgroup of G containing B, then it certainly contains all the conjugates gib±1
i g−1

i , so
N is a subset of this set. Conversely, this set contains B, as when n = 0 and gi = 1G, the product is just
bi ∈ B, and it can also be verified that this set is normal in G.
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Let X be a set and R ⊆ F (X). The group with presentation ⟨X | R⟩ is defined as

⟨X | R⟩ := F (X)
/
⟨⟨R⟩⟩

Elements of the set R are called relations. Intuitively, the presentation ⟨X | R⟩ is the group on X that
is as free as possible, subject to the constraint that every relation in R is identified with the identity.

Example.

• ⟨X | ∅⟩ ∼= F (X)

• ⟨t | tn⟩ ∼= Z/nZ

• ⟨x,y | xyx−1y−1⟩ ∼= Z2

△

Example. The dihedral group of order 2n has presentation

⟨σ,τ | σn,τ2,τστ−1σ⟩

△

Because the relations are just specifying which elements are identified with the identity, we sometimes
write equalities on the right side of a presentation to identify two expressions in the presentation. For
instance, the more common presentation of the dihedral group of order 2n is given by

⟨σ,τ | σn,τ2,τστ−1 = σ−1⟩

Here, τστ−1 = σ−1 is called a relator, as it is not an element of R.

Example. The group with presentation

⟨a,b | ba2b−1 = a3,ab2a−1 = b3⟩

is the trivial group. △

As seen by this example, it is not immediately obvious what group any given presentation represents.

In fact, the word problem for a finitely generated group is the decision problem of determining whether
two words in generators represent the same element. It turns out that the word problem is undecidable,
so there is no algorithm to determine whether any given word is non-trivial.

Lemma 18.3.3. Let G = ⟨X | R⟩. If w and w′ are two words in X, then [w] = [w′] if and only if one
can be obtained from the other by a finite sequence of applications of:

• elementary contractions/expansions;

• inserting any relation r ∈ R, or its inverse, into one of the words.

Obviously, adding or removing gg−1 or g−1g into a word does not change its equivalence class, as it still
represents the same reduced word. Similarly, elements of G are words in X modulo relations, so adding
relations into a word also does not change its equivalence class.

The useful property of group presentations is that it is easy to determine when a map is a homomorphism
by using the universal property of the free group.

Lemma 18.3.4. Let G = ⟨X | R⟩ and H be groups. Let f : X → H be a set function, and let φ be its
unique extension from the universal property of the free group. Then, f descends to a homomorphism
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φ̄ : G→ H if and only if φ(r) = 1H for all r ∈ R.

F (X)

X F (X)/⟨⟨R⟩⟩

H

q

∃!φ

ι

f ∃!φ̄

Proof. If φ̄ is a homomorphism, then it must send the identity to the identity, so every every element of
⟨⟨R⟩⟩ ⊇ R must be sent to the identity.

Conversely, suppose φ(r) = 1H for all r ∈ R. Any element s ∈ ⟨⟨R⟩⟩ can be expressed as

s =

n∏
i=1

sir
±1
i s−1

i

φ(s) = φ

(
n∏
i=1

sir
±1
i s−1

i

)

φ(s) =

n∏
i=1

φ(si)φ(r
±1
i )φ(s−1

i )

φ(s) =

n∏
i=1

φ(si)1
±1
H φ(s−1

i )

φ(s) =

n∏
i=1

φ(si)φ(si)
−1

φ(s) = 1H

so s ∈ ker(φ), and hence ⟨⟨R⟩⟩ ⊆ ker(φ), so this is a well-defined homomorphism from G to H. ■

Example. Consider the two presentations

G1 = ⟨x,y | xyx−1y−1⟩, G2 = ⟨σ,τ | σ2n,τ2,τστ−1 = σ−1⟩

and define the set function f : G1 → G2 on generators by

f(x) = τ

f(y) = σn

Noormally, to verify that this defines a homomorphism, we would need to check that f(x̂ŷ) = f(x̂)f(ŷ)
for all words x̂,ŷ ∈ G1. Because G1 is an infinite group, this is difficult to do. However, the previous
lemma tells us that we only need to verify that the relations are in the kernel:

f(xyx−1y−1) = τσnτ−1σ−n

= τ
[
σ · · ·σ

]
τ−1σ−n

= τ
[
σ(τ−1τ)σ(τ−1τ) · · · (τ−1τ)σ(ττ−1)σ

]
τ−1σ−n

= (τστ−1)(τστ−1) · · · (τστ−1)(τστ−1)σ−n

= (τστ−1)nσ−n

= a−na−n

= a−2n

= 1H

△
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18.4 Coxeter Groups

Coxeter groups are defined via either graphs or matrices, as defined here.

A Coxeter matrix M = (mij) is on a set X is an |X| × |X| matrix satisfying:

• mij ∈ N≥1 ∪ {∞};

• mij = mji;

• mij = 1 if and only if i = j.

That is, it is a symmetric matrix with 1 along the diagonal, and integers at least 2 or infinity in all other
entries.

A Coxeter graph Γ is an undirected finite simple graph with edges labelled by elements of N≥3 ∪ {∞}.

Theorem 18.4.1. There is a one-to-one correspondence between Coxeter graphs and Coxeter matrices.

Proof. Given a Coxeter matrix M on a set X, we construct the Coxeter graph on n = |X| vertices
labelled {1, . . . ,n}, where two vertices i,j are adjacent if and only if mij ≥ 3.

Conversely, given a Coxeter graph G with vertex set V , we construct the |V |× |V | Coxeter matrix M by

mij =


1 i = j

w(i,j) if edge (i,j) exists
2 else

■

Example. Given the Coxeter matrix

M =


1 4 2 5
4 1 ∞ 8
2 ∞ 1 14
5 8 14 1


the associated Coxeter graph is then

1 2

34

4

5 ∞8

14

△

Example. Given the Coxeter graph
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•

•

••

•

∞9

3

12
7

6

∞

we first pick an ordering of the vertices:

1

2

34

5

∞9

3

12
7

6

∞

then fill in the 5× 5 matrix, with 1 on the diagonal; copying the edge weight of each edge; and filling in
2 otherwise:

M =


1 ∞ 2 2 9
∞ 1 12 2 3
2 12 1 6 7
2 2 6 1 ∞
9 3 7 ∞ 1


△

The matrix representation is more useful if the graph is very large, since lots of edges are hard to visualise.
Conversely, if the graph is very sparse, and the matrix will be full of 2s and will be hard to read.

To simplify Coxeter graphs, it is convention to omit the label for edges with weight 3, since these edges
will occur very frequently.

Given an n × n Coxeter matrix M = (mij) over a set X, the Coxeter group WΓ is the group given by
the presentation

WΓ := ⟨X | ∀i,j ≤ n : (xixj)
mij = 1⟩

• If mij =∞, then there is no relation.

• If i = j, we have the relation (x2i )
1 = x2i = 1 for every generator.

• If mij = 2, then (xixj)
2 = 1, so

xixjxixj = 1

xixjxix
2
j = xj

xixjx
2
i = xjxi

xixj = xjxi

so xi and xj commute.

Notes on Mathematics | 399



Reflection Groups Coxeter Groups

Equivalently, given a Coxeter graph Γ = (V,E) with associated Coxeter matrix M = (mij),the Coxeter
group WΓ defined by Γ is given by the presentation

WΓ :=
〈
V | ∀i,j ∈ V : i2,(ij)mij

〉
Lemma 18.4.2. Let G = ⟨a1, . . . ,an⟩ be a group generated by elements ai all of order |ai| = 2. Then,
G is a quotient of the Coxeter group given by the Coxeter matrix with entries mij = |aiaj |.

Proof. The Coxeter group given by this matrix has presentation

W =
〈
x1, . . . , xn | (xixj)|aiaj | = 1

〉
Define the function φ :W → G on generators xi by

φ(xi) = ai

We check that the relations are in the kernel of this map:

φ(xixj) = (aiaj)
|aiaj |

= 1G

so φ defines a group homomorphism W → G. ■

Theorem 18.4.3. Let (G,V ) be a finite reflection group with G = ⟨Sx | x ∈ Π⟩, and let W be the
Coxeter group

W =
〈
x1, . . . , xn | (xixj)|SiSj | = 1

〉
as defined in the previous proof. Then, the homomorphism φ :W → G

φ(xi) = Si

as defined in the previous proof is an isomorphism.

So, not only can we reduce the generating set of a finite reflection group from an entire root system Φ
to only a simple system Π, this theorem then says further that the only relations that are relevant are
the orders of pairs of reflections. That is, there are no relations of the form SiSjSk . . . = 1.

Lemma 18.4.4 (Deletion Condition). Let (G,V ) be a finite reflection group, and let Π ⊆ Φ(G,V ) be a
simple system. Suppose g = Sx1Sx2 · · ·Sxn for some roots x1, . . . ,xn ∈ Π, and ℓ(g) < n. Then, there
exist indices 1 ≤ i < j ≤ n such that

g = Sxi
· · ·Sxi−1

Sxi+1
· · ·Sxj−1

Sxj+1
· · ·Sxn

Example. There is a single Coxeter group on 1 generator, given by the presentation

⟨a | a2⟩ ∼= Z/2Z

△

Example. For two generators a and b, there are two options, depending on the value of mab.

• If mab = m <∞, then
⟨a,b | a2,b2,(ab)m⟩ ∼= Dih(n)

is dihedral group of order 2n.

• If mab =∞, then
⟨a,b | a2,b2⟩ ∼= Dih(∞)

is the infinite dihedral group, which can be interpreted as the
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△

Example. For three generators, a, b, and c, we have

W =
〈
a,b,c | a2,b2,c2,(ab)k,(bc)ℓ,(ac)m

〉
If k,ℓ,m <∞, we have 3 cases:

• if 1
k + 1

ℓ +
1
m = 1, then this group describes the isometries of tilings of Euclidean 2-space, where

each generator is a reflection;

• if 1
k + 1

ℓ +
1
m < 1, then this group describes the isometries of platonic solids, or the suspension of

regular n-gons;

• if 1
k + 1

ℓ +
1
m > 1, then this group describes the isometries of tilings of hyperbolic 2-space.

where all the reflections meet at angles π
k , πℓ , and π

m . △

18.4.1 Geometric Representations of Coxeter Groups

Lemma 18.4.5. Let U ⊆ V be a finite-dimensional subspace. If U ∩ U⊥ = {0V }, then V = U ⊕ U⊥.

Proof. Let e1, . . . ,en be a basis for U , and let v ∈ V . The goal is to find scalars xi such that v−
∑n
i=1 xiei ∈

V ⊥. Or equivalently, such that 〈
v −

n∑
i=1

xiei,ej

〉
= 0

for all 1 ≤ j ≤ n. This is same as solving the system of linear equations ⟨v,ej⟩ =
∑n
i=1 xi⟨ei,ej⟩. ■

Corollary 18.4.5.1. If x ∈ V satisfies ⟨x,x⟩ ≠ 0, then V = Rx⊕ {x}⊥

Given the above, we can define a generalised reflection as follows. Let x ∈ V be such that ⟨x,x⟩ ≠ 0. We
define Sx : V → V by

Sx(y) = y − 2
⟨x,y⟩
⟨x,x⟩

x

This satisfies similar properties to a reflection:

• Sx(x) = −x;

• Sx
∣∣
x⊥ = idx⊥ ;

• S2
x = idV ;

• Sx ∈ O
(
V,⟨ · , · ⟩

)
;

Given a Coxeter group WΓ associated to a Coxeter graph Γ = (V,E), the goal is to find a group
homomorphism ρΓ :WΓ → O

(
VΓ,⟨ · , · ⟩

)
, where VΓ is the R-vector space with basis {ei : i ∈ V } given by

vertex set V of Γ.

We define the symmetric bilinear form ⟨ · , · ⟩Γ on VΓ by

ei,ej = − cos

(
π

mi,j

)
where mij = w(i,j) is the weight of the edge (i,j) in Γ.

Note that
⟨ei,ei⟩ = − cos

(π
1

)
= 1
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If mij = 2, then
⟨ei,ej⟩ = − cos

(π
2

)
= 0

so ei and ej are orthogonal.

If mij =∞, then
⟨ei,ej⟩ = − cos

( π
∞

)
= −1

Consider the Coxeter graph

1 2
∞

Then,

⟨e1 + e2,e1 + e2⟩ = ⟨e1,e1⟩+ 2⟨e1,e2⟩+ ⟨e2,e2⟩
= 1− 2 + 1

= 0

So, we have ⟨x,x⟩ = 0 for x ̸= 0, so this form is not positive definite, and hence
(
VΓ,⟨ · , · ⟩

)
is not

necessarily a Euclidean space.

One effect of this is that orthogonal complements do not behave as in Euclidean spaces. For instance, if
W ⊆ V , then:

• W⊥ ∩W = {0V } does not hold;

• W = (W⊥)⊥ does not hold, but W ⊆ (W⊥)⊥ does;

• V =W ⊕W⊥ does not hold.

Theorem 18.4.6. Let Γ be a Coxeter graph with two vertices x and y. Then, VΓ is Euclidean if and
only if mxy = w(x,y) <∞.

Theorem 18.4.7. Let v = αex + βey ∈ VΓ. Then,

⟨v,v⟩ = α2⟨ex,ex⟩+ 2αβ⟨ex,ey⟩+ β2⟨ey,ey⟩

= α2 + 2αβ cos

(
π

mxy

)
+ β2

≥ (α− β)2

≥ 0

with equality if and only if α = β = 0, or if mxy =∞ and α = β.

We define a map ρΓ :WΓ → O
(
VΓ,⟨ · , · ⟩

)
on generators by

ρΓ(x) = Sex

Theorem 18.4.8. The composition SexSey has order mxy.

Proof. Suppose mxy < ∞. Then, by the previous theorem, we have that the form restricted to U =
Rex⊕Rey is Euclidean and hence non-degenerate. In particular, U ∩U⊥ = {0}, so VΓ = U ⊕U⊥. Since
U⊥ ⊂ e⊥x , we have Sex

∣∣
e⊥x

= id, and similarly, Sey
∣∣
e⊥y

= id.

So, on U , this composition is a rotation by 2π/mxy and hence has order mxy. Now suppose mxy = ∞.
Both Sex and Sey preserve U , so we can compute matrices for Sex

∣∣
U

and Sey
∣∣
U

as:

Sex =

[
−1 2
0 1

]
Sey =

[
1 0
2 −1

]
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Their product is [
3 −2
2 −1

]
which has infinite order, since its Jordan canonical form is[

1 1
0 1

]
■

Corollary 18.4.8.1. ρΓ defines a group homomorphism.

Corollary 18.4.8.2. The element xy in WΓ has order exactly mxy.

Proof. Since we have the relation (xy)mxy , the order of xy divides mxy, and is therefore at most mxy.
However, its image under ρΓ has order mxy, so it must have order at least mxy. So |xy| = mxy. ■

Recall that if a and b are vertices of Γ that are not connected by an edge, then mab = 2, so a and b
commute in WΓ.

Lemma 18.4.9. Suppose Γ is disconnected, so Γ = Γ1 ⊔ Γ2. Then,

WΓ
∼=WΓ1 ×WΓ2

VΓ ∼= VΓ1 ⊕ VΓ2

ρΓ ∼= ρΓ1 ⊕ ρΓ2

and VΓ1 is orthogonal to VΓ2 .

Lemma 18.4.10. If Γ is a connected graph, then any WΓ-invariant proper subspace is contained in V ⊥
Γ .

Proof. Suppose U ⊆ VΓ is preserved by WΓ. We claim that for each x ∈ Γ, we have either ex ∈ U , or
U ⊆ e⊥x .

Suppose U ̸⊆ e⊥x so there exists u ∈ U such that ⟨u,ex⟩ ≠ 0. Then,

Sex(u) = u− 2
⟨u,ex⟩
⟨ex,ex⟩

ex

1

2⟨u,ex⟩
(
Sex(u)− u

)
= ex

Since U is preserved by WΓ, Sex(u) ∈ U , and also u ∈ U , so ex ∈ U as it is a linear combination of
vectors in U .

This partitions the vertices of Γ into the sets

S1 := {x ∈ Γ : ex ∈ U} S2 := {x ∈ Γ : U ⊆ e⊥y }

However, for all x ∈ S1 and y ∈ S2, we have ⟨ex,ey⟩ = 0, so mxy = 2, but Γ is connected. It follows that
the vertices of Γ are contained entirely within one of the sets. If it is S1, then U = VΓ. Otherwise, if
U = S2 ■

Corollary 18.4.10.1. If Γ is connected, and VΓ is Euclidean, then ρΓ is irreducible. That is, there are
no proper WΓ-invariant subspaces.
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Let ρ : G → GLn(R) be a group homomorphism. Then, ρ is completely reducible if there exist ρ(G)-
invariant subspaces V1, . . . ,Vk such that Rn ∼= V1 ⊕ · · · ⊕ Vk, and G acting on Vi is irreducible.

In other words, there exists a basis of Rn such that the image of ρ is a block matrix with blocks along
the diagonal and zero elsewhere.

Lemma 18.4.11. If G is a finite group, then any representation ρ : G→ GLn(R) is completely reducible.

Lemma 18.4.12. If WΓ is finite and Γ is connected, then ρΓ is irreducible.

Suppose we have a group G acting on vector spaces X and Y . A linear map f : X → Y is G-equivariant
if f(g · x) = g · f(x). We denote the set of G-equivariant linear maps from X to Y by MapG(X,Y ). If
X = Y , then these are G-equivariant endomorphisms and are denoted EndG(X).

Lemma 18.4.13. Let Γ be connected and let WΓ be finite. Then, EndWΓ(VΓ) = {k idVΓ : k ∈ R} ∼= R.

Theorem 18.4.14. Suppose WΓ is a finite group. Then
(
VΓ,⟨ · , · ⟩Γ

)
is Euclidean.

Corollary 18.4.14.1. If WΓ is finite, then
(
ρΓ(WΓ),VΓ

)
is a finite reflection group.

So far, given a finite reflection group (G,V ), we can find a Coxeter group WΓ which is isomorphic to G.

Given a Coxeter group WΓ, we have a representation that induces a finite reflection group
(
ρΓ(WΓ),VΓ

)
.

We will show that this representation ρΓ is faithful.

To do this we redefine some concepts for general Coxeter groups.

Let g ∈WΓ. Then, the length of g is

ℓ(g) := min{n : ∃x1, . . . ,xn ∈ Γ : g = x1x2 · · ·xn}

This satisfies similar properties to lengths for finite reflection groups:

• ℓ(g) = 0 if and only if g = 1WΓ
;

• ℓ(gh) ≤ ℓ(g) + ℓ(h);

• ℓ(gh) ≥ ℓ(g)− ℓ(h);

• for all g ∈WΓ and x ∈ Γ, ℓ(gx) = ℓ(g) + 1 or ℓ(gx) = ℓ(g)− 1.

We abbreviate ρΓ(x) to ρx.

Let WΓ be a Coxeter group. The root system associated to WΓ is defined by

ΦΓ :=
{
ρw(ex) : w ∈WΓ,x ∈ Γ

}
That is, ΦΓ is the union of the orbits of the basis vectors ex.

A root is positive if it can be written as a non-negative linear combination of the ex, and is negative if
it can be written as a non-positive linear combination of the ex.

Given a subset I of the vertices of Γ, the parabolic subgroup WI of WΓ corresponding to I is the subgroup
of WΓ generated by I. For w ∈WI , let ℓI(w) denote the length of w in the generating set I.

Theorem 18.4.15. Let g ∈WΓ and let x be a vertex of Γ. If ℓ(gx) > ℓ(w), then g · ex is a positive root.
Similarly, if ℓ(gx) < ℓ(w), then g · ex is a negative root.

Corollary 18.4.15.1. Ever root in Φ is positive or negative.

Theorem 18.4.16. The representation ρΓ is faithful. That is, ker(ρΓ) = {1}.

Proof. If not, then let g ∈ ker(ρΓ) such that ℓ(w) > 1. Then, there exists x ∈ Γ such that ℓ(gx) < ℓ(g).
But then ex = g · ex must be a negative root ■
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Theorem 18.4.17. The standard parabolic subgroup of WΓ corresponding to I is isomorphic to the
Coxeter group with vertex set I and labels coming from Γ.

Corollary 18.4.17.1. If WΓ is finite, then Π = {ex : x ∈ Γ} is a simple system in ΦΓ.

A reflection group (G,V ) is essential if V is the span of Φ(G,V ).

Theorem 18.4.18. For any finite reflection group (G,V ),

(G,V ) ≃
(
G, span(Φ(G,V ))⊕ U

)
where G acts on U trivially.

Theorem 18.4.19. The map Γ 7→
(
ρΓ(WΓ),VΓ

)
is a bijection from the set of finite Coxeter graphs up

to labelled graph isomorphisms, to the set of essential finite reflection groups.

Note that
Φ(

ρΓ(WΓ),VΓ

) = ΦWΓ

18.5 The Finiteness Criterion

The topology on GL(VΓ) comes from a norm on the set End(VΓ) of all linear endomorphisms T : VΓ → VΓ
as follows.

Let ∥ · ∥ be any norm on VΓ, and for T : VΓ → VΓ, define the operator norm by

∥T∥ := sup
∥x∥=1

∥T (v)∥

= sup
∥x∦=0

∥T (v)∥
∥v∥

The operator norm satisfies:

• ∥T (x)∥ = ∥T∥∥x∥;

• ∥T∥ = 0 if and only if T = 0;

• ∥T + S∥ ≤ ∥T∥+ ∥S∥;

• if T ∈ O(VΓ), then ∥T∥ = 1;

• O(VΓ) is a closed, bounded, and compact subset of End(VΓ).

Theorem 18.5.1. Suppose that VΓ is a Euclidean space. Then, WΓ is a finite group.

We have already proved the converse of this statement, so we have:

Corollary 18.5.1.1. The Coxeter group WΓ is finite if and only if VΓ is Euclidean.

A Coxeter graph Γ is positive definite if VΓ is Euclidean. Everything we have done has allowed us to
reduce to the case of understanding connected, positive definite Coxeter graphs.

A symmetric matrix is positive definite if the associated bilinear form defined by ⟨x,y⟩ = x⊤Ay is positive
definite.

Lemma 18.5.2. A symmetric matrix A is positive definite if and only if all of its eigenvalues are positive.

Lemma 18.5.3. Let A = (aij)1≤i,j≤n be a symmetric matrix. Then, the associated form is positive
definite if and only if for each k ∈ {1, . . . ,n}, the upper left k-submatrix Ak = (aij)1≤i,j≤k has positive
determinant.
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Given a Coxeter graph Γ = (V,E), and an induced Coxeter subgraph Λ with vertex set I ⊆ V , there is
a natural inclusion WΛ ↪→ WΓ, and the image of this map is the parabolic subgroup WI , and we have
WI
∼=WΛ.

WΛ WΓ

GL(VΛ) GL(VΓ)

ρΛ ρΓ

Theorem 18.5.4. If Λ is a Coxeter subgraph of Γ and:

• WΓ is finite, then WΛ is also finite;

• VΓ is Euclidean, then VΛ is also Euclidean;

• Γ is positive definite, then Λ is also positive definite.

Let CΓ be the matrix associated to the bilinear form on VΓ. That is,

CΓ =

(
−2 cos

(
π

mxy

))
x,y∈Γ

We define d(Γ) = det(CΓ).

Lemma 18.5.5. Suppose Γ is a graph with a leaf node whose unique edge has label 3. Let Γ1 be the
graph obtained by deleting this node from Γ, and let Γ2 be the graph obtained by deleting both endpoints
of this edge. Then,

d(Γ) = 2d(Γ1)− d(Γ2)

Proof. Order the vertices of the graph such that the last row in the Coxeter matrix for Γ corresponds to
the leaf node, and the (n− 1) row corresponds to the other endpoint of the leaf node’s edge:

M =


∗ 0

CΓ2

...
...

∗ 0
∗ · · · ∗ 2 −1
0 · · · 0 −1 2


Laplacian expansion along the last row gives:

d(Γ) = 2d(Γ1) + (−1)(n+n−1)(−1) det


0

CΓ2

...
0

∗ · · · ∗ −1


= 2d(Γ1)− d(Γ2)

■

Theorem 18.5.6. The following graphs have d(Γ) > 0:

An =

Bn =
4

Dn =
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E6 =

E7 =

E8 =

F4 =
4

H3 =
5

H4 =
5

I2(n) =
n

where the subscript denotes the number of vertices in the Coxeter graph.

Theorem 18.5.7. Suppose that Γ is a connected positive definite Coxeter graph. Then, Γ is one of the
graphs above.

18.6 The Exchange and Deletion Conditions

Let (W,S) be a pair consisting of a group W and a generating set S of elements of order 2. We say that
(W,S) satisfies the deletion condition if, whenever g = s1s2 · · · sn for some s1, . . . ,sn ∈ S with ℓ(g) < n,
there exists 1 ≤ i < j ≤ n such that

g = s1 · · · si−1si+1 · · · sj−1sj+1 · · · sn

Note that the deletion condition depends on both the group and the generating set. For instance,(
Z/2× Z/2,

{
(1,0),(0,1)

})
satisfies the deletion condition, but (

Z/2× Z/2,
{
(1,0),(0,1),(1,1)

})
does not.

We have already seen that finite reflection groups satisfy this condition. To prove that this result also
holds for Coxeter groups, we have to use the root system associated to the Coxeter group.

Recall that the root system for Γ is defined as ΦΓ := {ρw(ex) : w ∈ WΓ,x ∈ Γ}. That is, the union of
the orbits of the basis vectors ex.

A root is positive if it can be written as a non-negative linear combination of the ex, and is negative if
it can be written as a non-positive linear combination of the ex.

Lemma 18.6.1. Let x ∈ Γ. Then, ρx(Φ+) ∩ Φ− = {ex}.

Theorem 18.6.2. Let Γ = (V,E) be a Coxeter graph. Then, (WΓ,V ) satisfies the deletion condition.

Let (W,S) be a pair consisting of a group W and a generating set S of elements of order 2. We say that
(W,S) satisfies the exchange condition if: whenever s1 · · · sr = t1 · · · tr are two words in S representing
the same element w ∈ W with ℓ(w) = r and s1 ̸= t1, then there is an index i ∈ {2, . . . ,r} such that
w = s1t1 · · · ti−1ti+1 · · · tr.

Theorem 18.6.3. Suppose (W,S) satisfies the deletion condition. Then, (W,S) satisfies the exchange
condition.
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Corollary 18.6.3.1. Let WΓ be a Coxeter group. Then, the pair (WΓ,Γ) satisfies the exchange condition.

Given a pair (W,S) satisfying the exchange condition, we can construct a Coxeter graph with vertex
set S and edge weights mst = |st| to be the order of the word st. This yields a Coxeter group that
surjects onto W . Let M = (mij) be the Coxeter matrix associated with this Coxeter group. Then, an
M -elementary reduction of a word w ∈W is one of the following operations:

• Delete a subword of the form ss for s ∈ S;

• Replace a subword sts · · · with tst · · · where each of the words has exactly mst = |st| letters.

Theorem 18.6.4. Let (W,S) be a pair satisfying the deletion condition, and let M be the associated
Coxeter matrix. Let w = s1 · · · sk be a word with length ℓ(w) = k. Then, given any other decomposition
w = t1 · · · tm, we can obtain s1 · · · sk from t1 · · · tm using M -elementary reductions.

Corollary 18.6.4.1. If (W,S) is a pair satisfying the deletion condition, then W is a Coxeter group.

18.7 The Davis Complex

If WΓ is finite, then (WΓ,VΓ) is a finite reflection group, so it has a nice group action on Euclidean space.
Furthermore, this action preserves the unit sphere, and this restricts to a nice action on Sn.

For infinite Coxeter groups, the geometric representation gives a faithful action on the inner product
space

(
VΓ,⟨ · , · ⟩Γ

)
. For the infinite case, there is a “nicer” space upon which the Coxeter group acts, and

this is known as the Davis complex.

18.7.1 Simplicial Complexes

The standard n-simplex ∆n ⊆ Rn+1 is the subspace

∆n :=

{
x ∈ Rn+1 : xi ≥ 0,

n∑
i=0

xi = 1

}

whose vertices v0,v1, . . . ,vn are the unit vectors along the coordinate axes.

x0

∆0

x0

x1

∆1

x0

x1
x2

∆2

The standard n-simplex for n = 0,1,2

The vertice set V (∆n) of the n-simplex is the set of points where xi = 1 for some i, and we denote the
vertex corresponding to xi = 1 by vi. Each dimension adds an additional vertex, so |V (∆n)| = n + 1.
Also note that V (∆n) forms a basis for Rn+1.

For each non-emptyset A ⊆ {0, . . . ,n}, we define a face ∆A of ∆n to be the subspace

∆A :=
{
(x0, . . . ,xn) ∈ ∆n : ∀i /∈ A,xi = 0

}
Note that we consider ∆n to be a face of itself.
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We define the interior ∆̊n of the n-simplex to be the subspace of points where xi > 0 for all i. Note
that for n = 0, we have ∆̊0 = ∆0.

Suppose m ≤ n and suppose we have an injection f : {0, . . . ,m} → {0, . . . ,n}. Then, this map extends
to a map f∗ : Rm+1 → Rn+1 given by

f∗(vi) = vf(i)

for the bases V (∆m) and V (∆n). This induces a continuous map ∆m → ∆n, which we call a face
inclusion.

An abstract simplicial complex is a pair K = (V,Σ), where V is a set containing the vertices of K, and
Σ is a set of finite subsets of V containing the simplices of K, satisfying:

• for each v ∈ V , {v} ∈ Σ;

• if σ ∈ Σ and τ ⊆ σ, then τ ∈ Σ (transitive);

We can associate to each abstract simplicial complex a topological space.

The topological realisation |K| of an abstract simplicial complex K = (V,Σ) is obtained as follows:

1. For each σ ∈ Σ, take a copy ∆n
σ of the standard n-simplex, where n = |σ| − 1, and pick a bijection

V (∆n
σ)→ σ.

2. Whenever τ ⊂ σ, using the above bijections, obtain an injection V (∆τ )→ V (∆σ), inducing a face
inclusion fτσ : ∆τ → ∆σ.

3. Define

|K| =

(⊔
σ∈Σ

∆σ

)
/ ∼

where x ∼ fτσ(x) for all x ∈ ∆τ and all τ ⊂ σ.

That is, |K| is the disjoint union of the simplices modulo the face inclusions.

Example. If KX =
(
X,P(X)

)
, then |KX | ∼= ∆|X|−1. △

For each σ ∈ Σ, there is a natural map ∆σ → |K| that identifies ∆σ with a subspace of |K|. Given
τ ̸= σ, we see that ∆̊σ ∩ ∆̊τ = ∅. Thus, for each point x ∈ |K|, there is a unique σ ∈ Σ such that
x ∈ ∆̊σ.

18.7.2 Geometric Realisations of Posets
Recall that a partially ordered set or poset is a set equipped with a reflexive, symmetric, and transitive
relation, or a partial ordering, ≤.

Given a poset (X, ≤), we can associate a simplicial complex KX = (X,Σ), where Σ consists of the subsets
{x0, . . . ,xn} such that xi ≤ xj if i ≤ j. We call |KX | the geometric realisation of X.

Given a Coxeter graph Γ, we can consider the set PΓ := {I ⊆ Γ : WI is finite}. This is a poset when
ordered by inclusion. Note that ∅ ∈ PΓ since W∅ = {1}.

Denote the geometric realisation of PΓ by KΓ. As before, for each point x ∈ |K|, there is a unique σ ∈ Σ
such that x ∈ ∆̊σ. Since a simplex σ corresponds to a chain in PΓ, there is a minimal element in σ,
which we will denote by Ix. We define the point stabiliser of x to be WIx , also denoted by Wx when no
confusion will arise.

The Davis complex ΣΓ associated to Γ is the space KΓ ×WΓ/ ∼, where (x,w) ∼ (x′,w′) if x = x′ and
w−1w′ ∈Wx.

Lemma 18.7.1. The Davis complex ΣΓ has an action of WΓ given by w · [(x,z)] = [(x,wz)].

Lemma 18.7.2. The stabiliser of the point [(x,z)] is given by zWxz
−1.
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Lie Groups
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Lie Algebras
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Commutative Algebra



Chapter 22

Ring Theory

In this chapter, we will develop the general theory of rings and modules, with a focus on non-commutative
theory. Commutative algebra is studied in more detail in §21. Some module theory is also covered at
the end of §33, with finitely generated abelian groups.
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Chapter 28

Formal Languages

“An algorithm is a finite answer to an infinite number of questions”
— Stephen Kleene

A formal language is a set of words with letters selected from a fixed alphabet, and formed according
to a set of rules called a formal grammar. In computational complexity theory, formal languages can
encode decision problems, and hence provide a way of comparing the relative strength of various models
of computation by checking which languages they are able to parse. In logic, formal languages can be
used to represent the syntax of axiomatic and deductive systems, and hence mathematics itself can be
reduced to the manipulation of these formal languages.

28.1 Introduction

An alphabet is any non-empty set of symbols, often denoted by Σ. A word over an alphabet is a finite
sequence of letters. Note that the empty string, denoted by ε, is a word.

The Kleene star (−)∗, is a unary operation on sets of symbols defined as follows. Given a set V , we
define V 0 = {ε}, where ε is the empty word with length |ε| = 0, then recursively define

V i+1 = {wv : w ∈ V i,v ∈ V }

for each i > 0. That is, V i is the set of strings that can be formed by concatenating i strings in V
together. Then, the Kleene star on V is given by

V ∗ =
⋃
i≥0

V i

That is, V ∗ is the set of all possible words over V .

Note that if V is countable, then V ∗ is the countable union of countable sets and is hence countable.
Also note that a set of strings has a monoidal structure under concatenation, so the Kleene star of a set
V is exactly the free monoid on V .

Then, a formal language over an alphabet Σ is a set L ⊆ Σ∗. Note that there is no requirement that
this set be non-empty, so L = ∅ ⊆ Σ∗ is a language, called the empty language. Also, by definition, we
have that the empty word ε is in Σ∗ for any alphabet Σ. Note that L′ = {ε} is a non-empty language –
it contains the empty word.

Given a language L ⊆ {0,1}∗, we may interpret it as a decision problem by deciding whether a given
binary string belongs to L. Conversely, assuming a fixed efficient encoding, we can encode any decision
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problem as a formal language by taking all strings representing yes-instances of the decision problem to
be in our language.

Theorem 28.1.1. There are functions f : N→ {0,1} that are not computable by any algorithm.

Proof. Algorithms are finite sequences of finite alphabets of possible instructions, so there are only
countably many algorithms possible. Conversely, the set of functions N→ {0,1} has size 2ℵ0 = P(N) = c,
which is uncountable. ■

28.2 Regular Languages

28.2.1 Deterministic Finite Automata
A deterministic finite automata (DFA) is an abstract machine that either accepts or rejects a given
word by reading through the symbols in the string and deterministically transitioning between different
internal states depending on the current symbol and its current state. Formally, a DFA is given by
5-tuple (Q,Σ,q0,F,δ), consisting of

• a finite set Q of states;

• a finite set Σ, the alphabet ;

• an initial state q0 ∈ Q in which to start the computation;

• a set F ⊆ Q of accepting or final states;

• and a transition function δ : Q× Σ→ Q.

We can visually represent a DFA as either a state diagram, or a state transition table:

q0

q1

q2

q3

a

b,c

b,c

a

a,b,c

a,b,c

δ a b c

→ q0 q1 q2 q2
∗ q1 q1 q3 q3

q2 q2 q2 q2
q3 q3 q3 q3

On the left, the transition function is given by the labelled arrows between states; the initial state is
marked with a trailing arrow; and any final states are marked by two concentric circles.

On the left, the table on the right simply details the transition function, with the initial state marked
with an arrow, and the accepting states marked with an asterisk.

In either case, we run the machine on a string by starting at the initial state; consuming the first
character from the string; moving to the next state given by the transition function; then iterating this
process until the string is empty. If the DFA is in an accepting state when the empty string is reached,
then the word is accepted, and otherwise rejected.

Example. We run the string abc on the above DFA using the state diagram. We begin at q0. The first
character is a, so we proceed to q1 with the remaining string bc. The next character is then b, so we
move to q3 with remaining string c. The next character is c, so we remain at q3, and now the string is
empty. q3 is not an accepting state, so the string abc is rejected by this DFA. △
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Example. We list the outputs of some more strings:

Input Output
a Accept
aa Accept
aab Reject
b Reject
c Reject
bca Reject

More concisely, this DFA accepts exactly the strings that consist solely of the character a. △

Let M = (Q,Σ,q0,F,δ) be a DFA, and let s = s1s2 · · · sn be a string, where si ∈ Σ for each i. We define
the run of M on s as follows:

• The run of M on ε is the state q0.

• The run of M on the non-empty word s is the sequence of states (ri)
n
i=0 given recursively by

ri =

{
q0 i = 0

δ(ri−1,si) i > 0

The run of M on a word s is called an accepting run if the last state in the run is an accepting state of
M , and we say that a word s is accepted or recognised by M if the run of M on s is an accepting run.
The set of strings that M accepts forms a language over Σ called the language accepted or recognised by
M , denoted by L(M).

L(M) := {s ∈ Σ∗ : the run of M on s is an accepting run}

Note that, for M to accept a language L′, it must not only accept only the words in L′, but also reject
every word in Σ∗ \ L.

The transition function δ : Q×Σ→ Q of a DFA details the change in state upon reading a single symbol.
We can expand this function to the extended transition function δ̂ that expresses the change in state
upon reading an entire string.

Formally, we recursively define the extended transition function δ̂ : Q× Σ∗ → Q as follows:

• For every state q ∈ Q, we have δ̂(q,ε) = q;

• For every state q ∈ Q and word s ∈ Σ∗ with s = wa, w ∈ Σ∗, a ∈ Σ, we have δ̂(q,s) = δ
(
δ̂(q,w),a

)
.

Using the extended transition function we can also write the language recognised by a DFA M as

L(M) =
{
s ∈ Σ∗ : δ̂(q0,s) ∈ F

}
A language L is regular if it is accepted by some DFA.

Example.

• The empty language L = ∅ is regular; it is accepted by any DFA with F = ∅.

• The language L = Σ∗ is regular; it is accepted by any DFA with F = Q.

• The language L = {ε} is regular; it is accepted by the DFA

q0 q1
Σ

Σ
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• The language L ⊆ {a,b,c}∗ defined by L = {s ∈ Σ∗ : the number of a’s in s is divisible by 3} is
regular; it is accepted by the DFA

q0

q1q2

a

b,c

a
b,c

a

b,c

△

28.2.2 Closure Properties of Regular Languages
Because languages are sets, ordinary set operations also apply to languages. Regular languages are closed
under certain operations, in the sense that the resulting language is also regular.

Regular languages are closed under

• Complementation:

If L is regular, then L = Σ∗ \ L is regular; if L = L(M) is accepted by M = (Q,Σ,q0,F,δ), then
L = L(M ′) is accepted by M ′ = (Q,Σ,q0,Q \ F,δ).

• Intersection:

If L1 and L2 are regular, then L1∩L2 is regular. The idea here is to run the DFAs for L1 and L2 in
parallel by using the Cartesian product of states and applying the transition functions pointwise,
and accepting if and only if both original DFAs accept.

If L1 = L(M1) and L1 = L(M1) with M1 = (Q1,Σ,q1,F1,δ1), M2 = (Q2,Σ,q2,F2,δ2), then L1 ∩ L2

is accepted by the DFA
M =

(
Q1 ×Q2,Σ,(q1,q2),F1 × F2,δ

)
with δ : (Q1 ×Q2)× Σ→ Q1 ×Q2 defined pointwise:

δ
(
(p1,p2),a

)
=
(
δ1(p1,a),δ2(p2,a)

)
• Union:

If L1 and L2 are regular, then L1 ∪ L2 is regular. This follows from De Morgan’s laws:

L1 ∪ L2 = L1 ∩ L2

and the closure properties of complementation and intersection, but we can also give an explicit
DFA that recognises this union. As before, the idea is to run the DFAs for L1 and L2 in parallel,
this time accepting if either of the original DFAs accept.

If L1 = L(M1) and L1 = L(M1) with M1 = (Q1,Σ,q1,F1,δ1), M2 = (Q2,Σ,q2,F2,δ2), then L1 ∩ L2

is accepted by the DFA

M =
(
Q1 ×Q2,Σ,(q1,q2), (F1 ×Q2) ∪ (Q1 × F2),δ

)
where δ is the same as for intersections.
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• Relative difference:

If L1 and L2 are regular, then L1 \L2 is regular. This follows from closure under complementation
and intersection, as,

L2 \ L2 = L1 ∩ L2

• Concatenation:

If L1 and L2 are regular, then L1 · L2 = {wv : w ∈ L1,v ∈ L2} is regular. Proof requires more
machinery than we currently have.

• Kleene star:

If L is regular, then L∗ is regular. Follows from regularity of concatenation and unions:

L∗ = {ε} ∪ L ∪ (L · L) ∪ (L · L · L) ∪ · · ·

Note that L1 and L1 \ L2 being regular does not imply that L2 is regular. For instance, if L1 = ∅, then
L1 \ L2 = ∅, regardless of the regularity of L2.

28.2.3 Non-Deterministic Finite Automata
Are regular languages closed under reversal? That is, if L is regular, then is the language

Lrev = {w : w is the reverse of a string in L}

regular?

Consider the language L = {binary strings ending with 00}, accepted by the DFA

q0

q1q2

0

1

0

1

1

0

To build a DFA that accepts Lrev, we’d might think to reverse all arrows, then swap the start and
accepting states:

q0

q1q2
1

1

1

0

0

0

However, this state diagram now has states with multiple exiting arrows labelled with the same symbol,
and some states do not have an exiting arrow for every symbol in the alphabet. Moreover, if we had
multiple accepting states, then we would also have multiple initial state in this reverse diagram. So, this
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state diagram does not describe a DFA. We instead extend the definition of an DFA to a non-deterministic
finite automata (NFA).

A DFA must have exactly one transition out of a state for each symbol in the alphabet, so each word
has a unique run. In contrast, an NFA may have multiple or no transitions out of a state for any given
symbol, so an NFA may have multiple choices at each step, and the final state is not determined solely
by the start state and input word, instead having a branching tree structure.

An NFA may also have ε-transitions – transitions that do not consume any input. This allows us to deal
with multiple initial states by adding a new state to be initial, then adding ε-transitions from this state
to all the previous initial states.

Formally, an NFA is a 5-tuple (Q,Σ,q0,F,δ), consisting of

• a finite set Q of states;

• a finite alphabet Σ;

• an initial state q0 ∈ Q in which to start the computation;

• a set F ⊆ Q of accepting or final states;

• and a transition function δ : Q× (Σ ∪ {ε})→ P(Q).

The first four entries are the same as for DFAs, but because an NFA may have multiple or no transitions
out of a state for any given symbol, the transition function instead returns a set of states in P(Q), and
we also include ε in the domain to account for ε-transitions, so the transition function is then a function
δ : Q× (Σ ∪ {ε})→ P(Q). We also write Σε to denote Σ ∪ {ε}.
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Example. Consider the language L ⊆ {0,1}∗ defined by L = {every 1 is followed by 00}, accepted by the
DFA

q0 q1

q3

q2

q4

1
0

0

1 1

01

0

0,1

By reversing the arrows and adding a new state equipped with ε-transitions to the two previous accepting
states, we obtain a state diagram of an NFA that accepts Lrev = {every 1 is preceded by 00}:

q0

qs

q1

q3

q2

q4

ε

ε

0
1

1

0

0

0

1 1

0,1

We can also represent this NFA as a state transition table:

δ 0 1 ε

→ qs ∅ ∅ {q0,q3}
∗ q0 {q0} ∅ ∅

q1 ∅ {q0,q3} ∅
q2 {q1} ∅ ∅
q3 {q2,q3} ∅ ∅
q4 {q4} {q1,q2,q4} ∅

Note that every entry in the table is a set, unlike for a DFA.
We can also see that there is no way to enter state q4, so we may remove it from the NFA and simplify
the state diagram/transition table. △

28.2.4 ε-Closure
What does the extended transition function of an NFA look like? The ordinary transition function
already returns sets of states – unlike a DFA, which is deterministic and returns a single state – but we
also have to deal with ε-transitions at every step in an NFA. For this, we define the ε-closure function,

Notes on Mathematics | 425



Formal Languages Regular Languages

eclose : Q→ P(Q).

Informally, given a state q, eclose(q) is the set of states that can be reached from q by following
ε-transitions alone (including taking no ε-transitions, so q ∈ eclose(q)). Formally, given a state q,
eclose(q) is the minimal set such that

• q ∈ eclose(q);

• ∀p,r ∈ Q,
(
p ∈ eclose(q) ∧ r ∈ δ(p,ε)

)
→ r ∈ eclose(q).

eclose can be naturally extended to sets of states: given a set X ⊆ Q, we define

eclose(X) =
⋃
x∈X

eclose(x)

Note that the nullary union is empty, so eclose(∅) = ∅.

Example. In the following, dashed arrows represent ε-transitions.

0

3 4

1

5

2

6

7 8 9

eclose(0) = {0,1,6,8,9}
eclose(1) = {1,6,8,9}
eclose(2) = {2,6,9}
eclose(3) = {3}
eclose(4) = {3,4,8}

eclose(5) = {2,3,5,6,7,8,9}
eclose(6) = {6,9}
eclose(7) = {3,7}
eclose(8) = {8}
eclose(9) = {9}

△

The extended transition function δ̂ for an NFA N = (Q,Σ,q0,F,δ) is then a function δ : Q×Σ∗ → P(Q)
defined as follows:

• For every state q ∈ Q, we have δ̂(q,ε) = eclose(q);

• For every state q ∈ Q and word s ∈ Σ∗ with s = wa, w ∈ Σ∗, a ∈ Σ, we have

δ̂(q,s) = eclose

 ⋃
p∈δ̂(q,w)

δ(p,a)
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Example. The ε-transitions (and hence eclose sets on singletons) are the same as in the previous
diagram.

0

3 4

1

5

2

6

7 8 9

a

c a

b

c

c

a
b c b

b

b

a

a

a

c

b

△

δ̂(0,a) = eclose
⋃

p∈δ̂(0,ε)

δ(p,a)

= eclose
⋃

p∈eclose(0)

δ(p,a)

= eclose
(
δ(0,a) ∪ δ(1,a) ∪ δ(6,a) ∪ δ(8,a) ∪ δ(9,a)

)
= eclose

(
{3} ∪ {2} ∪ ∅ ∪ {7,9} ∪ ∅

)
= eclose

(
{2,3,7,9}

)
=

⋃
z∈{2,3,7,9}

eclose(x)

= {2,6,8,9} ∪ {3} ∪ {3,7} ∪ {9}
= {2,3,6,7,8,9}

δ̂(0,aa) = eclose
⋃

p∈δ̂(0,a)

δ(p,a)

= eclose
⋃

p∈{2,3,6,7,8,9}

δ(p,a)

= eclose
(
δ(2,a) ∪ δ(3,a) ∪ δ(6,a) ∪ δ(7,a) ∪ δ(8,a) ∪ δ(9,a)

)
= eclose

(
∅ ∪ {3} ∪ ∅ ∪ {7} ∪ {7,9} ∪ ∅

)
= eclose

(
{3,7,9}

)
=

⋃
z∈{3,7,9}

eclose(x)

= {3} ∪ {3,7} ∪ {9}
= {3,7,9}

δ̂(0,b) = {6,8,9}

δ̂(0,c) = {0,1,6,8,9}

δ̂(8,a) = {3,7,9}

δ̂(9,c) = {2,3,5,6,7,8,9}

δ̂(1,a) = {2,3,6,7,8,9}

δ̂(2,b) = {2,6,9}

δ̂(3,c) = ∅

δ̂(4,a) = {1,3,6,7,8,9}
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28.2.5 Languages Recognised by NFA
Previously, we defined the language L(M) recognised by a DFA M to be the set of words accepted by
M . That is,

L(M) := {s ∈ Σ∗ : the run of M on s is an accepting run}

=
{
s ∈ Σ∗ : δ̂(q0,s) ∈ F

}
However, unlike a DFA, which is deterministic and always returns the same output, the run of an NFA
on the same word may be different across several computations.

Let N = (Q,Σ,q0,F,δ) be an NFA, and let s be a string. A run of N on s is a sequence of states (ri)
n
i=1

such that

• r0 = q0;

• There exists a decomposition s = s1s2 · · · sn, with si ∈ Σ∪ {ε} for each i, such that for each i > 0,
ri ∈ δ(ri−1,si).

Then, an NFA N accepts or recognises a word s if there exists some accepting run.

Let N = (Q,Σ,q0,F,δ) be an NFA. Then, the language L(N) accepted or recognised by N is defined by

L(N) := {s ∈ Σ∗ : some run of N on s is an accepting run}

which we can again write in terms of the extended transition function:

=
{
s ∈ Σ∗ : δ̂(q0,s) ∩ F ̸= ∅

}
Because the extended transition function returns the set of possible states after reading a word, we just
check that it has non-empty intersection with the set of accepting states.

28.2.6 The Subset Construction
Are NFAs more powerful than DFAs?

Firstly, what do we even mean by “more powerful”? Intuitively, a computer is “more powerful” than a
simple pocket calculator, but how do we formalise this notion? We might notice that a computer can
have a calculator application within it – so a computer can do every task a calculator can. This shows
that a computer is at least as powerful as a calculator. Importantly, to make this comparison strict, we
note that there are tasks that a computer can do that a calculator cannot.

Given two computational models A and B, we say that A is more powerful or expressive than B if the
class of languages recognised by A is a strict superset of the class of languages accepted by B. Note that
it may be the case that two distinct computational models are incomparable under this relation if the
class of languages they accept are not supersets of each other in either direction.

Clearly, every DFA is an NFA, as an NFA is a relaxation of the requirements of a DFA, so NFAs are at
least as powerful as DFAs. However, are they strictly more powerful? It turns out that, for any NFA,
we may determinise it and construct an equivalent DFA that recognises precisely the same language via
the subset or powerset construction.

When a DFA is run on a word, we just keep track of a single state; that is, the state qi that is reached
upon reading a prefix of the input string, that can then be overwritten by the state that is reached upon
reading the next symbol s.

In contrast, when running an NFA, we need to keep track of the set of all states that could be reached
after seeing the same prefix, according to the non-deterministic choices made by the automaton. If,
however, after a certain prefix has been read, a set S of states can be reached, then the set of symbols
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reachable upon reading the next symbol s is a deterministic function of S and s. That is, while the
states reached at each step in an individual run is non-deterministic, the set of states reachable at each
step over all possible runs is fully deterministic, and as such, traversing sets of reachable states in this
way describes the action of a DFA. This is the strategy of our construction.

Let N = (Q,Σ,q0,F,δ) be the NFA to be determinised. Then, the DFA M = (Q′,Σ,q′0,F
′,δ′) defined by

• Q′ = P(Q);

• q′0 = eclose(q0);

• F ′ = {X ⊆ Q : X ∩ F ̸= ∅};

• δ′(X,a) =
⋃
x∈X

eclose
(
δ(x,a)

)
=
{
z : ∃x ∈ X : z ∈ eclose

(
δ(x,a)

)}
accepts the same language.

Theorem 28.2.1. For all s ∈ Σ∗, δ̂(q0,s) = δ̂′(q′0,s).

Proof. We induct on |s|. If |s| = 0, then δ̂(q0,s) = δ̂(q0,ε) = eclose(q0) = q′0 = δ′(q′0,ε) = δ̂′(q′0,s).
Otherwise, suppose s = wa with w ∈ Σ∗, a ∈ Σ. Then,

δ̂(q0,s) =
⋃

p∈δ̂(q0,w)

eclose
(
δ(p,a)

)
=

⋃
p∈δ̂′(q′0,w)

eclose
(
δ(p,a)

)
= δ′

(
δ̂(q′0,w),a

)
= δ̂(q′0,s)

■

28.2.7 Regular Expressions
A regular expression, regex, or a pattern, over an alphabet is a construction that specifies or matches a
language over that alphabet. Regular expressions are defined recursively as follows:

Given an alphabet Σ, the following constants are basic regular expressions:

• (Empty set) ∅ is a valid regular expression, matching the empty language – L(∅) = ∅;

• (Empty string) ε is a valid regular expression, matching the language containing the empty string
– L(ε) = {ε};

• (Literal character) a ∈ Σ is a valid regular expression, matching the language containing only the
character – L(a) = {a};

and given two regular expressions R and S, we have:

• (Concatenation) R · S, or RS, is a regular expression, matching the set of strings that can be
obtained by concatenating a string accepted by R with a string accepted by S – L(R · S) =
L(R) · L(S);

• (Union) R+ S, or R|S, is a regular expression, matching the union of the sets matched by R and
S – L(R+ S) = L(R) ∪ L(S);
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• (Kleene Star) R∗ is a regular expression, matching the smallest superset of the set matched by R
that contains ε and is closed under concatenation – L(R∗) = L(R)∗;

In decreasing order, these operations have precedence ∗, ·, +.

Example. Let Σ = {a,b} and R = (a + b)∗ be a regular expression over Σ. Intuitively, (a + b) matches
“a” or “b”, so L(R) = Σ∗, but we can also unfold the definition algebraically:

L(R) = L
(
(a+ b)∗

)
= L

(
(a+ b)

)∗
=
(
L(a) ∪ L(b)

)∗
=
(
{a} ∪ {b}

)∗
= Σ∗

△

Example. If Σ = {a,b}, and R = (a+ b)∗(a+ bb), then

L(R) = L
(
(a+ b)∗(a+ bb)

)
= L

(
(a+ b)∗

)
L
(
(a+ bb)

)
= Σ∗L

(
(a+ bb)

)
= {all strings over {a,b} that end with a or bb}

△

Example. If Σ = {a,b}, and R = (aa)∗(bb)∗b, then

L(R) = L
(
(aa)∗(bb)∗b

)
= L

(
(aa)

)∗
L
(
(bb)

)∗
L
(
b
)

= {all strings over {a,b} with an even number of a’s followed by an odd number of b’s}

△

28.2.8 Generalised Non-Deterministic Finite Automata
Using regular expressions, we can define a generalised non-deterministic finite automaton (GNFA). A
GNFA is a variation of a NFA where each transition may be any regular expression, and there may
only be one transition between any two states, unlike a DFA or an NFA, which may have multiple such
transitions. Furthermore, A GNFA must have exactly one initial state and one accepting state, and these
states must be distinct.

A GNFA is a 5-tuple (Q,Σ,qstart,qaccept,δ), consisting of

• a finite set Q of states;

• a finite alphabet Σ;

• the start state, qstart ∈ Q;

• the accept state, qaccept ∈ Q;

• and a transition function δ :
(
Q \ {qaccept}

)
×
(
Q \ {qstart}

)
→ R, where R is the set of all regular

expressions over Σ.
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28.2.9 Languages Recognised by Regular Expressions
As suggested by the name, regular expressions recognise precisely the class of regular languages, so NFAs,
DFAs, and regular expressions are equally as expressive.

Theorem 28.2.2. A language is regular if and only if it is described by a regular expression.

Proof. Given a regular language L = L(M) accepted by a DFA, we may convert this DFA into a GNFA
as follows:

1. Add a new start state with an ε-transition to the previous start state.

2. Add a new accepting state with ε-transitions from the previous accepting states to this state.

3. Any transitions with multiple labels may be replaced with a transition labelled with the union of
the previous labels.

4. For any ordered pair of states that do not end at the start state nor begin at the accept state and
are disconnected may be connected with a new transition labelled with ∅.

This GNFA may then be converted into a regular expression as follows:

1. If there are only two states, then we are done, as these must be the unique start and accepting
states, and transition connecting them is a regular expression.

2. Otherwise, select some state qr ∈ Q \ {qstart,qend}. Then, for all (qi,qj) ∈
(
Q \ {qstart,qr}

)
×
(
Q \

{qend,qr}
)
, we may replace the transitions

qr

qi qj

R3

R2

R1

R4

by the single edge

qi qj
R1 ·R∗

2 ·R3 +R4

Once this has been done, we may remove qr from the diagram, then pick a new state to be qr, until
the diagram has only the initial and accepting state remaining.

For the reverse implication, suppose we have a regular expression R that accepts L(R). Then, we can
construct a NFA N such that L(N) = L(R).

We give an NFA for each of the basic regular expressions:

1. If R = ∅, then L(R) = ∅ is recognised by the NFA N =
(
{q0},Σ,q0,∅,δ

)
,

q0

2. If R = ε, then L(R) = {ε} is recognised by the NFA N =
(
{q0},Σ,q0,{q0},δ

)
,
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q0

3. If R = a ∈ Σ, then L(R) = {a} is recognised by the NFA N =
(
{q0,q1},Σ,q0,{q1},δ

)
,

q0 q1
a

Then, given regular expressions R1 and R2 with NFAs N1 = (Q1,Σ,q1,F1,δ1) and N2 = (Q2,Σ,q2,F2,δ2)

q1

N1

q2

N2

accepting L(R1) and L(R2), respectively,

1. The language recognised by the concatenation R1 · R2 is recognised by the NFA N =
(
Q1 ∪

Q2,Σ,q1,F2 \F1,δ
)

formed by making the accepting states of R1 no longer accepting, then attaching
ε-transitions from the old accepting states to the initial state of R2:

q1

N1

q2

N2

ε

ε

ε

2. The language recognised by the union R1 + R2 is recognised by the NFA N =
(
Q1 ∪ Q2 ∪

{q0},Σ,q1,F2 ∪ F1,δ
)

formed by adding a new starting state q0 with ε-transitions to the previ-
ous start states:
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q0

q1

N1

q2

N2

ε

ε

3. The language recognised by the Kleene star R∗
1 is recognised by the NFA N =

(
Q1∪{q0},Σ,q1,F1,δ

)
formed by adding a new starting state q0 that is also accepting – in order to accept the empty
string – with an ε-transition to the previous start state, then adding ε-transitions from the previous
accepting states to the start state – to allow for arbitrary concatenations of the R1 NFA:

q0 q1

N1

ε

ε

ε

ε

By induction, this construction extends to any regular expression. ■

28.3 Non-Regular Languages

28.3.1 The Myhill-Nerode Theorem
Because the change in state of a DFA is determined entirely by the current state and the next character,
a DFA is effectively memoryless. That is, if two different strings converge to the same state, then the
DFA will respond in precisely the same way to any further characters appended to them, so the two
initial strings are, with respect to this DFA, identical. This motivates our next definition.

Two strings x,y ∈ Σ∗ are distinguishable by a language L if there exists a string z ∈ Σ∗ such that x ·z ∈ L
and y · z /∈ L, or vice versa, and we call z the certificate or witness of the distinguishability of x and y.

If two strings x,y ∈ Σ∗ are not distinguishable by L, then we say they are indistinguishable, and we write
x ≡L y to denote this relation. Note that this relation is on the language L, and is independent from
any specific implementation in a particular DFA.

Furthermore, this relation forms an equivalence relation on L (i.e., it is transitive, reflexive, and sym-
metric), and we call the number of equivalence classes of L under ≡L the index of ≡L.
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Theorem (Myhill-Nerode). A language L is regular if and only if ≡L has finite index.

So, to prove a language is non-regular, we can find an infinite set of strings and show that they are
pairwise distinguishable by L, and hence ≡L has infinite index.

Example. Let L = {0n1n : n ∈ N} be a language over Σ = {0,1}. Then, the set
{
0i ∈ Σ∗ : i ∈ N

}
is

infinite, and two strings 0i and 0j with i ̸= j are distinguishable with 1i as witness. It follows that ≡L
has infinite index, and hence L is non-regular by Myhill-Nerode. △

Example. Let L = {0p : p prime} be a language over Σ = {0,1}.

Let i ̸= j and p be prime, and consider the sequence of integers

p+ 0(j − i)
p+ 1(j − i)
p+ 2(j − i)

...

p+ p(j − i)

Note that the first integer is p+0(j−i) = p, which is prime, and the final integer is p+p(j−i) = p(1+j−i),
which is composite. Let 1 ≤ k ≤ p be the least integer for which p + k(j − i) is composite. Then,
1p+(k−1)(j−i)−i is a certificate for the distinguishability of 1i and 1j :

1i · 1p+(k−1)(j−i)−i = 1p+(k−1)(j−i) ∈ L
1j · 1p+(k−1)(j−i)−i = 1p+k(j−i) /∈ L

So, every pair of elements of the infinite set
{
1i ∈ Σ∗ : i ∈ N

}
are distinguishable, so ≡L has infinite

index, and hence L is non-regular by Myhill-Nerode. △

Another way to show pairwise distinguishability is to order the infinite set of strings, (si)∞i=1, then show
that for all i, si is distinguishable from sj for all j > i.

Example. Let ni(s) denote the number of occurrences of the character i in a string s, and let L = {s ∈
Σ∗ : na(s) < nb(s)} be a language over Σ = {a,b}.

The set
{
ai ∈ Σ∗ : i ∈ N

}
is infinite, and two strings ai and aj with i > j are distinguishable with bi+1

as witness, so L is non-regular. △

28.3.2 The Pumping Lemma for Regular Languages
Let M be a DFA. If there is a cycle in the state diagram of M traversed by a string c, then we may
traverse that cycle arbitrarily many times, and return to the same state. Again, because DFAs are
memoryless, traversing the cycle once is the same as traversing it 2 times, or 3 times, or n times. If that
cycle is reachable from the initial state, and can also reach an accepting state, this means that, given a
word s accepted by M whose run intersects this cycle, we may add as many copies of c in the middle of
s as we want, and the word will still be recognised by M .

That is, if there is a cycle reachable from the initial state that can also reach an accepting state in the
state diagram of the DFA M , then the language L(M) is infinite.

In fact, this is a complete characterisation of the DFAs that accept an infinite language: because DFAs
must have finitely many states, this is the only way an infinite language can arise.

Theorem 28.3.1. A language L = L(M) is infinite if and only if there is a cycle reachable from the
initial state that can also reach an accepting state in the state diagram of the DFA M .

Note that it must be the same cycle that is reachable from the initial state and can reach an accepting
state. For instance, the DFA M with state diagram
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q0
0,1

0
1

0

1

0

1

0

1
0

1

0

1

has both a cycle that is reachable from the start state, and a cycle that can reach an accepting state,
but these cycles do not coincide, and L(M) = {ε} is finite.

Lemma (Pumping Lemma). Let L be a regular language. Then, there exists an integer p ≥ 1 (the
pumping length), such that for every string s ∈ L with length |s| ≥ p, there exists a decomposition
s = x · y · z such that

• |y| ≥ 1;

• |xy| ≤ p;

• for all n ≥ 0, x · yn · z ∈ L.

Example. Let L = {0n1n : n ∈ N} be a language over Σ = {0,1}. Suppose there exists p ≥ 1 such that
the string s = 0p1p with length |s| = 2p ≥ p has a decomposition s = x · y · z satisfying |x · y| ≤ p and
|y| ≥ 1. From the former condition, y consists of only instances of 0; and from the latter, y contains at
least one instance of 0. Pumping y to obtain x · y2 · z adds more 0s to the string without adding any 1s,
so x · y2 · z /∈ L, contradicting the pumping lemma, and hence L is non-regular. △

Note that the pumping lemma is not biconditional; there exist non-regular languages that satisfy the
pumping lemma, so the pumping lemma cannot be used to show that a language is regular.

28.4 Grammars

Ordinary languages not only contain words, but also have particular rules, called a grammar, that dictate
how they can fit together. For instance, we could have a grammar fragment that says that sentences
may be composed of a noun phrase and a verb phrase, which can each then be further decomposed:

Sentence

Noun phrase Verb phrase

Article Noun Verb Noun phrase

Article Noun

the cat broke the vase

so we have derived this sentence from the given grammar.

A grammar G is a 4-tuple (V,Σ,R,S), consisting of

• A finite set V of variables or non-terminal symbols;

• a finite set Σ, the alphabet, of terminal symbols;
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• a finite set R of substitution rules or productions, where a substitution rule is a string of the form

α→ β

where α,β ∈ (V ∪ Σ)∗, and α ̸= ε.

• and an initial variable S ∈ V .

Example. In the above tree, “noun phrase” is a variable, while “the” is a terminal symbol, and “Article→
the” is a substitution rule. △

If there are multiple substitution rules with the same term on the left, i.e. α → β and α → γ, then we
may abbreviate this by writing α→ β | γ.

To generate a string from a given grammar G, we start with the initial variable, then, given a production
α→ β, replace an instance of α with β, and repeat, until there are only terminal symbols remaining.

The sequence of substitutions to generate a string from a grammar is then called a derivation.

Example. Let G =
(
{S,T},{0,1},R,S

)
be a grammar, where

R =

{
S → TT,

T → 0T1 | ε

}
Some derivations are as follows:

S =⇒ TT =⇒ 0T1T =⇒ 01T =⇒ 010T1 =⇒ 0101

S =⇒ TT =⇒ 0T1T =⇒ 00T11T =⇒ 0011T =⇒ 0011

S =⇒ TT =⇒ Tε =⇒ 0T1 =⇒ 01

S =⇒ TT =⇒ Tε =⇒ ε

△

A derivation is a left-most derivation if at each step, a production is applied to the left-most variable in
the expression; right-most derivations are defined similarly.

Example. The first derivation in the previous example is a left-most derivation, and the last derivation
is a right-most derivation. △

For any two strings α,β ∈ (V ∪ Σ)∗, we say that

• α directly yields β and write α =⇒ β if α may be rewritten as β by applying a single production
rule once;

• α yields β, or β is derived from α and write α ∗
=⇒ β if α may be rewritten as β by applying a

finite sequence of productions.

Given a grammar G, we then define the language L(G) to be the set of all strings generated by G:

L(G) := {s ∈ Σ∗ : s is derivable from S using production rules in G}

= {s ∈ Σ∗ : S
∗

=⇒ s}

Example. Let G = ({S},{0,1},R,S) be a CFG, where

R = {S → S}

Then, we have the (unique) production

S ⇒ S ⇒ S ⇒ S ⇒ · · ·

so G does not generate any strings, and hence L(G) = ∅. △
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Example. Let G =
(
{S},{0,1},R,S

)
be a grammar, where

R =

{
S → 0S1,

S → ε

}

or equivalently,
R = {S → 0S1 | ε}

Then, we may generate the strings

S ⇒ 0S1⇒ 01

S ⇒ 0S1⇒ 00S11⇒ 0011

S ⇒ 0S1⇒ 00S11⇒ 000S111⇒ 000111
...

S ⇒ 0S1⇒ · · · ⇒ 0nS1n ⇒ 0n1n

so L(G) = {0n1n : n ∈ N}. △

Evidently, grammars can generate non-regular languages.

28.4.1 Parse Trees
We can represent a derivation with a parse tree, like the one at the beginning of this section.

Example. Let G =
(
{S},{0,1},R,S

)
be a grammar, where

R = {S → 0S1S | ε}

Then, the parse tree for one possible left-most derivation is:

S

0 S 1 S

0 S 1 S ε

0 S 1 S ε

ε ε

Then, reading the terminals of the tree with an inorder depth first search, we obtain the string

000ε1ε1ε1ε = 000111

also called the yield of the tree. △
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Let G =
(
{S},{+,× ,0,1, . . . ,9},R,S

)
be a CFG, where

R =


S → S + S,

S → S × S,
S → (S)

S → 0 | 1 | · · · | 9


Consider the following pair of parse trees:

S

S × S

S + S 3

1 2

S

S + S

1 S × S

2 3

These trees both yield the string 1 + 2× 3, so there isn’t a unique parse tree for this string.

A grammar G is ambiguous if it can generate the same string with multiple parse trees, or equivalently,
if the same string can be derived from two left-most derivations.

Some ambiguous grammars G may be rewritten as an equivalent unambiguous grammar H, with L(G) =
L(H). However, not all grammars admit an unambiguous equivalent. Such grammars are called inher-
ently ambiguous grammars.

The problem of determining whether a grammar is ambiguous or not is undecidable.

28.4.2 Right/Left-Linear Grammars
A linear grammar is a grammar that has at most one variable in the right side of each substitution rule.

Example. The grammar G =
(
V,{0,1},R,S

)
with rules

R =

{
S → 0S1,

S → ε

}

is linear, and generates the language L(G) = {0n1n : n ∈ N}. △

As demonstrated by this example, linear grammars may accept some non-regular languages. However,
we may add a further restriction:

A right-linear grammar is a grammar G = (V,Σ,R,S) where each rule is of the following form

• A→ xB;

• A→ x;

where A,B ∈ V are variables and x ∈ Σ∗ is a string of terminals. A left-linear grammar is defined
similarly, with the first production rule replaced by A→ Bx.
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Any derivation of a word from a strict right-linear grammar is of the form

S =⇒ a1A1 =⇒ a1a2A2 =⇒ · · · =⇒ a1a2 · · · an

where (Ai)i ⊆ V and (ai)i ⊆ Σ∗; that is, strings grow towards the right as a derivation progresses.

It turns out that we can strengthen this restriction even further (and it will be convenient for us to do
so) without changing the class of languages the grammar accepts:

A strictly right-linear grammar is a grammar G = (V,Σ,R,S) where each rule is of the following form

• A→ xB, where A ∈ V , x ∈ Σ ∪ {ε};

• A→ x.

Strings still grow to the right during a derivation, but the productions now only add a single symbol at
a time.

Strightly (right/left)-linear grammars cannot accept all context-free languages. In fact, they accept
precisely the regular languages.

Example. Consider the DFA

A

B

C

D

a

b a

b

a,b

a

b

We construct the associated strightly right-linear grammar. We represent states as variables, with the
starting variable representing the starting state, and the alphabet should be the same, so the grammar
will be of the form G =

(
{A,B,C,D},{0,1},R,A

)
.

Then, productions should match up with the outgoing transitions, and whenever we have an accepting
state, we allow a production of the empty string from the variable representing that state.

For instance, at the initial state A, we have transitions δ(A,0) = C and δ(A,1) = B, so we have
productions

A→ aC

A→ bB

A is also an accepting state, so we also have

A→ ε

For the other states, we have

B → aD

B → bA

C → aC

C → bC
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D → aD

D → bC

D → ε

Note that all the production rules are of the required form for this grammar to be right-linear.

The only way to remove a variable is by replacing it with ε, but by construction, this happens only when
the current state is an accepting state. Thus, this grammar generates precisely the language that the
DFA recognises. △

We can also go the other way and construct a DFA given any strictly right-linear grammar.

Example. Consider the strictly right-linear grammar G =
(
{A,B,C},{0,1},R,A

)
, where

R =


A→ 0B | 1A | ε,
B → 0C | 1A,
C → 0C | 1C


The process is largely the same as the previous in reverse: we introduce a new state for each variable, add
transitions δ(A,b) = C for each production A→ bC, and mark any variables with productions A→ ε as
accepting states:

A B C

0

1

0

1

0,1

△

Together, these constructions show more generally that:

Theorem 28.4.1. A language L is accepted by a strict right-linear grammar if and only if L is regular.

Proof. Let L = L(M) for a DFA M = (Q,Σ,q0,F,δ). Then, L is recognised by the right-linear grammar
G = (Q,Σ,R,q0), where

R =

{
q → ap ∀q,a ∈ Q : δ(q,a) = p

q → ε ∀q ∈ F

}
The reverse construction is analogous: given a strictly right-linear grammar G = (V,Σ,R,S), introduce
a state for each variable A ∈ V ; for each rule A→ bC with A,C ∈ V , b ∈ Σ, define δ(A,b) = C; and for
each rule A→ ε, make the state A an accepting state. ■

We can also construct the strictly left-linear grammar with a similar modified method:

Example. Consider the same DFA as in the previous example:
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A

B

C

D

a

b a

b

a,b

a

b

To construct the associated strictly left-linear grammar, we proceed in much the same way, representing
states as variables, but this time, we start at the final state, and represent incoming transitions with
production rules, and finally add a production for the empty string only at the starting state.

The first problem is that there are multiple final states, but a grammar only allows one starting variable.
We resolve this analogously to adding ε-transitions in an NFA: add a new state q∗ and add productions
of the form q∗ → q for every final state q.

So, in this example, we have

q∗ → A

q∗ → D

(Note that this is of the required form, since A = Aε.)

Then, we add production rules corresponding to incoming transitions:

A→ ε | Bb
B → Ab

C → Aa | Ca | Cb | Db
D → Ba | Da

This defines the required grammar G =
(
{q∗,A,B,C,D},{a,b},R,q∗

)
. △

The reverse construction is again similar. Thus, we have:

Theorem 28.4.2. A language L is accepted by a strictly left-linear grammar if and only if L is regular.

Proof. Let L = L(M) for a DFA M = (Q,Σ,q0,F,δ). Then, L is recognised by the strictly left-linear
grammar G = (Q ∪ {q∗},Σ,R,q∗), where

R =


q0 → ε

p→ qa ∀q,a ∈ Q : δ(q,a) = p

q∗ → q ∀q ∈ F


Conversely, given a strictly left-linear grammar G = (V,Σ,R,S), introduce a state for each variable
A ∈ V \ S; for each rule A→ Bc with A,B ∈ V and c ∈ Σ, define δ(B,c) = A; and for each rule S → A,
make the state A an accepting state. ■

28.4.3 Chomsky Hierarchy of Grammars
As we have seen previously, grammars can generate a wider class of languages than just regular languages.
We can precisely classify when this happens in terms of constraints on what kind of productions are
allowed in a grammar.
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Let G = (V,Σ,R,S) be a grammar, A,B ∈ V be variables, α,β,γ,δ ∈ (V ∪ Σ)∗ be strings of arbitrary
symbols, and x ∈ Σ∗ be a string of terminals.

Grammar Languages Recognising Automata Constraints

Type-3 Regular/(Right/Left)-Linear Finite automata
{
A→ x

A→ xB

}
(right regular)

or{
A→ x

A→ Bx

}
(left regular)

Type-2 Context-free Non-deterministic
pushdown automata

A→ α

Type-1 Context-sensitive Linear-bounded
non-deterministic
Turing machine

αAβ → αγβ

Type-0 Recursively enumerable Turing machine α→ β (α ̸= ε)

Each type is a proper subset of the next, so there are recursively enumerable languages that are not
context-sensitive, context-sensitive languages that are not context-free, and context-free languages that
are not regular.

We call a type-2 grammar a context-free grammar (CFG), and the language generated by a CFG is called
a context-free language (CFL).

28.5 Context-Free Languages

28.5.1 Pushdown Automata
A (non-deterministic) pushdown automaton (PDA) is a 6-tuple P = (Q,Σ,Γ,δ,q0,F ) consisting of

• a finite set Q of states;

• a finite set Σ, the input alphabet;

• a finite set Γ, the stack symbol alphabet;

• a transition function δ : Q× Σε × Γε → P(Q× Γε);

• an initial state q0 ∈ Q;

• a set F ⊆ Q of accepting states.

A PDA is effectively an NFA equipped with some limited memory in the form of a stack, to which we
can push symbols from Γ and pop with the transition function. We will also usually assume that Γ ⊇ Σ
so we can store any read symbols on the stack.

As we will see, this additional memory allows us to recognise a strictly larger class of languages than
NFA/DFA, such as the non-regular palindrome languages L = {wwrev : w ∈ Σ∗}.

Also note that we are working with non-deterministic PDA. We will not discuss them in detail here,
but unlike NFAs and DFAs which are equivalent, deterministic pushdown automata are provably less
expressive than their non-deterministic counterparts.
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As usual, we may represent a PDA as a state transition diagram; but now, the transitions are controlled
not only by the currently read symbol, but also by the state of the stack. The labels in a state diagram
are given in the form a,β → γ, where a ∈ Σε and β,γ ∈ Γε, where the arrow indicates the stack operation
of popping β then pushing γ.

X Y
a,β → γ

That is, when we are in the state S, this transition may only be traversed if the current read symbol is
a and the top element of the stack is β.

In terms of the transition function, the label a,β → γ from a state X to a state Y represents the element
(Y,γ) ∈ δ(X,a,β).

Any or all of a, β, and γ may be the empty string: if a = ε, then the transition consists only of the
stack operation β → γ, and it may be traversed without reading any symbols from the input string; if
β = ε, then the stack operation just pushes γ to the stack, as popping the empty string effectively does
not change the state of the stack, since we may assume infinitely many empty strings are on top of the
stack; and if γ = ε, the stack operation just pops β from the stack, as pushing the empty string again
does not change the state of the stack.

We also write a,β → γ1 . . . γn to denote pushing multiple symbols onto the stack (note that γn is pushed
first, and γ1 last, in this notation). This can be converted into an ordinary transition via the provision
of some new states such that the intermediary transitions only push one of the γi at a time.

Because the stack may always be regarded as having infinitely many empty strings on top, it is difficult
to determine whether the stack is empty or not, so for convenience, we also often include the string $
in Γ which we immediately push on to the stack at the beginning of a computation using the transition
ε,ε→ $. From then on, we can use the $ symbol to detect when the stack is intended to be “empty”, and
we can use the transition ε,$→ ε to fully empty the stack.

28.5.2 Languages Recognised by PDA
Given a PDA P = (Q,Σ,Γ,δ,q0,F ), we say that P accepts or recognises a string s1 · · · sk = s ∈ Σ∗ if there
exists a sequence (ri)

k
i=1 ⊆ Q of states and a sequence (σi)

k
i=1 ⊆ Γ of stack symbols such that

• r0 = q0;

• rk ∈ F ;

• For all i, (ri,β) ∈ δ(xi−1,si,α) where ri−1 = α · t and ri = β · t for some α,β ∈ Γε, t ∈ Γ∗.

Example. Consider the CFG G =
(
{S},{0,1},R,S

)
where

R =

{
S → 0S1

S → ε

}
which generates the language

L(G) = {0n1n : n ≥ 0}

We construct a PDA that recognises this language as follows.

First, push the empty stack symbol $ to the stack with ε,ε → $ from the initial state q0 to a state q1.
Then, whenever we read a 0 from the string, push it on to the stack with 0,ε → 0, and we can repeat
this arbitrarily many times, so this transition is a loop on q1.

When we read a 1 from the string for the first time, we pop a 0 from the stack with 1,0→ ε and move to
a new state q2, as we we will not allow any more 0s to be read from the input string. In this new state,
we can then read 1s from the string and pop 0s from the stack.
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If at any point, the stack is empty (i.e. we can read the $ symbol), we can move to a final accepting
state q3.

q0 q1 q2 q3
ε,ε→ $ 1,0→ ε

0,ε→ 0

ε,$→ ε

1,0→ ε

△

We claim that PDA recognise precisely the class of context-free languages. To show this, we will show
that every CFG can be converted into a PDA and vice versa.

Lemma 28.5.1. If a language L is context-free, then there exists a PDA that recognises L.

Proof. Since L is context-free, there is a CFG G = (V,Σ,R,S) such that L(G) = L.

We can decide whether a given string T is derivable from some fixed grammar using the following
algorithm:

1. Push S$ on to the stack.

2. While the symbol on the top of the stack is not $:

• If the top of the stack is a variable A, pop A and non-deterministically select a grammar rule
for A from R, and push the production to the stack.

• Otherwise, the top of the stack is a terminal a. Read the next input symbol in T and check
if it equals a. If so, pop a from the stack and continue. Otherwise, reject T .

3. Once the top of the stack is $, accept.

We implement this algorithm as a PDA as follows:

qs

qℓ

qa

ε,ε→ S$

ε,$→ ε

ε,A→ β
a,a→ ε

where the loop in the middle has a transition rule of the form ε,A→ β for every terminal with production
A→ β in R; and a transition of the form a,a→ ε for every terminal a ∈ A.

Note that we are implicitly using more than just 3 states when pushing multiple symbols to the stack.
The vertical transitions represent steps 1 and 3 of the algorithm above, and the self-loops on qℓ simulating
the grammar represents step 2.
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The first kind of loops of the form ε,A → w correspond to a production being applied to the left-most
variable A in a derivation. The second kind of loop a,a → ε correspond to matching the input T with
the currently generated string. It is safe to do this incrementally, since a terminal is never replaced in a
derivation, so if the first symbol is a terminal at any point, it will always be the same terminal at any
point onwards in the derivation. ■

Example. Consider the CFG G =
(
{S},{0,1},R,S

)
where

R =

{
S → 0S1

S → ε

}

which generates the language
L(G) = {0n1n : n ≥ 0}

The corresponding PDA is given by

qs

qℓ

qa

ε,ε→ S$

ε,$→ ε

ε,S → 0S1
ε,S → ε
0,0→ ε
1,1→ ε

△

Before we prove the converse, we define a convenient normal form of PDA.

A normalised PDA is a PDA such that

• N has a single accept state;

• N empties its stack before accepting;

• Each transition does exactly one of the following;

– Push a symbol onto the stack;

– Pop a symbol from the stack.

Every PDA can be converted into a normalised PDA:

• Add a new accept state qaccept and add transitions of the form ε,$→ ε from the old accept states
to qaccept;

• For every old accepting state and every stack symbol γ ∈ Γ, add a loop of the form ε,γ → ε to
empty the stack;

• For every transition with both stack instructions,
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a,β → γ

add a new intermediary state with transitions

a,β → ε ε,ε→ γ

For transitions with no stack instructions,

a,ε→ ε

instead push and pop a new symbol # on the new transitions:

a,ε→ # ε,#→ ε

So, we may assume without loss of generality that all of our PDA are in normalised form.

Lemma 28.5.2. If M is a PDA, then L(M) is a context-free language.

Proof. By the above, there exists a normalised PDA N = (Q,Σ,Γ,δ,q0,{qa}) such that L(N) = L(M).
We construct a CFG G = (V,Σ,R,S) as follows.

For each pair of states p,q ∈ Q, add a variable Ap,q to V . If we can guarantee that Ap,q generates
precisely the set of strings that take us from p (starting with an empty stack) to q (ending with an empty
stack), then we are done, as S := Aq0,qa would generate precisely the language accepted by N .

To achieve this, we define three types of rules.

1. For each state p ∈ Q, add the rule
Ap,p → ε

since not reading any characters is a valid path from p to p with empty stacks.

2. For all states p,q,r ∈ Q, add the rule

Ap,q → Ap,rAr,q

since travelling from p to r with empty stacks, then r to q with empty stacks, is a valid path from
p to q with empty stacks;

3. For all states p,q,r,s ∈ Q and stack symbol u ∈ Γ and (possibly empty) letters a,b ∈ Σε, if
(r,u) ∈ δ(p,a,ε) and (q,ε) ∈ δ(s,b,u), add the rule

Ap,q → aArsb

since if r is reachable from p by pushing u to the stack, and q is reachable from s by popping u,
then concatenating with any string w given by Ar,s gives a path from p with empty stack to q with
empty stack, since by construction, w leaves the stack unchanged, so the u is still available to be
popped during the final transition.

a,ε→ u w ∈ Ar,s b,u→ ε

■

The previous two results imply:
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Theorem 28.5.3. A language L is context-free if and only if there is a PDA recognising L.

28.5.3 Chomsky Normal Form
A CFG G = {V,Σ,R,S} is in Chomsky Normal Form (CNF) if every substitution rule in R is one of the
following form:

• S → ε;

• A→ s, where A ∈ V , s ∈ Σ;

• A→ PQ, where A ∈ V , P,Q ∈ V \ {S}.

Note that every parse tree generated by a CFG in CNF is a binary tree: every production either splits
a variable into two variables, or replaces it with a terminal, creating a leaf node.

This also implies that every string of length n can be derived in exactly 2n − 1 production steps, since
it requires exactly n− 1 steps to produce n variables from S, and n more steps to replace the variables
with terminals.

Theorem 28.5.4. Every CFL is generated by a CFG in CNF.

Proof. Given a CFG G = {V,Σ,R,S}, we convert G to CNF via the following procedure:

• Eliminate the start symbol from right sides:

Add a new initial variable S0 and a substitution rule S0 → S to the old initial variable. This does
not change the grammar’s produced language, and the new initial variable S0 will not occur on
any rule’s right side.

• Eliminate rules with non-solitary terminals

To eliminate a rule where the right side is some combination of terminals (ai)i and variables
(Xj)j ̸= ∅,

A→ (an | Xn)n

introduce for each such terminal ai a new variable Nai and a new rule Nai → ai, then replace the
rules

A→ (an | Xn)n

with
A→ (Nan | Xn)n

That is, replace any instance of ai with Nai .

• Eliminate rules with more than 2 variables

Replace each rule where the right side is some combination of k ≥ 3 variables

A→ X1 · · ·Xk

by introducing new variables (Ai)
n−2
i=1

A→ X1A1

A1 → X2A2

A2 → X3A3

...

An−3 → Xn−2An−2

An−2 → Xn−1Xn

(Similar to currying.)
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• Eliminate ε-rules

Remove any rules of the form A → ε for A ̸= S0. Then, for each rule containing n occurrences of
A, add 2n new copies of that rule with each possible combination of A replaced by ε (i.e. removed).
Similar to inline expansion or β-reduction.

For instance, if we had rules A→ ε and R→ aAbAcAd, then we would remove this two rules and
add in

R→ aAbAcAd

R→ aAbAcd

R→ aAbcAd

R→ aAbcd

R→ abAcAd

R→ abAcd

R→ abcAd

R→ abcd

Directly remove any ε-rules introduced by this step.

• Eliminate unit rules

A unit rule is a rule of the form
A→ B

for some variables A,B ∈ V .

To remove a unit rule A→ B, for each rule

B → Λ1 · · ·Λn

where (Λi)
n
i=1 ⊆ V ∪ Σ is some combination of variables and terminals, add a new rule

A→ Λ1 · · ·Λn

unless this is a unit rule already removed.

■

Example. Consider a grammar with production rules

S → ASB

A→ aAS | a | ε
B → SbS | A | bb

We will convert this into CNF.

Start by eliminating the start variable S:

S0 → S

S → ASB

A→ aAS | a | ε
B → SbS | A | bb
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Then, we eliminate the terminals in A→ aAS, B → SbS and B → bb:

S0 → S

S → ASB

A→ NaAS | a | ε
B → SNbS | A | NbNb
Na → a

Nb → b

Now, we eliminate the rules with 3 or more variables, S → ASB, A→ NaAS, and B → SNbS:

S0 → S

S → AV1

A→ NaV2 | a | ε
B → SV3 | A | NbNb
Na → a

Nb → b

V1 → SB

V2 → AS

V3 → NbS

Now, we eliminate the ε-rule A→ ε

S0 → S

S → AV1 | V1
A→ NaV2 | a
B → SV3 | A | NbNb | �ε
Na → a

Nb → b

V1 → SB

V2 → AS | S
V3 → NbS

Now, we eliminate the unit rules S → V1, B → A, and V2 → S:

S0 → S

S → AV1 | SB
A→ NaV2 | a
B → SV3 | NbNb | NaV2 | a
Na → a

Nb → b

V1 → SB

V2 → AS | AB1 | SB
V3 → NbS

△
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28.5.4 Cocke–Younger–Kasami (CYK) Parsing

The CYK algorithm is a Θ(n3 · |G|) time dynamic programming algorithm for the bottom-up parsing of
a CFG in CNF.

We build up a lower triangular table with width and height equal to the length of the word w we are
parsing. For instance, if w = x1x2x3x4x5x6x7, then the table is initialised as:

w = x1

1

x2

2

x3

3

x4

4

x5

5

x6

6

x7

7

Each entry M [i,j] will contain the set of variables that can generate the substring xjxj+1 · · ·xi+j−1 of
w. Note that the row number corresponds to the length of the substring.

For instance, M [4,2] contains the set of variables that can generate the substring x2x3x4x5. Visually,
this is the substring at the base of the triangular “cone” under the entry:

w =

1

2

3

4

5

6

7

x1 x6 x7x2 x3 x4 x5

M [4,2]
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We start from the bottom row, and recursively fill in the table by considering how each substring
can be constructed by concatenating previously constructed strings. For instance, the string x2x3x4x5
represented by the M [4,2] cell can be produced by concatenating

• x2 with x3x4x5;

• x2x3 with x4x5;

• x2x3x4 with x5.

In the first case, the set of variables that generate x2 is given by M [1,2], and the set of variables that
generate x3x4x5 is given by M [3,3]. We would then take each possible concatenation of a variable in the
first set with a variable in the second set, check if any of these concatenations can be generated by the
grammar, and place them in M [4,2] if they are.

The second case, we would check the concatenation of variables in M [2,2] and M [4,2], and in the third
case, we would check the concatenation of variables in M [3,2] and M [5,1].

Note that since the left substring is growing by one character in each case, the variables are given by
the cells in the column below the current cell, starting at the bottom, as the cones of these cells cover
one more character each level up. Similarly, the second substring is given by the cells along the right
descending diagonal of the current cell:

w =

1

2

3

4

5

6

7

x1 x6 x7x2 x3 x4 x5

Once the table has been filled, the unique cell in the top row will contain the starting variable S if and
only if the given word w can be derived from the grammar.

Example. Consider the CFG G =
(
{S,A,B,C},{a,b},R,S

)
where

R =


S → AB | BC,
A→ BA | a,
B → CC | b,
C → AB | a


Note that G is in CNF, as required.

We will parse the string w = baaba. The table is initialised as:
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1

2

3

4

5

b a a b a

The first row is simple to fill in, as the substrings consist of single terminals:

1

2

3

4

5

b a a b a

B A,C A,C B A,C

Now, consider the first cell on the second row, M [2,1]. This corresponds to the substring ba.

This substring can be obtained by concatenating any variable that produce b followed by any variable
that produces a, which we have already computed in the cells contained in the cone below this cell as
{B} and {A,C}.

We have the possible concatenations BA and BC. BA is produced by A, and BC is produced by S, so
M [2,1] contains S,A.

We continue similarly for the rest of the row. For the second cell, we have concatenations AA, AC, CA,
and CC. CC can be produced by B, and the others cannot be produced, so this cell contains B. The
third cell has concatenations AB and CB, which are produced by C and S, respectively. The fourth cell
has concatenations BA and BC, which are produced by A and S, respectively.
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1

2

3

4

5

b a a b a

B A,C A,C B A,C

S,A B S,C S,A

Moving onto the third row, the first cell M [3,1] corresponds to the substring baa.

This can be produced by concatenating b with aa, or ba with a. From the previously computed cells in
the cone below M [3,1], we already know how to produce these substrings:

• We can produce b with B (M [1,1]) and aa with B (M [2,2]), so the concatenations are BB;

• We can produce ba with S,A (M [2,1]) and a with A,C (M [1,3]), so the concatenations are SA, SC,
AA, and AC.

No productions generate any of these, so M [3,1] is empty.

The next cell corresponds to the substring aab, which can be produced by concatenating a with ab, or
aa with b.

• We can produce a with A,C and ab with S,C, so the concatenations are AS, AC, CS, and CC;

• We can produce aa with B and b with B, so the concatenations are BB.

Only CC can be produced (by B), so M [3,2] contains B.

The next cell corresponds to the substring aba, which can be produced by concatenating a with ba, or
ab with a.

• We can produce a with A,C and ba with S,A, so the concatenations are AS, AA, CS, and CA;

• We can produce ab with S,C and a with A,C, so the concatenations are SA, SC, CA, and CC.

Only CC can be produced (by B), so M [3,3] contains B.

1

2

3

4

5

b a a b a

B A,C A,C B A,C

S,A B S,C S,A

∅ B B

On the fourth row, the first cell represents the substring baab, which can be constructed as:
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• b+ aab, produced by B and B, so the concatenations are BB;

• ba+ ab, produced by S,A and S,C, so the concatenations are SS, SC, AS, AC;

• baa+ b, produced by ∅ and B, so there are no concatenations.

(The pattern in the table should now be more apparent: we use the entries on each “leg” of the cone,
starting from the bottom of one, and the top of the other.)

None of these concatenations are producible, so M [4,1] is empty.

The second cell represents the substring aaba, which can be constructed as

• a+ aba, produced by A,C and B, so the concatenations are AB, CB;

• aa+ ba, produced by B and S,A, so the concatenations are BS, BA;

• aab+ a, produced by B and A,C, so the concatenations are BA, BC.

AB can be produced by S and C, BA by A, and BC by S, so M [4,2] contains S, A, and C:

1

2

3

4

5

b a a b a

B A,C A,C B A,C

S,A B S,C S,A

∅ B B

∅ S,A,C

Finally, the unique cell at the top represents the entire string, which can be constructed as

• b+ aaba, produced by B and S,A,C, giving BS, BA, BC;

• ba+ aba, produced by S,A and B, giving SB, AB;

• baa+ ba, produced by ∅ and S,A, so no concatenations;

• baab+ a, produced by ∅ and A,C, so no concatenations.

BA can be produced by A, BC by S, and AB by S and C, so M [5,1] contains S, A, and C:
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1

2

3

4

5

b a a b a

B A,C A,C B A,C

S,A B S,C S,A

∅ B B

∅ S,A,C

S,A,C

S is in the cell on the top row, so w = baaba can be generated by this grammar. △

We can also recover the parse tree from the diagram by connecting non-empty entries along the legs of
the cones.

Example. Consider the CFG G =
(
{S,T,X,A,B},{a,b},R,S

)
where

R =



S → AB | XB | ε,
T → AB | XB,
X → AT,

A→ a,

B → b


with the following CYM table parsing the word aaabbb:

1

2

3

4

5

6

a a a b b b

A A A B B B

∅ ∅ T ∅ ∅

∅ X ∅ ∅

∅ T ∅

X ∅

S

Then, the parse tree is given by:
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1

2

3

4

5

6

a a a b b b

∅ ∅ ∅ ∅

∅ ∅ ∅

∅ ∅

∅

△

28.6 Non-Context-Free Languages

28.6.1 The Pumping Lemma for Context-Free Languages
Recall the pumping lemma for regular languages:

Lemma (Pumping Lemma). Let L be a regular language. Then, there exists an integer p ≥ 1 (the
pumping length), such that for every string s ∈ L with length |s| ≥ p, there exists a decomposition
s = x · y · z such that

• |y| ≥ 1;

• |xy| ≤ p;

• for all n ≥ 0, x · yn · z ∈ L.

The intuition was that if an input string is too long, then it must loop somewhere inside the DFA.

A similar result holds for context-free languages, in that if a derived string is too long, it must repeat a
variable somewhere in its parse tree. Similarly to before we can generate an infinite set of strings in the
language by pumping this repeated variable:

Suppose we repeat a variable R, and that the derivation between the first and second R yields a string
that starts with a string v and ends with a string y.

u v x y z

T

R

R

Then, if we repeat R again, the derivation will repeat v and y:

Notes on Mathematics | 456



Formal Languages Non-Context-Free Languages

u

v

v

x y

y z

T

R

R

R

We can also remove the repeated R:

u

x

z

T

R

Lemma 28.6.1 (Pumping Lemma). Let L be a context free language. Then, there exists an integer p ≥ 1
(the pumping length) such that for every string s ∈ L with length |s| ≥ p, there exists a decomposition
s = u · v · x · y · z such that

• |vy| ≥ 1;

• |vxy| ≤ m;

• for all n ≥ 0, u · vn · x · yn · z ∈ L.

Proof. Let G = (V,Σ,R,S) be a CFG, and suppose that the length of the longest string in the right side
of a production rule in R is b. Then, any node in a parse tree yielding a string in L(G) has at most b
children. If the height of the tree is h, then it has at most bh leaves, as each layer can only have b times
as many nodes as the previous layer.

How long must a string be such that a variable is repeated on some root to leaf path of any parse tree
of this string?

We claim that p := b|V |+1 is sufficient. Indeed, the parse tree of such a word must have b|V |+1 leaves, so
the tree must have height at least |V |+ 1. But, there are only |V | variables, so one must repeat.

Take the smallest parse tree for the string w = uvxyz. If |vy| ̸≥ 1, then v = y = ε, and the section of
the parse tree between the two Rs don’t contribute anything, so w = uxz, and we have an even smaller
parse tree for w, contradicting the minimality of the first tree.

u ε x ε z

T

R

R

u

x

z

T

R
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If |vxy| > p, then the subtree rooted at the first R is itself long enough to have a repeated variable on a
root to leaf path. So, we can split x into x = u′x′y′, so w = (uv)v′x′y′(yz), which is still of the required
form, but the middle substring has now decreased in length. We can then repeat this process until the
middle substring has length at most p. ■

Example. Consider the language
L = {anbncn : n ≥ 0}

Suppose that L is context-free, and let p be the pumping length given by the pumping lemma. Take the
string w = apbpcp ∈ L. Clearly, |w| ≥ m.

Take an arbitrary decomposition w = uvxyz with |vxy| ≤ p and |vy| ≥ 1.

Since |vy| ≥ 1, v and y contain at least 1 symbol from {a,b,c}. Because the middle of w contains p many
bs and |vxy| ≤ p, vxy contains at most 2 of the symbols. So, if we pump vxy 0 times, uv0xy0z will lose
some number of only 2 of the characters. Hence uv0xy0z /∈ L, and L is not context-free. △

Example. Consider the language
L =

{
xx : x ∈ {0,1}∗

}
Suppose that L is context-free, and let p be the pumping length given by the pumping lemma. Take the
string w = 0p+11p+10p+11p+1 ∈ L. Clearly, |w| ≥ p.

Take an arbitrary decomposition w = uvxyz with |vxy| ≤ p and |vy| ≥ 1.

If we pump w 0 times, we obtain uv0xy0z = 0α1β0γ1δ. Because |vxy| ≤ p, vxy can intersect at most
two adjacent sections of continguous 1s or 0s in w. If α and β or γ and δ are changed, then only one
half of w = ωω has changed, so uv0xy0z /∈ L. If β and γ are changed, then we have changed the number
of 1s in the first ω, and/or the number of 0s in the second. In any case, uv0xy0z /∈ L, so L is not
context-free. △

28.6.2 Finiteness of Context-Free Languages
If L is a context-free language that has a string longer than the pumping length p, then the pumping
lemma allows us to pump this string to generate infinitely many strings.

The converse also holds: if L contains no strings of length longer than p, then L is finite. In particular,
it is also regular.

We also have that if L contains even one string of length longer than p, then we also have a bound on the
maximal length of a shortest string as follows. Given any arbitrary string w, the pumping lemma gives
a decomposition w = uvxyz with |vxy| ≤ p and |vy| ≥ 1. In particular, |vy| is at most p when x = ε.
So, pumping w down reduces its length by p. Repeating this process will eventually return a string with
length between p and 2p− 1.

28.6.3 Closure Properties of Context-Free Languages
Recall (§28.2.2) that regular languages are closed under

• Intersection;

• Union;

• Concatenation;

• Complementation;

• Kleene star.
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The proof for intersections was to construct a DFA that simulated the two original DFAs in parallel, and
accepting if both original DFAs accepted.

However, simulating a pair of PDAs using one PDA would require us to simulate two stacks with just
one stack. This is provably impossible, and context-free languages are not closed under intersection.

Example. Consider the following CFLs:

L1 = {aibicj : i,j, ≥ 0}
L1 = {aibjcj : i,j, ≥ 0}

Then, L1 ∩ L2 = {anbncn : n > 0} is non-context-free. △

However, the intersection of a context-free language and a regular language is context-free, since we then
only have one stack to simulate (i.e. just use the stack).

In contrast, for unions, we can use non-determinism to our advantage. Unlike for intersections, we only
need to simulate one stack at a time in a union – not both simultaneously. We add a new start state for
the PDA and an ε-transition to the start states of the previous PDAs. Then, this new PDA will accept
if either of the previous PDAs accept.

Other similar construction works for grammars:

• Union:

If L1 = L(G1) and L2 = L(G2) with G1 = (V1,Σ1,R1,S1) and G2 = (V2,Σ1,R2,S2), then L1 ∪L2 is
generated by the grammar

G =
(
V1 ⊔ V2, Σ1 ∪ Σ2, R1 ∪R2 ∪ {S → S1 | S2}, S

)
• Concatenation:

If L1 = L(G1) and L2 = L(G2) with G1 = (V1,Σ1,R1,S1) and G2 = (V2,Σ1,R2,S2), then L1 · L2 is
generated by the grammar

G =
(
V1 ⊔ V2, Σ1 ∪ Σ2, R1 ∪R2 ∪ {S → S1S2}, S

)
• Kleene star:

If L = L(G1) with G1 = (V1,Σ1,R1,S1), then L∗ is generated by the grammar

G =
(
V1, Σ1, R ∪ {S → ε | S1S}, S

)
Context-free languages are also not closed under complementation: using De Morgan’s laws, we can write
an intersection as:

L1 ∩ L2 = L1 ∪ L2

Since context-free languages are closed under union, if they were also closed under complementation,
they would be closed under intersection. But this cannot be the case.

28.7 Recursively Enumerable Languages

A Turing machine is a 7-tuple (Q,Σ,Γ,δ,q0,qaccept,qreject), consisting of

• a finite set Q of states;

• a finite set Σ, the input alphabet;
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• a finite set Γ, the tape alphabet not containing the blank symbol ⊔;

• a transition function δ : Q× Γ→ Q× Γ× {L,R};

• an initial state q0 ∈ Q;

• an accepting state qaccept ∈ Q;

• an rejecting state qreject ∈ Q, where qreject ̸= qaccept.

Instead of a stack, a Turing machine is equipped with a tape of memory – an array of memory that
extends infinitely in one direction – and a read/write head pointing to one of the cells on the tape.
The {L,R} in the transition function indicates which way the read/write head should move after each
instruction.

⊢ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔0 0 1 0 0 1 0 1 · · ·

q

We mark the first cell with the reserved symbol ⊢, and unless otherwise specified, the other infinitely
many cells with the reserved blank symbol ⊔.

We can, as usual, represent a Turing machine as a state transition diagram. The labels in a state
transition diagram are given in the form a → b,m, where m ∈ {L,R} is a movement instruction, and
a,b ∈ Γ are tape symbols. This time, the arrow indicates reading an a at the current tape position,
writing a b, then moving the read/write head the specified direction.

Note that by this definition, the read/write head must move after every instruction. However, we can
perform a memory operation a → b without any net movement, which we denote by a → b, S, by
performing the memory operation, moving right, reading/writing the same symbol back into this cell,
then moving back left:

q1

q′

q2
a→ b,S

a→ b,R ⊔ → ⊔,L
a→ a,L
b→ b, L

...

x→ x, L, x ∈ Γ

A configuration of a Turing machine M = (Q,Σ,Γ,δ,q0,qaccept,qreject) is a triple (u,q,v), where

• q ∈ Q is the current state of the machine;

• The string on the tape is u ◦ v, and the read/write head is on the first symbol of v.

Example. The configuration displayed on the tape above is(
{0,0},q,{1,0,0,1,0,1}

)
△

Example.
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• (⊢ ,q0,w) is the start configuration;

• (u,qaccept,v) is the accepting configuration;

• (u,qreject,v) is the rejecting configuration;

△

We say that a configuration X = (u,q,v) yields another configuration Y = (u′,p,v′) if the Turing machine
can go from X to Y with a single state transition.

The run of a Turing machine M = (Q,Σ,Γ,δ,q0,qaccept,qreject) on a word w is a sequence of configurations
C1, . . . ,Cr such that C1 = (⊢ ,q0,w) is the start configuration (i.e., the word w is written on the tape),
and such that each Ci yields Ci+1.

The run is accepting if Cr is the accepting configuration, and rejecting if Cr is the rejecting configuration.
Note that, unlike for the weaker automata we have seen, we have a new possible end state, because the
run of a Turing machine on any given word may not necessarily be finite. If the run is infinite, then we
say that the Turing machine does not halt.

We define the language L(M) to be the set of words w such that M accepts:

L(M) := {s ∈ Σ : the run of M on w is accepting}

A language L is Turing-recognisable or recursively enumerable (RE) if there exists a Turing machine M
which accepts precisely the strings in L. We do not require that M explicitly rejects strings outside of
L (since in this case, it may not halt), only that it does not accept any strings outside of L.

In contrast, a language L is Turing-decidable or recursive if there exists a Turing machine M which
accepts precisely the strings in L, and always halts. That is, it must also explicitly reject strings outside
of L.

If a Turing machine always halts, then we call it a decider or a total Turing machine.

Turing-decidable languages are precisely those for which an algorithm to determine membership exists.

Example. Is there a decider D, which, when given a Turing machine M , decides whether M :

(i) has more than 847 states?

(ii) takes more than 847 steps on the input ε?

(iii) takes more than 847 steps on some input?

(iv) takes more than 847 steps on all inputs?

(v) ever moves the read/write head more than 847 tape cells away from the endmarker on input ε?

(vi) accepts ε?

(vii) accepts any string at all?

(viii) accepts every string?

(i) Yes, just count the states until we reach 847. If we reach 847, accept M . Otherwise, reject M . As
we have bounded the maximum count, this procedure will always halt, so this describes a decider.

(ii) Yes, just simulate the run of M on ε for 847 steps, or until M halts, whichever happens earlier. If
M halts before 847 steps, reject M . Otherwise, accept M .

As we have bounded the number of steps, this will always halt, so this describes a decider.
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(iii) Yes. Simulate the run of M on all possible inputs of size at most 847 for 847 steps, or until M
halts, whichever happens earlier.

There are (Σ + 1)847 many such inputs, which is finite, so the program will eventually halt.

It is also sufficient to only check these inputs, since if M runs for 847 steps on a word p of length
greater than 847, then M also runs for at least 847 steps when the input is only the first 847
symbols of p, since M can only possibly access the first 847 symbols of p in 847 steps.

(iv) Yes. The program for the previous case also decides this problem.

(v) Yes. If the read/write head of M never goes past the 847th cell, then there are only finitely many
possible configurations that M could be in, since a Turing machine only has finitely many states
and tape symbols. Namely, there are

t := 847 · |Q| · |Γ|847

possible configurations. So, we simulate the run of M on ε for t + 1 steps, or until it halts,
whichever happens earlier. If M ever moves the read/write head past the 847th cell, stop and
accept M . Otherwise, reject M .

(vi) No.

(vii) No.

(viii) No.

We will prove these last three cases later as a special case of the Membership Problem. △

28.7.1 Modifications of Turing Machines
There are many useful ways in which we might modify a Turing machine. However, this model of
computation is very robust, and many of these modifications end up being equivalent to an ordinary
Turing machine:

Example. What if we equipped a Turing machine with three tapes instead of one?

It turns out that we can simulate a Turing machine M3 with three tapes with a Turing machine M using
just one.

We make the tape alphabet of M a tuple to store three symbols in each cell. Then, to mark the position
of the read/write head, for each symbol a in the tape alphabets of M3, add a marked copy â to M . Then,
for each instruction moving a read/write head of M3, we instead replace the marked symbols. △

Using this, we can indeed simulate a Turing machine M using another Turing machine, as we have been
claiming in the previous example, by implementing two tapes and writing the source code of M on the
first tape and the input to be run on the second.

Example. What if the tape were infinite in both directions?

We can “fold” the tape somewhere, forming two tapes that are infinite in one direction only. As seen by
the previous example, we can simulate this on a Turing machine. △

An enumeration machine or enumerator is a modification of a Turing machine equipped with two tapes,

• an ordinary read/write tape, assumed to always start blank;

• an write-only output tape;

and a special enumeration state. When the machine enters the enumeration state, we say that it has
enumerated whatever word is on the output tape. Then, the machine erases the output tape and sends
the write-only head to the beginning of the output tape, before continuing.
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Given an enumerator E, we define the language L(E) of E to be the set of words enumerated by E.

L(E) := {s : E enumerates s}

Theorem 28.7.1. A language L is Turing-recognisable if and only if there exists an enumerator E such
that L = L(E).

Proof. Suppose L = L(E). From E, construct a Turing machine M that operates on an input w as
follows:

• Run E on w;

• Each time E enumerates a word u, compare it to w;

• If w = u, accept. Otherwise, continue.

If L accepts w, then it will eventually be enumerated by E. If L does not accept E, then M never halts.
So, L(M) = L(E).

Now, suppose that L is Turing-recognisable, and let M recognise L. We construct an enumerator E that
operates on an input w as follows.

• Order all possible strings (i.e. via lexicographical order) as s1,s2, . . .

• For each i = 1,2,3, . . ., repeat the following:

– Run M for i steps on s1, . . . ,si.

– If any computations accept, print out the corresponding sj .

■

A Universal Turing Machine (UTM) U takes an encoding of a Turing machine M and a word w, written
as Enc(M)#w or just ⟨M,w⟩, and simulates the run of M on w.

Theorem 28.7.2. A language L is Turing-recognisable if and only if there exists an enumerator E such
that L = L(E).

Proof. Suppose L = L(E). From E, construct a Turing machine M that operates on an input w as
follows:

• Run E on w;

• Each time E enumerates a word u, compare it to w;

• If w = u, accept. Otherwise, continue.

If L accepts w, then it will eventually be enumerated by E. If L does not accept E, then M never halts.
So, L(M) = L(E).

Now, suppose that L is Turing-recognisable, and let M recognise L. We construct an enumerator E that
operates on an input w as follows.

• Order all possible strings (i.e. via lexicographical order) as s1,s2, . . .

• For each i = 1,2,3, . . ., repeat the following:

– Run M for i steps on s1, . . . ,si.

– If any computations accept, print out the corresponding sj .

■
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28.7.2 Undecidability

28.7.2.1 The Halting Problem

Consider the language
HP :=

{
⟨M,x⟩ :M halts on x

}
This language is Turing-recognisable by a universal Turing machine as we can simply simulate the run
of M on x.

If M halts on x, then U accepts ⟨M,x⟩. Otherwise, U also fails to halt, which is allowed, as we only
prohibit explicit acceptance in Turing-recognisability. So, HP is Turing-recognisable.

However, is it Turing-decidable?

That is, given an instance ⟨M,x⟩ of the halting problem, can we decide with a definite yes-or-no answer
whether or not M will halt on any given string x?

Theorem 28.7.3. HP is undecidable.

Proof. Observe that any Turing machine M consists of only a finite amount of data. As such, this
information can be encoded in binary. With such an encoding, we can inversely interpret every binary
string b as a Turing machine Mb.

Suppose there exists a Turing machine U that decides the halting problem instance ⟨Mb,x⟩, given an
encoding b of a Turing machine and an input x. Construct a table of its outputs on all possible strings:

ε 0 1 00 01 10 11 000 001 010 · · ·
Mε H L L H L H H H L L · · ·
M0 L H H H L L L L H H · · ·
M1 L H L L H L L H H H · · ·
M01 H H H H L H H L L L · · ·
M10 H L H L L L L L H L · · ·
M11 H H H L H H L L L L · · ·
M000 L L L H H H H L H H · · ·
M001 L H H L L H H H H L · · ·
M010 H L L H L L H H L L · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .

We construct a Turing machine K as follows.

• Given an input string b, construct Mb.

• Simulate U on ⟨Mb,b⟩.

• If U halts, go into an infinite loop.

• If U accepts, halt.

That is, K halts on b if and only if Mb does not half on b, and vice versa, so its output is the reverse of
the diagonal entries on the above table.

So, by construction, K disagrees with every Turing machine Mb on at least the input b, so K cannot be
on the table, contradicting that this table contains every Turing machine. ■

Notes on Mathematics | 464



Formal Languages Recursively Enumerable Languages

28.7.2.2 The Membership Problem

Consider the language
MP :=

{
⟨M,x⟩ : x ∈ L(M)

}
Again, this language is Turing-recognisable by a universal Turing machine as we can simply simulate the
run of M on x.

However, the Membership Problem is again undecidable:

Theorem 28.7.4. MP is undecidable.

Proof. Suppose U decides MP. From U , we will construct a Turing machine K that decides HP as
follows:

• Given an input ⟨M,x⟩, K constructs a new Turing machine M ′ as follows:

– Add a new accept state.

– Redirect all incoming transitions to the old accept and reject states to the new accept state.

• Run U on M ′.

• If U accepts M ′, accept M . Otherwise, reject M .

We have that K accepts M if and only if U accepts M ′ if and only if M accepts or rejects x. That is, if
and only if M halts on x. So, K decides HP, which is undecidable. ■

28.7.3 Computability and Reductions
A function σ is computable if there is a decider such that, when run on input x, halts with σ(x) on the
output tape.

Given subsets A ⊆ Σ∗ and B ⊆ ∆∗, a function σ : Σ∗ → ∆∗ is a mapping reduction if

• For all x ∈ Σ, x ∈ A if and only if σ(x) ∈ B;

• σ is computable;

and we write A ≤m B if such a reduction exists.

Theorem 28.7.5.

• If A ≤m B and B is decidable, then A is decidable;

• If A ≤m B and A is undecidable, then B is undecidable.

Proof. Let M decide B and let σ be a reduction from A to B. Then, we define a decider N for A as
follows:

• Given an input w, compute σ(w).

• Simulate the run of M on σ(w), and return whatever M returns.

Because σ is a rediction from A to B, if w ∈ A, then σ(w) ∈ B. So, M accepts σ(w) whenever w ∈ A,
so N decides A.

The second claim is the contrapositive. ■

Here are some more languages:

ε-Acceptance :=
{
⟨M⟩ : ε ∈ L(M)

}
∃-Acceptance :=

{
⟨M⟩ : L(M) ̸= ∅

}
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∀-Acceptance :=
{
⟨M⟩ : L(M) = Σ∗}

Consider the following construction:

Let ⟨M,x⟩ be an instance of HP. Define the Turing machine M ′
x as follows:

• Given an input y, ignore y and simulate the run of M on input x.

• If M halts, accept y. Otherwise, reject y.

By construction, M ′
x accepts x if and only if M halts on x. So, ⟨M,x⟩ ∈ HP if and only if ⟨M ′

x,x⟩ ∈MP.

In fact, ⟨M,x⟩ ∈ HP if and only if:

(i) ⟨M ′
x⟩ ∈ ε-Acceptance;

(ii) ⟨M ′
x⟩ ∈ ∃-Acceptance;

(iii) ⟨M ′
x⟩ ∈ ∀-Acceptance.

Because M ′
x ignores its input, it accepts any and all inputs if and only if M accepts x. That is, if and

only if ⟨M,x⟩ ∈MP. So none of these languages are decidable.

Example. Is the following language is decidable?

L :=
{
⟨M1,M2⟩ :M1 accepts a word that M2 does not.

}
No, because we can decide ε-Acceptance given a decider M for L. We construct a decider U as follows:

• Given an input Mb, construct a Turing machine M ′ that accepts the string x if and only if x ̸= ε
and Mb accepts x.

• Simulate the run of M on ⟨Mb,M
′⟩.

• Accept Mb if M accepts. Otherwise, reject Mb.

By construction, Mb and M ′ accept the same non-empty words, but M ′ cannot accept the empty word.
Thus, Mb accepts a word that M ′ does not if and only if Mb accepts ε. So, U decides ε-Acceptance. △

Theorem 28.7.6.

• If A ≤m B and B is Turing-recognisable, then A is Turing-recognisable;

• If A ≤m B and A is not Turing-recognisable, then B is not Turing-recognisable.

Proof. Identical to the previous, with recognisers replacing deciders. ■

Theorem 28.7.7. A language L is decidable if and only if L and L are both Turing-recognisable.

Proof. If L is decidable, then a decider for L also functions as a recogniser for L. For L, use the same
decider and complement the answer.

Conversely, if L and L are both Turing-recognisable with recognisers P and Q, then define the decider
M as follows:

• Given an input x, simulate P and Q simultaneously with input x.

• If P accepts, halt and accept. If Q accepts, halt and reject.

■
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28.7.4 Closure Properties of Turing-Recognisable and Turing-Decidable Lan-
guages

• Complementation:

Decidable languages are closed under complementation, as we can simply invert the return value
of a decider.

However, Turing-recognisable languages are not closed under complementation.

• Union:

Decidable and Turing-recognisable languages are both closed under union.

• Intersection:

Decidable and Turing-recognisable languages are both closed under intersection.

• Kleene star:

Decidable and Turing-recognisable languages are both closed under Kleene star.

• Concatenation:

Decidable and Turing-recognisable languages are both closed under concatenation.

28.7.5 Pairwise Intersection Closures Properties

Regular CFL Decidable RE

Regular Regular

CFL CFL Decidable

Decidable Decidable Decidable Decidable

RE RE RE RE RE
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Computability Theory

“The purpose of abstraction is not to be vague, but to create a new semantic level in
which one can be absolutely precise.”

— Edsger Dijkstra



Chapter 31

Program Verification

“Why repeat the old errors, if there are so many new errors to commit?”
— Bertrand Russell, Unpopular Essays
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Chapter 33

Linear Algebra

“It is my experience that proofs involving matrices can be shortened by 50% if one
throws the matrices out.”

— Emil Artin, Geometric Algebra

Linear algebra is the study of systems of linear equations, vector spaces and linear maps. Linear algebra
is essential to almost every area of mathematics, due to how abstractly vector spaces are defined. If
your problem/model/whatever has some notion of scaling things, and adding two things together to get
a third, linear algebra theorems probably apply to it. In this document, we focus mainly on matrices
and vector spaces.

Notes on formatting conventions:

• Scalars are written in lowercase italics, c, or using greek letters.

• Vectors are written in lowercase bold, v, or rarely overlined, −→v , where more contrast or clarity is
required.

• Matrices are written in uppercase bold, A.

Note: transformations represented by matrices may be written in just italics, as functions often
are: i.e. s(v) = Av.

33.1 Vectors

33.1.1 Mathematical Interpretation
In physics, vectors are often treated as arrows pointing in space – some kind of quantity which has a
magnitude and a direction. As long as the length and direction of a vector are the same, it’s the same
vector, no matter where it is. For example, you might model the velocity of an object as a vector, and
consider the velocity as staying the same if the length and direction remain constant.

Sets of vectors that all lie within a plane are two-dimensional, and those in the space we live in are
three-dimensional. Picturing an arbitrary n-dimensional vector in this context can be rather tricky, due
to the limitations of our reality.

On the other hand, in computer science, vectors are ordered lists of numbers, or tuples. For example,
you might model the population of two species of animals, say, foxes and rabbits, in a given area with a
pair of numbers, the first representing the number of foxes, and the second representing the number of
rabbits. Note that order matters; two vectors are not equal if the numbers are swapped around.
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In this context, we’d be modelling the populations as a two-dimensional vector. What makes the vector
two-dimensional is that the list has two elements within it.

In maths, we are much more general. A vector is anything where we have some kind of notion of adding
two objects, our vectors, and multiplying those vectors by a number, called a scalar. A vector space is
just a set whose elements are vectors.

=

2 =

−→v +−→w
2−→v

[
a
b

]
+

[
c
d

]
=

[
a+ c
b+ d

]
2

[
e
f

]
=

[
2e
2f

]
But in a sense, what makes a vector space, a vector space, are these fundamental operations, independent
of how the vectors themselves are represented – it doesn’t matter whether you think about vectors as
fundamentally being arrows which happen to have a nice numerical representation as lists; or as lists of
numbers which happen to have a nice visual representation as arrows. The usefulness of linear algebra is
less to do with specific representations of vectors, and more to do with the ability to translate between
and equate these different views.

This very general view encompasses both the arrows and ordered lists, and more, but in exchange, is
very abstract, and can be possibly more difficult to pick up.

For now, we will first focus on a geometric interpretation of vectors, before moving on to more abstract
vector spaces.

When we say a vector, for now, picture an arrow within a coordinate system, with the tail rooted at the
origin. Note that this is somewhat distinct from the physics viewpoint discussed above, as vectors in
that sense aren’t tied to a specific coordinate system, and are free to move about.

This specific view is very helpful as we can then use matrix algebra in our calculations, and changing to
a computer science tuple view is just as easy as reading off the coordinates of the head of the vector.

33.1.2 Basis Vectors, Span & Linear Independence
When we write a vector as a pair of coordinates, say,

v =

[
2
3

]
you can think of these coordinates as scalars scaling two vectors.

In the Cartesian coordinate system, there are two very special vectors we often use; the vector pointing
to the right with length 1, denoted ı̂, and the vector pointing up with length 1, denoted ȷ̂.

Thinking of the coordinates as scalars, we scale ı̂ by 2, and ȷ̂ by 3, before adding them together to give
v, so v is the sum of two scaled vectors. Though this is an extremely simple example, this concept of
adding two scaled vectors is worth keeping in mind, as it will soon come up, a lot. Any time we scale up
vectors and add them together, it’s called a linear combination of the vectors.

Together, ı̂ and ȷ̂ have a special name. They are the basis vectors of the Cartesian coordinate system.
Specifically, we call them the canonical or standard basis vectors.

Informally, what it means to form a basis is that, when you use coordinates as scalars, the basis vectors
are what the scalars act on. But this brings up a pretty interesting question. What if we picked other
basis vectors?
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Think about all the arrows you can get by picking two scalars, using them to scale these two arrows,
then adding the results together. For these particular two arrows, the answer is that you can reach every
possible two-dimensional arrow. You can see this by the fact that the transformed grid covers all of the
2D plane.

A new pair of basis vectors like this also gives us a valid way to translate between pairs of numbers and
arrows in the plane. But notice that this translation is different from the canonical basis. [1,1] in this
new basis certainly points to a different place than in the canonical basis. We will go into more detail
later on, on how coordinates in different bases are related, but for now, just appreciate that any time we
describe vectors numerically, it depends on some implicit arbitrary choice of basis vectors.

Now, if we allow the scalars to vary through all possible pairs of values, considering the linear combination
given by each pair, we have three possible situations. For most pairs of vectors, we can reach every point
in the plane, like in the example above. But if your two vectors line up and are parallel, then the resulting
vector is also forced onto the line passing through the origin, parallel to the vectors.

Compared to the previous case, here, the transformed grid is compressed onto a single line.

Additionally, if both vectors are the zero vector, you’re just stuck on the origin. The set of all possible
vectors you can reach with a linear combination of a set of vectors is the span of the vectors. So, we can
say that the span of the first pair of vectors above is the entire Cartesian plane (or equivalently, we say
that the Cartesian plane is spanned by those two vectors, or that those two vectors form a spanning set
of the Cartesian plane), while the span of the second pair of vectors is just a line, and the span of two
zero vectors is just the single point on the origin.

In this second case, we note that one of the vectors is somewhat redundant. We can still access the full
line, just using one of the vectors. In this case, we say that the vectors are linearly dependent – one of
the vectors in the set can be expressed as a linear combination of the others, since it already lies within
the span of the others.

Conversely, if each new vector adds a new dimension to the span, we say that the vectors are linearly
independent.

More specifically, we say that a set of vectors, v1,v2,v3, . . . ,vn are linearly independent if the equation,

a1v1 + a2v2 + · · ·+ anvn = 0
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holds only if a1 = a2 = · · · = an = 0. In other words, if you can find a way to add up scaled versions of
your vectors to get back to the origin, they are not linearly independent.

Now, we can more formally define a basis of a vector space as a set of linearly independent vectors that
span the space, and the dimension of a vector space is the number of vectors in its basis.

If a linearly independent set of vectors span a space, then every vector in that space can be written as
a unique linear combination of those vectors. If this spanning set is not linearly independent, then this
linear combination representation of vectors will not be unique (which is why such a set is not usable as
a basis – coordinates are not unique). Any two bases of the same vector space contain the same number
of vectors. (Take a moment to think about why these properties are true, given the definitions we have
just seen.)

33.2 Linear Transformations

33.2.1 Transformations as Matrix-Vector Multiplication
As the name suggests, in linear algebra, we only consider transformations that are linear.

Let V andW be vector spaces over a field, K (we will discuss what a field is later). A function f : V →W ,
is linear if for any two vectors, u,v ∈ V , and any scalar, c ∈ K,

• f(u+ v) = f(u) + f(v) (additivity or operation of vector addition)

• f(cu) = cf(u) (degree 1 homogeneity or operation of scalar multiplication)

In other words, it does not matter whether the linear map is applied before or after the operations of
vector addition and scalar multiplication. In particular, linear maps preserves linear combinations. This
means that a linear transformation is really a vector space homomorphism – a map that is compatible
with and preserves the vector space structure.

Geometrically, a transformation is linear if the origin is fixed in place, and all lines remain lines under
the transformation.

Although this is a rather restrictive condition, there are still a vast range of linear transformations. So,
how do we represent these transformations numerically? Given a pair of numbers – a point, a coordinate
– how do we find the image of that pair under any given transformation?

Looking back at the definition of a linear transformation, it doesn’t matter whether we apply the map
before or after the operations of vector addition and scalar multiplication, and, as discussed earlier, every
vector can be seen as scaling and adding up the basis vectors – so, if we keep track of where the basis
vectors are mapped under the transformation, everything else immediately follows on.

For example, if we know that,

ı̂ 7→
[
1
−3

]
ȷ̂ 7→

[
−2
4

]
then we can easily tell where any arbitrary vector,

v =

[
x
y

]
is mapped, by using the linear properties of these maps and breaking it down into its constituent parts,
v = x̂ı = ŷȷ, so, [

x
y

]
7→ x

[
1
−3

]
+ y

[
−2
4

]
=

[
1x− 2y
−3x+ 4y

]
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In doing so, we see that every two-dimensional linear map is completely determined by just 4 numbers
– the coordinates of the image of ı̂ and ȷ̂. Or more generally, the coordinates of the image of the basis
vectors of the relevant space. But sticking with ı̂ and ȷ̂ for now, we often like to package these coordinates
into an array of numbers – a matrix.

We do this in such a way that the first column contains the coordinates of where ı̂ lands, and the second,
the coordinates for ȷ̂. [

1 −2
−3 4

]
︸︷︷︸

ı̂
︸︷︷︸

ȷ̂

If you have the matrix for some linear transformation, and you want to know the image of any given
vector, you take the coordinates of that vector, multiply them by the respective columns of the matrix,
and sum the results. In other words, we are adding up the scaled versions of the new basis vectors.

For an arbitrary matrix and vector, [
a b
c d

]
,

[
x
y

]
the image of the vector is given by,[

x
y

]
7→ x

[
a
c

]
+ y

[
b
d

]
=

[
ax+ by
cx+ dy

]

Since the matrix really represents a linear map – a kind of function – let’s write it to the left of the
vector like we normally do with functions, and give the vector as the function variable.[

a b
c d

]([
x
y

])
=

[
ax+ by
cx+ dy

]
But the brackets are somewhat clumsy, so we often drop them from this expression, and read the function
as multiplication, [

a b
c d

] [
x
y

]
=

[
ax+ by
cx+ dy

]
and, we’ve just discovered matrix-vector multiplication. If you’ve ever wondered why matrix-vector
multiplication is what it is, this is why: it stems from linear transformations being applied to vectors.

33.2.2 Composition as Matrix-Matrix Multiplication
Now, we often don’t study transformations in isolation: what happens if we apply two transformations
to a vector, one after another?

For example, consider the transformations given by shearing parallel to the horizontal axis, and rotating
by 90◦ clockwise.
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s[
1 1
0 1

]

r[
0 1
−1 0

]

Because of linearity, the overall effect of applying the shear then rotation is another linear transformation,
distinct from both the shear and rotation alone. The new transformation is the composition of the two
original transformations.

s r

r◦s

(We read right to left for composition. This notation stems from function notation; (r ◦ s)(̂ı) = r(s(̂ı)),
so we apply s first.)

Now, being a linear transformation, this composition also has a matrix representation. Above, we see
that,

ı̂ 7→
[
0
−1

]
ȷ̂ 7→

[
1
−1

]
so the composition matrix is given by, [

0 1
−1 −1

]
This matrix gives the effect of shearing, then rotating, in a single transformation – one action, instead
of two successive ones.

We can otherwise write the composition out in terms of the original transformations by multiplying a
vector on the left by the shear, to give the image under the shear, then multiplying again by the rotation,
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to apply it after.

[
0 1
−1 0

]
︸ ︷︷ ︸
Rotation

[1 1
0 1

]
︸ ︷︷ ︸

Shear

([
x
y

])
Given our definition of matrix-vector multiplication, this is exactly what it means to apply linear trans-
formations as matrices to a vector.

But, given that this pair of transformations has the same overall effect as the composition matrix on any
vector, it seems sensible to write [

0 1
−1 0

] [
1 1
0 1

]
=

[
0 1
−1 −1

]
More generally, two arbitrary transformation matrices will give another transformation matrix. You
probably know how matrix multiplication is defined, but put that knowledge aside for a second, and we
will rederive that definition. [

a b
c d

]
︸ ︷︷ ︸
M2

[
A B
C D

]
︸ ︷︷ ︸

M1

=

[
? ?
? ?

]

To figure out the overall matrix, we need to follow where ı̂ goes. By how we construct matrices in the
first place, the image of ı̂ is just the first column of M1. To see where that column is mapped, we then
multiply that column by M2: [

a b
c d

] [
A
C

]
Using our definition of matrix-vector multiplication we defined earlier, this gives[

a b
c d

] [
A
C

]
= A

[
a
c

]
+ C

[
b
d

]
=

[
Aa+ Cb
Ac+ Cd

]
which is the first column of the composition matrix. Similarly, for ȷ̂, we have,[

a b
c d

] [
B
D

]
= B

[
a
c

]
+D

[
b
d

]
=

[
Ba+Db
Bc+Dd

]
so the composition matrix is, [

Aa+ Cb Ba+Db
Ac+ Cd Bc+Dd

]
This is where the quite arbitrary-feeling “rows into columns” definition of matrix multiplication actually
comes from. It’s just how the numbers work out when we compose linear transformations together.

Furthermore, seeing matrix multiplication as composition of transformations makes the various properties
of matrix multiplication much easier to understand.

For example, rotating then shearing, and, shearing then rotating, clearly give different results, so matrix
multiplication is not commutative. This is a trivial property you can verify in your head, without having
to compute anything at all.

Similarly, matrix multiplication is clearly assocative: applying transformation A, then (B then C) is
clearly the same thing as applying transformation (A then B), then C. There’s nothing to prove here;
it’s the same three transformations being applied in the same order both ways.

Trying to prove these properties symbolically is a nightmare, but, as transformation compositions, they’re
trivial. Not only are these valid proofs, they’re good intuitive explanations as to why these properties
should be true.
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33.2.3 The Determinant
Consider the transformation given by the matrix,

T =

[
2 0
0 3

]
and look at how it transforms the unit square in the first quadrant (the square with sides ı̂ and ȷ̂).

Following ı̂ and ȷ̂, we find that this square is transformed into a 2 by 3 rectangle.

T

As the square started with an area of 1, and the resulting rectangle has area 6, this transformation has
scaled the area of the square by a factor of 6.

But not all transformations will scale this square. Of course, the identity transformation trivially leaves
the square unchanged, but more interestingly, the two transformations we explored in the previous section
also do not affect the area of this square:

s[
1 1
0 1

]

r[
0 1
−1 0

]

Although the shapes themselves are distorted (possibly moreso in the shear than the rotation), these
transformations seem to leave areas unchanged, at least, in the case of the unit square.

However, because the transformation is linear, these transformation scale the area of any shape in the
2D plane by the same factor, and not just the unit square.

Recalling the geometric interpretation of a linear transformation, the origin is fixed in place, and all lines
remain lines – so any square that lies within the grid containing the axes is transformed similarly to the
unit square, and we can approximate any arbitrary shape that isn’t a grid square as closely as we’d like
with smaller and smaller squares, each of which are scaled by this same factor.
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So, if we know how much the area of the unit square changes, we know how any other shape changes
under that transformation.

This scaling factor is called the determinant of the transformation, and can variously be written as,

detT = det(T) = |T| = det

[
2 0
0 3

]
=

∣∣∣∣2 0
0 3

∣∣∣∣ = 6

This idea extends to three dimensions with scaling volume, and in arbitrary dimensions with scaling
something called “measure” (area and volume are the specific 2D and 3D variants of measure).

Because the shear and rotation leave areas unchanged, we also have det(s) = 1 and det(r) = 1.

Determinants don’t have to be increases in areas either – the transformation given by,[
1
2 0
0 1

2

]

makes areas smaller by a factor of 1
2 , and thus has a determinant of 1

2 .

The full definition of the determinant actually allows for negative values, and it doesn’t really make sense
to scale an area by a negative amount. This has to do with something called orientation.

This transformation is a reflection in the line y = x. You can somewhat intuitively see that space is
“flipped” in some way under this transformation. Before the transformation, if you stand at the origin,
facing in the direction of ı̂, then ȷ̂ is to your left, but after the transformation, ȷ̂ is now to your right. If
this is the case, we say that the orientation of space has been inverted.

You can similarly check the orientation of a space in 2D and 3D using a handedness rule, like with fields
in physics, but, especially for arbitrary dimensions, it’s generally easier to just check if the determinant
is negative.

So, more properly, the magnitude of the determinant tells us the scaling factor of the transformation,
and the sign tells us whether the transformation inverts the orientation of space. With this in mind, can
you explain why det(A) det(B) = det(AB)?

Now, what happens if the determinant is zero?

If we look at the matrix,

U =

[
1 2
2 4

]
we notice that the image of ȷ̂ is just ı̂ scaled by a factor of 2, so they are mapped on to the same line.
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U

In other words, the images of ı̂ and ȷ̂ are not linearly independent.

Because the image of a vector is given by the sum of scaled versions of ı̂ and ȷ̂, it’s clear that the image of
any arbitrary vector also ends up stuck on the one-dimensional line spanned by ı̂ and ȷ̂. In other words,
the transformation compresses down all of 2D space onto a 1D line.

The square clearly now has 0 area, so the determinant of this matrix is 0. In general, the determinant
of a matrix is zero if the image vectors (of your basis vectors) are linearly dependent.

We can also have another case, as given by the zero matrix,[
0 0
0 0

]
This matrix compresses all of 2D space on to the origin, and also has zero determinant. We call matrices
with zero determinant singular (and nonsingular, invertible or nondegenerate otherwise).

But notice the distinction between these two cases: one matrix returns a 1D line, and the other, just a
single point. These are clearly very different from each other, but both fall under the bracket of “zero
determinant”.

33.2.4 Column Space & Rank
We have some terminology for this: when the output of a transformation is a line (1 dimensional), the
rank of the matrix is 1. If all the output vectors form some two-dimensional plane, then the rank of the
matrix is 2. We often call this output space the image, or the column space. This latter name comes
from the columns of the matrix being the image of the basis vectors – so the space of all possible vector
outputs of the matrix is just the space spanned by the columns (We similarly define the row space of a
matrix to be the space spanned by its rows, but this is rarely used).

Note that the image of a matrix is a space (the space spanned by the transformed basis vectors), and
not a matrix, while the image of a vector is another vector, and not any kind of space.

In general, the rank of a matrix is the number of dimensions in the column space.

So, for the matrices above, we have,

rank

[
1 2
2 4

]
= 1, and rank

[
0 0
0 0

]
= 0

For the 2 × 2 matrices we’ve been discussing, rank 2 is the best we can have. There’s no way we can
map a pair of vectors to span all of 3D space. We simply do not have enough basis vectors.

That isn’t to say that the codomain of a linear transformation can’t be of higher dimension than the
codomain, just that the image is at most the dimension of the domain. For example, T : R2 → R3,
(x,y) 7→ (x,y,0) maps the 2D plane into 3D space, but notice that the image is still just a plane sitting
within that 3D space.

When the rank is as high as possible, we say that the matrix is full rank. For a 3 × 3 matrix, we need
rank 3 for the matrix to be full rank.
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33.2.5 Null Space & Nullity
Note that the zero vector is always within the column space, as linear transformations must keep the
origin fixed in place. In particular, for a full rank transformation, the only vector that is mapped to
the origin, is the zero vector itself. But for transformations that aren’t full rank – transformations that
compress space down at least 1 dimension – there will be many more vectors that are mapped to zero.

For the matrix we saw earlier, U, the vector,

v =

[
−2
1

]
is mapped to the origin. You may verify this yourself. But, because images are the sum of scaled basis
vectors, we can actually deduce that all vectors that a multiple of this vector will also map to the origin.

v = t

[
−2
1

]
, t ∈ R

So, we have an entire line of vectors that are mapped to the origin:

T

The multicoloured vectors are all mapped to the origin, and every other vector will map to somewhere
on the line spanned by the transformed basis vectors.

Conversely, the zero matrix maps every vector in the plane to the origin (and the column space would
just be the origin, in this case).

This set of vectors that gets mapped to the origin is called the null space or kernel of the transformation.
The dimension of this space is called the nullity of the transformation.

For T, since we have a line that is mapped to zero, the null space of T is that line, and the nullity of T
is 1. For the zero matrix, the null space is the entire 2D plane, so the nullity is 2.

For any 3× 3 matrix that maps 3D space to a plane, there will be a line of vectors that are mapped to
the origin. Similarly, if 3D space is mapped on to a line, there will be an entire plane of vectors that are
mapped to the origin.

Notice that these lines or planes (or volumes/spaces in higher dimensions) will always contain the origin,
due to the property discussed above.
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−4
−2
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−2

0
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0
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4

You can view nullity as the number of dimensions that are “lost” or “compressed” under a transformation,
which leads us to the rank-nullity theorem. This theorem effectively states that the sum of the rank and
nullity of a transformation is equal to the dimension of the space you are working in.

We will state this theorem more formally once we have defined what spaces even are.

33.2.6 Computational Skills
So, we haven’t actually discussed much computation yet. This is predominantly because there is actually
very little to do outside of basic matrix algebra. However, we need to cover a little bit now, before moving
on to more abstract vector spaces.

33.2.6.1 Elementary Matrix Operations

There are three types of row operations we can perform on a matrix:

• Row Switching – swapping two rows;

• Row Scaling – multiplying every element in a row by a non-zero constant;

• Row Addition – replacing a row with the sum of that row and the multiple of another.

Applying a row operation to an identity matrix, then left multiplying by this new matrix is equivalent to
performing the row operation on that matrix. A matrix that differs from the identity matrix by a single
row operation is an elementary matrix.

Column operations are defined similarly, but far more rarely used.

Row operations preserve row space, but not column space. They do, however, preserve the linear
independence relationships between columns.

Column operations behave the exact same with with “row” and “column” in the previous paragraph
switched.

33.2.6.2 Row Reduction

Using row operations, we can transform matrices into other forms. Some of these forms are particularly
useful, and are named.

A matrix is in row echelon form if,

• All zero-rows are below all non-zero rows;

• The pivot for every non-zero row is strictly to the right of the pivot of the row above.
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where a pivot is the first non-zero element of a row.

Furthermore, a matrix is in reduced row echelon form if,

• It is in row echelon form;

• Every pivot element is 1;

• The elements above each pivot element are 0.

Example. 
1 3 6 7 0 5
0 2 0 2 0 3
0 0 3 0 1 1
0 0 0 0 0 4


is in row echelon form, but not reduced row echelon form, as the pivot elements in the second, third and
fourth row, have non-zero elements above them, and the pivots are not 1.

1 0 9 0 0 7
0 1 3 0 0 5
0 0 0 1 0 2
0 0 0 0 1 4


is in reduced row echelon form. △

The number of pivots in the row reduced matrix is the rank of the matrix, and the nullity is the number
of columns, minus the rank.

The row reduced echelon form of a matrix is unique.

Applying both row and column reduction to a matrix brings the matrix into Smith normal form, which
basically looks like an identity matrix in the top left corner, with zero everywhere else.

Because row operations preserve the linear independence relations between columns, we can find the
basis for the image of a matrix by row reducing the matrix, and finding the pivot columns. The vectors
formed from the columns that correspond to the pivots in the row reduced matrix form a basis of the
image of the matrix

Example. Find a basis for the image of,

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16


A row reduces to, 

1 0 −1 −2
0 1 1 3
0 0 0 0
0 0 0 0


The first and second columns are pivot columns, so the first and second columns of the original matrix,

1
5
9
13

 ,

2
6
10
14


form a basis of the image of A. Because there are only two pivot columns, we only have two basis vectors,
so we know the image of A is a 2D plane.
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Because the image is the same thing as the column space – the space spanned by the columns of the
matrix – if you were asked to find a linearly independent set from a set of vectors, you would just augment
the vectors together into a matrix, then perform the same procedure above. △

We can also find a basis of the kernel of a matrix through row reduction.

Example. Find a basis for the kernel of A, from the above example.

We once again row reduce the matrix, but now multiply it by an arbitrary vector, and set it equal to the
zero vector. 

1 0 −1 −2
0 1 1 3
0 0 0 0
0 0 0 0



a
b
c
d

 =


0
0
0
0


Now, we rewrite the arbitrary vector in terms of the variables corresponding to non-pivot columns, using
the information from the matrix. For example, we know that a = c+2d, so 1 and 2 are the first variables
in the two vectors. 

a
b
c
d

 = c


1
−2
1
0

+ d


2
−3
0
1


The two vectors on the right form a basis of the kernel of A.

Once you are more comfortable with this, you can skip out writing the variables, and just read the
numbers off of the matrix (but take care with signs!). △

We can also extend a linearly independent set into a basis. Augment the given vectors together, then
augment on any basis that spans the desired space. In practice, you can just use the identity matrix, as
it is generally the easiest to work with.

Example. The vectors 
1
5
9
13

 ,

2
6
10
14


span R2, as found above. Extend this set of vectors to a basis of R4.

Augment the vectors together, along with I4:
1 2 1 0 0 0
5 6 0 1 0 0
9 10 0 0 1 0
13 14 0 0 0 1


and row reduce, 

1 0 0 0 − 7
2

5
2

0 1 0 0 13
4 − 9

4
0 0 1 0 −3 2
0 0 0 1 −2 1


The first four columns are pivot columns, so the first four columns of the original matrix,

1
5
9
13

 ,

2
6
10
14

 ,

1
0
0
0

 ,

0
1
0
0


form a basis of R4. △
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33.2.6.3 Determinants

For a 2× 2 matrix,

A =

[
a b
c d

]
the determinant is given by det(A) = ad− bc. This is one place where I think a geometric explanation
isn’t particularly helpful, but here is a diagram, if you are still interested:

a b

b a

d

c
d

cac
2

ac
2

bd
2

bd
2

bc

bc

det

[
a b
c d

]
= (a+ b)(c+ d)− 2

(ac
2

)
− 2

(
bd

2

)
− 2bc = ad− bc

For higher dimensional matrices, there are various methods to calculate the determinant – you’ve prob-
ably learnt Laplacian expansion to find determinants before.

However, we will often use Gaussian elimination, or more generally, row reduction, to compute the
determinant of larger matrices: Scaling a row by k scales the determinant by k, and swapping two
rows multiplies the determinant by −1. If we row reduce our matrix to the identity matrix (which has
determinant 1), we can then run the row operations in reverse and keep track of the determinant.

33.2.7 Systems of Linear Equations & Matrix Inverses
One reason why linear algebra is required for such a wide variety of technical disciplines, is that it allows
us to solve a certain type of system of equations.

If your system of equations only involves equations which add up multiples of your variables, i.e., linear
combinations of variables, then we can apply the tools of linear algebra.

We usually organise this sort of special system of equations by putting all the variables on the left, lining
them up vertically, and putting all the constants on the right.

4x− 5y + 7z = 6

2x+ 3y − 2z = 2

9x− 7y + 3z = 5

This might remind you of matrix-vector multiplication. And indeed, we can wrap this entire system of
equations up into a single vector equation:4 −5 7

2 3 −2
9 −7 3

xy
z

 =

62
5


We’ve separated out the constant coefficients into a matrix, and packed all of the variables into a vector,
and we want their matrix-vector product to be some constant vector.

We often label the matrix A, the variable vector as x, and the constant vector as v.

Ax = v
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And this isn’t just a notational trick to save space – we can now view this algebraic problem as a geometric
one. A is a matrix, and therefore represents some linear transformation, despite the coefficients and
source problem possibly having nothing to do with geometry. So, solving Ax = v for x means we’re
trying to find a vector, x, which gets mapped to v after applying the transformation A.

For simplicity, suppose A is a 2× 2 matrix.

Now, there are a couple of possible cases, depending on whether the transformation given by A compresses
space down into a lower dimension or not. In other words, we care about whether A is singular or not.

If A is non-singular, meaning space is not compressed into a zero-area region, then there will be a single
unique vector that lands on v under A, and we can find it by playing the transformation backwards.

v x

A

Ax

Following where v goes under this backwards transformation will give us x.

Playing A in reverse actually gives a separate linear transformation, the inverse of A, written A−1.

Here, A is a rightwards shear that moves ȷ̂ one unit to the right, so A inverse would be a leftwards shear
that moves ȷ̂ one unit to the left. If A is a 90◦ clockwise rotation, then A−1 would be a 90◦ anticlockwise
rotation.

In general, A−1 is the unique transformation such that, if you apply the transformation A, then the
transformation A inverse, the overall effect is just the identity. Applying transformations sequentially is
algebraically expressed as matrix multiplication, so another way to describe this property, is that A−1

is the unique matrix such that A−1A = I.

If you can find this inverse matrix, we can solve the equation by multiplying both sides by the inverse:

Ax = v

A−1Ax = A−1v

Ix = A−1v

x = A−1v

This non-zero determinant case, which, for any random matrix, is almost certainly the case, corresponds
with the idea that, if you have two variables and two equations, you’ll almost certainly have one unique
solution to the system.

This also extends to higher dimensions, when the number of equations equals the number of variables.
You can translate these algebraic problems into geometric ones, finding vectors that land on other vectors
under some transformation, given that the transformation associated with the coefficient matrix doesn’t
compress space into a lower dimension.

However, when matrix is singular, and the transformation does collapse down dimensions, then there is
no inverse to find, because information is lost when compressing down space. You cannot decompress
a line back into a plane – doing so would require transforming a single vector on the line into an entire
line of vectors in the plane, which functions cannot do.

Solutions can still exist when the determinant is zero, but only if the constant vector just happens to be
in the column space of the matrix:
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T

✓ ×

Clearly, if the target vector is outside of the column space, then there’s no way to get there from the
basis vectors: the column space is defined as the space you can reach with linear combinations of the
basis vectors. Similarly, if the target vector lies inside the column space, it’s clearly reachable.

There are several ways to find the inverse of any given matrix. One which you may have learned previously
is by using the determinant and matrix of cofactors. You may also have learned Cramer’s rule, or the
Cayley-Hamilton theorem, which each can also be used to (perhaps somewhat inefficiently, depending
on the matrix) find the inverse of a matrix.

Here, we will often use Gaussian elimination, or row reduction, which is much faster,∗ especially on larger
matrices.

If we have a matrix we wish to find the inverse of, we first append or augment the matrix with the
identity matrix on the right, then row reduce the resulting rectangular matrix. The inverse matrix will
then be on the right hand side.

Example. Find the inverse of:

A =

1 3 1
0 4 1
2 −1 0


First, we augment the matrix with the identity. For clarity, a separating line showing where the aug-
mentation happened is included. 1 3 1 1 0 0

0 4 1 0 1 0
2 −1 0 0 0 1


Then row reduce, until the identity is now on the left.1 0 0 −1 1 1

0 1 0 −2 2 1
0 0 1 8 −7 −4


︸ ︷︷ ︸

A−1

The inverse is then on the right. △

This is very useful for getting inverses, but when we are solving systems of linear equations, we often
don’t need the inverse itself, and are just looking for the solution vector, x.

In this case, we can similarly rewrite a system of linear equations as an augmented matrix by writing the
coefficients of the variables into the matrix as usual, but this time, we augment on the vector containing
the constants.

∗ For an n×n matrix, Gaussian elimination takes about O(n3) time (assuming multiplication and addition takes constant
time, which, they don’t, as the intermediate matrix entries tend to grow exponentially in size). The cofactor matrix method
requires finding the determinants of n2 distinct (n − 1) × (n − 1) matrices, and finding determinants is superpolynomial
in complexity. Cramer’s rule takes O(n!) time. In any case, even with idealisations about the speed of multiplication and
addition, row reduction is generally a lot faster.
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Row reducing the matrix, we can immediately read off what the solutions should be. This is useful where
the inverse is not needed and/or is very complicated.

Example.

4x− 5y + 7z = 6

2x+ 3y − 2z = 2

9x− 7y + 3z = 54 −5 7 6
2 3 −2 2
9 −7 3 5


Row reducing this matrix, we have, 1 0 0 9

11
0 1 0 8

11
0 0 1 10

11


so x = 9

11 , y = 8
11 , and z = 10

11 are solutions. △

You can try finding the inverse of the matrix above as an exercise, but the entries will not be very nice
to work with (they are all rational, but with very large denominators).

This method also allows us to determine whether solutions exist for any given system of linear equations:

Example.

3x+ 6y − 6z = −6
−6x+ 3y + 3z = 2

−3x− y + 3z = −2 3 6 −6 −6
−6 3 3 2
−3 −1 3 −2


which row reduces to, 1 0 − 4

5 0
0 1 − 3

5 0
0 0 0 1


but the last line implies that 0 = 1, so we know the system is inconsistent and has no solutions.

We can say that the coefficient matrix is of lower rank than the augmented matrix, so the system is
inconsistent and has no solutions. △

33.3 Scalars & Fields

So far, we’ve been saying that we can multiply or scale vectors by certain numbers called scalars. But
what numbers can these scalars actually be? So far, we’ve mostly been using the integers or rationals,
but, we can pick other numbers too.

In general, for any given vector space, the scalars must all come from a field.

Fields have a dedicated chapter in which they are explored, so here, we only give a short summary of a
definition in terms of rings and groups (§12.3), and a second axiomatic definition. For a more detailed
discussion, see §11.2.
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33.3.1 Fields from Groups and Rings
A ring is a triple, (R,+ ,×), where R is a set and + and × are binary operations such that

• R is an abelian group under +;

• R is closed under ×;

• R contains an identity under ×

• × is associative on R

• × left and right distributes over +

We call the operation denoted by + addition, and the operation denoted by × multiplication or product,
regardless of what the operations actually are. We also call the additive identity, 0R or the ring zero, as
it is also the zero element for the multiplication operation. We also denote the multiplicative identity,
1R.

Furthermore, (R,+ ,×) is a commutative ring if × is commutative on R.

Note that the “commutative” part of “commutative ring” refers to multiplication, as commutativity of
addition is required regardless.

However, rings notably do not require multiplicative inverses.

Let R be a ring and a,b ∈ R. Then,

• a× 0R = 0R × a = 0R

• −(a× b) = (−a)× b = a× (−b)

An element, a, of a ring R is a unit if there exists some b ∈ R such that ab = ba = 1R. Essentially, a is
a unit of R if a has a multiplicative inverse in R. In any non-zero ring, 0R is a non-unit.

Example. In R, Q and C, every non-zero element, k, has a multiplicative inverse, 1
k , so the units are the

non-zero elements.

However, in Z, 1
k is an integer only for k = ±1, so the units in Z are ±1. △

A field, (F,+ ,×), is a commutative ring such that every non-zero element is a unit, and 0F ̸= 1F .

Equivalently, (F,+ ,×) is a field if (F,+) is an abelian group with additive identity 0F , (F \ {0F },×) is
an abelian group with multiplicative identity 1F , 0F ̸= 1F and multiplication distributes over addition.

This 0F ̸= 1F condition is called the non-degeneracy condition, and is basically there just to exclude the
trivial set, {0}, from being a field.

33.3.2 Field Axioms
Given a set S, a binary operation on S is a function that takes two elements of S, called the operands or
arguments of the operation, and returns another element of S: it is closed over S. That is, it is a binary
function S × S → S.

A field is a set, K, together with two elements, 0K ̸= 1K ∈ K, and two binary operations, · : K×K → K
and + : K×K → K, called multiplication and addition, respectively, that satisfies the following axioms:

(A1) ∀a,b ∈ K, a+ b = b+ a (commutativity of addition);

(A2) ∀a,b,c ∈ K, a+ (b+ c) = (a+ b) + c (associativity of addition);

(A3) ∃0K ∈ K such that ∀a ∈ K, a+ 0K = 0K + a = a (existence of additive identity);

(A4) ∀a ∈ K,∃(−a) ∈ K such that a+ (−a) = (−a) + a = 0K (existence of additive inverses).
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(M1) ∀a,b ∈ K, a · b = b · a (commutativity of multiplication);

(M2) ∀a,b,c ∈ K, a · (b · c) = (a · b) · c (associativity of multiplication);

(M3) ∃1K ∈ G such that ∀a ∈ K, a× 1K = 1K × a = a (existence of additive identity);

(M4) ∀a ∈ K,∃(a−1) ∈ K \{0} such that a∗(a−1) = (a−1)∗a = 1K (existence of multiplicative inverses);

(D) ∀a,b,c ∈ K, (a+ b)c = ac+ bc (distributivity of multiplication over addition);

(ND) 0K ̸= 1K (non-degeneracy).

Where there is no room for confusion, we write ab for a · b, and 0 and 1 for 0K and 1K , respectively.
We often denote general fields with the letter, K (originally from the German word Körper, meaning
“corpus” or “body”, suggesting a closed entity) or otherwise with F . The symbol F is reserved for a
certain type of finite field.

Informally, a set is a field if it equipped with operations analogous to those of addition, subtraction,
multiplication, and division on the real numbers.

33.4 Vector Spaces

A vector space over a field, K, is a set, V , along with two maps, + : V 2 → V and · : K × V → V ,
called vector addition and scalar multiplication, respectively, that satisfies the following axioms for all
u,v,w ∈ V and a,b ∈ K:

(V1) (V,+) is an abelian group.

(A1) u+ v = v + u (commutativity of vector addition);

(A2) u+ (v +w) = (u+ v) +w (associativity of vector addition);

(A3) ∃0V such that v + 0V = 0V + v = v (existence of vector additive identity);

(A4) ∃(−v) ∈ V such that v + (−v) = (−v) + v = 0V (existence of vector addition inverses);

(A5) u+ v ∈ V (closure of vector addition).

(V2) a · (u+ v) = a · u+ b · v (distributivity of scalar multiplication over vector addition);

(V3) (a+ b) · v = a · v + b · v (distributivity of scalar multiplication over field addition);

(V4) (ab) · v = a · (bv) (compatibility of scalar multiplication with field multiplication);

(V5) 1K · v = v (existence of scalar multiplicative identity).

33.4.1 Subspaces
Let V be a vector space over a field K and let W ⊆ V be a non-empty set. If W is also a vector space
over K, then W is is called a (linear or vector) subspace of V . If W ̸= V , then W is a proper subspace.
If W = {0V}, then W is the trivial subspace. The trivial subspace has dimension 0.

Theorem 33.4.1. A subset W of a vector space V over a field K is a subspace if W is closed under
vector addition and scalar multiplication. That is, W is a subspace if for every pair of vectors u,v ∈W
and every pair of scalars α,β ∈ K, we have αu+ βv ∈W .

Let V be a vector space over a field K and let W1, W2 be subspaces of V . Then, the intersection,
W1 ∩ W2 = {w : w ∈ W1 ∩ W2}, and sum, W1 + W2 = {w1 + w2 : w1 ∈ W1,w2 ∈ W2}, are also
subspaces.

If U = W1 +W2, then every u ∈ U can be written as u = w1 +w2, where w1 ∈ W1 and w2 ∈ W2. If
this representation is unique, then we write U =W1 ⊕W2, or that U is the direct sum of W1 and W2.
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Two subspaces W1 and W2 of a vector space, V , are complementary if W1∩W2 = {0V } and W1+W2 = V ,
or equivalently, W1 ⊕W2 = V . However, the union of two subspaces is generally not a subspace.

Example. The sets U =
{
(x,x) : x ∈ R

}
and W =

{
(x, − x) : x ∈ R

}
are linear subspaces of R2,

but their union is not closed under vector addition. For instance, (1,1) ∈ U and (1, − 1) ∈ W , but
(1,1) + (1,− 1) = (2,0) /∈ U ∪W . △

Let V be a vector space over a field K such that V is finite-dimensional, and let W1, W2 be subspaces
of V . Then,

dimW1 +W2 = dimW1 + dimW2 − dimW1 ∩W2

33.4.2 Quotient Spaces
The quotient of a vector space V by a subspace N , denoted V/N is a vector space obtained by identifying
the elements in N with zero. This construction is analogous to that of quotient groups (or any other
algebraic quotient object).

Let V be a vector space over a field K, and let N ⊆ V be a subspace. Let ∼ be the equivalence relation
on V defined by x ∼ y if and only if x − y ∈ N . That is, x is related to y if their vector difference is
an element of N , or equivalently, if one may be obtained from the other by adding an element of N .
Consequently, every element of N lies in the same equivalence class, as it is closed under vector addition
as a subspace, and moreover, this equivalence class includes the zero 0V .

The equivalence class, or coset, of a vector v ∈ V is denoted by

[v] = v +N

= {v + n : n ∈ N}

The quotient space V/N is then defined to be V
/
∼, the set of equivalence classes on V induced by ∼.

This set has a natural vector space structure over K with operations given by

• α[v] = [αv];

• [u] + [v] = [u+ v],

for all α ∈ K and u,v ∈ V , and the zero element is given by the equivalence class N = [0]. It is not hard
to verify that these operations are well-defined (the proof is entirely analogous to that in §12.5.2). The
natural map q : V → V/N defined by v 7→ [v] is then called the quotient map.

Intuitively, the quotient space V/N can be viewed geometrically as the set of all affine subsets of V
parallel to N .

If U is a subspace of V , then the dimension of the quotient V/U is called the codimension of U in V . Since
a basis of V may be constructed from a basis A of U and a basis B of V/U by adding a representative
of each equivalence class in B into A, it follows that the dimension of V is the sum of the dimensions of
U and V/U . If V is finite-dimension, then we have

codimU = dim(V/U) = dimV − dimU

If we quotient a space by the trivial subspace, we just obtain the space itself since two elements are
identified if and only if they differ by the zero vector: but this just means the equivalence classes are all
singletons since two vectors that differ by the zero vector are just the same vector.

V
/
{0V } ∼= V

Similarly, if we quotient a space by itself, we obtain the trivial space since all elements of V differ by
another element of V

V
/
V ∼= {0V }
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Example. Let R2 be the standard Cartesian plane as a vector space over R, and let N be a line through
the origin. Then, the quotient space R2/N can be identified with the space of all lines in V parallel to
N . Points within any such given line satisfy the equivalence relation since their difference vector lies
within N .

Any line not parallel to N also intersects each of these lines at exactly one point, so the quotient space
can also be identified with the set of points along such a line.

Similarly, the quotient of R3 by a line N through the origin may be identified as the space of all lines
parallel to N . Again, any plane not containing N will also intersect all of these lines at exactly one
point, so the quotient space may also be identified with such a plane.

We may also quotient R3 by a plane Π through the origin. This time, the quotient space may be identified
as the space of all planes parallel to Π; or alternatively, as a line not contained within Π. △

Example. Consider the subspace of Rn spanned by the first m standard basis vectors. Vectors in Rn con-
sists of n-tuples [x1, . . . ,xn], while the vectors in the subspace consist of the n-tuples [x1, . . . ,xm,0, . . . ,0]
that are 0 in the last n−m coordinates. Thus, two vectors in Rn are equivalent modulo Rm if and only
if they agree in the last n −m coordinates, so the quotient space Rn/Rm is canonically isomorphic to
Rn−m in the obvious manner.

This generalises the previous example, where we quotiented R2 by a line isomorphic to R1 to obtain a
space of lines isomorphic to R1; or R3 by a line N ∼= R1 or plane Π ∼= R2 to obtain a space isomorphic
to R2 and R1, respectively. △

Let V = U ⊕ V be a direct sum. Then, quotienting by one of the subspaces yields a space naturally
isomorphic to the other:

V
/
U ∼=W

V
/
W ∼= U

33.4.3 Rank-Nullity Theorem
For a linear transformation, T : V → W , we have a pair of important fundamental subspaces given by
the image and kernel, and we define the rank and nullity to be their respective dimensions:

imT := {T (v) : v ∈ V }
kerT := {v ∈ V : T (v) = 0W }

rankT := dim(imT )

nullT := dim(kerT ).

An important result linking these notions together is the rank-nullity theorem, which is in fact just the
first isomorphism theorem (§12.5.4) for vector spaces.

But first, we state and prove an important lemma useful for its proof:

Lemma (Steinitz Exchange Lemma). Let U and W be finite subsets of a vector space V over a field K
such that the vectors in U are linearly independent and the vectors in W span V . Then,

(i) |U | ≤ |W |;

(ii) There exists a set W ′ ⊆W with cardinality |W ′| = |W | − |U | such that U ∪W ′ spans V .

Proof. Suppose U = {ui}mi=1 and W = {wi}ni=1 satisfy the hypotheses above. We induct on m.

Let P (m) be the statement that there is an ordering of the wi such that the set

Sm := {u1, . . . ,um,wm+1, . . . ,wn}
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spans V .

For m = 0, P (0) holds, as there are no ui, and the set {u1, . . . ,um,wm+1, . . . ,wn} = {w1, . . .wn} = W
spans V by assumption.

Now, suppose P holds for some arbitary fixed value m − 1 ≥ 0. By the inductive hypothesis, there
is an ordering of the wi such that Sm−1 = {u1, . . . ,um−1,wm, . . . ,wn} spans V . Since um ∈ V , it is
expressible as a linear combination of vectors in Sm−1. That is, there exist coefficients α1, . . . αn ∈ K
such that

um =

m−1∑
i=1

α1ui +

n∑
j=m

αjwj

At least one of the coefficients αj in the second sum must be non-zero or this would contradict the linear
independence of U , so we must have m ≤ n, proving (i).

By reordering αmwm, . . . ,αnwn if necessary, we may assume that αm is non-zero. Then, we have,

wm =
1

αm

um −
m−1∑
i=1

α1ui −
n∑

j=m

αjwj


∈ span{u1, . . . ,um,wm+1, . . . ,wn}

and since this span contains each of the vectors u1, . . . ,um−1,wm,wm+1, . . . ,wn, by the inductive hy-
pothesis, it contains V , which is exactly P (m). Induction then completes the proof of (ii). ■

The rank-nullity theorem links the dimension of a vector space with the rank and nullity of a linear
transformation out from that space:

Theorem (Rank-Nullity). Let V,W be vector spaces over a field K, T : V →W a linear transformation,
and V be finite-dimensional. Then,

rankT + nullT = dimV

or,

dim(imT ) + dim(kerT ) = dim(domT )

Proof. Let n = dimV . As kerT is a subspace of V , it has a basis. Let k = dimkerT and let

K := {v1, . . . ,vk} ⊆ kerT

be such a basis. By the Steinitz exchange lemma, we may extend K with n − k linearly independent
vectors w1, . . . ,wn−k to form a basis of V . Let

S := {w1, . . . ,wn−k} ⊆ V \ kerT

be such that
B := K ∪ S = {v1, . . . ,vk,w1, . . . ,wn−k} ⊆ V

is a basis for V . From this, we have,

imT = span
(
T (B)

)
= span

{
T (v1), . . . ,T (vk),T (w1), . . . ,T (wn−k)

}
= span

{
T (w1), . . . ,T (wn−k)

}
= span

(
T (S)

)
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So T (S) spans imT . Now, suppose T (S) is not linearly independent, so there exist coefficients α1, . . . αn−k ∈
K such that

n−k∑
i=1

αiT (wi) = 0W

By linearity of T , we have

T

(
n−k∑
i=1

αiwi

)
= 0W

so
∑n−k
i=1 αiwi ∈ kerT = spanK ⊆ V , contradicting that B is a basis. It follows that T (S) is linearly

independent and hence forms a basis of imT .

Finally, we have,

rankT + nullT = dim imT + dimkerT

=
∣∣T (S)∣∣+ |K|

= (n− k) + k

= n

= dimV ■

One corollary of this theorem is that surjectivity, injectivity, and bijectivity are equivalent for linear
transformations:

Corollary 33.4.1.1. Let T : V → W be a linear transformation, and suppose that dimV = dimW .
Then, the following are equivalent:

1. T is injective;

2. T is surjective;

3. T is bijective (and hence constitutes an isomorphism).

Proof. Let n = dimV = dimW . If T is injective, then nullT = 0, so by rank-nullity, rankT =
dim(imT ) = n = dimW , so T is surjective; the same argument applies in reverse, so surjectivity of T
implies its injectivity, and hence both are equivalent to bijectivity. ■

Because linear maps can be represented by matrices, the rank-nullity theorem can be restated in terms
of matrices. Specifically, an m × n matrix M represents a linear map f : Kn → Km, where K is the
underlying field, so the dimension of dom f is the number of columns of M , or n. The rank-nullity
theorem then says:

Corollary 33.4.1.2. For any m× n matrix M ,

rankM + nullM = m

33.4.3.1 Cokernels

Let T : V →W be a linear transformation with n = dim(V ) and m = dim(W ) finite.

We have looked at images and kernels, but a third fundamental subspace is given by the cokernel, which
is the quotient space

cokerT :=W
/
imT

and the dimension of this space is called the corank of T .

The rank-nullity theorem links the image and kernel of T together in that if T has rank r, then the
kernel of T has dimension n− r. However, there is a similar dual result that connects the image and the
cokernel – if T has rank r, then the cokernel of T has dimension m− r:
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Theorem 33.4.2. Let V,W be vector spaces over a field K, T : V → W a linear transformation, and
W be finite-dimensional. Then,

rankT + corankT = dimW

or,

dim(imT ) + dim(cokerT ) = dim(codT )

Proof. Formal dual of the rank-nullity theorem. ■

Together with the rank nullity theorem, these two results are called the fundamental theorem of linear
algebra.

33.5 Change of Basis

Right at the beginning, we said that assigning numbers to vectors – in the sense of arrows rooted at the
origin – depends on some choice of basis vectors to provide a meaningful translation between geometry
and algebra.

In our standard system, we would say that this green vector has coordinates,[
3
2

]
because going from its tail to its tip requires moving 3 units to the right, and 2 units up. We think of
these coordinates as scalars – something that scales up a vector. In this case, we implicitly take the first
coordinate to scale ı̂, and the second to scale ȷ̂, before adding up the result, with all the information
about distance and direction tied up in our choice of basis vectors.

3̂ı

3̂ȷ

We call these ways to translate between these arrows and sets of numbers a coordinate system. The
choice of ı̂ being the target of the first scalar, and ȷ̂ being the target of the second scalar gives us the
standard Cartesian coordinate system.

But of course, other basis vectors are available.
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Say we have a friend, Alice, who uses a different set of basis vectors: v1, which points to the bottom-right
and is acted upon by the first scalar of a coordinate, andv2, that points to the top right and is acted
upon by the second scalar.

We can draw the same green vector again – the one we would describe as [3,2] – on to her grid. Alice
would then describe this green vector as, [

1
3
2

]
What this means is that, to get to the tip of that vector using her basis vectors, is to scale up v1 by 1,
v2 by 3

2 , then add up the results

1v1

3
2v2

Whenever Alice uses coordinates to describe a vector, she thinks of the first coordinate scaling v1, and
the second, scaling v2, just like how we scale ı̂ and ȷ̂, respectively.

We note that, although the two coordinates look different, they actually represent the same vector, just
in two different coordinate systems. We’re both describing the same things, but in a different language.[

3
2

]
=

[
1
3
2

]
We have been showing the choices of bases using colour (and will continue doing so), but it is helpful
to have notation for this as well. To do this, we give a label to each choice of basis, and subscript our
vectors with that label. Often, this is done with set brackets (for example, {ei}) to indicate that the
basis is a set of vectors, but here, for clarity, We will label the Cartesian coordinate system as E, and
Alice’s coordinate system as A. [

3
2

]
E

=

[
1
3
2

]
A

But how did we find that second set of coordinates? More generally, how do we find the coordinates of
some vector in some given different coordinate system? Well, we should first look at the basis vectors of
the coordinate systems in question.

We can describe the basis vectors of the target coordinate system in terms of our standard one. In E,
Alice’s basis vectors are,

v1 =

[
3
2
−1

]
E

, and v2 =

[
1
2

]
E
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But it is important to note that, in her system, these vectors are

v1 =

[
1
0

]
A

, and v2 =

[
0
1

]
A

since this is exactly what it means to even be a basis vector. They are what define the meaning of [1,0]
and [0,1] in her system.

Both systems look at the same vector in space, but assign it different coordinates. The point is, the grids
both of us use are just artificial constructs. Space does not intrinsically have a grid.

So, if we want to translate from our standard basis to Alice’s, we want to find some kind of function that
maps [ 32 ,− 1] in our system to [1,0] in Alice’s system, and similarly, [1,2] to [0,1]. We also note that [0,0]
is exactly the same in both coordinate systems: we both agree on where the origin is, since scaling any
vector by 0 should always give the same result, regardless of coordinate system.

Now, on the surface, this seems rather difficult. However, it might be easier to find the translation from
the Alice’s basis to our standard basis, where we’re looking to map [1,0] to [ 32 , − 1], and [0,1] to [1,2],
and you might already see where we’re going with this.

If we were given some vector, say [1,− 2], given in Alice’s coordinates, A, how would we go about
translating this into our standard coordinates, E? Well, the first coordinate scales Alice’s first basis
vector, and similarly to the second, and we know how to express those basis vectors in our coordinate
system, so we have,

1

[
3
2
−1

]
−2
[
1
2

]
=

[
−2
4

]
So [1,− 2]A is expressed as [−2,4]E in our standard coordinate system. But...

Doesn’t this look familiar?

Recalling from a long way back (§33.2.1), we’ve already done this exact same thing before! It’s matrix-
vector multiplication, with the matrix containing Alice’s basis vectors expressed in our coordinate system.

1

[
3
2
−1

]
−2
[
1
2

]
=

[
3
2 1
−1 2

] [
1
−2

]
This mapping between bases is actually a linear transformation in and of itself, and we often label its
associated matrix as P.

P =

[
3
2 1
−1 2

]
In general, this matrix is given by the basis vectors of the coordinate system being converted from,
expressed in the coordinate system being converted to (P here converts from Alice’s coordinates to ours,
so we use Alice’s basis vectors written in our language.)

This matrix, P, is called a change of basis matrix. In this case, from A to E. To convert any vector
given in F to its representation in E, we left multiply by this matrix.
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Since we wanted to find the coordinates for the green vector in A, given that we know its coordinates in
E, we simply take the inverse, P−1, and left multiply by that instead.

P−1 =

[
1
2 − 1

4
1
4

3
8

]
And you can verify yourself that this matrix, multiplied with [3,2]E , gives [ 32 ,1]A.

From our geometric interpretation of matrix-vector multiplication from before, this is actually a very
reasonable thing to do. The matrix containing the coordinates of the new basis vectors moves our basis
vectors, ı̂ and ȷ̂ – the things we think of as [1,0] and [0,1], – over to Alice’s basis vectors – the things she
thinks of as [1,0] and [0,1].

For example, if Alice was talking about a vector, say, [1,2], then multiplying [1,2] by P transforms our
basis vectors over to Alice’s, where the process of scaling then adding basis vectors by the coordinates
[1,2] works in our favour, as we’re effectively now working with Alice’s basis vectors.

Geometrically, this matrix transforms our grid into Alice’s, but numerically, it translates a vector in
Alice’s system into our system.

P =

[
a b
c d

]
︸ ︷︷ ︸

Alice’s basis vectors
in our coordinates

P

Vector in
Alice’s coordinates︷ ︸︸ ︷[

x0
y0

]
=

[
x1
y1

]
︸︷︷ ︸

The same vector,
in our coordinates

33.5.1 Transformations in Different Bases
Now we can translate vectors between bases, how about transformations? If we have the 90◦ clockwise
rotation matrix,

U =

[
0 1
−1 0

]
how would Alice represent this same transformation in her own coordinate system? To be clear, we’re
trying to write down a matrix that takes Alice’s grid, and rotates it 90◦ clockwise.

The columns of the matrix encode information about where our basis vectors, ı̂ and ȷ̂ go, so just trans-
lating the columns into Alice’s coordinates is not enough. That would just give a matrix that tells her
where our basis vectors would land, written in her coordinate system.

She wants a matrix that gives where her basis vectors land, and it needs to describe those landing spots
in her coordinate system as well.

Let’s first consider what the rotation matrix does to a single specific vector, given in her coordinate
system, say, [

3
4

]
Since we don’t know the rotation matrix in her system, let’s first convert this vector into our coordinate
system. We do this by using the change of basis matrix – the matrix containing her basis vectors in our
coordinate system as columns.

The same vector,
but in our language︷ ︸︸ ︷[

1 3
2

2 −1

]
︸ ︷︷ ︸

Change of basis matrix, P

[
3
4

]
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And now we have the vector in a form we can work with. The multiplication has been left unexpanded,
but keep in mind that the whole right hand side represents a vector – the exact same vector as before,
just described in our language.

Since we know the rotation matrix in our system, we can just multiply this whole thing by it:

Transformed vector
in our language︷ ︸︸ ︷[

0 1
−1 0

]
︸ ︷︷ ︸

Transformation matrix
in our language

[
1 3

2
2 −1

] [
3
4

]

This tells us where the vector should go, but it’s still in our language, so we convert it back into Alice’s
basis with the inverse change of basis matrix:

Transformed vector
in Alice’s language︷ ︸︸ ︷[

1 3
2

2 −1

]−1

︸ ︷︷ ︸
Inverse change of
basis matrix, P−1

[
0 1
−1 0

] [
1 3

2
2 −1

] [
3
4

]

And we’ve just figured out where some specific vector, given in Alice’s language, should go, under a
90◦ clockwise rotation. But, since the choice of vector was arbitrary, we’ve found the transformation we
wanted!

We apply the change of basis matrix to get the vector into a workable form, then the transformation
(which we know in our language), then the inverse change of basis matrix to translate back.[

1 3
2

2 −1

]−1 [
0 1
−1 0

] [
1 3

2
2 −1

]
︸ ︷︷ ︸

Transformation matrix
in Alice’s language

v

This composition of three matrices, together, gives the rotation matrix in Alice’s coordinate system. It
takes in a vector, in her language, and returns the transformed version of that vector, in her language.

We can represent all of this with the (mis)use of commutative diagrams:

VE T (VE)

VA T (VA)

R

S

P PT

where the transformation, T : V → V is acting on V , with the choice of basis indicated using subscripts.
Note that the change of basis matrix works the same before and after the transformation – it still
translates between Alice’s system and ours. The transformation of space, T (notice that this is not
written in bold, as it is a transformation not tied to a specific matrix), can be represented as the
matrices, R and S, specific to the bases E and A.

Note, since we’re only dealing with one transformation that is pretty obviously an endomorphism, and
only one vector space is being considered, the above diagram could be abbreviated to
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E E′

A A′

R

S

P P

to save time. Some of the diagrams in this section will contain additional detail to aid my explanations,
but by no means do you have to include every little extraneous detail when using these diagrams yourself.

Some people define the change of basis matrix to be the opposite way as is defined here, with P being
the change of basis from E to A (so what we would call P−1), but as long as you are consistent with
your arrows, the diagram makes everything clear.

On the top diagram, we want S, which directly transforms VA to T (VA). An alternative route there, is
to take P , then R, then to go along the second P arrow, but against the direction it is pointing, which
indicates we should take an inverse of the matrix representing P . So, in terms of matrices, S = P−1RP
(reading right to left, as per function notation), matching the result from before.

Now, let’s say we have another friend, Bob, who uses yet another coordinate system, distinct from both
Alice’s and ours. How might Alice and Bob communicate? How do we find a change of basis from Bob
to Alice, and vice versa?

We can use our standard basis as an intermediary:

A B

E

R
S

P

Where R and S are the change of basis transformations from Alice’s and Bob’s systems to ours, as found
earlier. We want P here, so we travel along R, then backwards along S, so P = S−1R.

How would Bob give a transformation to Alice?

A A′

E E′

B B′

T

U

R

P

S S

R

P

Following the arrows, we have,
U = S−1RTR−1S

or,
U = P−1TP

In general, when we give a transformation between vector spaces, T : V → W , we have to be careful
when turning this transformation into a matrix. V and W , being abstract spaces, don’t intrinsically
have grids mapping them out – we have to assign basis vectors to each.

For example, let T : R2 → R2 be a 90◦ clockwise rotation. The matrix for R2
E → R2

E is just the rotation
matrix we’re familiar with, and we found the matrix for R2

A → R2
A earlier. But a matrix giving the

rotation from R2
B → R2

A is an equally valid representation of that same transformation. In the diagram
above, this matrix could be given as TR−1S, or R−1SU .

Now, for some more terminology. Going back to the first diagram,
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VE T (VE)

VA T (VA)

R

S

P PT

Because R and S represent the same transformation, T , within the same space, V , just with respect to
different bases, we call them similar matrices. In general, two n × n matrices, A and B are similar if
you can write B = P−1AP for some (usually change of basis) matrix P. Two similar matrices must be
square.

Recalling from group theory, if we think about R and S as elements of the general linear group, GLn(R),
we can see that matrix similarity is just specific case for the conjugacy equivalence relation (§12.6.2).

More generally, for possibly rectangular m × n matrices, we have an analogous concept of equivalence
(this equivalence is a type of equivalence relation, if you have done binary relations). Two rectangular
matrices, A and B are equivalent if you can write B = QAP for two invertible matrices P and Q (the
change of basis matrices for each of the pairs of coordinate systems for each space).

On a diagram, this would be,

VA WA′

VB WB′

QP

R

S

T

Here, V and W are vector spaces of different dimension, with subscripts indicating choice of basis. There
are 4 bases in play here, as Alice and Bob each choose their own bases for both V and W . Note that,
unlike the previous diagram, P ̸= Q, since they are change of basis matrices in different spaces. Here,
R and S both represent the same transformation of space, then they are equivalent, as you could write
R = Q−1SP. As a side note, to find P, you would do the same procedure as a few diagrams ago, and
use the standard basis as an intermediary, but the diagram was already getting cluttered enough, so this
is left as an exercise for the reader.

In general, similar matrices are equivalent, but equivalent matrices are not necessarily similar.

33.5.2 Eigenvectors
Consider the linear transformation given by the matrix,

A =

[
3 1
0 2

]
and how it acts on some arbitrary vector. In particular, think about the span of that vector.

A
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For most vectors in the plane, they get knocked off of their span during the transformation. But some
special vectors do remain on their own span, meaning the transformation has no rotational effect on that
vector, only scaling it by some amount.

As you might have guessed, such a vector is called an eigenvector of the transformation, and the amount
by which it is scaled is its associated eigenvalue.

For the transformation above, ı̂ is one such vector. The span of ı̂ is just the horizontal axis, and the
image of ı̂ clearly remains on that axis after the transformation. From the matrix, we can see that ı̂ lands
on [3,0], so it is scaled by a factor of 3. We say that ı̂ = [1,0] is an eigenvector of A, with an eigenvalue
of 3.

Furthermore, due to linearity, any vector on the horizontal axis is also similarly scaled by a factor of 3,
also remaining on their own spans.

But there are more, slightly less obvious, eigenvectors to this particular transformation:

A

This vector, [1,−1] lands on [2,−2], being scaled by a factor of 2, so [1,−1] is also an eigenvector of A,
with eigenvalue 2. And again, due to linearity, any vector on that line will also be an eigenvector with
eigenvalue 2.

For this transformation, those are all the eigenvectors there are. Every other vector in the plane will get
moved off of their spans under this transformation.

A matrix may also have more or fewer eigenvectors as well; for instance, any rotation matrix

R =

[
0 1
−1 0

]
will move every vector off of its span,

R

so this transformation has zero eigenvectors.

On the other hand, this shear,

S =

[
1 1
0 1

]
has every vector on the horizontal axis as an eigenvector, with eigenvalue 1, as they are unchanged by
the transformation.
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S

Every other vector is moved off of its span, so this transformation just has a single line of eigenvectors
– namely, the horizontal axis – with eigenvalue 1.

Eigenvalues don’t have to be unique either – there can be multiple distinct lines of eigenvectors that
share the same eigenvalue. For instance, we have,

T =

[
2 0
0 2

]

T

This scaling matrix just stretches every vector in the plane by a factor of 2, so every vector is an
eigenvector of this transformation, all with the same eigenvalue of 2.

By definition, the effect of a transformation, A, on an eigenvector, v, is just to scale it by some amount,
λ, the eigenvalue. We can write this definition symbolically, as,

Av = λv

The left side is matrix-vector multiplication, while the right is scalar multiplication, so we tend to do
some rearranging of this expression, by writing the right side as a matrix-vector product.

We want to scale v by a scalar, λ. The columns of the desired matrix need to scale each basis vector by
λ, so this matrix will have λ across the diagonal, and zeros everywhere else.

λ 0 0 · · · 0
0 λ 0 · · · 0
0 0 λ · · · 0
...

...
...

. . .
...

0 0 0 · · · λ


Factoring out the λ, this is just the identity matrix.

Av = (λI)v

And now both sides are a matrix-vector product. We can then subtract the right side, and factor out
the v,

Av − (λI)v = 0
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(A− λI)v = 0

The expression inside the bracket is just a matrix – the original transformation matrix, A, but with a λ
being subtracted from the diagonal, and would look something like,3− λ 1 4

1 5− λ 9
2 6 5− λ


We’re looking for a vector, v, such that this new matrix maps v to the zero vector.

If v = 0, then this is trivially true and isn’t particularly helpful, so we’re looking for non-zero solutions
for v – a non-zero eigenvector.

Recalling terminology from earlier (§33.2.5), we’re looking for a non-zero vector that lies in the null space
of (A−λI). If the null space of (A−λI) is non-empty, i.e., there exists an non-zero eigenvector, it follows
that (A−λI) cannot be full rank, and therefore has a zero determinant (if this doesn’t make immediate
sense, reread the definitions of null space and rank, and take a few moments to consider what it means
for a transformation to have a non-empty null space).

In other words, the only way for a non-zero vector to be mapped to the origin, is if the transformation
collapses space down into a lower dimension, corresponding to a zero determinant. That is, the goal is
to solve the equation

det(A− λI) = 0

for λ. This is called the characteristic equation of the matrix, and the left side by itself is called the
characteristic polynomial.

For example, earlier, we had,

A =

[
3 1
0 2

]
A− λI =

[
3− λ 1
0 2− λ

]
det(A− λI) = (3− λ)(2− λ)− (1 · 0)
det(A− λI) = 0

0 = (3− λ)(2− λ)
λ = 3,2

matching the results from before. Then, to find the actual eigenvectors, multiply the modified matrix
by an arbitrary vector, and set it equal to the zero vector.

For λ = 2, we have [
3− 2 1
0 2− 2

] [
x
y

]
=

[
0
0

]
[
1 1
0 0

] [
x
y

]
=

[
0
0

]
[
x+ y
0

]
=

[
0
0

]
x+ y = 0

y = −x

So any vector of the form, [
t
−t

]
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is an eigenvector with eigenvalue 2. We generally just pick one single eigenvector as a representative for
this entire line, so choosing t = 1 yields [1,−1], as before.

For a transformation which has multiple eigenvectors with the same eigenvalue, you’ll find that the
simultaneous equations in the final step will have multiple solutions, corresponding to the multiple
eigenvectors.

Doing the same process for the rotation matrix,

R− λI =
[
0− λ 1
−1 0− λ

]
det(R− λI) = (−λ)(−λ)− (1 · (−1))
det(R− λI) = 0

λ2 + 1 = 0

λ = ±i

we find that there are no real eigenvalues for this transformation. The eigenvalues of ±i correspond
to the fact that multiplying by i represents a 90◦ rotation in the complex plane, and the magnitude of
the eigenvalues being 1 corresponds to the fact that vectors aren’t scaled under this transformation. In
general, imaginary components of eigenvalues correspond to some kind of rotation. We can still solve for
eigenvectors, but they will have complex components.

As one very basic application of eigenvectors, if you can find an eigenvector of a 3D rotation, you’ve
found the axis of rotation – and it’s much easier to think of rotations in 3D as an angle around an axis,
rather than the entire 3× 3 rotation matrix.

This is a common theme throughout linear algebra – with any linear transformation given as a matrix, we
can interpret what it is doing by looking at its columns and seeing where the basis vectors are mapped.
But this puts a lot of emphasis on coordinate systems – another way, less dependent on coordinate
systems, is to look at the eigenvectors and eigenvalues.

Two similar matrices – two matrices representing the same linear transformations, but in different co-
ordinate systems – will have the same characteristic equation, and the same eigenvalues. Changing the
coordinate system doesn’t change the eigenvalues of a transformation – regardless of how you label space,
eigenvectors are scaled the same way.

For another, much more general application, consider what happens if our basis vectors both happen to
be eigenvectors. Let’s start in the canonical coordinate system, and say we have a linear transformation
such that,

ı̂ 7→
[
2
0

]
= 2̂ı ȷ̂ 7→

[
0
−1

]
= −1̂ȷ

So the matrix associated with that transformation would be,[
2 0
0 −1

]
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Notice how the eigenvalues of the basis vectors lie along the diagonal of the matrix, and every other
entry is zero. Any matrix with this property is called a diagonal matrix, and we’ve met one before – the
identity matrix is a diagonal matrix.

The way to interpret a diagonal matrix, is that all the basis vectors are eigenvectors, with the eigenvalues
written along the diagonals.

There are many reasons why diagonal matrices are much nicer to work with. One application is in taking
powers of matrices, or equivalently, applying a transformation to a vector many times. Since a diagonal
matrix only scales each basis vector by some eigenvalue, applying that matrix to a vector n times, just
means you scale each basis vector by the eigenvalue to the power of n.[

2 0
0 3

] [
x
y

]
=

[
2x
3y

]
[
2 0
0 3

] [
2 0
0 3

] [
x
y

]
=

[
22x
32y

]
[
2 0
0 3

]
· · ·
[
2 0
0 3

] [
2 0
0 3

]
︸ ︷︷ ︸

100

[
x
y

]
=

[
2100x
3100y

]
=

[
2100 0
0 3100

] [
x
y

]
Just looking at the transformation overall, we can write an exceedingly simple formula for the nth power
of a diagonal matrix: [

a 0
0 b

]n
=

[
an 0
0 bn

]
In contrast, try calculating the 100th power of a non-diagonal matrix. There is no simple pattern to
find.

For a few more nice properties of diagonal matrices, the determinant of a diagonal matrix is just the
product of the diagonal. This is because each entry on the diagonal tells us how much the basis vector
is scaled in that direction, so the product of all of these entries gives us how much measure is scaled
overall.

Of course, all of this is only useful when the matrix we’re working with is diagonal – when our basis
vectors just happen to both be eigenvectors.

However, if your transformation has a lot of eigenvectors, enough so we can choose a set that spans
the space the transformation is acting on, then we could use a change of basis matrix to change those
eigenvectors to be our basis.

For the matrix earlier,

A =

[
3 1
0 2

]
we found two eigenvectors,

v1 =

[
1
0

]
, and v2 =

[
1
−1

]
with eigenvalues λ1 = 3, and λ2 = 2, respectively.

We use the eigenvectors as the columns of a change of basis matrix, and change the transformation
matrix into our new basis, as before. [

1 1
0 −1

]−1 [
3 1
0 2

] [
1 1
0 −1

]
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Because we’ve chosen the basis vectors to be eigenvectors, we know that resulting matrix will be a diagonal
matrix, with the corresponding eigenvalues along the diagonal, without even doing any calculations.[

3 0
0 2

]
This is because we’re now working in a basis, where the effect of this specific transformation on these
basis vectors is just to scale them by these eigenvalues.

A basis where every basis vector is an eigenvector is called an eigenbasis, and this process of changing a
matrix to an eigenbasis is called diagonalisation.

If we wanted to calculate the 100th power of A, we could change to an eigenbasis, calculate the power
there, using our simple formula, then change back.

But not every transformation admits an eigenbasis. The shear we saw earlier, for example, only has a
single line of eigenvectors, which isn’t enough to span all of 2D space.

33.6 Abstract Vector Spaces

At the very beginning of this document, we asked the question, “What are vectors?”.

Is a vector fundamentally an arrow, which we can describe with coordinates, or are they fundamentally
lists of numbers, which just happen to have a nice visualisation. Or are both of these views manifestations
of something deeper?

Thinking of vectors as primarily being lists of numbers makes them very straightforward and intuitive.
Things like four-dimensional or n-dimensional vectors are very easy to think of in this context – they’re
just longer lists of numbers. Working in 2 dimensions is just as easy as working in 200. Otherwise,
four-dimensional space is just some strange, geometric idea that can’t be easily visualised or described.

On the other hand, as you get more used to working in linear algebra – particularly with changing your
basis – you’ll find that many concepts are inherently to do with a space that exists independently from
any choice of coordinates. Core ideas like determinants and eigenvectors don’t care about the coordinate
systems. The determinant tells you how much a transformation scales area, or volume, or measure, and
eigenvectors are the ones which stay on their own span under a transformation. Both of these ideas are
inherently spatial, and their algebraic equivalents seem completely arbitrary when seen alone.

If vectors are neither arrows nor lists of numbers, and are some abstract concept to do with space, we
still haven’t really answered the question. We’ve just stated things that aren’t fundamental to a vector.

To answer this question more deeply, let’s discuss something that is neither arrows, nor lists of numbers:
functions.

In the same way we can add two vectors together and multiply them by a scalar,[
a
b

]
+

[
c
d

]
=

[
a+ c
b+ d

]
2

[
e
f

]
=

[
2e
2f

]
we can similarly add two functions, f and g to get a new function, (f + g), or multiply a function by a
number to scale it, 2f(x) = (2f)(x):
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x

f(x)

+ x

g(x)

= x

(f + g)(x)

2 x

f(x)

= x

(2f)(x)

The value of the sum function, (f + g) at any given input x is the sum of the values of f(x) and g(x),
so (f + g)(x) = f(x) + g(x).

This is similar to adding vectors together, coordinate by coordinate, just that, we now have uncountably
infinitely many coordinates – one for each possible input x.

For scaling a function, we just multiply each output by the scalar, just as we do for vector components,
though again, here we have uncountably infinitely many coordinates.

Functions appear to be some kind of infinite-dimensional vector-ish thing. A reasonable question is,
what kind of transformations of functions are there that are linear? What does it even mean for such a
function to be linear?

Although functions don’t look like vectors, we can still use the symbolic definition of linearity from before
(§33.2.1). In the context of functions, these transformations are called operators instead, but they’re
really the same thing.

One example of an operator you’ll be familiar with, is the derivative – it’s something that transforms
one function, into another.

If you add two functions, then take the derivative, it’s the same as first taking the derivative of the two
functions, then adding them:

L(u+ v) = L(u) + L(v)

⇕
d

dx
(x3 + x2) =

d

dx
(x3) +

d

dx
(x2)

Similarly, scaling a function, then taking the derivative is the same as taking the derivative, then scaling
the result:

L(cv) = cL(v)

⇕
d

dx
(cx2) = c

d

dx
(x2)
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We can see that the differential operator is linear – in fact, the linearity requirements are exactly the
sum rule and the constant factor rule from differential calculus.

One of the most important consequences of linearity, is that a linear transformation is completely de-
scribed by its action on a basis. Since any vector can be expressed by scaling and adding the basis
vectors in some way, finding the image of a vector under a transformation is simplified down to finding
the image of the basis vectors. This is just as true for functions, as it is for arrows, or lists of numbers.

Because the differential operator is a linear transformation, we should be able to express it as a matrix.
For now, let us restrict our space to the space of polynomials, so each element in our space is a polynomial
with finitely many terms, but the whole space includes polynomials of arbitrarily large degree.

First, we need to pick a basis for the space of functions. Since polynomials are already written as a linear
combination of powers of x, we can just choose monomials in x to be our basis.

So, the polynomial, 1 + 5x+ 4x3 would be written as,
1
5
0
4
...


with infinitely many zeros following on. You can read this as 1 times the first basis function, which is
just 1, plus 5 times the next basis function, x, plus 0 times x2, 4 times x3, plus zero times all the other
basis functions.

Since polynomials only have finitely many terms, every polynomial will be represented by a finite string
of numbers at the top of the vector, followed by infinitely many zeros.

In this coordinate system, the derivative is described by the infinite matrix,

d

dx
=


0 1 0 0 · · ·
0 0 2 0 · · ·
0 0 0 3 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .


which is mostly full of zeros, but has the natural numbers running down the superdiagonal. To get a feel
of why it works, cut the matrix off at a finite point, and multiply some vector by it.

This is all possible because the derivative operator is linear. If you had wanted to construct this matrix
yourself, you could consider what the derivative operator does to each basis function, and put the
coordinates of the results into each column.

For example, the derivative of the first basis function, 1, is 0, which has a vector representation of
[0,0,0, · · · ], corresponding to the first column of the matrix. Then, the derivative of the next basis
function, x, is 1, which is [1,0,0, · · · ], then x2 is 2x, which is [0,2,0, · · · ].

So, it turns out that taking a derivative and matrix-vector multiplication are really members of the same
family. In fact, the vast majority of concepts in linear algebra have direction analogues with respect to
functions:

Linear transformations⇔ Linear operators

Dot products⇔ Inner products

Eigenvectors⇔ Eigenfunctions
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There are a lot of vector-ish things in maths, all of which have their own analogues to these concepts.
The answerwe gave to “what is a vector” before was, “anything where we have some kind of notion of
scaling and adding”, whether that’s a set of arrows in space or lists of numbers. As long as those two
requiremnts hold, all of the tools of linear algebra regarding vectors – linear transformations, eigenvectors,
determinants – will apply.

If you’re a mathematician developing new theory, you want all of your new definitions to fully apply to
all of these vector-ish things, and not just some specific sub-cases. So, we use the axioms we defined
before, as an interface between different vector spaces. You, as the mathematician, never have to think
about all the vector spaces that could possibly exist – you just have to prove your results in terms of
these axioms, and anyone who can prove that their new crazy space follows those axioms, can apply your
results, even if you’ve never even thought about their space before. As a consequence, all of our results
tend to be expressed extremely abstractly – only in terms of the axioms, rather than on a specific view,
like arrows, lists of numbers, or functions.

So, the mathematician’s answer to “what is a vector?” is just to ignore the question. In modern theory,
it doesn’t matter what the vectors are themselves – it’s the fact that they obey the vector space axioms
that matter.

On the topic of abstraction, what’s really the difference between a linear transformation and transfor-
mations between other algebraic structures? And why do we have to work with scalars from fields? Why
not rings? Or groups? Or even things that aren’t sets? These things do generally have names – for
example, replacing the field of scalars with a ring gives a structure called a module.

It turns out that modules also happen to be a generalisation of abelian groups, as abelian groups are
exactly the modules over the ring of integers, and in fact, we will explore some theory behind them later
on in this chapter. All these structures are wonderfully interlinked, and the theories behind them are
unified under the mathematical field of abstract or universal algebra.
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33.7 Exercises

These questions are very roughly ordered in difficulty. For many of these questions, it may be helpful to
keep the epigraph of this chapter in mind.

1. Give an example of a matrix A such that,

(a) A is nonsingular.

(b) A is diagonalisable and singular.

(c) A is nondiagonalisable and singular.

2. Explain (briefly) why 5 vectors in R4 cannot be linearly independent.

3. Prove that, if u and v are linearly independent, then u, v + u are linearly independent.

4. Prove that, if u, v, and w are linearly independent, then u − v, v − w, and w − u are linearly
independent.

5. Prove that the zero vector is linearly dependent with every other vector.

6. Give an example a pair of vectors in R3 which are,

(a) Linearly dependent.

(b) Linearly independent.

(c) In both cases, extend the set of vectors to a basis of R3.

7. Explain (briefly) why non-square matrices do not have determinants.

8. Let K be a field with zero 0K and unity 1K , and let (V,+ ,· ) be a vector space over K.

(a) Prove that for all v ∈ V , −v = −1K ·v. That is, the additive inverse of a vector is its negative.

(b) Prove that this inverse is unique.

(c) Prove that for all v ∈ V , 0K ·v = 0. That is, the additive identity of the field is the annihilator
of the vector space.

(d) Prove that the zero vector is unique.

9. Let M ∈ GLn(R), and suppose detM < 0. Prove that M3 cannot be the identity matrix.

10. Let T : R3 → R3 be a reflection in the plane x+ 4y − 2z = 0. Prove that all eigenvalues of T are
real. (Hint: consider the eigenvalues of T 2.)

11. Let A ∈ GLn(R), and suppose that for every vector v ∈ Rn, Av and v are linearly dependent.
Prove that A = kIn for some k ∈ R.

12. Prove that if W is a subspace of V , then dimW ≤ dimV .

13. Let V ⊆ R4 be the set of vectors perpendicular to the vectors,

a =


1
2
0
−1

 , b =


0
1
2
0

 , b =


−2
0
1
2


That is, V =

{
x ∈ R4 : a⊤ · x = 0,b⊤ · x = 0,c⊤ · x = 0

}
.

(a) Prove that V is a subspace of R4. (Hint: recall the relation between dot products and matrix-
vector multiplication.)
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(b) Find a basis for V , and hence find dimV .

14. Consider the vector space V = R[x]≤2 of polynomials with real coefficients of at most quadratic
degree.

(a) Prove that the polynomials 1, x, x2 form a basis of V .

(b) Prove that the polynomials 1− x2, x2 − x, x2 − 2x form a basis of V .

(c) Find the change of basis matrices to convert between these bases in both directions.

(d) Consider the transformation T : V → V defined by T (f(x)) = f(x + 1). Prove that T is
linear.

(e) Find matrices to represent T in the two previous bases.

15. Let A be a 4×4 matrix, and suppose that the diagonal entries of A are zero, and every other entry
is an odd integer. Prove that A is nonsingular. (Hint: consider parities, or equivalently, work in
F2.)

16. Let A ∈ GL4(C), and suppose that the diagonal entries of A are zero, and every other entry
is the imaginary unit, i. Find all eigenvalues of A, and determine their algebraic and geometric
multiplicities.

17. Let V be a vector space over a field, K, and let U ⊆ V be a non-empty subset of V . Prove that if
for all u,v ∈ U and all k ∈ K, u+ kv ∈ U , then U is also a vector space.

18. Let U and V be vector spaces over a field, K, and let T : U → V be a linear map.

(a) Prove that T cannot be injective if dimU > dimV .

(b) Prove that T is injective if and only if nullT = 0.

19. Let T : V → V be an endomorphism, and let A and B be distinct bases of V . Using geometric
considerations, explain why the matrices representing T in bases A and B must have the same
eigenvalues.

20. Let B = {v1,v2,v3} be a basis of a vector space V over a field K. Prove that every vector v ∈ V
can be uniquely represented as a linear combination of the vectors in B. That is,

∀v ∈ V : ∃!c1,c2,c3 : v = c1v1 + c2v2 + c3v3

21. Let T : Rn → Rn be an idempotent transformation, so T = T ◦ T . Prove that kerT and imT are
complementary subspaces such that their direct sum is Rn. That is,

kerT ⊕ imT = Rn

22. Let V be a n-dimensional vector space over a field, K, where n is finite, and let End(V ) be the
space of linear transformations from V to itself.

(a) Prove that End(V ) is a vector space.

Denote the direct sum of V with itself n times as V ⊕n. That is,

V ⊕n = V ⊕ V ⊕ · · · ⊕ V︸ ︷︷ ︸
n

Let v1,v2, . . . ,vn be a basis of V , and consider the map ϕ : End(V )→ V ⊕n defined by

ϕ(T ) = (T (v1),T (v2), . . . ,T (vn))

(b) Prove that ϕ is a linear transformation.
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(c) Prove that kerϕ is trivial.

(d) Prove that imϕ = V ⊕n.

(e) Hence deduce that End(V ) and V ⊕n are isomorphic.

23. Let c1,c2, . . . ,cn be distinct real numbers.

(a) Prove that ec1x,ec2x, . . . ecnx are linearly independent over R

(b) Let C[−1,1] be the vector space of continuous real-valued functions defined on the interval
[−1,1]. Prove that

V =
{
f(x) ∈ C[−1,1] : f(x) = aex + be2x + ce3x

}
is a subspace of C[−1,1].

24. Let F [−π,π] be the vector space of all real-valued functions defined on the interval [−π,π].

(a) Prove that cosx and sinx are linearly independent in F [−π,π].

Let the class of functions f(−,−) : R2 → F [−π,π] be defined by,

f(a,b)(x) = a cosx+ b sinx

(b) Prove that f(a,b) is a linear map for any choice of (a,b) ∈ R2.

(c) Prove that

im f =
{
f(a,b)(x) ∈ F(−π,π)

}
is a vector space.

(d) Prove that cosx and sinx form a basis of im f

(e) Prove that null f = 0, and hence deduce that R2 and im f are isomorphic.

(f) Consider the map g : im f → im f defined by

g(f(x)) =
d

dx
f(x)

Prove that g is linear.

(g) Find a matrix representation of g with respect to the basis {sinx, cosx}
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33.8 Jordan Canonical Form

In this section, we will take V to be an n-dimensional vector space over a field K. We will take T : V → V
to be an linear map from V to V (an endomorphism) and A will be the matrix representing T with
respect to a fixed ordered basis E = (ei)

n
i=1.

Our goal is to find a new basis e = (ei)
n
i=1 such that the matrix of T with respect to this new basis is as

simple as possible (or equivalently, a change of basis matrix P such that P−1AP is as simple as possible).
One particularly simple form of a matrix is that of a diagonal matrix, but as mentioned previously, not
every linear transformation admits a diagonal matrix representation.

Theorem 33.8.1. Let T : V → V be a linear map. Then, the matrix of T is diagonalisable if and only
if V has an eigenbasis.

However, if K is C (or is a field extension of C), then every matrix A is similar to a form that is almost
as good as diagonal: the Jordan canonical form or Jordan normal form.

33.8.1 Generalised Eigenspaces
Theorem 33.8.2. Let (λi)

r
i=1 be distinct eigenvalues of T : V → V , and let (vi)

r
i=1 be corresponding

eigenvectors – that is, T (vi) = λivi for all 1 ≤ i ≤ r. Then, (vi)ri=1 are linearly independent.

Theorem 33.8.3. Let A ∈ Kn×n be a n× n matrix over K. Then, there is some non-zero polynomial
p ∈ K[x] of degree at most n2 such that p(A) = 0n.

A polynomial is monic if the coefficient of the highest degree term is 1.

Theorem 33.8.4. Let A ∈ Kn×n represent the linear transformation T : V → V . Then,

• There is a unique monic non-zero polynomial p with minimal degree and coefficients in K such that
p(A) = 0n.

• If q is any polynomial with q(A) = 0n, then p divides q.

This unique polynomial is called the minimal polynomial of A, and is denoted µA.

Theorem 33.8.5. Similar matrices have the same minimal polynomial.

Theorem 33.8.6. Let D be a diagonal matrix with distinct diagonal entries (δi)
r
i=1. Then,

µD(x) =

r∏
i=1

(x− δi)

= (x− δ1)(x− δ2) · · · (x− δr)

Corollary 33.8.6.1. If A is diagonalisable, then µA is a product of linear factors.

33.8.2 Cayley-Hamilton Theorem
Recall the characteristic equation of a matrix A is defined as follows:

det(A− λI) = 0

The left side by itself is called the characteristic polynomial of A, denoted cA.

Theorem 33.8.7 (Cayley-Hamilton). Let A ∈ Kn×n, and let cA be the characteristic polynomial of A.
Then, cA(A) = 0n.

Corollary 33.8.7.1. For any A ∈ Kn×n, µA divides cA, and in particular, deg(µA) ≤ n.

Notes on Mathematics | 515



Linear Algebra Jordan Canonical Form

33.8.3 Calculating Minimal Polynomials
Lemma 33.8.8. Let λ be any eigenvalue of A. Then, µA(λ) = 0.

Using this lemma with the Cayley-Hamilton theorem lets us reduce the possibilities for the minimal
polynomial.

Algorithm 3 Top Down Algorithm
1: Calculate the characteristic polynomial, cA.
2: Factorise the characteristic polynomial by inspection, or using the factor and remainder theorem

with polynomial division.
3: Evaluate each possible combination of factors that include all eigenvalues as roots in order of increas-

ing degree. The first to return 0n is the minimal polynomial.

As an example for the last step, if cA(x) = (x− 1)(x− 2)2(x− 3)3, then,

µA(x) ∈



(x− 1)(x− 2)(x− 3)

(x− 1)(x− 2)(x− 3)2

(x− 1)(x− 2)2(x− 3)

(x− 1)(x− 2)2(x− 3)2

(x− 1)(x− 2)(x− 3)3

(x− 1)(x− 2)2(x− 3)3

Then, evaluate the polynomials in this list at A from top to bottom (the list is sorted in degree order),
and the first one to return the zero matrix is the minimal polynomial.

Algorithm 4 Bottom Up Algorithm

1: Pick some simple non-zero vector, v (the standard basis vector e1 is often a good choice).
2: Apply A to v repeatedly to form a chain of vectors

v0
A7→ v1

A7→ v2
A7→ · · ·

3: At some point, these image vectors will become linearly dependent, say, after d applications of A, so
there exists coefficients (αi) such that

d∑
i=0

αivi = 0

with αd = 1.
4: Then, the monic polynomial

d∑
i=0

αdx
d

divides the minimal polynomial.
5: Repeat this process with different starting vectors that do not lie in the image of previous generated

chains, until all the generated chains span V . The minimal polynomial is then the least common
multiple of these polynomials.
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33.8.4 Jordan Chains
Recall that a non-zero vector v that satisfies (A− λIn)v = 0 is an eigenvector of A with eigenvalue λ.
We weaken this notion to classify a more general type of vector.

A non-zero vector v that satisfies (A− λIn)iv = 0 for some i > 0 is a generalised eigenvector of A with
eigenvalue λ, and, for a fixed i > 0 and fixed λ, the collection of these generalised eigenvectors,

Ni(A,λ) := {v ∈ V : (A− λIn)iv = 0}

is the nullspace of (A− λIn)i, and is called the generalised eigenspace of index i with respect to λ.

The full generalised eigenspace of A with respect to λ is defined as

{0} ∪
⋃
i∈N

Ni(A,λ)

That is, it is the union of all generalised eigenspaces with respect to λ, along with the zero vector.

A Jordan chain of length k is a sequence of non-zero vectors (vi)ki=1 ⊂ Kn,1 such that, for some eigenvalue
λ of A,

Av1 = λv1, Avi = λvi + vi−1, 2 ≤ i ≤ k

or equivalently,

(A− λIn)v1 = 0, (A− λIn)vi = vi−1, 1 ≤ i ≤ k

thus all vectors in a Jordan chain are generalised eigenvectors with vi ∈ Ni(A,λ).

Lemma 33.8.9. The vectors in a Jordan chain are linearly independent.

Theorem 33.8.10. The dimensions of corresponding generalised eigenspaces of similar matrices are the
same.

We define the Jordan block of degree k with eigenvalue λ to be the k × k matrix Jλ,k given by

Jλ,k = (Ji,j) =


λ if j = i

1 if j = i+ 1

0 otherwise

That is, the main diagonal has values λ, and the superdiagonal has values 1.

For example,

J2,3 =

2 1 0
0 2 1
0 0 2

 , Ji,2 =

[
i 1
0 i

]
, J−2,4 =


−2 1 0 0
0 −2 1 0
0 0 −2 1
0 0 0 −2


A matrix A of a transformation T with respect to the basis (vi)

n
i=1 ⊂ Kn is a Jordan block of degree n

if and only if (vi)ni=1 is a Jordan chain for A.

The minimal and characteristic polynomials of Jλ,k are given by,

µJλ,k
(x) = (x− λ)k

cJλ,k
(x) = (λ− x)k
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We denote the m×n zero matrix by 0m,n. If A is an m×m matrix, and B is an n×n matrix, we define
their direct sum A⊕B to be the (m+ n)× (m+ n) matrix with block form[

A 0m,n
0n,m B

]

A Jordan basis for A is a basis of Kn consisting of one or more Jordan chains. The matrix of a
transformation with respect to a Jordan basis is the direct sum of the corresponding Jordan blocks.

Lemma 33.8.11. Suppose that M = A⊕B. Then, cM = cA × cB and µM = lcm(µA,µB).

Theorem 33.8.12. Let A be an n × n matrix over C. Then, there exists a Jordan basis for A, and
hence A is similar to a matrix J =

⊕
Jλ,k, where the Jordan blocks Jλ,k are uniquely determined by A.

The matrix J in the above is called the Jordan canonical form or Jordan normal form of A, and is
determined uniquely up to the order of the blocks. The field has to be at least C (or an extension of C)
so that A has at least one eigenvalue, since C is algebraically closed.

Theorem 33.8.13. Let A ∈ Cn×n, and suppose {λi}ri=1 are the eigenvalues of A. Then,

cA(x) = (−1)n
r∏
i=1

(x− λi)ai

where ai is the sum of the degrees of the Jordan blocks of A of eigenvalue λi;

µA(x) =

r∏
i=1

(x− λi)bi

where bi is the largest among the degrees of the Jordan blocks of A of eigenvalue λi;

• A is diagonalisable if and only if µA(x) has no repeated factors.

33.8.5 Computing the Jordan Canonical Form

Suppose a matrix A ∈ C10,10 has a characteristic polynomial,

cA(x) = (x− 1)3(x− 2)4(x− 3)2(x− 4)

and thus has eigenvalues λ1 = 1, λ2 = 2, λ3 = 3 and λ4 = 4.

We say that the eigenvalue 1 has algebraic multiplicity α(λ1) = 3, because it is repeated as a root of the
characteristic polynomial 3 times. The other algebraic multiplicities are then α(λ2) = 4, α(λ3) = 2, and
α(λ4) = 1. The sum of the algebraic multiplicities over all eigenvalues is equal to the dimension of the
matrix:

r∑
i=1

α(λi) = n

The geometric multiplicity γ(λi) of an eigenvalue λi is the dimension of the kernel of A − λiIn, or,
null(A− λiIn).

The generalised geometric multiplicity γk(λi) of an eigenvalue λi is the dimension of the kernel of (A−
λiIn)

k, or, null
(
(A− λiIn)k

)
.
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Now, the JCF of A will have the eigenvalues along the diagonal:

J =



λ1
λ1

λ1
λ2

λ2
λ2

λ2
λ3

λ3
λ4


with each eigenvalue λi appearing α(λi) times. Note that there are many different possibilities for the
orderings of these eigenvalues, but our convention will be to group the same eigenvalues together, and
(where possible) to order these groups in increasing order. If the eigenvalues are complex, just pick any
sensible ordering.

We will call these groups Jordan boxes (not to be confused with Jordan blocks), highlighted below:

J =



λ1 λ1
λ1

 
λ2

λ2
λ2

λ2

 [
λ3

λ3

]
[
λ4
]


A Jordan box is like a Jordan block, but we don’t necessarily know where the 1s on the superdiagonal
are yet. That is, we need to fill a Jordan box with Jordan blocks, and once we have done so for all boxes,
we will have determined a Jordan canonical form for A.

To begin with, the geometric multiplicity tells us how many blocks are in each box. For instance,[
λ3

λ3

]
−→

[
[λ3]

[λ3]

]
︸ ︷︷ ︸

γ(λ3)=2

or
[[
λ3 1

λ3

]]
︸ ︷︷ ︸

γ(λ3)=1

Here, we can have either two 1× 1 blocks, if the geometric multiplicity of λ3 is 2, or a single 2× 2 block,
if γ(λ3) = 1.

For 3× 3,λ1 λ1
λ1

 −→

[λ1] [λ1]
[λ1]


︸ ︷︷ ︸

γ(λ1)=3

or

[λ1 1
λ1

]
[λ1]


︸ ︷︷ ︸

γ(λ1)=2

or

λ1 1
λ1 1

λ1


︸ ︷︷ ︸

γ(λ1)=1

the Jordan box can contain three 1 × 1 Jordan blocks, one 2 × 2 Jordan block and one 1 × 1 Jordan
block, or a single 3× 3 Jordan block, if the geometric multiplicity is 3, 2, or 1, respectively.

However, for 4 × 4 boxes or larger, the geometric multiplicity alone is not sufficient to determine the
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blocks within the box. For instance,
λ

λ
λ

λ

 −→


λ 1

λ 1
λ


[λ]

 or


[
λ 1

λ

]
[
λ 1

λ

]


︸ ︷︷ ︸
γ(λ1)=2

are both consistent with a geometric multiplicity of 2. So, we have to calculate generalised geometric
multiplicities to gain more information.

The generalised geometric multiplicities of index k tell us how many chains exist in each generalised
eigenspace of index k, allowing us to determine the lengths of the Jordan chains. For instance, suppose
α(λ) = 7, so we have a 7 × 7 Jordan box. If γ1(λ) = 4, γ2(λ) = 6, γ3(λ) = 7 = α(λ), then the chains
would be:

i = 3 •
↓

i = 2 • •
↓ ↓

i = 1 • • • • }γ1(λ)

}
γ2(λ)

 γ3(λ)

and the lengths of the chains indicate the dimensions of the Jordan blocks within the Jordan box for λ.
We have one chain of length 3, one chain of length 2, and two chains of length 1, so we have,

λ λ
λ

 [
λ

λ

]
[λ]

[λ]


in this Jordan box (the ordering of the blocks within the box is arbitrary). We repeat this process for
every Jordan box of dimensions 4 or higher.

To find the transformation matrix P such that A = P−1JP, we calculate actual vectors for these chains
(usually by calculating the generalised eigenbases), then augment them together in the same order as we
arranged the boxes and blocks in J.
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Algorithm 5 JCF Decomposition

1: Calculate the eigenvalues of A ∈ Cn×n, (λi)ki=1.
2: For each eigenvalue λi, determine,

• the algebraic multiplicity α(λi) = number of times repeated as a root in cA;
• the geometric multiplicity γ(λi) = null(A− λiIn).

3: If, for an eigenvalue λi, we have α(λi) ≥ 4, additionally calculate γk(λi) = null
(
(A − λiIn)k

)
for

k = 2,3, . . . as until γk(λi) = α(λi).
4: Use these generalised geometric multiplicities to determine the lengths of the chains, and hence the

size of the Jordan blocks in each Jordan box. Repeat for each eigenvalue.
5: To further find the transformation matrix P, calculate the bases of ker

(
(A− λiIn)k

)
for each eigen-

value λi, where the basis for each generalised eigenspace is a subset of the basis for the next generalised
eigenspace.

6: Calculate the Jordan chains for each λi by picking vectors vj ∈ ker
(
(A−λiIn)k

)
\ker

(
(A−λiIn)k−1

)
,

and recursively computing vj−1 = (A−λiIn)vj until the chain is complete, starting with the longest
chain. Then, compute the next chain, ensuring that the vectors picked at every step is linearly
independent with those already selected in previous chains to ensure the chains do not converge.

7: Augment the Jordan chains together in order corresponding to boxes and blocks to form P.
8: Note: this procedure yields the right transformation matrix. That is, we obtain P such that A =

P−1JP and not A = PJP−1.

Example. Determine a JCF for the matrix,

A =


5 −2 1 −7 1 5
0 3 4 −4 −1 1
1 −1 1 −1 1 2
1 −1 −2 2 1 2
0 0 1 −1 2 0
0 0 −1 1 0 3


You may use that cA(x) = (x− 2)2(x− 3)4 without proof.

From the characteristic polynomial, we have eigenvalues λ1 = 2, and λ2 = 3, with α(λ1) = 2, and
α(λ2) = 4, so we have the Jordan box form,

J =



[
λ1

λ1

]

λ2

λ2
λ2

λ2




Next, we calculate the geometric multiplicity γ(λ1):

γ(λ1) = dimker(A− λ1I6)

= dimker


3 −2 1 −7 1 5
0 1 4 −4 −1 1
1 −1 −1 −1 1 2
1 −1 −2 0 1 2
0 0 1 −1 0 0
0 0 −1 1 0 1
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row
reduce−→ dimker


1 0 0 −2 0 0
0 1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0


There are 5 pivot columns, so dimker(A− λ1I6) = 6− 5 = 1 = γ(λ1). This is sufficient information to
determine a 2 × 2 Jordan box, so we may stop here, but we will continue to compute the generalised
geometric multiplicity γ2(λ1), as it will be helpful later for computing the transformation matrix.

γ2(λ1) = dimker
(
(A− λ1I6)2

)

= dimker


3 −2 1 −7 1 5
0 1 4 −4 −1 1
1 −1 −1 −1 1 2
1 −1 −2 0 1 2
0 0 1 −1 0 0
0 0 −1 1 0 1



2

= dimker


3 −2 4 10 −1 6
0 1 6 −6 −1 2
1 −1 −1 −1 0 2
1 −1 −2 0 0 2
0 0 1 −1 0 0
0 0 −2 2 0 1



row
reduce−→ dimker


1 0 0 −2 −1 0
0 1 0 0 −1 0
0 0 1 −1 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0


Important: when calculating (A − λ1I6)2, do not square the row reduced form we found earlier. You
must use the original non-reduced matrix.

There are 4 pivot columns, so γ2(λ1) = 6− 4 = 2, and we have reached the algebraic multiplicity α(λ1),
so we may stop here.

Next, we similarly calculate the geometric multiplicity γ(λ2):

γ(λ2) = dimker(A− λ2I6)

= dimker


2 −2 1 −7 1 5
0 0 4 −4 −1 1
1 −1 −2 −1 1 2
1 −1 −2 −1 1 2
0 0 1 −1 −1 0
0 0 −1 1 0 0



row
reduce−→ dimker


1 −1 0 −3 0 0
0 0 1 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
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There are 4 pivot columns, so dimker(A−λ2I6) = 6− 4 = 2 = γ(λ2). This is insufficient information to
determine the Jordan box of λ2, so we calculate higher index generalised geometric multiplicities:

γ2(λ2) = dimker
(
(A− λ2I6)2

)

= dimker


2 −2 1 −7 1 5
0 0 4 −4 −1 1
1 −1 −2 −1 1 2
1 −1 −2 −1 1 2
0 0 1 −1 −1 0
0 0 −1 1 0 0



2

= dimker


−2 2 2 4 −3 −4
0 0 −2 2 1 0
−1 1 2 1 −2 −2
−1 1 2 1 −2 −2
0 0 −1 1 1 0
0 0 0 0 0 0



row
reduce−→ dimker


1 −1 0 −3 0 2
0 0 1 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


Again, ensure you use the original matrix, and not the row reduced matrix we found before.

There are 3 pivot columns, so γ2(λ2) = 6− 3 = 3. We still have not reached the algebraic multiplicity of
λ2, so we continue to the next generalised eigenspace:

γ3(λ2) = dimker
(
(A− λ2I6)3

)

= dimker


2 −2 1 −7 1 5
0 0 4 −4 −1 1
1 −1 −2 −1 1 2
1 −1 −2 −1 1 2
0 0 1 −1 −1 0
0 0 −1 1 0 0



3

= dimker


2 −2 −5 −1 5 4
0 0 1 −1 −1 0
1 −1 −3 0 3 2
1 −1 −3 0 3 2
0 0 1 −1 −1 0
0 0 0 0 0 0



row
reduce−→ dimker


1 −1 0 −3 0 2
0 0 1 −1 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


There are 2 pivot columns, so γ2(λ2) = 6− 2 = 4 and we have reached the algebraic multiplicity of λ2,
so we stop here.

Notes on Mathematics | 523



Linear Algebra Jordan Canonical Form

At this point, we will draw our Jordan chains for λ2 to keep track of our results:

i = 3 w3

↓
i = 2 w2

↓
i = 1 w1 u1

This indicates that we have one 3× 3 Jordan block and one 1× 1 Jordan block within the 4× 4 Jordan
box for λ2.

For λ1, the Jordan chains would be:
i = 2 v2

↓
i = 1 v1

as γ1(λ1) = 1 and γ2(λ1) = 2. (Doing this is unnecessary as γ1(λ1) alone is sufficient to determine a
2× 2 Jordan box, but this generalised procedure will work for boxes of any size.)

Thus, the blocks are:

J =



[[
λ1 1

λ1

]]

[λ2] λ2 1

λ2 1
λ2




 =


2 1 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 3 1 0
0 0 0 0 3 1
0 0 0 0 0 3


Next, we will compute the transformation matrix. To calculate the Jordan chains, we will begin by
finding bases for each of the generalised eigenspaces we have found so far.

For λ1, we have,

(A− λ1I6)v = 0
row

reduce−→


1 0 0 −2 0 0
0 1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0




a
b
c
d
e
f

 =


0
0
0
0
0
0


a = 2d

c = d
a
b
c
d
e
f

 = d


2
0
1
1
0
0

 −→ ker(A− λ1I6) = span




2
0
1
1
0
0





(
(A− λ1I6)2

)
v = 0

row
reduce−→


1 0 0 −2 −1 0
0 1 0 0 −1 0
0 0 1 −1 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0




a
b
c
d
e
f

 =


0
0
0
0
0
0
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a = 2d+ e

b = e

c = d
a
b
c
d
e
f

 = d


2
0
1
1
0
0

+ e


1
1
0
0
1
0

 −→ ker(A− λ1I6) = span




2
0
1
1
0
0

,

1
1
0
0
1
0




For λ2, we have,

(A− λ2I6)v = 0
row

reduce−→


1 −1 0 −3 0 0
0 0 1 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0




a
b
c
d
e
f

 =


0
0
0
0
0
0


a = b+ 3d

c = d
a
b
c
d
e
f

 = b


1
1
0
0
0
0

+ d


3
0
1
1
0
0

 −→ ker(A− λ2I6) = span




1
1
0
0
0
0

,

3
0
1
1
0
0





(
(A− λ2I6)2

)
v = 0

row
reduce−→


1 −1 0 −3 0 2
0 0 1 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




a
b
c
d
e
f

 =


0
0
0
0
0
0


a = b+ 3d− 2f

c = d
a
b
c
d
e
f

 = b


1
1
0
0
0
0

+ d


3
0
1
1
0
0

+ f


−2
0
0
0
0
1

 −→ ker
(
(A− λ2I6)2

)
= span




1
1
0
0
0
0

,

3
0
1
1
0
0

,

−2
0
0
0
0
1





(
(A− λ2I6)3

)
v = 0

row
reduce−→


1 −1 0 −3 0 2
0 0 1 −1 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




a
b
c
d
e
f

 =


0
0
0
0
0
0


a = b+ 3d− 2f

c = d+ e
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a
b
c
d
e
f

 = b


1
1
0
0
0
0

+ d


3
0
1
1
0
0

+ f


−2
0
0
0
0
1

+ e


0
0
1
0
1
0

 −→ ker
(
(A− λ2I6)3

)
= span




1
1
0
0
0
0

,

3
0
1
1
0
0

,

−2
0
0
0
0
1

,

0
0
1
0
1
0




The basis vectors have been coloured according to which index they first appeared in, as this will be
helpful for the next step.

Recall the Jordan chains we have found:

λ1 λ2
i = 3 w3

↓
i = 2 v2 w2

↓ ↓
i = 1 v1 w1 u1

We begin by choose a vector to be v2. From the diagram above, it lies in the generalised eigenspace of
index 2 for λ1, but not of 1. We have one obvious option,

v2 =


1
1
0
0
1
0


We then compute v1:

v1 = (A− λ1In)v2

=


2
0
1
1
0
0


completing the chain, and the eigenvalue.

Moving on to λ2, we select the largest chain, so we have to choose w3 ∈ ker
(
(A − λ2In)3

)
\ ker

(
(A −

λ2In)
2
)
. Again, we have an obvious option,

w3 =


0
0
1
0
1
0


Then we compute w2 and w1:

w2 = (A− λ2In)w3
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=


2
3
−1
−1
0
−1


w1 = (A− λ2In)w2

=


−1
−1
0
0
0
0


completing the chain. We begin the next chain, and need to choose u1 ∈ span(ker(A − λ2I6) \ {w1}).
There is again only one remaining basis vector for our choice:

u1 =


3
0
1
1
0
0


Now, recall our choice of ordering of the boxes and blocks in J:

J =



[[
λ1 1

λ1

]]

[λ2] λ2 1

λ2 1
λ2





We have the single λ1 block, followed by the 1 × 1 then 3 × 3 λ2 blocks. The corresponding chains are
the v chain, u chain, and w chain. Augmenting these vectors together in ascending order within each
chain gives the required transformation matrix:

P = [

λ1 box︷ ︸︸ ︷
v1|v2︸ ︷︷ ︸
2×2

|
λ2 box︷ ︸︸ ︷

u1︸︷︷︸
1×1

|w1|w2|w3︸ ︷︷ ︸
3×3

Jordan blocks

]

=


2 1 3 −1 2 0
0 1 0 −1 3 0
1 0 1 0 −1 1
1 0 1 0 −1 0
0 1 0 0 0 1
0 0 0 0 −1 0


△

33.8.6 Review

Theorem 33.8.14. Let A ∈ Cn×n be a square matrix with complex entries, and let p ∈ C[x] be any
polynomial. Then if λ is an eigenvalue of A, then p(λ) is an eigenvalue of p(A), and any eivenvalue of
p(A) is of this form.
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Theorem 33.8.15. For A ∈ Cn×n, define

Ni(A,λ) := ker
(
(A− λn)i

)
Suppose A,B ∈ Cn×n are similar. That is, there exists an invertible matrix S ∈ Cn×n such that
B = S−1AS. Then, A and B share the same set of eigenvalues,

λ1 = µ1, . . . ,λk = µk

and moreover,

dimNi(A,λj) = dimNi(B,µj) for all i,j

Or, using our earlier notation,

γi(λj) = γ(µj) for all i,j

The converse of this result also holds. That is, if A,B ∈ Cn×n share the same eigenvalues and satisfy
the equations above, then A and B are similar.

33.9 Matrix Functions

33.9.1 Matrix Powers
Suppose we wish to compute An for a general matrix A and large exponent n≫ 1.

Ideally, A is diagonalisable, and we may compute,

An = (P−1DP)n

= (P−1DP)(P−1DP) · · · (P−1DP)

= P−1D(PP−1)D(P · · ·P−1)DP

= P−1DnP

and powers of diagonal matrices are trivial to compute:

Dn =


λ1

λ2
. . .

λk


n

=


λn1

λn2
. . .

λnk


But, as we have already seen, not every matrix admits an eigenbasis. On the other hand, every matrix
does have a Jordan canonical form, and by a similar telescoping sum, we have,

An = P−1JnP

The problem is now to efficiently compute powers of a matrix in Jordan canonical form.

Theorem 33.9.1. For any square matrices A,B,

(A⊕B)n = An ⊕Bn

and more generally, for any collection of square matrices (Ai)
k
i=1(

k⊕
i=1

Ai

)n
=

k⊕
i=1

An
i
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Recall that J is the direct sum of Jordan blocks, so if these blocks are sufficiently small or simple, this
can simplify the calculation greatly. We also have a general formula for larger Jordan blocks:

Theorem 33.9.2. For any Jordan block Jλ,k,

Jnλ,k =



(
n
0

)
λn

(
n
1

)
λn−1 · · ·

(
n
k−2

)
λn−k+2

(
n
k−1

)
λn−k+1

0
(
n
0

)
λn · · ·

(
n
k−3

)
λn−k+3

(
n
k−2

)
λn−k+2

...
...

. . .
...

...

0 0 · · ·
(
n
0

)
λn

(
n
1

)
λn−1

0 0 · · · 0
(
n
0

)
λn


noting that

(
n
k

)
= 0 wherever k > n.

33.9.2 Lagrange Interpolation
Another way to compute arbitrary powers of matrices is to use Lagrange interpolation.

Theorem 33.9.3 (Lagrange Interpolation). Suppose ψ(A) = 0n for a polynomial ψ ∈ C[x], and fur-
thermore suppose ψ has roots (αi)

k
i=1 with corresponding (algebraic) multiplicities (mi)

k
i=1. (In practice,

we would choose ψ = cA or ψ = µA.)

Then, for any sufficiently well-behaved∗ function f : C→ C, there exists a function q such that

f = qψ + r

where r is a polynomial of degree strictly lower than ψ and

f (t)(αi) = r(t)(αi)

for all 1 ≤ j ≤ k, 0 ≤ t < mj, and furthermore, f(A) = r(A).

The idea is that we compute a polynomial, r, that acts effectively like a Taylor polynomial near the roots
of ψ.

Example. Find a general formula for f(A) = An, where

A =


3 1 0 1
−1 5 4 1
0 0 2 0
0 0 0 4


You may use that µA(x) = (2− x)(4− x)2 without proof.

Here, f(z) = zn, which is certainly a well-behaved function with easily computable derivatives so we
may attempt Lagrange interpolation.

µA is a cubic, so we may choose r(z) = αz2 + βz + γ.

We know that f and µA agree at the roots of µA, so we compute,

f(2) = 2n = r(2) = 4α+ 2β + γ

f(4) = 4n = r(4) = 16α+ 4β + γ

f ′(4) = n4n−1 = r′(4) = 8α+ β

∗ f must be analytic in a neighbourhood around every (αi)
k
i=1.

Notes on Mathematics | 529



Linear Algebra Matrix Functions

Then,

r(A) = αA2 + βA+ γI4

= α


8 8 4 8
−8 24 28 8
0 0 4 0
0 0 0 16

+ β


3 1 0 1
−1 5 4 1
0 0 2 0
0 0 0 4

+ γ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



=


8α+ 3β + γ 8α+ β 4α 8α+ β
−8α− β 24α+ 5β + γ 28α+ 4β 8α+ β

0 0 4α+ 2β + γ 0
0 0 0 16α+ 4β + γ



=


4n − n4n−1 n4n−1 2n − 4n + 2n4n−1 n4n−1

−n4n−1 4n + n4n−1 4n − 2n + 2n4n−1 n4n−1

0 0 2n 0
0 0 0 4n


Note that we did not have to calculate the individual values of α, β and γ, (which are

α = 1
4 · 2

n − 1
4 · 4

n + 1
2n4

n−1

β = −2 · 2n − 2 · 4n + 5n4n−1

γ = 4 · 2n + 5 · 4n − 12n4n−1

for those interested) as the entries in r(A) are simple linear combinations of the values of r(2), r(4), and
r′(4). For instance, in the first entry, we have,

8α+ 3β + γ = (16α+ 4β + γ)− (8α+ β)

= r(4)− r′(4)
= 4n − n4n−1

with every other entry being computed similarly. △

We’ve only been using Lagrange interpolation to calculate powers of matrices here, but the technique
works identically for any sufficiently well-behaved function f : C→ C.

33.9.3 Matrix Exponentials

33.9.3.1 Recurrence Relations

Consider a vector-valued first-order recurrence relation,

xn = Axn−1

where (xi)
∞
i=1 ⊂ Km is a sequence of vectors. We will only be considering autonomous recurrence

relations – that is, the matrix A is not a function of n. If a value for x0 is given, then these equations
are also called (discrete) initial value problems.

These recurrence relations can be solved analogously to the scalar-valued case with back substitution:

xn = Axn−1

= A2xn−2

= A3xn−3

...
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= Anx0

However, in this case, we now have to calculate an arbitrary power of a matrix, but we can use techniques
from the last section to do so.

One application of this is in solving higher-order scalar-valued autonomous recurrence relations. For
example, consider the Fibonacci sequence, given by the second-order recurrence relation,

Fn = Fn−1 + Fn−2

We can easily rewrite this as, [
Fn
Fn+1

]
=

[
0 1
1 1

] [
Fn−1

Fn

]
vn =

[
0 1
1 1

]
vn−1

and now we have a single first-order vector-valued recurrence relation, and this works more generally –
we can transform an nth-order recurrence relation into a first-order vector-valued recurrence relation in
n dimensions.

33.9.3.2 Differential Equations

Now, suppose we have a system of first-order linear autonomous simultaneous differential equations, say,

x′ = 7x− 2y + 9z

y′ = 7x+ 3y − 5z

z′ = 2x+ 5y + 6z

We can alternatively interpret these separate variables as a single vector:x′y′
z′

 =

7x− 2y + 9z
7x+ 3y − 5z
2x+ 5y + 6z


and, factoring out the matrix, we can represent this system as a single first-order vector-valued differential
equation:

v′ = Av

where,

v =

xy
z

 , and A =

7 −2 9
7 3 −5
2 5 6


Compare this to the case of an ordinary first-order differential equation,

x′ = ax

where a is some constant. The solution to this differential equation is given by,

x(t) = eatx(0)

Similarly, the vector-valued differential equation,

v′ = Av
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has a solution given by

v(t) = eAtv(0)

But, what does eAt mean? Clearly,

e

[
3 1 4
1 5 9
2 6 5

]
= e× e× · · · × e︸ ︷︷ ︸[

3 1 4
1 5 9
2 6 5

]
times?

is meaningless.

Instead, recall the Taylor series of f(x) = ex for real inputs x ∈ R:

ex =

∞∑
n=0

xn

n!

Unlike the expression on the left, it does make sense for us to input things other than real numbers into
the series on the right, even if those objects do not immediately make sense as exponents. For instance,
we could input complex numbers, or even matrices to this expression.

While the equation above is a theorem for real numbers, it’s a definition for more exotic inputs, like
complex numbers or matrices,

ex :=

∞∑
n=0

xn

n!
, x ∈ C,Kn×n, . . .

and we sometimes prefer using the notation exp(x) instead of ex to emphasise this point more. There
are some issues of convergence – after all, why should we expect this series to converge for matrix inputs
just because it converges for real inputs – but that is a relatively easy exercise in analysis.

We can use similar techniques from calculating matrix powers before. In particular, exp is entire, so
Lagrange interpolation also applies, and is, in general (for non-diagonalisable matrices), simpler than
using a JCF decomposition.

Example. Solve the system of differential equations,

x′ = x− 3z

y′ = x− y − 6z

z′ = −x+ 2y + 5z

with initial conditions,

x(0) = 1

y(0) = 1

z(0) = 0

First, we write the system as a vector-valued differential equation:xy
z

′

=

 1 0 −3
1 −1 −6
−1 2 5


︸ ︷︷ ︸

A

xy
z
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Then, we find the characteristic polynomial:

cA(z) = det(A− zI3)
= −z3 + 5z2 − 8z + 4

= (1− z)(2− z)2

so we have roots λ1 = 1, and λ2 = 2, with multiplicities α(λ1) = 1 and α(λ2) = 2.

We interpolate f(z) = ezt with r(z) = αz2 + βz + γ:

f(1) = et = r(1) = α+ β + γ

f(2) = e2t = r(2) = 4α+ 2β + γ

f ′(2) = te2t = r′(2) = 4α+ β


α = (t− 1)e2t + et

β = (4− 3t)e2t − 4et

γ = (2t− 3)e2t + 4et

r(A) = αA2 + βA+ γI3

= α

 4 −6 −18
6 −11 −27
−4 8 16

+ β

 1 0 −3
1 −1 −6
−1 2 5

+ γ

1 0 0
0 1 0
0 0 1


=

4α+ β + γ −6α −18α− 3β
6α+ β −11α− β − γ −27α− 6β
−4α− β 8α+ 2β 16α+ 5β + γ


=

(3t− 3)e2t + 4et (6− 6t)e2t − 6et (6− 9t)e2t − 6et

(3t− 2)e2t + 2et (4− 6t)e2t − 3et (3− 9t)e2t − 3et

−te2t 2te2t (3t+ 1)e2t


and so, x(t)y(t)

z(t)

 = eAt

11
0


=

(3− 3t)e2t − 2et

(2− 3t)e2t − et
te2t


△

33.10 Bilinear Maps

Let V and W be vector spaces over a field K. A bilinear map on V and W is a map τ : V ×W → K
such that for all v,v1,v2 ∈ V , w,w1,w2 ∈W , and α,β ∈ K,

1. τ(αv1 + βv2,w) = ατ(v1,w) + βτ(v1,w);

2. τ(v,αw1 + βw2) = ατ(v,w1) + βτ(v,w2).

That is, for a fixed v, τ(v,w) is linear in w, and for a fixed w, τ(v,w) is linear in v.

So, if we fix bases of V and W , a bilinear map is completely determined by its actions on the basis
vectors. Let (ei)

n
i=1 and (fi)

m
i=1 be bases of V and W , respectively. Then, the n×m matrix A = (αi,j)

defined by αi,j = τ(ei,fj) is said to be the matrix of τ with respect to the bases (ei)
n
i=1 and (fi)

m
i=1.

Then, for any vectors,

v =

n∑
i=1

aiei, w =

m∑
i=1

bifi
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we have by bilinearity,

τ(v,w) = τ

 n∑
i=1

aiei,

m∑
j=1

bjfj


=

n∑
i=1

aiτ

ei,

m∑
j=1

bjfj


=

n∑
i=1

m∑
j=1

aiτ(ei,fj)bj

=

n∑
i=1

m∑
j=1

aiαi,jbj

= v⊤Aw

So, for any fixed bases of V and W , every bilinear map on V and W corresponds to a unique n × m
matrix, and conversely, every n×m matrix determines a bilinear map.

Example. Write down the matrix corresponding to the bilinear map τ defined by

τ(v,w) := v1w1 − v1w2 + 2v2w1

First, expand out the formula above with a general matrix:

τ(v,w) =

[
v1
v2

]⊤ [
a b
c d

] [
w1

w2

]
=
[
v1 v2

] [aw1 + bw2

cw1 + dw2

]
= av1w1 + bv1w2 + cv2w1 + dv2w2

Equating coefficients, we have,

a = 1

b = −1
c = 2

d = 0

A =

[
1 −1
2 0

]
△

33.10.1 Bilinear Forms
Theorem 33.10.1. Let A be the matrix of the bilinear map τ : V ×W → K with respect to the bases
(ei)

n
i=1 and (fi)

m
i=1 of V and W , and let B be its matrix with respect to the bases (e′i)

n
i=1 and (f ′i)

m
i=1 of

V and W . Let P and Q be the change of basis matrices. Then,

B = P⊤AQ
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Now, we consider the case where W = V . Then, a bilinear map τ : V × V → K is called a bilinear form
on V .

The previous theorem then becomes,

Theorem 33.10.2. Let A be the matrix of the bilinear form τ on V with respect to the basis (ei)
n
i=1

of V , and let B be its matrix with respect to the basis (e′i)
n
i=1, and let P be the change of basis matrix.

Then,
B = P⊤AP

If A and B satisfy this relation, they are said to be congruent matrices.

Note that congruence is distinct from similarity in that, if τ is a bilinear form on V and T is a linear
operator on V , it might be the case that τ and T have the same matrix in some specific basis of V , but
they do not necessarily have the same matrix in any other basis of V .

The rank of a bilinear form τ is the rank of its matrix A.

A vector v ∈ Kn is zero if and only if v⊤w = 0 for all vectors w ∈ Kn. Since

τ(v,w) = v⊤Aw

the kernel of A is given by
span{w ∈ V : ∀v ∈ V,τ(v,w) = 0}

This set is also called the right radical of τ .

Similarly, the kernel of A⊤ is given by

span{v ∈ V : ∀w ∈ V,τ(v,w) = 0}

and is also called the left radical of τ .

Since A and A⊤ have the same rank, the left and right radicals both have dimension n − r where r is
the rank of τ . In particular, the rank of τ is n if and only if the left and right radicals have dimension 0,
and we say that τ is nondegenerate. That is, τ is nondegenerate if and only if its matrix (in any basis)
is nonsingular.

A bilinear form τ on V is symmetric if τ(w,v) = τ(v,w) for all v,w ∈ V . τ is antisymmetric or
alternating if τ(v,v) = 0 for all v ∈ V .

The antisymmetry condition implies that for all v,w ∈ V ,

τ(v +w,v +w) = τ(v,w) + τ(w,v) = 0

and hence,
τ(v,w) = −τ(w,v)

If 2 ̸= 0 in K, then the converse of this result holds: that is, τ(v,w) = −τ(w,v) for all v ∈ V implies
that τ(v,v) = 0 for all v ∈ V .

An n×n matrix A is symmetric if A⊤ = A, and antisymmetric if A⊤ = −A and A has zeros along the
diagonal.

Theorem 33.10.3. The bilinear form τ is symmetric (resp. antisymmetric) if and only if its matrix
(with respect to any basis) is symmetric (resp. antisymmetric).

One important example of a symmetric bilinear form is when V = Rn and τ is defined by

τ(v,w) =

n∑
i=1

viwi
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= v ·w

This form is called the dot product or scalar product. This bilinear form has matrix form equal to the
identity matrix In with respect to the standard basis of Rn.

Theorem 33.10.4. Suppose that 2 ̸= 0 in K. Then, any bilinear form τ can be written uniquely as
τ1 + τ2, where τ1 is symmetric and τ2 is antisymmetric.

Proof. For existence, take τ1(v,w) = 1
2

(
τ(v,w) + τ(w,v)

)
and τ2(v,w) = 1

2

(
τ(v,w)− τ(w,v)

)
.

For uniqueness, suppose τ also decomposes into τ ′1+ τ ′2, with τ ′1 symmetric and τ ′2 antisymmetric. Then,
by symmetry and antisymmetry,

τ1(v,w) =
1

2

(
τ ′1(v,w) + τ ′1(w,v) + τ ′2(v,w) + τ ′2(w,v)

)
=

1

2

(
τ ′1(v,w) + τ ′1(v,w) + τ ′2(v,w)− τ ′2(v,w)

)
=

1

2

(
τ ′1(v,w) + τ ′1(v,w)

)
= τ ′1(v,w)

so τ1 = τ ′1, and hence,

τ2 = τ − τ1
= τ − τ ′1
= τ2

so the decomposition is unique.

Note that 1
2 has to exist in K for the first chain of equations to be meaningful, so we require that 2 ̸= 0

in K. ■

33.10.2 Quadratic Forms
Let V be a vector space over a field K. A quadratic form on V is a function q : V → K such that,

q(λv) = λ2q(v)

for all v ∈ V and λ ∈ K, and the function τq : V × V → K defined by,

τq(v,w) := q(v +w)− q(v)− q(w)

is a symmetric bilinear form on V .

Given a symmetric bilinear form τ , we can also define a quadratic form by,

qτ (v) := τ(v,v)

These processes are almost inverse to each other, in that, given a quadratic form q and a bilinear form
τ , we have,

qτq = 2q, τqτ = 2τ

so, if 2 ̸= 0 in K, there is a bijection between quadratic forms and symmetric bilinear forms given by,

q 7→ 1

2
τq, τ 7→ qτ

If 2 = 0 in K, then this correspondence does not hold, and indeed there exist quadratic forms that
are not of the form τ(−,−) for any symmetric bilinear form τ on V . In general, the standard forms of
quadratic and bilinear forms on vector spaces where 2 = 0 in the underlying field is quite different from
the case where 2 ̸= 0.

From this point onwards, we will assume that 2 = 1 + 1 ̸= 0 in the field K.
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33.10.3 Bases for Quadratic Forms
Let (ei)ni=1 be a basis of V , and let A = (αi,j) be the matrix of a symmetric bilinear form τ with respect
to this basis. A is then also said to be the matrix of the quadratic form q := qτ with respect to this
basis.

Note that A is symmetric, as τ is symmetric. Then,

q(v) = v⊤Av

just like in the case for bilinear maps, so we can easily write out the matrix

Example. Write down the matrix corresponding to the quadratic form q defined by

q
(
[x,y,z]

)
:= 8x2 − 7y2 + 8z2 + 8xy − 2xz + 8yz

As we did for bilinear forms, we again expand q(v) = v⊤Av for a general matrix A and vector v, then
compare coefficients:

[
x y z

] a d e
d b f
e f c

xy
z

 = ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz

= 8x2 − 7y2 + 8z2 + 8xy − 2xz + 8yz

A =

 8 4 −1
4 −7 4
−1 4 8


△

Theorem 33.10.5. Let V be a vector space of dimension n equipped with a symmetric bilinear form τ
(or equivalently, with a quadratic form q).

Then, there exist a basis (bi)
n
i=1 of V and constants (βi)

n
i=1 such that

τ(bi,bj) =

{
βi i = j

0 i ̸= j

Equivalently,

• Give any quadratic form q on V , there exist a basis (bi)
n
i=1 of V and constants (βi)

n
i=1 such that

q

(
n∑
i=1

xibi

)
=

n∑
i=1

βix
2
i

• Any symmetric matrix A is congruent to a diagonal matrix. That is, there exists an invertible
matrix P such that A = P⊤DP, where D is a diagonal matrix.

We give an algorithm to find the matrix P.

Algorithm 6 Orthogonal Diagonalisation
1: Determine the eigenvalues of A.
2: For each eigenvalue λi, find the corresponding eigenspace, ker(A− λiIn) = span

(
(vj)

k
j=1

)
.

3: Write out a normal diagonalisation of A = PDP−1, recalling that D is the matrix with the eigen-
values of A along the diagonal, and P is the matrix with the corresponding eigenvectors as columns.

4: Check if the columns of P are orthogonal by checking if their scalar product is zero or not. If all
columns are orthogonal, we are done.

5: Otherwise, apply the Gram-Schmidt process (§33.10.4) to the columns of P .
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Theorem 33.10.6. For a symmetric real matrix, eigenvectors with distinct eigenvalues are always or-
thogonal.

This allows us a slight shortcut in the algorithm above: we only need to check the scalar product of
eigenvectors that share the same eigenvalue.

Theorem 33.10.7. A quadratic form q over C has the form

q(v) =

r∑
i=1

x2i

with respect to a suitable basis, where r = rank(q).

Equivalently, given a symmetric matrix A ∈ Cn×n, there is an invertible matrix P ∈ Cn×n such that
P⊤AP = B, where B = (βi,j) is a diagonal matrix with

βi,i =

{
1 i ∈ [1,r]

0 i ∈ (r,n]

where r = rank(A).

In particular, up to a change of basis, a quadratic form on Cn is uniquely determined by its rank, and
we say that the rank is the only invariant of a quadratic form over C.

Theorem 33.10.8 (Sylvester). A quadratic form q over R has the form

q(v) =

t∑
i=1

x2i −
u∑
i=1

x2t+i

with respect to a suitable basis, where t+ u = rank(q).

Equivalently, given a symmetric matrix A ∈ Rn×n, there is an invertible matrix P ∈ Rn×n such that
A = PBP⊤, where B = (βi,j) is a diagonal matrix with

βi,i =


1 i ∈ [1,t]

−1 i ∈ (t,t+ u]

0 i ∈ (t+ u,n]

where t+ u = rank(A).

The numbers t and u of positive and negative terms are invariants of q, and the pair of integers (t,u) is
the signature of q.

Theorem 33.10.9 (Sylvester’s Law of Inertia). Suppose that q is a quadratic form on the vector space
V over R, and that (ei)ni=1 and (e′i)

n
i=1 are two bases of V such that

q

(
n∑
i=1

xiei

)
=

t∑
i=1

x2i −
u∑
i=1

x2t+i

and

q

(
n∑
i=1

xie
′
i

)
=

t′∑
i=1

x2i −
u′∑
i=1

x2t′+i

Then, t = t′ and u = u′.
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33.10.4 The Gram-Schmidt Process
In this section, we will take K = R.

Let V be a vector space over K of dimension n, and let q be a quadratic form on V , with associated
symmetric bilinear form τ .

The quadratic form q is positive definite if q(v) > 0 for all non-zero v ∈ V . τ is also called positive
definite if q is positive definite.

A quadratic form q is positive definite if and only if t = n and u = 0 in Sylvester’s theorem. That is, if
q has signature (n,0).

A vector space V over R equipped with a positive definite symmetric bilinear form τ is called a Euclidean
space. In this case, Sylvester’s theorem just states that there is a basis (ei)ni=1 of V with respect to which
the matrix of q is the identity matrix In.

In other words, the basis vectors are all unit vectors, and they are all orthogonal to each other. Such a
basis is called an orthonormal basis, and more generally, any set of vectors such that the vectors are all
unit length and orthogonal to each other is called orthonormal.

If V is a Euclidean space with an orthonormal basis, then any positive definite symmetric bilinear form
τ is equivalent to the dot product, and we will write v ·w for τ(v,w).

Given a (finite) set of linearly independent vectors S = (vi)
k
i=1, the Gram-Schmidt process generates an

orthogonal set S′ = (ui)
k
i=1 that spans the same k-dimensional subspace of V as S.

Algorithm 7 Gram-Schmidt Process
1: Define the projection operator by

proju(v) :=
v · u
u · u

u

And if u = 0, then we define proju(v) = 0. This operator projects v orthogonally onto the line
spanned by u.

2: Recursively calculate the sequence of orthogonal vectors (ui)
n
i=1 using,

u1 = v1

u2 = v2 − proju1
(v2)

u3 = v3 − proju1
(v3)− proju2

(v3)

u4 = v4 − proju1
(v4)− proju2

(v4)− proju3
(v4)

...

un = vn −
n−1∑
i=1

projui
(vn)

3: Normalise each vector to obtain the orthonormal sequence (ei)
n
i=1:

ei =
ui
∥ui∥

The calculation of the orthogonal sequence (ui)
n
i=1 is more specifically called Gram-Schmidt orthog-

onalisation, while the total calculation of the orthonormal sequence (ei)
n
i=1 is called Gram-Schmidt

orthonormalisation as the vectors are normalised.
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Geometrically, to compute the next vector uk, we project vk onto the subspace U = span
(
(ui)

k−1
i=1

)
spanned by the previous orthogonal vectors, which by construction, is the same as the subspace spanned
by the first k − 1 original vectors, span

(
(vi)

k−1
i=1

)
. The vector uk is then defined to be the difference

between vk and this projection, guaranteed to be orthogonal to all the vectors in U . Because of this
projection action, the vectors (ui)

n
i=1 are sometimes also denoted (v⊥

i )
n
i=1.

Example. In the last example, we found that the matrix corresponding to the quadratic form q defined
by

q
(
[x,y,z]

)
:= 8x2 − 7y2 + 8z2 + 8xy − 2xz + 8yz

is given by

A =

 8 4 −1
4 −7 4
−1 4 8


Now, find an orthonormal basis of V such that the matrix of q is diagonal. You may use that cA(x) =
−(x− 9)2(x+ 9) without proof.

We first find an ordinary diagonalisation of A. From the characteristic equation, A has eigenvalues
λ1 = 9 and λ2 = −9, so,

(A− λ1I3)v = 0
row

reduce−→

1 −4 1
0 0 0
0 0 0

ab
c

 =

00
0


a = 4b− cab

c

 = b

41
0

+ c

−10
1

 −→ ker(A− λ1I3) = span

41
0

,
−10

1



(A− λ2I3)v = 0
row

reduce−→

1 0 −1
0 1 4
0 0 0

ab
c

 =

00
0


a = c

b = −4cab
c

 = c

 1
−4
1

 −→ ker(A− λ2I3) = span

 1
−4
1


So, A = PDP−1 with

D =

9 0 0
0 9 0
0 0 −9


P =

−1 4 1
0 1 −4
1 0 1


−10

1

 ·
41
0

 = 4
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̸= 0

so the first two columns of P are not orthogonal. The last column must be orthogonal to the first two
by Theorem 33.10.6

v1 = p1

v2 = p2 −
p2 · v1

v1 · v1
v1

= p2 −
−4
2

v1

=

21
2



P =

−1 2 1
0 1 −4
1 2 1


Normalising:

P =

−
1√
2

2
3

1
3
√
2

0 1
3 − 4

3
√
2

1√
2

2
3

1
3
√
2


So, an orthonormal basis of V with q diagonal is given by,


− 1√

2

0
1√
2

 ,


2
3

1
3

1
3

 ,


1
3
√
2

− 4
3
√
2

1
3
√
2




△

33.10.5 Orthogonal Transformations
In a Euclidean space V , the scalar product gives us a notion of length of a vector and angles between
vectors, so we might be interested in what kind of transformations preserve these quantities.

A linear map T : V → V is orthogonal if it preserves the scalar product on V . That is, T (v)·T (w) = v ·w
for all v,w ∈ V .

A n× n matrix A is orthogonal if A⊤A = AA⊤ = In, or equivalently, A⊤ = A−1.

Lemma 33.10.10. A linear map T : V → V is orthogonal if and only if its matrix A is orthogonal.

Theorem 33.10.11. det(A) = ±1 for any orthogonal matrix A.

Proof.

det(A)2 = det(A) det(A⊤)

= det(A⊤A)

= det(In)

= 1

so det(A) =
√
1 = ±1. ■
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Theorem 33.10.12. A linear map T : V → V is orthogonal if and only if
(
T (ei)

)n
i=1

is an orthonormal
basis of V .

Theorem 33.10.13 (QR Decomposition). Any invertible matrix A ∈ Rn×n can be written as A = QR
where Q is orthogonal and R is upper-triangular.

Algorithm 8 QR Decomposition

1: Perform the Gram-Schmidt process on the columns of A = [a1|a2| . . . |an] to obtain the orthonor-
malised set (ei)

n
i=1.

2: Express the columns of A in the orthonormal basis:

a1 = ⟨e1,a1⟩e1
a2 = ⟨e1,a2⟩e1 + ⟨e2,a2⟩e2
a3 = ⟨e1,a3⟩e1 + ⟨e2,a3⟩e2 + ⟨e3,a3⟩e3
a4 = ⟨e1,a4⟩e1 + ⟨e2,a4⟩e2 + ⟨e3,a4⟩e3 + ⟨e4,a4⟩e4

...

ak =

k∑
i=1

⟨ei,ak⟩ei

noting that ⟨ei,ai⟩ = ∥v⊥
i ∥ (which you had to calculate before during the normalisation step).

3: the above set of equations can be packaged into matrix form,

A = QR

where,

Q = [e1|e2| . . . |en]

R =



∥v⊥
1 ∥ ⟨e1,a2⟩ ⟨e1,a3⟩ ⟨e1,a4⟩ · · · ⟨e1,an⟩
0 ∥v⊥

2 ∥ ⟨e2,a3⟩ ⟨e2,a4⟩ · · · ⟨e2,an⟩
0 0 ∥v⊥

3 ∥ ⟨e3,a4⟩ · · · ⟨e3,an⟩
0 0 0 ∥v⊥

4 ∥ · · · ⟨e4,an⟩
...

...
...

...
. . .

...
0 0 0 0 · · · ∥v⊥

n ∥



Example. Find a QR decomposition of,

B =

2 1 −1
1 0 2
2 −1 3


We perform the Gram-Schmidt process on the columns of B = [b1|b2|b3].

e1 =
b1

∥b1∥

=
1

3

21
2
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=

 2
3
1
3
2
3


b⊥
2 = b2 − ⟨b2,e1⟩e1
= b2 − 0e1

=

 1
0
−1


e2 =

b⊥
2

∥b⊥
2 ∥

=
1√
2

 1
0
−1


=

 1√
2

0
− 1√

2


b⊥
3 = b3 − ⟨b3,e1⟩e1 − ⟨b3,e2⟩e2
= b3 − 2q1 − (−2

√
2)e2

=

− 1
3

4
3
− 1

3


e3 =

b⊥
3

∥b⊥
3 ∥

=
1√
2

− 1
3

4
3
− 1

3


=

−
√
2
6

2
√
2

3

−
√
2
6


Q = [e1|e2|e3]

=


2
3

1√
2
−

√
2
6

1
3 0 2

√
2

3
2
3 − 1√

2
−

√
2
6


R =

3 0 2

0
√
2 −2

√
2

0 0
√
2



B =


2
3

1√
2
−

√
2
6

1
3 0 2

√
2

3
2
3 − 1√

2
−

√
2
6


3 0 2

0
√
2 −2

√
2

0 0
√
2


△
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33.10.6 Orthonormal Bases for Bilinear Forms
Suppose we have a Euclidean space V , and a linear operator T : V → V or a quadratic form q on V
(not necessarily the same quadratic form as the one providing the Euclidean structure). Is it always
possible to find an orthonormal basis of V such that the matrix of q has a simple form? Notice that we
are now handling two different matrices simultaneously: we’re trying to optimise the matrix of q, while
still keeping the matrix of the original quadratic form as the identity.

It turns out that this is also a question about linear operators: given any bilinear form τ on V , we have

τ(v,w) = v⊤Aw

and we can interpret matrix-vector multiplication as a linear map, so,

= v · T (w)

So, every bilinear form τ on V uniquely determines a linear operator T on V such that,

τ(v,w) = v · T (w)

where T is the linear operator corresponding to the matrix A of τ with entries Ai,j = τ(ei,ej) for the
standard basis (ei)

n
i=1 of V . Conversely, any linear operator T similarly determines a bilinear form τ ,

where bilinearity follows from the bilinearity of the scalar product and linearity of T .

So, once we have a fixed bilinear form providing the Euclidean structure (i.e., the scalar product), any
other bilinear form τ on V can be obtained from applying a linear transformation to one of the arguments
of the scalar product, so there is a bijection between bilinear forms and linear operators.

In particular, if T is any linear operator, then (v,w) 7→ (Tv) · w is certainly a bilinear form, so there
exists a unique linear operator S such that,

(Tv) ·w = v · (Sw)

for all v,w ∈ V . Such a linear operator S is called the adjoint of T , and is alternatively denoted T ∗.

If we have chosen an orthonormal basis, then the matrix of T ∗ is the transpose of the matrix of T . It
follows that a linear operator is orthogonal if and only if T ∗ = T−1.

A linear operator T is selfadjoint if T ∗ = T , or equivalently, if the bilinear form τ(v,w) = v · (Tw) is
symmetric.

So, if V is a Euclidean space of dimension n, then the following problems are all equivalent:

• Given a quadratic form q on V , find an orthonormal basis of V that makes the matrix of q as
simple as possible;

• Given a selfadjoint linear operator T on V , find an orthonormal basis of V that makes the matrix
of T as simple as possible;

• Given an n × n symmetric real matrix A, find an orthogonal matrix P such that P⊤AP is as
simple as possible.

Lemma 33.10.14. Let A be a n × n symmetric real matrix. Then, A has an eigenvalue in R, and
moreover, all complex eigenvalues of A lie in R.

Theorem 33.10.15 (Spectral Theorem). Let V be a Euclidean space of dimension n. Then,

• Given any quadratic form q on V , there is an orthonormal basis (fi)
n
i=1 of V and constants (αi)

n
i=1

uniquely determined up to reordering, such that,

q

(
n∑
i=1

xifi

)
=

n∑
k=1

αi(xi)
2

for all x1, . . . ,xn ∈ R.
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• Given any selfadjoint linear operator T : V → V , there is an orthonormal basis (fi)
n
i=1 of V

consisting of eigenvectors of T .

• Given any n × n symmetric real matrix A, there is an orthogonal matrix P such that P⊤AP =
P−1AP is a diagonal matrix.

Example. TO DO △

33.10.7 Reduction of Second Degree Polynomial Equations
The general equation of a second degree polynomial in n variables (xi)

n
i=1 is given by,

n∑
i=1

αi,ix
2
i +

n∑
i=1

i−1∑
j=1

αi,jxixj +

n∑
i=1

βixi + γ = 0

for an n × n lower triangular matrix A = (αi,j) of constants and n-dimensional vector b = (βi) of
constants. That is, there is a term for every variable squared, a term for every product of a pair of
variables, a term for every variable alone, and a constant term. For any set of fixed coefficients, this
equation describes a quadric (hyper)surface in n-dimensional Euclidean space.

For example, for the n = 3 case, the general polynomial is given by,

Ax2 +By2 + Cz2 +Dxy + Exz + Fyz +Gx+Hy + Iz + J = 0

We can simplify these equation by applying various isometries to the coordinate basis. By the spectral
theorem, we can apply orthogonal basis changes to eliminate the quadratic terms in mixed variables (the
terms with coefficients D, E, and F in the example above). We do this by completing the square in the

n∑
i=1

αi,ix
2
i +

n∑
i=1

i−1∑
j=1

αi,jxixj

term to see what coordinate changes we should effect. For instance, suppose we have the equation,

x2 + xy + y2 + x = 0

We complete the square on x2 + xy + y2 to obtain,(
x+

1

2
y

)2

+
3

4
y2 + x = 0

Now, we apply the linear transformation, [
x
y

]
7→
[
x+ 1

2y
y

]
giving,

x2 +
3

4
y2 + x− 1

2
y = 0

and we no longer have any mixed quadratic terms.

Now, whenever αi,i ̸= 0, we can perform the translation isometry,

xi 7→ xi −
βi

2αi,i
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thus eliminating the term βixi.

From the example above, we would then have,

[
x
y

]
7→

x− 1
2·1

y − − 1
2

2· 34

 =

[
x− 1

2
y + 1

3

]

giving, (
x− 1

2

)2

+
3

4

(
y +

1

3

)2

+

(
x− 1

2

)
− 1

2

(
y +

1

3

)
= 0(

x2 − x+
1

4

)
+

3

4

(
y2 +

2

3
y +

1

9

)
+

(
x− 1

2

)
−
(
1

2
y +

1

6

)
= 0

x2 − x+
1

4
+

3

4
y2 +

1

2
y +

1

12
+ x− 1

2
− 1

2
y − 1

6
= 0

x2 +
3

4
y2 =

1

3

and we can now see that the original equation x2 + xy+ y2 + x = 0 describes an ellipse, a fact that may
not be obvious from the original expression.

However, if αi,i = 0 for some i, then we cannot eliminate the term βixi. That is, we can only eliminate
linear terms if there is a corresponding quadratic term. Instead, we permute the coordinates such that
αi,i ̸= 0 for 1 ≤ i ≤ r and βi ̸= 0 for r < i ≤ r + s.

If s > 1, then we don’t change xi for 1 ≤ i ≤ r, but replace
∑s
i=1 βr+ixr+1 by βxr+1. To show that this

transformation is orthogonal, suppose our orthonormal basis is (ei)
n
i=1. Then, we can extend,

e1, . . . ,er,
1√∑s
i=1 β

2
r+i

s∑
i=1

βr+ier+i

to an orthonormal basis of our Euclidean space using the Gram-Schmidt process. Note that the (r+1)th
vector of the basis is chosen such that our equation will have just the term

(√∑s
i=1 β

2
r+i

)
xr+1, so the

equation has at most one non-zero βi; either there are no linear terms at all, or there is just βr+1.

Finally, if there is a linear term, then βr+1 ̸= 0, and, by dividing through by a constant, we can force
βr+1 = −1, then perform the translation,

xr+1 7→ xr+1 −
γ

βr+1

to eliminate the constant γ. If there is no linear term, then we again divide the equation through by a
constant to force γ = 0 or γ = −1, and move it to the right side in the latter case.

We have proved:

Theorem 33.10.16. Any second degree polynomial equation can be transformed through isometries of
Euclidean space into an equation with one of the following forms:

r∑
i=1

αix
2
i = 0

r∑
i=1

αix
2
i = 1
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r∑
i=1

αix
2
i − xr+1 = 0

where 0 ≤ r ≤ n and (αi)
r
i=1 are non-zero constants, and in the third case, r < n.

The sets of solutions defined by the first two cases are called central quadrics, as they have central
symmetry; that is, if a vector v satisfies the equation, then so does −v.

33.10.8 Singular Value Decomposition
In this section, we will study linear maps T : V → W between Euclidean spaces V and W . Again, we
wish to find bases of V and W such that the matrix of T is as simple as possible.

From row and column operations, we know it is always possible to choose bases of V and W such that
the matrix of T has Smith normal form, [

Ir 0
0 0

]
where r is the rank of T . However, while simple, this form isn’t very useful as it does not respect the
Euclidean structure of V and W . The problem now is to choose orthonormal bases of V and W such
that the matrix of T has a simple form.

Theorem 33.10.17 (Singular Value Decomposition for Linear Maps). Suppose T : V → W is a linear
map of rank r between Euclidean spaces V and W . Then, there exist unique positive numbers γ1 ≥ γ2 ≥
· · · ≥ γr > 0 called the singular values of T , and orthonormal bases of V and W such that the matrix of
T with respect to these bases is,

Σ =

[
D 0
0 0

]
where D = diag(γ1, . . . ,γr).

Corollary 33.10.17.1 (Singular Value Decomposition for Matrices). Given any real m × n matrix A
of rank r ≤ min{m,n}, there exist unique singular values γ1 ≥ γ2 ≥ . . . ≥ γr > 0 and (non-unique)
orthogonal matrices P and Q such that,

Σ =

[
D 0
0 0

]
= P⊤AQ

Equivalently, we say that the SVD of A is,

A = PΣQ⊤

Theorem 33.10.18. The matrices A and A⊤ share the same singular values.

Proof.

A = PΣQ⊤

A⊤ = (PΣQ⊤)⊤

= Q⊤Σ⊤P

■
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We present two algorithms for computing the singular value decomposition of a real m× n matrix A.

Algorithm 9 Singular Value Decomposition

1: Compute the matrices AA⊤ and A⊤A.
2: The eigenvectors of A⊤A form the columns of the n× n orthogonal matrix Q, and the eigenvectors

of AA⊤ form the columns of the m×m orthogonal matrix P.
3: Perform the Gram-Schmidt process on the columns of Q and P if necessary.
4: The square roots of the eigenvalues of either matrix form the singular values.

This requires finding eigenvectors for a pair of matrices, namely, AA⊤ and A⊤A. But, because A =
PΣQ, once we have one of P or Q, it is possible to compute the other by multiplying the columns of
the matrix we have by A.

Algorithm 10 Singular Value Decomposition Shortcut
1: Let A be an m× n matrix.
2: Compute whichever of AA⊤ and A⊤A has higher dimensions (if A is a “tall” matrix, compute the

former; if A is a “wide” matrix, compute the latter).
3: Order the (orthonormalised) eigenvectors (qi)

n
i=1 of this matrix such that the corresponding eigen-

vectors are in decreasing order, λ1 ≥ λ2 ≥ · · · ≥ λr > 0, and λi = 0 for i > r, where r is the rank of
A.

4: The square roots of the eigenvalues form the singular values.
5: The n× n orthogonal matrix Q is given by

Q = [q1|q2| . . . |qn]

6: Define the sequence of vectors (pi)
r
i=1 by multiplying the corresponding qi by A, then normalising:

pi =
1

∥Aqi∥
Aqi

for 1 ≤ i ≤ r. Then, (pi)ri=1 is an orthonormal set. Using Gram-Schmidt or otherwise, extend this
set to an orthonormal basis (pi)

m
i=1 of Rm.

7: The m×m orthogonal matrix P is given by

P = [p1|p2| . . . |pm]

Example. Find a SVD decomposition of,

A =

[
1 0 1
−1 1 0

]

We compute the eigenvectors of A⊤A:

A⊤A =

 2 −1 1
−1 2 0
1 0 1


cA⊤A(x) = (x− 3)(x− 1)x

so we have eigenvalues (in descending order) λ1 = 3, λ2 = 1, and λ3 = 0, giving singular values
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γ1 =
√
λ1 =

√
3 and γ2 =

√
λ2 = 1.

Σ =

[√
3 0 0
0 1 0

]
Next, we find the eigenvectors:

(A⊤A− λ1I3)v = 0
row

reduce−→

1 0 −2
0 1 1
0 0 0

ab
c

 =

00
0


a = 2c

b = −c

ab
c

 = c

 2
−1
1

 −→ ker(A− λ2I3) = span


 2
−1
1


︸ ︷︷ ︸

v1



(A⊤A− λ2I3)v = 0
row

reduce−→

1 0 0
0 1 −1
0 0 0

ab
c

 =

00
0


b = −c

ab
c

 = c

 0
−1
1

 −→ ker(A− λ2I3) = span


 0
−1
1


︸ ︷︷ ︸

v2



(A⊤A− λ3I3)v = 0
row

reduce−→

1 0 1
0 1 1
0 0 0

ab
c

 =

00
0


a = −c
b = −c

ab
c

 = c

−1−1
1

 −→ ker(A− λ2I3) = span


−1−1

1


︸ ︷︷ ︸

v3


Normalise the eigenvectors,

q1 =
1√
6
v1, q2 =

1√
2
v2, q3 =

1√
3
v3

These eigenvectors have distinct eigenvalues, so they are orthogonal by Theorem 33.10.6, and we do not
have to perform the Gram-Schmidt process. So, we have,

Q = [q1|q2|q3]

=


2√
6

0 − 1√
3

− 1√
6

1√
2
− 1√

3
1√
6

1√
2

1√
3
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To find P, the first algorithm just repeats all of these calculations again on AA⊤. For the second
algorithm, we calculate,

Aq1 =

√
6

2

[
1
−1

]
, Aq2 =

√
2

2

[
1
1

]
, Aq3 =

[
0
0

]
Ignore the zero vector and normalise Aq1 and Aq2:

p1 =
1√
2

[
1
−1

]
, p2 =

1√
2

[
1
1

]
Here, p1 and p2 already form a basis of R2, so we skip the Gram-Schmidt process, and we have,

P = [p1|p2]

=

[
1√
2

1√
2

− 1√
2

1√
2

]
So the SVD of A is given by

A = PΣQ⊤

=

[
1√
2

1√
2

− 1√
2

1√
2

] [√
3 0 0
0 1 0

]
2√
6
− 1√

6
1√
6

0 1√
2

1√
2

− 1√
3
− 1√

3
1√
3


△

33.11 Sesqulinear Forms

To do.

33.12 Operators on Hilbert Spaces

To do.

33.13 Finitely Generated Abelian Groups

So far, we have considered vector spaces over fields. In this section, we will consider a generalisation of a
vector space called a module in which this field of scalars is replaced by a ring. Modules also generalise
the notion of abelian groups, since the abelian groups are exactly the modules over the ring of integers.

33.13.1 Review
We quickly review some basic group theory from §12. The definitions and theorems here will be stated
in terms of abelian groups, but most will hold for general groups.

A group, (G,∗) is a set, G, equipped with a binary operation, ∗, that obeys the following axioms:

• ∀a,b ∈ G, a ∗ b ∈ G (closure);

• ∀a,b,c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c (associativity);

• ∃e ∈ G such that a ∗ e = e ∗ a = a ∀a ∈ G (existence of identity);

• ∀a ∈ G,∃(a−1) ∈ G such that a ∗ (a−1) = (a−1) ∗ a = e (existence of inverses).
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Furthermore, if the operation is also commutative, the group is abelian. The identity, e, is also written
as idG or 0G, the latter being used mainly for abelian groups.

For abelian groups, it is common to use additive notation where the binary operation is written as +,
and we will continue with this notation from this point onwards.

A group G is cyclic if there exists an element x ∈ G such that every element of G is of the form nx for
some n ∈ Z.

Let (G,+) and (H,∗) be groups. A function ϕ : G→ H is a group homomorphism between G and H if

ϕ(a+ b) = ϕ(a) ∗ ϕ(b)

for all a,b ∈ G. Note that this necessarily requires that,

ϕ(idG) = idH

and

ϕ(−a) = −ϕ(a)

An injective homomorphism is called a monomorphism and a surjective homomorphism is called an
epimorphism. If a homomorphism ϕ has an inverse, or equivalently, if ϕ is bijective, then ϕ is furthermore
a group isomorphism and we write G ∼= H if such an isomorphism exists.

Theorem 33.13.1. Every cyclic group is isomorphic to either (Z,+) or to Zn = Z/nZ for some n > 0.

The order of an element g ∈ G, denoted |g|, is the smallest natural n such that ng = idG. If ng ̸= idG
for all n ∈ N, then we say that g has infinite order.

Theorem 33.13.2. If ϕ : G→ H if an isomorphism, then |g| = |ϕ(g)| for all g ∈ G.

A group G is generated or spanned by a subset X ⊆ G if every g ∈ G can be written as a finite sum,

|X|∑
i=1

mixi

with mi ∈ Z and xi ∈ X, and we write G = ⟨X⟩, or ⟨x1, . . . xn⟩ if X has finite cardinality. In this latter
case, we say that G is finitely generated.

In multiplicative notation, G = ⟨X⟩ if and only if

|X|∏
i=1

xmi
i

so every element can be “factored” into elements of X.

A group is cyclic if and only if X is a singleton set.

The direct sum of a set of abelian groups
(
Gi
)n
i=1

is defined to be the set,{
(gi)

n
i=1 : gi ∈ Gi

}
with component-wise addition

(gi)
n
i=1 + (hi)

n
i=1 = (gi + hi)

n
i=1

This forms a group with identity (idGi
)ni=1 and −(gi)ni=1 = (−gi)ni=1.

For non-abelian groups, this is more commonly called the direct product of groups.
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A subset H ⊆ G of a group (G,+) is a subgroup of G if (H,+) is also a group, and we write H ≤ G to
denote this relation. The group itself, G, and the trivial group {idG} are always subgroups of G. Any
subgroup H not equal to G is a proper subgroup, and we write H < G to denote this relation. Any
subgroup not equal to {idG} is a non-trivial subgroup.

Lemma 33.13.3. If H ≤ G, then idH = idG.

Theorem 33.13.4. Let H ⊆ G. Then, the following statements are equivalent:

(i) H ≤ G;

(ii) (a) H ̸= ∅;

(b) a,b ∈ H → a+ b ∈ H;

(c) a ∈ H → −a ∈ H.

(iii) (a) H ̸= ∅;

(b) a,b ∈ H → a− b ∈ H.

(ii) and (iii) are the two step and one step subgroup tests (so called because H is often assumed to be
non-empty, and hence checking that it is non-empty does not count as a step).

Let G be a group, H ≤ G and g ∈ G. The set g +H = {g + h : h ∈ H} is a left coset of H in G, and
H + g = {h + g : h ∈ H} is a right coset of H in G. For abelian groups, left and right cosets coincide,
and we just say coset alone.

Theorem 33.13.5. The following statements are equivalent for any x,g ∈ G:

• x ∈ H + g;

• H + g = H + x;

• x− g ∈ H.

Corollary 33.13.5.1. Two cosets H + a and H + b are either equal or disjoint.

Corollary 33.13.5.2. The cosets of H in G partition G.

Theorem 33.13.6. If H is finite, then all cosets of H in G have |H| elements.

The number of distinct left (or right) cosets of H in G is called the index of H in G, and is written as
[G : H]

Theorem 33.13.7 (Lagrange’s Theorem). If H ≤ G, then,

|G| = [G : H]|H|

Corollary 33.13.7.1. If H ≤ G, then the order of H divides the order of G.

Corollary 33.13.7.2. For any g ∈ G, |g| divides |G|.

Theorem 33.13.8. Let G be a group of prime order p. Then, G is cyclic and G ∼= Zp.

If A and B are subsets of a group G, then we define their sum by,

A+B := {a+ b : a ∈ A,b ∈ B}

Lemma 33.13.9. If H is a subgroup of an abelian group G, and H + a, H + b are cosets of H in G,
then,

(H + g) + (H + k) = H + (g + k)
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Theorem 33.13.10. Let H be a subgroup of an abelian group G. Then, the set G/H of cosets H + g of
H in G forms a group under addition of sets as defined above.

Such a group is called a quotient group or factor group of G by H. Note that if G is finite, then
|G/H| = [G : H] = |G|/|H|.

Let ϕ : G → H be a group homomorphism. Then, the kernel ker(ϕ) of ϕ is defined to be the set of
elements of G mapped to the identity idH . That is,

ker(ϕ) = {g ∈ G : ϕ(g) = idH}

Note that ker(ϕ) always contains idH as group homomorphisms must map identities to identities. If idH
is the only element of ker(ϕ), then the kernel is trivial.

The image of ϕ is then defined as,

im(ϕ) = {ϕ(g) : g ∈ G}

Theorem 33.13.11. Let ϕ : G→ H be a group homomorphsim. Then, ϕ is a monomorphism (injection)
if and only if the kernel ker(ϕ) is trivial.

Proof. Since idG ∈ ker(ϕ), if ϕ is injective, then we must have ker(ϕ) = {idG}, completing the forward
implication.

Conversely, suppose ker(ϕ) = {idG}, and let a,b ∈ G with ϕ(a) = ϕ(b). Then, ϕ(a− b) = ϕ(a)− ϕ(b) =
idH , so a− b ∈ ker(ϕ). But then, a− b = idG, and hence a = b, so ϕ is injective, completing the reverse
implication. ■

Theorem 33.13.12. Let ϕ : G→ H be a group homomorphism. Then, ker(ϕ) is a subgroup of G, and
im(ϕ) is a subgroup of H.

Furthermore, if K is a subgroup of G, then the map ϕ : G → G/K defined by ϕ(g) = K + g is an
epimorphism (surjection) with kernel K.

Proof. The first statement follows from the two step subgroup test. For the second, it is clear that ϕ is
surjective, and ϕ(g) = idG/K ↔ K + g = K + idG ↔ g ∈ K, so ker(ϕ) = K. ■

Theorem 33.13.13 (First Isomorphism Theorem). Let ϕ : G → H be a group homomorphism with
kernel K. Then, G/K ∼= im(ϕ). More precisely, there is an isomorphism ϕ̄ : G/K → im(ϕ) defined by
ϕ̄(K + g) = ϕ(g) for g ∈ G.

33.13.2 Free Abelian Groups
The direct sum Zn := Z⊕ Z⊕ . . .⊕ Z︸ ︷︷ ︸

n

of n copies of Z is called a (finitely generated) free abelian group
of rank n.

More generally, a finitely generated abelian group is free abelian if it is isomorphic to Zn for some n ≥ 0,
with the free abelian group Z0 of rank 0 defined to be the trivial group.

The free abelian groups have many properties in common with vector spaces like Rn, but we would
expect some differences, as Z is not a field. Similarly to vector spaces, we will write elements of Zn as
column vectors.

We then define the standard basis of Zn exactly as for the vector space Rn; that is, a set of vectors (xi)ni=1

such that xi is 0 everywhere apart from the ith component, which has a 1. This basis has the same
properties as a basis of a vector space: the vectors are linearly independent, and they span (generate)
Zn, for a modified definition of linear independence and span.
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Elements (xi)
n
i=1 of an abelian group G are called linearly independent if the equation

n∑
i=1

αixi = idG

with integer coefficients αi ∈ Z holds only if αi = 0 for all 1 ≤ i ≤ n.

Elements S = {xi}ni=1 of an abelian group G form a free basis or integral basis of G if and only if they
are linearly independent and span (generate) G. That is,

G = ⟨(xi)ni=1⟩

or equivalently, every g ∈ G can be written as a unique linear integer combination of elements in S:

g =

n∑
i=1

αixi

where all the αi ∈ Z.

Note that a set of elements in Zn that form a basis of Qn or Rn need not be a free basis of Zn. For
instance, the set, {[

2
0

]
,

[
0
2

]}
is a basis of Q2 and R2, and are linearly independent in Z2, but not of Z2, as we are only allowed integer
coefficients in Zn: there is no way to write, say,[

1
0

]
= α1

[
2
0

]
+ α2

[
0
2

]
with α1 and α2 as integers. This also shows that a set of n linearly independent elements of Zn does not
necessarily form a free basis.

Theorem 33.13.14. For any set of elements (gi)
n
i=1 of an abelian group G, it is possible to extend the

assignment xi 7→ gi to a group homomorphism ϕ : Zn → G. We define

ϕ


α1

α2

...
αn

 :=

n∑
i=1

αigi

Then,

• ϕ is a group homomorphism;

• The set (gi) is linearly independent if and only if ϕ is an monomorphism (injection);

• The set (gi) span G if and only if ϕ is an epimorphism (surjection);

• The set (gi) form a free basis of G if and only if ϕ is a isomorphism.

Theorem (Universal Property of the Free Abelian Group). Let G be a free abelian group with a free
basis (gi)

n
i=1. Let H be an abelian group, and (hi)

n
i=1 be elements of H. Then, there exists a unique

group homomorphism ϕ : G→ H such that ϕ(gi) = hi.

As for finite-dimensional vector spaces, we have yet to prove that any two free bases of a free abelian
group have the same size. Let (xi)

n
i=1 be the standard free basis of Zn, and let (yi)

m
i=1 be another free
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basis of Zn (expressed in terms of the standard basis). As in linear algebra, we define the associated
change of basis matrix P with respect to the original basis (xi) and target basis (yi) by,

P = [y1|y2| . . . |ym]

That is, if x and y are column vectors expressed in terms of the standard basis (xi)
n
i=1 and free basis

(yi)
n
i=1, respectively, then,

x = Py

Theorem 33.13.15. Let (yi)mi=1 ⊂ Zn. Then, the following statements are equivalent:

• (yi)
n
i=1 is a free basis of Zn;

• n = m and the change of basis matrix P ∈ Zn×n has an inverse P−1 ∈ Zn×n (that is, the inverse
of P has integer entries);

• n = m and det(P) = ±1.

A square matrix with integer entries and determinant ±1 is called unimodular.

For example, if n = 1, and we have elements,

y1 =

[
2
7

]
, y2 =

[
1
4

]
then we have

P =

[
2 1
7 4

]
with det(P) = 2 · 4− 1 · 7 = 1, so {y1,y2} is a free basis of Z2.

In contrast, take our previous example of

y1 =

[
2
0

]
, y2 =

[
0
2

]
Then, det(P ) = 4 ̸= ±1, so this set is not a free basis of Z2.

33.13.3 Unimodular Smith Normal Form
Recall that, in linear algebra, we may use elementary row and column operations to reduce an m × n
matrix A of rank r to a matrix, [

Ir 0
0 0

]
called the Smith normal form of A.

For matrices over Z, we can similarly reduce a matrix to a Smith normal form, but now, the non-zero
entries will not necessarily be equal to 1.

For matrices over Z, we use unimodular row and column operations instead:

(UC1) Replace a column ci by ci + λcj , λ ∈ Z.

(UC2) Interchange two columns ci and cj .

(UC3) Replace a column ci with −ci.
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(UR1) Replace a row ri by ri + λrj , λ ∈ Z.

(UR2) Interchange two rows ri and rj .

(UR3) Replace a row ri with −ri.

Elementary row and column operations on a matrix A correspond to multiplying A on the left or
right, respectively, by an elementary matrix. These matrices have determinant ±1, and are hence also
unimodular matrices. From this, unimodular row and column operations correspond to the following
change of bases, where (ei)

n
i=1 is a free basis for Zn (the domain of the linear map A represents) and

(fi)
m
i=1 is a free basis of Zm (the codomain).

(UC1) ei 7→ ei + λej ;

(UC2) ei ↔ ej ;

(UC3) ei 7→ −ei;

(UR1) fj 7→ fj − λfi (note the sign change and the reversal of indices);

(UR2) fi ↔ fj ;

(UR3) fi 7→ −fi;

Theorem 33.13.16. Let A be an m × n matrix over Z with rank r. Then, by using a sequence of
unimodular elementary row and column operations, we can reduce A to a matrix

S =

[
D 0
0 0

]
with D = diag(d1,d2, . . . ,dr), where (di)

r
i=1 are positive integers satisfying di|di+1 for 1 ≤ i < r.

Subject to these conditions, the di are uniquely determined by the matrix A.

The matrix S is then called the unimodular Smith normal form of A, or the ZSNF of A.

Lemma 33.13.17. Let A ∈ Zm×n have unimodular Smith normal form S with r non-zero diagonal
entries (di)

r
i=1. Then, the greatest common divisor of all the entries of A is d1.

Algorithm 11 Smith Normal Form Decomposition
1: Compute the greatest common divisor x of the entries in the first column, and the greatest common

divisor y of the entries in the first row. Without loss of generality, suppose x < y (simply reverse
row and columns in the following, if otherwise).

2: Using the Euclidean algorithm, we can form a row whose first element is x.
3: Move this row to the first row such that x is in the first entry. This is the pivot element (and

row/column).
4: Subtract multiples of the pivot row from every other row until the pivot column has 0s everywhere

else (possible since x divides everything in this column).
5: Repeat this process for the rows. This will likely undo some of our work on the pivot column, but

just repeat this process again. This process is guaranteed to terminate since the greatest common
divisor is reduced with each iteration.

6: Eventually, the pivot column and row will be zero every outside the pivot element. Iterate this
process on each column/row until the matrix is diagonal.

7: The diagonal entries may not satisfy the divisibility requirements of the unimodular Smith normal
form, so we again use the Euclidean algorithm to obtain the greatest common divisor of the diagonal
elements, then add or subtract this value until the divisibility requirements are met.
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Rows and columns can also be interchanged, if it makes the Bézout coefficients smaller or if the divisor
is easier to obtain. If it is easy to spot or calculate the greatest common divisor of all the entries of the
matrix, we can shortcut the first few steps somewhat.

Example. Find a ZSNF decomposition of,

A =


−18 −18 −18 90
54 12 45 48
9 −6 6 63
18 6 15 12


It is easy to see that every entry of A is divisible by 3, but for the sake of illustration, we will not use
this shortcut.

Instead, gcd(−18,54,9,18) = 9 and gcd(−18,−18,−18,90) = 9, so we can choose to work on columns or
rows. We already have a 9 in the first column, we will work on the first column:

−18 −18 −18 90
54 12 45 48
9 −6 6 63
18 6 15 12

 r3↔r1−→


9 −6 6 63
54 12 45 48
−18 −18 −18 90
18 6 15 12


Now, clear out the rest of the pivot column,

9 −6 6 63
54 12 45 48
−18 −18 −18 90
18 6 15 12


r2 7→r2−6r1
r3 7→r3+2r1
r4 7→r4−2r1−→


9 −6 6 63
0 48 9 −330
0 −30 −6 216
0 18 3 −114


gcd(9,−6,6,63) = 3, so, we make a 3 in the pivot row.

9 −6 6 63
0 48 9 −330
0 −30 −6 216
0 18 3 −114

 c1 7→c1−c3−→


3 −6 6 63
−9 48 9 −330
6 −30 −6 216
−3 18 3 −114


Clear the pivot row,

3 −6 6 63
−9 48 9 −330
6 −30 −6 216
−3 18 3 −114


c2 7→c2+2c1
c3 7→c3−2c1
c4 7→c4−21c1−→


3 0 0 0
−9 30 27 −141
6 −18 −18 90
−3 12 9 −51


Clear the pivot column again,

3 0 0 0
−9 30 27 −141
6 −18 −18 90
−3 12 9 −51


r2 7→r2+3r1
r3 7→r3−2r1
r4 7→r4+r1−→


3 0 0 0
0 30 27 −141
0 −18 −18 90
0 12 9 −51


gcd(30,−18,12) = 6, and gcd(30,26,−141) = 3, so we will work on the row first this time.

3 0 0 0
0 30 27 −141
0 −18 −18 90
0 12 9 −51

 c2 7→c2−c3−→


3 0 0 0
0 3 27 −141
0 0 −18 90
0 3 9 −51
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Clear the row out, 
3 0 0 0
0 3 27 −141
0 0 −18 90
0 3 9 −51

 c3 7→c3−9c1
c4 7→c4+47c1−→


3 0 0 0
0 3 0 0
0 0 −18 90
0 3 −18 90


gcd(3,0,3) = 3, so our pivot is already the correct divisor. Clear the rest of the pivot column,

3 0 0 0
0 3 0 0
0 0 −18 90
0 3 −18 90

 r4 7→r4−r1−→


3 0 0 0
0 3 0 0
0 0 −18 90
0 0 −18 90


From this point, the algorithm would compute gcd(−18,−18) = 18, and gcd(−18,90) = 9, so we would
then work on the row, but at this point, the matrix is small enough that we can obviously just clear the
last column, then row: 

3 0 0 0
0 3 0 0
0 0 −18 90
0 0 −18 90

 c4 7→c4−5c3−→


3 0 0 0
0 3 0 0
0 0 −18 0
0 0 −18 0



3 0 0 0
0 3 0 0
0 0 −18 0
0 0 −18 0

 r4 7→r4−r3−→


3 0 0 0
0 3 0 0
0 0 −18 0
0 0 0 0



3 0 0 0
0 3 0 0
0 0 −18 0
0 0 0 0

 r3 7→−r3−→


3 0 0 0
0 3 0 0
0 0 18 0
0 0 0 0


In this case, we were lucky in that the diagonal entries already satisfy the divisibility requirements, so
we are done.

Otherwise, for each column i where di does not divide di+1, we can fix the divisibility requirement with
operations on only columms i and i + 1, replacing di with d̃i = gcd(di,di+1) before diagonalising the
matrix again. The new value of di+1 will be a linear combination of the original di and di+1 and will
thus be divisible by d̃i.

For illustration, suppose we instead have the matrix:
3 0 0 0
0 3 0 0
0 0 4 0
0 0 0 0


Here, 3 does not divide 4, so we will aim to form a gcd(3,4) = 1 in place of the 3. First, add column
i+ 1 to column i: 

3 0 0 0
0 3 0 0
0 0 4 0
0 0 0 0

 c2 7→c2+c3−→


3 0 0 0
0 3 0 0
0 4 4 0
0 0 0 0



3 0 0 0
0 3 0 0
0 4 4 0
0 0 0 0

 r2 7→r3−r2−→


3 0 0 0
0 1 4 0
0 4 4 0
0 0 0 0
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3 0 0 0
0 1 4 0
0 4 4 0
0 0 0 0

 r3 7→r3−4r2−→


3 0 0 0
0 1 4 0
0 0 −12 0
0 0 0 0



3 0 0 0
0 1 4 0
0 0 −12 0
0 0 0 0

 c3 7→4c2−c3−→


3 0 0 0
0 1 0 0
0 0 12 0
0 0 0 0


Now, 3 does not divide 1, so we repeat this process again, replacing 3 with gcd(3,1) = 1:

3 0 0 0
0 1 0 0
0 0 12 0
0 0 0 0

 c1 7→c1+c2−→


3 0 0 0
1 1 0 0
0 0 12 0
0 0 0 0



3 0 0 0
1 1 0 0
0 0 12 0
0 0 0 0

 r1 7→4r2−r1−→


1 4 0 0
1 1 0 0
0 0 12 0
0 0 0 0



1 4 0 0
1 1 0 0
0 0 12 0
0 0 0 0

 c2 7→4c1−c2−→


1 0 0 0
1 3 0 0
0 0 12 0
0 0 0 0



1 0 0 0
1 3 0 0
0 0 12 0
0 0 0 0

 r2 7→r2−r1−→


1 0 0 0
0 3 0 0
0 0 12 0
0 0 0 0



△

33.13.4 Subgroups of Free Abelian Groups
Theorem 33.13.18. Any subgroup of a finitely generated abelian group is finitely generated.

Let H be a subgroup of the free abelian group Zn, and suppose that H = ⟨v1,v2, . . .vm⟩. Then, H can
be represented by a n×m matrix A defined by

A = [v1|v2| . . . |vm]

For example, if n = 3 and H is generated by,

v1 =

 1
3
−1

 , v2 =

20
1


then,

A =

 1 2
3 0
−1 1


If a different free basis (yi)

n
i=1 of Zn with change of basis matrix P is used, then each column vi of A is

replaced by P−1vi, and hence A itself is replaced by P−1A.
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For example, if we have the basis

y1 =

 0
−1
0

 , y2 =

10
1

 , y3 =

11
0


of Z3, then,

P =

 0 1 1
−1 0 1
0 1 0

 , P−1

1 −1 −1
0 0 1
1 0 −1

 , P−1A =

−1 1
−1 1
2 1


Theorem 33.13.19. Suppose that a subgroup H of Zn is represented by the matrix A ∈ Zn×m. Then,
if the matrix B ∈ Zn×m can be obtained by applying unimodular row and column operations on A, then
B represents the same subgroup H of Zn using a (possibly) different free basis of Zn.

In particular, we can transform A to its unimodular Smith normal form, S. So, if S represents the
subgroup H with free basis (yi)

n
i=1 of Zn, then the r non-zero columns of S correspond to the elements

(diyi)
r
i=1. So,

Theorem 33.13.20. Let H be a subgroup of Zn. Then, there exists a free basis (yi)
n
i=1 of Zn such that

H = ⟨(diyi)ri=1⟩, where each di > 0 and di|di+1 for 1 ≤ i < r.

By keeping track of the row operations used, we can find the free basis of Zn such that the matrix of H
has a simple form by applying the operations to the basis vectors.

33.13.5 General Finitely Generated Abelian Groups
A presentation is one method of specifying a group. A presentation of a group G is composed of a set S
of generators, and set R of relations among those generators. We then say that G has presentation

⟨S | R⟩

For instance, a cyclic group of order n has the presentation,

⟨a | an = id⟩

This is also sometimes written as

⟨a | an⟩

under the convention that any terms without an equals is assumed to be equal to the identity element.
For instance, the dihedral group Dn has presentation,

⟨r,f | rn, f2,(rf)2⟩

where r is a rotation and f a reflection; Z2 has presentation,

⟨x,y | xy = yx⟩

and the free group F (S) on a set S has presentation,

⟨S | ∅⟩

Note that the presentation of a group is not unique.

Let G be a finitely generated abelian group. If G has n generators (xi)
n
i=1, then Theorem 33.13.14 gives

us a way to define a surjective homomorphism ϕ : Zn → G, and by the first isomorphism theorem, we
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can deduce that G ∼= Zn/K, where K = ker(ϕ), so we have proved that every finitely generated abelian
group is isomorphic to a quotient group of a free abelian group.

From the definition of ϕ, we see that K is given by,

K = {v ∈ Zn : ϕ(v) = idG}

=

{
[v1, . . . ,vn]

⊤ ∈ Zn :

n∑
i=1

vixi = idG

}
and, because K is a subgroup of G, which is finitely generated, K is also finitely generated by elements
(vi)

m
i=1 of Zm. The quotient group Zn/K then has presentation,

⟨x1, . . . ,xn | v1, . . . ,vm⟩

(where (xi)
n
i=1 is the standard basis of Zn) and as before, this group is isomorphic to G,

G ∼= ⟨x1, . . . ,xn | v1, . . . ,vm⟩

Now, we can find the unimodular Smith normal form of the matrix of K to find a free basis (yi)
n
i=1 of

Zn such that K =
〈
(diyi)

r
i=1

〉
for some r ≤ n and di > 0 and di|di+1 for 1 ≤ i < r, giving,

G ∼= ⟨y1, . . . ,yn | d1y1, . . . ,drvr⟩

Theorem 33.13.21. The group,

⟨y1, . . . ,yn | d1y1, . . . ,drvr⟩

is isomorphic to the direct sum of cyclic groups,

Zd1 ⊕ Zd2 ⊕ · · · ⊕ Zdr ⊕ Zn−r

Putting these results together, we obtain,

Theorem 33.13.22 (Fundamental Theorem of Finitely Generated Abelian Groups). If G is a finitely
generated abelian group, then G is isomorphic to a direct sum of cyclic groups. More precisely, if G is
generated by n elements, then, for some r with 0 ≤ r ≤ n, there exist integers (di)

r
i=1 with di > 0 and

di|di+1 for 1 ≤ i < r, such that,

G ∼= Zd1 ⊕ Zd2 ⊕ · · · ⊕ Zdr ⊕ Zn−r

or more compactly, (
r⊕
i=1

Zdi

)
⊕ Zn−r

That is, G is isomorphic to the direct sum of r finite cyclic groups of orders d1, . . . ,dr, and n− r infinite
cyclic groups.

There may be some factors Z1 = {id}, which can be omitted from the direct sum (unless it is the only
factor and G ∼= Z1 is trivial). It could be the case that n− r = 0, which occurs if and only if G is finite.
We can also have that di = 1 for all i, which occurs if and only if G is free abelian.

Example. From before, we found that the matrix

A =


−18 −18 −18 90
54 12 45 48
9 −6 6 63
18 6 15 12
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has unimodular smith normal form 
3 0 0 0
0 3 0 0
0 0 18 0
0 0 0 0


This means that the group defined by A, which has presentation,〈

x1,x2,x3,x4

∣∣∣∣∣ −18x1 + 54x2 + 9x3 + 18x4, −18x1 + 12x2 − 6x3 + 6x4,
−18x1 + 45x2 + 6x3 + 15x4, 90x1 + 48x2 + 63x3 + 12x4

〉

is isomorphic to,

Z3 ⊕ Z3 ⊕ Z18 ⊕ Z1

which has a maximal finite subgroup of order 3× 3× 18 = 162. △

33.13.6 Finite Abelian Groups

For any finite abelian group G, we now have G ∼=
⊕r

i=1 Zdi , where di|di+1 for 1 ≤ i < r and |G| =
d1d2 · · · dr. Because the unimodular Smith normal form is unique, this implies that this decomposition
is also unique, and so, the isomorphism classes of finite abelian groups of order n > 0 are in bijection
with the factorisations of n,

n =

r∏
i=1

di

for which di|di+1 for 1 ≤ i < r. This allows us to classify isomorphism classes of finite abelian groups.

Example.

• n = 4 – the valid decompositions are 4 and 2× 2, so every group of order 4 is isomorphic to Z4 or
Z2 ⊕ Z2.

• n = 15 – the only valid decomposition is 15, so every group of order 15 is isomorphic to Z15 and is
hence necessarily cyclic.

• n = 36 – we have 36, 2×18, 3×12, and 6×6, so groups of order 36 are isomorphic to Z36, Z2⊕Z18,
Z3 ⊕ Z12, or Z6 ⊕ Z6.

△

Lemma 33.13.23. Let G =
⊕n

i=1Gi be a finite abelian group. Then, the order of g = (g1,g2, . . . ,gn) is
the least common multiple of the orders |gi| of the components of g.
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Chapter 34

Analysis

“Calculus required continuity, and continuity was supposed to require the infinitely
little; but nobody could discover what the infinitely little might be.”

— Bertrand Russell, Mysticism and Logic and Other Essays

Analysis is the study of functions, sequences and series of real or complex numbers. We will begin by
investigating the notions of convergence, continuity, and limits before formalising the foundations of
differentiation and integration.

34.1 Real Analysis

The theorems of real analysis rely on various properties of the real number system. The properties of
the real numbers as a field has already been explored in §12.10, but we will quickly revisit the ordering
properties as they will feature prominently in the theory of sequences:

• ∀a : x < y ↔ x + a < y + a (translational invariance): if x < y, then x + a < y + a for all a –
adding the same number to each side preserves the inequalities;

• x < y ∧ u ≤ v → x+ u < y + v: if x < y and u ≤ v, then x+ y < y + v – adding inequalities that
face the same direction preserves the stricter inequality;

• x < y ∧ a > 0 → (x < y ↔ ax < ay) (scaling invariance): if a is a positive number, then x < y if
and only if ax < ay – multiplying both sides by a positive number preserves the inequality;

• x < y ∧ a < 0→ (x < y ↔ ax < ay): if a is a negative number, then x < y if and only if ax > ay
– multiplying both sides by a negative number reverses the inequality;

• x < y ∧ y < z → x < z: if x < y and y < z, then x < z – inequalities of the same type are
transitive.

• x < y ∧ y ≤ z → x < z: if x < y and y ≤ z, then x ≤ z – inequalities facing the same direction but
of different types preserve the stricter inequality.

• x,y ∈ R+,n ∈ N→ x < y ↔ xn < yn (power rule): if x and y are positive reals, then x < y if and
only if xn < yn for all natural n.

For a more axiomatic and proof oriented overview, see §11.3.

The floor function ⌊x⌋ and ceiling function ⌈x⌉ turn an arbitrary real x into an integer: the floor of x is
the largest integer less than or equal to x, while the ceiling of x is the smallest integer greater than or
equal to x.
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• ⌊x⌋ = sup{z ∈ Z : z ≤ x}

• ⌈x⌉ = inf{z ∈ Z : y ≥ x}

Because the complex numbers are not an ordered field, the floor and ceiling functions can only take real
valued inputs, as non-real complex numbers are not comparable with integers.

The floor and ceiling of a real number is always an integer, with,

x− 1 < ⌊x⌋ ≤ x ≤ ⌈x⌉ < x+ 1

with equality if and only if x is already integer: x ∈ Z↔ ⌊x⌋ = x = ⌈x⌉.

The fractional or decimal part of x, sometimes denoted frac(x), can be computed with x− ⌊x⌋.

Examples:

• ⌊π⌋ = 3, ⌈π⌉ = 4.

• ⌊1.5⌋ = −1, ⌈1.5⌉ = 2.

• ⌊−1.5⌋ = −2, ⌈−1.5⌉ = −1.

• ⌊2⌋ = ⌈2⌉ = 2.

Some authors denote the floor function with [x], and don’t include a ceiling function. Others use [x] to
represent the integer part function, defined as,

[x] =

{
⌊x⌋ x ≥ 0,

⌈x⌉ x < 0.

so, this function picks the next smallest integer if x is non-negative, and the next largest integer if x is
negative – it rounds towards zero.

• [π] = 3

• [1.5] = 1

• [−1.5] = −1

We will not use the integer part function here.

The sign or signum function, sgn(x) returns the sign of its argument, encoded as −1 for negative, 0 for
zero, and +1 for positive.

sgn(x) =


−1 x < 0,

0 x = 0,

+1 x > 0.

On the other hand, the absolute value of x, written |x|, erases the sign of x: |−3| = |3| = 3.

|x| =

{
−x x < 0,

x x ≥ 0.

We can also define |x| as x sgn(x).

For all x and y,

1. | − x| = |x| (evenness);

2. |x| ≥ 0 (non-negativity);

3. |x| = 0↔ x = 0 (positive-definiteness);
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4. |x− y| = 0↔ x = y (identity of indiscernibles);

5. ||x|| = |x| (idempotency);

6. |xy| = |x||y| (multiplicativity);

7.
∣∣∣xy ∣∣∣ = |x|

|y| .

Proof. 1. If x is non-negative, then |x| = x = | − x|. Otherwise if x

2. If x ≥ 0, then |x| = x ≥ 0. Otherwise, if x < 0 then |x| = −x > 0. In both cases, |x| ≥ 0.

3. If x > 0, |x| = x > 0 so |x| ≠ 0. If x < 0, then |x| = −x > 0 so |x| ≠ 0. If x = 0 then |x| = 0.
By trichotomy, exactly one of the previous cases holds. The first two cases show x ̸= 0→ |x| ≠ 0,
so by contrapositive, |x| = 0 → x = 0, completing the forward direction. The third case shows
x = 0→ |x| = 0, completing the backward direction.

4. Follows directly from positive-definiteness.

5. From the definition, |x| = x if x is non-negative, and |x| is always non-negative, so ||x|| = |x|.

6. We prove this by case analysis.

If both x and y are positive, then |x| = x and |y| = y, and |x||y| = xy. As x and y are both
positive, xy is positive, so |xy| = xy = |x||y|.

Without loss of generality, suppose x is positive and y is negative. Then, |xy| = −xy = x(−y) =
|x||y|. By symmetry, this also holds if x is negative and y is positive.

If both x and y are negative, then |xy| = xy = (−x)(−y) = |x||y|.

7. |1| =
∣∣x · 1x ∣∣ = |x| ∣∣ 1x ∣∣, so 1

|x| =
∣∣ 1
x

∣∣, and
∣∣∣xy ∣∣∣ = |x| ∣∣∣ 1y ∣∣∣ = |x| |1||y| =

|x|
|y| .

■

The floor and ceiling functions are also idempotent – they can be applied multiple times without changing
the result beyond the first application. So, ⌊x⌋ = ⌊⌊x⌋⌋ = ⌊⌊⌊x⌋⌋⌋ = . . ..

Theorem (Interval Property). If x ∈ R and r ∈ R+, then |x| < r if and only if −r < x < r.

Proof. Suppose |x| < r. If x is non-negative, then x < r. Otherwise, −x < r, so −r < x, proving the
forward direction.

Now suppose −r < x < r. If x ≥ 0, then x = |x|, so −r < |x| < r. If x < 0, then x = −|x| and
−r < −|x| < r. Multiplying by −1, we again have −r < |x| < r, completing the backward direction. ■

Corollary 34.1.0.1. If y,a ∈ R and r ∈ R+, then |y − a| < r if and only if a− r < y < a+ r.

Proof. Substitute y = x− a in the interval property. ■

This corollary justifies the graphical way of thinking of the absolute value |a − b| as the distance along
the real line between a and b.

In fact, using the absolute value function in this way is an example of a metric on R, which is a generalised
way of measuring distances. This topic is explored in more detail in the chapter on topology, §37.
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34.1.1 Triangle Inequality
Theorem (Triangle Inequality). For all real numbers x and y, |x+ y| ≤ |x|+ |y|.

Proof. For all x and y,

−|x| ≤ x ≤ |x|
−|y| ≤ y ≤ |y|

Adding the two inequalities, we have,

−|x| − |y| ≤ x+ y ≤ |x|+ |y|
−(|x|+ |y|) ≤ x+ y ≤ |x|+ |y|

By the interval property, −a ≤ b ≤ a↔ |b| ≤ a.

Set a = |x|+ |y| and b = x+ y, so −(|x|+ |y|) ≤ x+ y ≤ |x|+ |y|, and |x+ y| ≤ |x|+ |y|. ■

The triangle inequality is of extreme importance and is used in many different applications.

Corollary 34.1.0.2. |a− b| ≤ |a− c|+ |c− b|

Proof. Let x = a− b and y = b− c. Then,

|x+ y| ≤ |x|+ |y|
|a− b+ b− c| ≤ |a− b|+ |b− c|

|a− c| ≤ |a− b|+ |b− c|

■

Corollary (Reverse Triangle Inequality). |x− y| ≥
∣∣|x| − |y|∣∣

Proof.

|y| = |(y − x) + x|
|y| ≤ |y − x|+ |x|

−|y − x| ≤ |x| − |y|
−| − 1| · |y − x| ≤ |x| − |y|

−|x− y| ≤ |x| − |y| (1)

|x| = |(x− y) + y|
|x| ≤ |x− y|+ |y|

|x| − |y| ≤ |x− y| (2)

Combining (1) and (2), we have,
−|x− y| ≤ |x| − |y| ≤ |x− y|

which, by the interval property, gives, ∣∣|x| − |y|∣∣ ≤ |x− y|
■
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34.1.2 Arithmetic & Geometric Means
The arithmetic mean of a set of numbers, X, is the sum of the numbers divided by the cardinality of X,
or,

1

|X|
∑
x∈X

x =
x1 + x2 + · · ·+ xn

n

The geometric mean of a set of numbers, X, is |X|th root of the product of the numbers, or,

|X|

√∏
x∈X

X = n
√
x1 · x2 · · ·xn

Proposition (AM-GM inequality). For any set, X, of cardinality n ∈ N containing the non-negative
real numbers x1, x2...xn−1, xn, the inequality

1

n

n∑
i=1

xi ≥ n

√√√√ n∏
i=1

xi

holds.

Proof. If all numbers xi are 0, then the inequality holds with equality, as both sides equal 0. If at least
one (but not all) xi is 0, then the geometric mean is 0, and the inequality is strict. Thus, we may assume
that all xi values are positive from this point onwards.

Let m equal the arithmetic mean of the xn. That is,

x1 + x2 + · · ·+ xn−1 + xn
n

= m

x1 + x2 + · · ·+ xn−1 + xn = mn

As there are n copies of xi, it follows that if all values of xi are equal, then they must also equal m.

Now assume that instead at least one xi value is strictly greater than m. Now, suppose that all other
values of xi are at least a. The sum of xi is therefore strictly greater than mn as xi > m and xin > mn,
contradicting that the sum must be exactly equal to mn as defined above. Thus, the supposition that
all other values of xi are also at least a is false: at least one value of xi is strictly less than m if at least
one xi value is strictly greater than m.

Similarly, the statement "If a value of xi > m exists, then a value of xi < m also exists." can be proven
similarly as above with all inequalities reversed.

Combining the two statements above, we have that if all the xi are not equal to a, then at least one of
them is strictly less than a, and at least one another must be strictly greater than a. Let us denote this
result as (1).

Suppose not all the xi are equal, and consider two values of xi, xa and xb such that xa < m < xb.
Replace xa with m and xb with xa + xb −m. (m) + (xa + xb −m) = xa + xb, so the value of the sum of
xi has not changed, and hence the arithmetic mean, m, has also not changed.

Now consider the change to the geometric mean of the xi caused by this replacement. xaxb has been
replaced with m(xa + xb −m). We will demonstrate that the geometric mean has strictly increased.

xaxb < m(xa + xb −m)

xaxb < mxa +mxb −m2

0 < −xaxb +mxa +mxb −m2
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0 < −(xa −m)(xb −m)

0 < (m− xa)(xb −m)

Recall that xa < m < xb. Thus, (m − xa) > 0 and (xb − m) > 0, so the right side is indeed always
positive, as required. Therefore, it is possible to replace variables without changing the arithmetic mean,
while strictly increasing the geometric mean. Denote this result as (2).

Now, suppose that we have n non-negative real numbers, x1, x2...xn−1, xn. As before, let their arithmetic
mean be m. If all the xi are equal, then their arithmetic means and geometric means are both equal to
m.

If instead, the xi are not equal, then we are guaranteed by result (1) that we can find two values of xi
such that xa < m < xb. Now replace xa by m, and xb by xa + xb −m. By result (2), the arithmetic
mean is unchanged (and is equal to m), while the geometric mean is strictly increased.

Every time a replacement is performed, at least one more xi value is changed to m, so after at most n
replacements, all the xi are equal to m, as are the arithmetic and geometric means.

When the xi are equal, the arithmetic mean and geometric mean are equal. At all steps where the xi are
not equal, it is possible to increase the value of the geometric mean. Therefore, the geometric mean is
at most equal to the arithmetic mean when all the xi are equal, and is smaller for every other case: the
geometric mean is always less than or equal to the arithmetic mean, which is equivalent to the statement
that the arithmetic mean is always greater than or equal to the geometric mean. ■

Another proof of this by the means of backwards-forwards induction is given in §5.

The harmonic mean of set of numbers X is |X| divided by the sum of the reciprocals of the numbers, or,

n

(∑
x∈X

1

x

)−1

=
n

1
x1

+ 1
x2

+ · · ·+ 1
xn

The harmonic mean is used to find the average of rates and ratios, and is also used in physics to find the
resistance of parallel resistors.

The arithmetic, geometric and harmonic means are the three Pythagorean means.

We also have the quadratic mean or root mean square of a set of numbers, which is the square root of
the mean of squares of the set, or,√

1

|X|
∑
x∈X

x2 =

√
x21 + x22 + · · ·+ x2n

n

The quadratic mean is also used in electronics to calculate currents, as well as in statistics as a measure
of deviation.

Theorem (HM-GM-AM-QM Inequality). If {xi}ni=1 is a set of positive real numbers, then,

0 < n

(
n∑
i=1

1

xi

)−1

≤ n

√√√√ n∏
i=1

xi ≤
1

n

n∑
i=1

xi ≤

√√√√ 1

n

n∑
i=1

x2i

34.2 Sequences

A sequence is an ordered list of numbers indexed by natural numbers.

We can also call the members of a sequence terms of the sequence. The number of elements in a sequence
(possibly infinite) is called the length of the sequence.
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We denote a sequence by (an):
(an) = a0,a1,a2,a3, . . .

Note the brackets: an refers to the term of the sequence (an) at position n. We also sometimes exclude
a0 if the formula for generating the an terms is problematic at 0, for example, an = 1

n . For our purposes,
this loss of a beginning term is unimportant and won’t be explicitly mentioned unless relevant.

Formally, a sequence can be defined as a function from the natural numbers to the elements at each
position, so an is really just syntactic sugar for a(n), with a : N→ R being a function.

In this chapter we will only be considering infinite sequences of real numbers.

34.2.1 Monotonicity
A sequence, (an), is:

• strictly increasing if ∀n : an+1 > an;

• increasing if ∀n : an+1 ≥ an
• strictly decreasing if ∀n : an+1 < an;

• decreasing if ∀n : an+1 ≤ an;

• monotonic if it is increasing or decreasing or both (i.e. is constant);

• non-monotonic if it is neither decreasing nor decreasing.

Examples:

• an = n = 0,1,2,3, . . .

• bn = (−1)n = 1,− 1,1,− 1, . . .

• cn = 1
n = 1

1 ,
1
2 ,

1
3 ,

1
4 , . . .

1. For all n, an = n < n+ 1 = an+1, so (an) is strictly increasing.

2. b1 = −1 < 1 = b2 and b2 = 1 > −1 = b3, so (bn) is neither increasing nor decreasing, i.e. it is
non-monotonic.

3. For all n, cn = 1
n >

1
n+1 = cn+1, so (cn) is strictly decreasing.

Exercises. Prove whether each of these sequences are monotonic or not:

• an = −1;
• an = − 1

n2 ;

• an = n2;

• an = 2n;

• an = sin(n);

• an = nn sin(n2π);

• an =
√
n+ 1−

√
n;

• an = 1
n! .

34.2.2 Bounded Sequences
A sequence, (an) is:

• bounded above if ∃U ∈ R such that an ≤ U ∀n. U is then an upper bound of the sequence;

• bounded below if ∃L ∈ R such that an ≥ L∀n. L is then a lower bound of the sequence;

• bounded if it is bounded above and bounded below.
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Upper and lower bounds are not unique. For example, if M is an upper bound of (an), then M + 1 is
clearly also an upper bound.

Every increasing sequence is bounded below by its first term.

Every decreasing sequence is bounded above by its first term.

Exercises.

1. Determine whether each sequence in the previous section is bounded above, bounded below, or
bounded, and give examples in the cases where they exist.

2. A sequence is known to be increasing.

(a) Might it have an upper bound?

(b) Must it have an upper bound?

3. A sequence is known to be unbounded above.

(a) Must it have a positive term?

(b) Must it have an infinite number of positive terms?

(c) Can it have negative terms?

(d) Can it have infinitely many negative terms?

(e) Can it also be unbounded below?

34.2.3 Sequences Tending to Infinity
We say that a sequence tends to infinity if its terms become arbitrarily large. We show this by showing
that the sequence eventually exceeds any number we select.

Definition 34.2.1. A sequence (an) tends to infinity if for every C > 0, there exists N ≥ 1 such that
an > C for all n > N .

Similarly, a sequence tends to minus infinity if it becomes arbitrarily negative.

Definition 34.2.2. A sequence (an) tends to minus infinity if for every C > 0, there exists N ≥ 1 such
that an < −C for all n > N .

If a sequence tends to infinity, we write one of,

(an)→∞
an →∞ as n→∞

lim
n→∞

an =∞

and we say that (an) diverges to infinity.

Similarly, we write one of,

(an)→ −∞
an → −∞ as n→∞

lim
n→∞

an = −∞

if (an) diverges to minus infinity.

Example. an = n diverges to infinity, because for any C > 0, we can pick N = C + 1, so, for all n > N ,
an = n > N > C. △
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We can show that a sequence does not tend to infinity by finding an upper bound, and similarly, we can
show that a sequence does not tend to minus infinity by finding a lower bound.

Example. an = 1
n does not diverge to infinity because it is bounded above by, say, 1. It also does not

diverge to minus infinity because it is bounded below by, say, 0. △

Theorem 34.2.1. Let (an) and (bn) be sequences such that bn ≥ an ∀n, and suppose that an → ∞.
Then, bn →∞.

Proof. Suppose C > 0. Because an → ∞, there exist N such that an > C whenever n > N . But
bn ≥ an for all n, so bn is also greater than C whenever n > N , satisfying the definition of divergence to
infinity. ■

Suppose (an) and (bn) tend to infinity, then,

• an + bn →∞;

• anbn →∞;

• can →∞ if c > 0;

• canbn → −∞ if c < 0.

Proof. Let C > 0 such that C
2 > 0. Because the sequences both tend to infinity, we know there exists

N1 and N2 such that an > C
2 whenever n > N1, and bn > C

2 whenever n > N2.

Let N = max(N1,N2). Because N ≥ N1 and N ≥ N2, an > C
2 and bC

2
both hold whenever n > N .

Then, an + bn >
C
2 + C

2 = C whenever n > N , which is the definition of tending to infinity.

The proof of the last three properties is left as an exercise for the reader (though each proof is essentially
the exact same proof as above). ■

34.2.4 Convergent Sequences
Consider the sequence,

an =
1

2n
= 1,

1

2
,
1

4
,
1

8
,
1

16
, . . .

Each term is getting closer and closer to zero, the difference becoming half the size of each step. You
would probably agree that this sequence “tends to zero” or “approaches zero”, whatever that means.

What about this sequence?

an =
1

n
= 1,

1

2
,
1

3
,
1

4
, . . .

Sure enough, it doesn’t shrink quite as quickly as the previous sequence, but this sequence does also
seem to be “tending to zero”.

And again,

an =
(−1)n

n
= −1,1

2
,− 1

3
,
1

4
,− 1

5
, · · ·

this sequence jumps about from both sides of zero, but also seems to close in towards it, so we might say
that this sequence also “tends to zero”.

Now, this sequence is a little different:

an = 2− 1

2n
= 1, 1.5, 1.75, 1.875, 1.9375, 1.96875, . . .
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This time, it sounds reasonable to say that this sequence is “approaching two”.

But, how do we formalise all of this? We want a precise definition of what it means for a sequence to
“tend to” or “approach” a number. Maybe it will help to see a sequence which we can agree doesn’t tend
towards a number.

If we look at this sequence,
ab = (−1)n = 1,− 1,1,− 1, . . .

This sequence doesn’t seem to tend towards anything. The terms seem to sit at a constant distance of
1 away from 0, so it seems reasonable to say that this sequence doesn’t tend towards zero.

Maybe the distances between the term and the target number just has to get smaller with each step.
Sounds reasonable enough.

But, consider the sequence given by a′n = 1
2n + 1. This is the same as the first sequence, an = 1

2n , but
we’ve added 1 to each term. Every term in this new sequence also “gets closer” to 0, but clearly, this
sequence never drops below 1, so saying that this sequence also tends to zero seems wrong.

And equivalently, an also gets closer to −1 with each term, and also to −2, and −3.

It’s not enough for the distance between each term and the target number to get smaller with each step,
this distance needs to be able to become arbitrarily small.

For now, let’s concentrate on the case where the sequence is tending to zero.

34.2.4.1 Null Sequences

Definition 34.2.3. A sequence (an) tends to zero if, for every ε > 0, there exists a natural N such that
|an| < ε for all n > N .

To represent this, we write,

(an)→ 0

an → 0 as n→∞
lim
n→∞

an = 0

We can also say that (an) is a null sequence, or that 0 is the limit of (an).

The idea of this definition is that, for any error, ε, we can always find a value of N big enough that the
terms of (an) always land within ε of 0 whenever n > N .

For example, to prove that an = 1
n converges to 0, we let ε > 0 and let N = 1

N . Then, whenever n > N ,
an = 1

n <
1
N < ε so |an| < ε

We have actually seen this proof before quite some time ago in §2.3.1.6, if you can still remember.

On the other hand, we can prove that an = (−1)n doesn’t converge to 0, by letting ε = 1
2 . For all n,

|an| = 1 > 1
2 > ε, so we know that this sequence doesn’t converge to zero.

Lemma 34.2.2. If (an)→∞, then
(

1
an

)
→ 0.

Proof. Since limn→∞ an → ∞, there exists a value N ∈ N such that for all n > N , an > C for any
particular value of C ∈ R.

Let ε > 0 and C = 1
ε , such that, for all n, if 0 < an < C, then 0 < 1

an
< 1

C = ε, so an < ε.

So, if a value of N exists such that for all n > N , an > C, then the same N is sufficient for all n > N to
have 1

an
< ε. ■
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Note that the converse of this statement is not true without an extra condition:

Lemma 34.2.3. If (an)→ 0 and (an) is monotonic, then
(

1
an

)
→∞.

Proof. Exercise. ■

Lemma (Absolute Value Rule). (an)→ 0 if and only if (|an|)→ 0.

Proof.
∣∣|an|∣∣ = |an|, so |an| → 0 if and only if ∀ε > 0 there exists N ∈ N such that

∣∣|an|∣∣ = |an| < ε
whenever n > N , which is exactly the definition of (an) → 0, completing the backward direction. The
same argument holds in reverse, completing the forward direction. ■

Theorem (Sandwich Theorem for Null Sequences). If (an)→ 0 and 0 ≤ |bn| ≤ an, then (bn)→ 0.

Proof. Let ε > 0. As (an) is null, there exists N ∈ N such that whenever n > N , |an| < ε. Because
0 ≤ |bn| ≤ an, |bn| ≤ |an| < ε, so (|bn|) is also a null sequence. By the absolute value rule, (bn) is then
also a null sequence. ■

Theorem (Arithmetic of Null Sequences). Let c,d ∈ R and (an)→ 0 and (bn)→ 0. Then,

can + dbn → 0 Sum rule for null sequences
anbn → 0 Product rule for null sequences

Proof. Sum rule. Let ε > 0, so ε
2 > 0.

As an is a null sequence, there exists an Na ∈ N such that for all n > Na, |an| < ε
2 . Similarly, there

exists a Nb ∈ N such that for all n > Nb, |bn| < ε
2 .

Now, let N = max(Na,Nb) or N = Na + Nb, such that N > Na and N > Nb. Because N > Na and
|an| < ε

2 for all n > Na, we have |an| < ε
2 for all n > N . |bn| < ε

2 for all n > N through similar reasoning.
It follows that, for all n > N , |an|+ |bn| < ε, and we have |an + bn| < ε by the triangle inequality.

Product rule. Let ε > 0, so
√
ε > 0.

As an is a null sequence, there exists an Na ∈ N such that for all n > Na, |an| <
√
ε. Similarly, there

exists a Nb ∈ N such that for all n > Nb, |bn| <
√
ε.

Now, let N = max(Na,Nb) or N = Na + Nb, such that N > Na and N > Nb. Because N > Na and
|an| <

√
ε for all n > Na, we have |an| <

√
ε for all n > N . |bn| <

√
ε for all n > N through similar

reasoning. It follows that, for all n > N , |an||bn| < ε, so |an + bn| < ε by multiplicativity of absolute
values. ■

34.2.4.2 Convergent Sequences

Now that we are comfortable with some simple null sequences, we can extend the definition of convergence
to more general non-zero limits.

Definition 34.2.4. A sequence, (an) converges to or tends to a if ∀ε > 0∃N ∈ N such that |an− a| < ε
whenever n > N .

If such an a exists, the sequence is convergent, and a is the limit of the sequence. Otherwise, the sequence
is divergent. Note that sequences diverge to (minus) infinity, not converge.

If (an) converges to a, we write,

(an)→ a
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an → a as n→∞
lim
n→∞

an = a

So, we can see that null sequences are a special case of convergent sequences – a sequence is null if a = 0
in the above.

Corollary 34.2.3.1. (an)→ a if and only if (an − a)→ 0.

Above, we said that a is the limit of the sequence. Can there be more?

Theorem (Uniqueness of Limits). A sequence can converge to at most one limit.

Proof. Let (an) be a sequence with two limits, a and b, That is, limn→∞ an = a, limn→∞ an = b.

Let ε > 0, and let εa,εb < ε
2 . Let N = max(Na,Nb) such that N > Na and N > Nb. Because N > Na,

and |an − a| < εa for all n > Na, we have |an − a| < εa for all n > N . We also have |an − b| < εb for all
n > N through similar reasoning. Then,

|an − a|+ |an − b| < εa + εb

<
ε

2
+
ε

2
< ε

So |an − a|+ |an − b| < ε. Now,

|a− b| = |a− b+ (an − an)|
= |a− an + an − b|
≤ |a− an|+ |an − b|
≤ | − (an − a)|+ |an − b|
≤ |an − a|+ |an − b|

So |a− b| ≤ |an − a|+ |an − b|. Combined with the first inequality, we have |a− b| < ε.

Suppose a ̸= b, so a− b ̸= 0. Then, |a− b| = k > 0. If ε < k, then |a− b| > ε, which is a contradiction.
It follows that a = b. Since a and b were arbitrary, the limit of a sequence is unique. ■

Theorem (Boundedness of Convergent Sequences). Every convergent sequence is bounded.

Proof. If an converges to k, then there existsN ∈ N such that for all n > N , |an−k| < ε for any ε > 0. Fix
n = N+1 > N . It follows that there are finitely many terms, namely a1,a2,a3, · · · aN−1,aN , which can be
greater than ε away from k. Let A = max (a1,a2,a3, · · · aN−1,aN ) and B = min (a1,a2,a3, · · · aN−1,aN ).
A ≥ an for n ∈ {1,2,3, · · ·N}, and similarly, B ≤ an over the same interval. Finally, restrict ε <
min (|A− k|,|B − k|) so |an − k| < |A− k| and |an − k| < |B − k| for all n > N . Now, B ≤ an ≤ A for
all n, so an is bounded by A and B. ■

Theorem (Algebra of Convergent Sequences). Let a,b ∈ R, and (an) → a and (bn) → b be convergent
sequences. Then,

can + dbn → ca+ db Sum rule
anbn → ab Product rule
an
bn
→ a

b
, provided b ̸= 0 Quotient rule
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Proof. Sum rule. an → a and bn → b, so An = (an−a) and Bn = (bn−b) are null sequences. By the sum
rule for null sequences, cAn+dBn → 0. c(an−a)+d(bn−b) = can−ca+dbn−db, so can+dbn → ca+db.

Product rule. an → a and bn → b, so An = (an − a) and Bn = (bn − b) are null sequences. anbn − ab =
(an − a)(bn − b) + a(bn − b) + b(an − a) = AnBn + aBn + bAn. By the product rule for null sequences,
AnBn → 0. aBn and bAn, being scaled null sequences, are also null sequences. Thus the entire right
side is the sum of null sequences, so anbn − ab→ 0 and anbn → ab.

Quotient rule. Let bn → b. By the product rule, bbn → b2, so, for any ε > 0, there exists N ∈ N such
that for all n > N , |bbn − b2| < ε.

∣∣∣∣ 1bn − 1

b

∣∣∣∣ = |b− bn||b||bn|

=
| − (bn − b)|
|b||bn|

=
|bn − b|
|b||bn|

As bn is convergent, it is bounded. Let A be a lower bound of bn, such that 0 < A < |bn|∗.

≤ |bn − b|
A|b|

≤ 1

A|b|
|bn − b|

1
A|b| is a constant, so,

≤ k|bn − b|

|bn − b| is null, so k|bn − b| also converges to 0. It follows that
∣∣∣ 1
bn
− 1

b

∣∣∣ is also null by the sandwich rule

for null sequences, so 1
bn
→ 1

b .

an
bn

= an · 1
bn

which, by the product rule, converges to a · 1b = a
b . ■

Theorem (Sandwich Theorem for Sequences). Suppose (an) → l and (cn) → l. If an ≤ bn ≤ cn, then,
(bn)→ l.

Proof. Let b be the limit of bn. an ≤ bn ≤ cn, so 0 ≤ bn−an ≤ cn−an, and apply the sandwich theorem
for null sequences, so (bn − an) is a null sequence. But, from the algebra of convergent sequences, we
have bn − an → 0 = b− l, so b− l = 0 and b = l, so (bn)→ l. ■

In many cases, we only care about what happens to a sequence “after a certain point”, ignoring what
happens at the beginning of a sequence. We can do this by moving the indices of the sequence along,
creating a new shifted sequence.

Definition 34.2.5. A sequence (an) satisfies a certain property eventually if there exists an integer
n ≥ 0 such that the sequence (aN+n) satisfies that property.

∗ We can actually find a more specific value, given that N is large enough:
Suppose 0 < ε < b2

2
, so for all n > N , |bbn−b2| < b2

2
. By the interval property, − b2

2
< bbn−b2 < b2

2
, so b2

2
< bbn < 3b2

2

and bbn > b2

2
for n > N .
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Most proofs and properties that make use of “eventually” leverage the fact that finite sets always have
suprema and infima, while infinite sets may not.

For example,

Lemma 34.2.4. If a sequence is eventually bounded, it is bounded.

Proof. Let ε > 0, and suppose an be eventually bounded by u and l with u > l and
∣∣u+l

2

∣∣ > ε. Let
k = u+l

2 . Then, there exists N ∈ N such that for all n > N , |an − k| < ε. That is, the sequence never
moves more than the size of the average of u and l away from the average of u and l; if it did, the
sequence would be greater than u or less than l.

Fix n = N+1 > N . It follows that there are finitely many terms, namely a1,a2,a3, · · · aN−1,aN , which can
be greater than ε away from k. Let A = max (a1,a2,a3, · · · aN−1,aN ) andB = min (a1,a2,a3, · · · aN−1,aN ).
A ≥ an for n ∈ {1,2,3, · · ·N}, and similarly, B ≤ an for those n. Finally, let U = max(A,u) and
L = min(B,l) so an < U and an > L for all n. The sequence is therefore bounded by U and L for all
n. ■

The next theorem, the shift rule, says that a sequence converges if and only if it converges eventually.
Intuitively, this is just saying that convergence is something that happens as the index goes to infinity,
it doesn’t care about what happens to any finite number of terms at the beginning.

Theorem (Shift Rule). Let N ∈ N. Then, (an)→ a if and only if (aN+n)→ a

Proof. Let ε > 0, and suppose (an) → a. Then, there exists N1 such that for all n > N1, |an − a| < ε.
For any N ∈ N, N + n > N1, so |aN+n − a| < ε as well, which is the definition of convergence, so
(aN+n)→ a, completing the forward direction.

Now suppose (aN+n) → a, so there exists N2 such that for all n > N2, |aN+n − a| < ε. Whenever
n − N > N2, n > N + N2, so |aN+(n−N) − a| = |an − a| < ε, so (an) → a, completing the backward
direction. ■

Exercise. Prove that the shift rule also works for sequences which diverge to (minus) infinity.

Corollary (Sandwich Theorem with Shift Rule). Suppose (an) → l and (bn) → l. If eventually an ≤
cn ≤ bn then (cn)→ l.

Proof. Exercise. ■

Lemma 34.2.5. Suppose (an)→ a. Then, if an ≥ 0 for all n, then a ≥ 0.

Proof. Suppose that a < 0. As an converges to a, there exists N ∈ N such that for all n > N , |an−a| < ε
for any choice of ε > 0. Let ε = −a. It follows that for all n > N , 0 < an − a < −a, so a < an < 0,
which is a contradiction as an ≥ 0. The original supposition is therefore false, so a ≥ 0. ■

Theorem (Inequality rule). Suppose (an)→ a and (bn)→ b. If eventually an ≤ bn then a ≤ b.

Proof. Consider cn = bn − an. From the sum rule, cn → c, where c = b − a. As bn ≥ an, cn ≥ 0 for
sufficiently large n. From the previous lemma, it follows that c ≥ 0, and c = b− a ≥ 0, so b ≥ a. ■

Corollary (Closed Interval Rule). Suppose (an)→ a and (bn)→ b. If eventually an ≤ bn then a ≤ b.
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The above corollary shows that a limit cannot escape from a closed interval. They can, however, escape
open intervals, but only as far as the supremum or infimum of the set. We’ve already seen this happen:
an = 1

n is positive for all n, so the sequence exists in the set, {x ∈ R : x > 0}, but the limit is 0, which
is the infimum of the set.

34.2.5 Subsequences
A subsequence of a sequence is a sequence consisting of some (or all) of its terms, without changing the
order of those terms. That is, it is a monotonic function i : N→ N on the indexing set of the sequence.
The relation of a sequence being the subsequence of another is a preorder (§4.4.6).

If (an) = a1,a2,a3, . . . is a sequence, any strictly increasing sequence of natural numbers, (ni) =
n1,n2,n3, . . ., will generate a subsequence, (ani

) = an1
,an2

,an3
, . . ..

Note that this subsequence is indexed by i, and not n, and in all cases ni ≥ i.

There are many useful properties of subsequences, which we’ll package together as a lemma.

Lemma (Properties of Subsequences).

• If (an) is convergent if and only if every subsequence is convergent.

• If (a2n+1) and (a2n) both converge to the same limit, then (an) also converges to that limit.∗

• If (an) diverges to ±∞, then every subsequence diverges to ±∞.

• If (an) is bounded above (below), then every subsequence is bounded above (below).

• If (ni) is a strictly increasing sequence of natural numbers, then for all i ≥ 1, ni ≥ i.

Proof. Exercise. ■

Theorem (Monotonic Subsequence Theorem). Every sequence has a monotonic subsequence.

Proof. First, some new terminology is helpful:

Definition 34.2.6. af is a floor term of (an) if an ≥ af for all n ≥ f .

So each floor term acts as a lower bound for the rest of the sequence that comes after it.

Ceiling terms are defined similarly.

A floor term is eventually a lower bound of the sequence. If there are infinitely many such terms, then
these floor terms form a monotonically increasing subsequence as each floor term must be greater than
or equal to the last.

If there are finitely many floor terms, then the sequence after the final floor term must be non-increasing,
and must therefore contain a monotonically decreasing subsequence. This is because, if aF is the last
floor term, each term, aA, after aF must have some following term, aB with B > A, which is less than
aA, or else aA would be a new floor term. Then some term aC must exist, and so on. These terms form
the montonically decreasing subsequence.

If there are no floor terms, then the same argument above then applies similarly to ceiling terms. Or
alternatively, the finite floor terms argument still applies, just with aF+1 = a0. ■

∗ More generally, if a set of subsequences cover a sequence (their union is equal to the sequence), and every subsequence
in the set converges to the same limit, then the sequence converges to that limit.
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34.2.6 Sequences of Roots & Powers
Theorem (Bernoulli’s Inequality). If x > −1 is real and n ∈ N, then,

(1 + x)n ≥ 1 + nx

with equality if and only if x = 0, n = 0 or n = 1.

The inequality also holds:

• for all real x for even natural n;

• for all real x > −1 for real n ≥ 1;

• for all real x ≥ 1 if n is any real number;

• in reverse for real x ≥ −1 and real 0 ≤ n ≤ 1.

Proof. (first variant)

Let P (n) be the statement that (1 + x)n ≥ 1 + nx for x > −1,x ∈ R and n ∈ N. We induct (§5) on n.

P (1) holds as (1 + x)1 = 1 + x ≥ 1 + 1x.

Assume that P (n) holds for some fixed arbitrary value of n ≥ 1.

(1 + x)n+1 = (1 + x)n(1 + x)

x > −1, so 1 + x > 0, so direction of inequality is preserved.

≥ (1 + nx)(1 + x)

≥ 1 + x+ nx+ nx2

≥ 1 + (1 + n)x+ nx2

n ≥ 0 and x2 ≥ 0, so nx2 ≥ 0, so

≥ 1 + (1 + n)x

Thus P (n) → P (n + 1). As the base case has been shown to be true, and the inductive step has
been established, the statement P (n) holds for all natural numbers n by the principle of mathematical
induction. ■

Bernoulli’s inequality is useful for proving a variety of limits. For example, n
√
n → 1 and n

√
x → 1 for

x > 0.

Lemma 34.2.6. Let (an) be a sequence such that an > 0 for all n. Suppose 0 < l < 1 and an+1

an
≤ l

eventually. Then (an)→ 0.

Proof. Suppose 0 < l < 1 and an+1

an
≤ l for all n.

Let P (n) be the statement that an ≤ lna0 for all n and some fixed 0 < l < 1. We induct on n.

P (0) holds as a0 ≤ 1 · a0.

Assume that P (n) holds for some fixed arbitrary value of n ≥ 1.
an+1

an
≤ l and an > 0 for all n, so,

an+1 ≤ lan
an+1 ≤ l(lna0)
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an+1 ≤ ln+1a0

So P (n)→ P (n+1). As the base case has been shown to be true, and the inductive step has been estab-
lished, the statement P (n) holds for all natural numbers n by the principle of mathematical induction.

As (ln) is a null sequence, a0ln is also a null sequence. As 0 < an ≤ lna0 for all n, (an) is a null sequence
by the sandwich theorem.

Now, suppose 0 < l < 1 and an+1

an
≤ l only eventually.

Then, there exists some N ∈ N, such that for all n > N , an+1

an
≤ l. So, aN+n+1

aN+n
≤ l for all n. It follows

that aN+n ≤ lN+na0, so 0 ≤ aN+n ≤ lN+na0. lN+n → 0 as n→∞, so (aN+n) is a null sequence by the
sandwich theorem. By the shift rule, (an) is also a null sequence. ■

Corollary 34.2.6.1. Let (an) be a sequence such that an > 0 for all n. If
(
an+1

an

)
→ a and 0 ≤ a < 1

then (an)→ 0.

Exercises. Find the limits of the following sequences:

•
(
xn

nk

)
for x > 0 and k ∈ N;

•
(

n
√
5n2 + 7n

)
;

•
(
n57n+n29n

32n+2

)
;

•
(
n!
nn

)
;

•
(

((2n)!)3

(3n)!

)
;

•
(

5n5+sin3(n)
17n3+cosn(3n2)

)
.

34.3 Completeness

First, we constructed the real numbers through set theory with Dedekind cuts (§4.5.4). We also con-
structed the real numbers from the rationals using the completeness axiom.

Here, we will explore this idea of completeness further. Previously, we said that the real numbers don’t
have “gaps”, while the rational numbers do.

To formalise this, we first discuss dense sets.

34.3.1 Dense Sets
For this section, it is useful for us to have an example of an irrational number.

Lemma 34.3.1.
√
2 is irrational.

Proof. Suppose
√
2 = p

q , for some integers p and q. Then,

2 =
p2

q2

2q2 = p2

so p2 is even. It follows that p is also even,∗ so p = 2n for some integer n,

Then,

2q2 = (2n)2

∗ We can prove this either using case analysis, induction (§5.1.3), or by invoking Euclid’s lemma (§10.1.5). Case analysis
is the simplest way, but the latter two methods are included as exercises.

Notes on Mathematics | 579



Analysis Completeness

2q2 = 4n2

q2 = 2n2

so q2, and similarly q, are also even. So, q = 2m for some integer m. But then,

p

q
=

2n

2m
=

n

m

So, if
√
2 can be written as a rational, it could then always be written as a rational with smaller

parts, which then could also be written with smaller parts, ad infinitum, contradicting the well-ordering
principle (see §6.11.4), which states that there is a smallest natural.

It follows that our original assumption that
√
2 can be written as a fraction is false, so

√
2 is irrational. ■

This type of proof is called proof by infinite descent, because it shows that the statement being false
would imply the existence of an infinitely descending chain of naturals.

This lemma comes in handy whenever we need to assert the existence of at least one irrational. Later in
this chapter, we will also prove that e (Euler’s number) is irrational.

Theorem 34.3.2. Between any two distinct rational numbers there is another rational number.

Proof. If a and b are rational, then so is a+b
2 .∗ ■

This proof takes advantage of the fact that the rationals are closed under addition and division, so we
can take the arithmetic mean of the two given rationals to get another rational between them. This isn’t
necessarily the simplest fraction between a and b, in the sense that there exists other fractions between
a and b with smaller denominators (see footnote), but it is the fraction that sits halfway between them.

We now show that, despite the fact that irrational numbers exist, we can still always find a rational no
matter how closely we zoom in on the number line.

Theorem 34.3.3. Between any two distinct real numbers there is a rational number.

Proof. Let x,y ∈ R be distinct real numbers. Without loss of generality, suppose x < y so y−x > 0. Let
y − x = z.

By the Archimedean property (Theorem 11.4.1), there exists a natural n such that nz > 1, so ny−nx > 1.
This implies that the interval (nx,ny) has length greater than 1, so there is at least one integer point
within that interval. It follows that there exists an integer, m, such that nx < m < ny, so x < m

n < y,
giving a rational. ■

∗ If a
c

and b
d

are rationals, then,
a

c
<

a+ b

c+ d
<

b

d

This middle fraction is called the mediant, or sometimes the freshman sum, due to being a common mistake in the early
stages of learning fractional addition.

Additionally, if the fractions above also satisfy the determinant relation bc − ad = 1, the mediant is also the simplest
(smallest denominator) fraction in the interval

(
a
c
, b
d

)
. Furthermore, this relationship is actually biconditional.

The similarity of bc− ad and determinants in linear algebra is also not a coincidence. Given our set-theoretic definition
of rationals, you can view the mediant as a cross product of the two given rational numbers.

Exercises.
• Prove the mediant inequality.

• Prove that bc−ad = 1 holds if and only if a+b
c+d

is the simplest fraction in
(

a
c
, b
d

)
(assuming all fractions are reduced).

• Explore the connection between the cross product and the mediant. Try plotting the two parts of the rational
numbers as coordinates.
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Corollary 34.3.3.1. There are (countably) infinitely many rationals in any open interval.

Proof. Let (a,b) be a non-empty interval. Suppose there are only n rationals in (a,b). Because < is a
strict total ordering on the reals, we have,

a < r1 < r2 < . . . < rn < b

Applying the above theorem to a and r1, we know there exists a rational in (a,r1), which is a subinterval
of (a,b). This contradicts our assumption that there are n rationals in (a,b). It follows that there are
infinitely many rationals in the interval. ■

Because the rationals can be arbitrarily close to real numbers, we say that the rational numbers are a
dense subset of the real numbers.

A subset S of a set X is dense in X if every member of X is in S, or is otherwise arbitrarily close∗ to a
member of S.

In this case, any real number can be approximated arbitrarily well by rational numbers, so the rationals
are dense in the reals.

Theorem 34.3.4. Between any two distinct real numbers there is an irrational number.

Proof. Let a,b ∈ R, and without loss of generality suppose a < b. Then, let x = a√
2

and y = b√
2
. By the

density of the rationals, there exists a rational, r, such that x < r < y, so

a√
2
< r <

b√
2

so a <
√
2r < b, and we have an irrational between a and b. ■

Corollary 34.3.4.1. There are (uncountably) infinitely many irrationals in any open interval.

Proof. Exercise. ■

This corollary shows that the irrationals are also dense in the reals, but the irrationals, being uncountably
infinite in cardinality, are actually far more numerous than the rationals.

34.3.2 Suprema & Infima
We recall the definition of bounds for sets:

Let S be a non-empty set of real numbers. A real number x is an upper bound of S if x ≥ s for all s ∈ S.
A real number y is the least upper bound or supremum of S if y is an upper bound, and y ≤ x for all
upper bounds x of S.

We define the lower bound and greatest lower bound or infimum similarly.

We can say the least upper bound, because the supremum is unique.

∗ We haven’t really defined what “close” means. X in this definition really has to be a topological space, which is a set
equipped with some notion of closeness in the form of a topology. As a special case, we are working with metric spaces
here.

For the real numbers, we can use the regular Euclidean distance metric as our measure of closeness, so a and b have
distance |a− b| between each other. In R2, we can use the Euclidean norm, given by ∥a− b∥ =

√
(a1 − b1)2 + (a2 − b2)2,

where a = (a1,a2) and b = (b1,b2). These are examples of metrics or metric functions, and R and R2 are metric spaces.
Metric spaces are a specific type of topological space.

However, in general topological spaces, there may be no concrete formula for measuring distances. The definition of a
dense set in a general topological space is given in §37.4.3.
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Theorem (Uniqueness of supremum). Let (R, ⪯) be an ordered set, and let S ⊆ R be a non-empty
subset. Then, S has at most one supremum in R.

Proof. Let s and s′ be suprema of S in R. By definition, s and s′ are both upper bounds of S in R.
So, s is an upper bound and s′ is a supremum, so s′ ⪯ s. Similarly, s′ is an upper bound and s is a
supremum, so s ⪯ s′. Becaue s′ ⪯ s and s′ ⪯ s both hold, s = s′ by the antisymmetry (§4.4.7) of ⪯. ■

We can also relate the supremum and infimum of a set together. But first, a lemma.

Lemma 34.3.5. Suppose A ⊆ R is non-empty and bounded above. For any ε > 0, there exists a ∈ A
such that supA− ε < a ≤ supA.

Proof. As ε > 0, sup (A)− ε < sup (A), so sup (A)− ε is not an upper bound of A. Let 0 < n < ε such
that sup (A)− ε < sup (A)− n < sup (A). As sup (A)− n < sup (A), sup (A)− n = a for some a ∈ A, so
sup (A)− ε < a < sup (A). ■

Theorem 34.3.6. For any non-empty set A ⊆ R, inf (A) = − sup (−A), where −A = {−a : a ∈ A}.

Proof. Suppose A ⊆ R is non-empty and bounded below, so there is at least one element, a, in A. −A
therefore contains at least −a, and is also non-empty.

For all a ∈ A, a ≥ inf (A) by definition, so −a ≤ − inf (A). −a is the general element of the set (−A),
so all elements of (−A) are less than or equal to − inf (A). It follows that − inf (A) is the supremum of
(−A), so inf (A) = − sup (−A). ■

We can use this to show that the least upper bound property implies the greatest lower bounds property,
and vice versa.

Theorem 34.3.7. The least upper bounds property and the greatest lower bounds property are equivalent.

Proof. Suppose A ⊆ R is non-empty and bounded below. Then, −A is also a non-empty set of real
numbers, but is bounded above. The least upper bound property says that −A has a least upper bound,
sup(−A). But, from the theorem above, A = −(−A) has a greatest lower bound, inf A = − sup(−A),
completing the forward implication.

The reverse implication is left as an exercise to the reader. ■

34.3.2.1 Bounded Monotonic Sequences

Many results in analysis are based on completeness. Earlier, we proved that convergent sequences are
bounded. With completeness, we can go the other way, and prove that certain bounded sequences are
convergent:

Theorem (Monotonic Convergence Theorem). Every bounded monotonic sequence is convergent. In
particular, increasing sequences converge to their suprema, and decreasing sequences converge to their
infima.

Proof. Suppose (an) is an increasing sequence, and let ε > 0. By Lemma 34.3.5, there exists some aN
for which sup (A)− ε < aN < sup (A), and as an is increasing, the inequality holds for all n > N .

For all n > N , sup (A)−ε < an < supA < supA+ε, so −ε < an−sup (A) < ε. By the interval property,
we have |an − sup (A)| < ε, which is the definition of convergence, so (an)→ sup (A) as n→∞.

Now suppose an is a decreasing sequence. Then (−an), is an increasing sequence, so (−an) converges to
sup (−A), which, by Theorem Theorem 34.3.6, is equal to − inf (A), so (−an) → − inf (A), and by the
sum rule, an → inf A. ■
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Corollary 34.3.7.1. Every monotonic sequence is either bounded above or bounded below. In particular,
every increasing sequence which is bounded above is bounded, and every decreasing sequence which is
bounded below is similarly bounded.

Proof. Exercise. ■

The above theorems on convergence of bounded monotonic sequences gives us a method to show that
monotonic sequences converge, even if we do not necessarily know what the limit is.

We also sometimes say that a bounded monotonic sequence converges “by completeness”, as an abbrevi-
ation of “by the monotonic convergence theorem”.’

34.3.3 General Bounded Sequences
We’ve previously shown that every subsequence of a bounded sequence is bounded. We have also shown
that every sequence has a monotonic subsequence.

Combining these two theorems, we get,

Theorem (Bolzano-Weierstrass Theorem). Every bounded sequence has a convergent subsequence.

Proof. By the monotonic subsequence theorem, every bounded sequence has a monotonic subsequence.
The bounds of the original sequence are also bounds for the subsequence. This subsequence is then both
monotonic and bounded, thus satisfying the conditions for the monotonic convergence theorem, so the
subsequence converges. ■

We can also prove the Bolzano-Weierstrass theorem using a technique called lion hunting. The name
refers to a method of trapping a lion in a square jungle.

First, build a fence dividing the jungle in half, and listen to tell which half the lion is in. Then, divide that
half into half again, and repeat. The lion will quickly be trapped in a manageable area, and eventually,
into as small as an area as is desired.

Proof. We similarly find a limit point for a sequence on the real line. Suppose a sequence (xn) is bounded
below by a1 and bounded above by b1. Divide the interval [a1,b1] into two subintervals,

[
a1,

a1+b1
2

]
and[

a1+b1
2 ,b1

]
. At least one of the two intervals must contain infinitely many terms of (xn). We select this

half (or select randomly if both halves contain infinitely many terms) and label it as the interval [a2,b2].
Then, we split this new interval in half, and find the half which contains infinitely many terms of (xn)
and label it [a3,b3]. Continuing, at the kth step, we start with an interval [ak,bk] containing infinitely
many terms of (xn), and subdivide it into two intervals,

[
ak,

ak+bk
2

]
and

[
ak+bk

2 ,bk
]
, one of which will

containing infinitely many terms of (xn), and we label as [ak+1,bk+1].

ak < bk, so ak+bk
2 > ak+ak

2 = ak. ak+1 is either equal to ak, or ak+bk
2 , so in both cases, ak+1 ≥ ak, so

(an) is increasing. a1 < ak < b1, so (an) is also bounded. By the monotonic convergence theorem, (an)
converges to some limit, l1.
ak+bk

2 < bk+bk
2 = bk, so (bn) is decreasing through similar reasoning, and a1 < bk < b1, so (bn) is also

bounded and similarly convergent to some limit, l2.

bk+1 − ak+1 = bk − ak+bk
2 = bk−ak

2 , or bk+1 − ak+1 = ak+bk
2 − ak = bk−ak

2 . In both cases, bk+1 − ak+1 =
bk−ak

2 . Because a1 and b1 exist and are finite, b1 − a1 is also finite, so as k → ∞, bk − ak → 0, so
l1 − l2 → 0 and l1 = l2, so (an) and (bn) converge to the same limit, L.

As (an) is increasing and (bn) is decreasing, [ak+1,bk+1] ∈ [ak,bk]. Every interval [ak,bk] is defined to
have infinitely many terms of (xn), so it is always possible to pick an ni such that xni lies within [ak,bk],
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so ak ≤ xni
≤ bk. As (an)→ L and (bn)→ L, (xni

)→ L by the sandwich theorem, giving a convergent
subsequence of (xn). ■

34.3.4 Cauchy Sequences
Previously, we have proven that convergent sequences are bounded, and also that bounded monotonic
sequences are convergent. However, we can further prove that monotonic sequences converge if and only
if they are bounded.

Theorem (Convergence Test). A monotonic sequence converges if and only if it is bounded.

Proof. Exercise. (This is an easy consequence of the previous two results.) ■

Now, what other conditions are sufficient to prove convergence?

Proposition (Cleverclog’s Test). A sequence (an) converges if and only if (an+1 − an)→ 0.

This seems reasonable – a sequence converges if and only if the gaps between the terms go to zero.
Unfortunately, it’s completely wrong.

Example. Let (an) = lnn. Then,

an+1 − an = ln (n+ 1)− lnn

= ln

(
n

n+ 1

)
As n → ∞, n

n+1 → 1, so ln
(

n
n+1

)
→ ln 1 = 0, thus satisfying Cleverclog’s test criterion. However,

lnn→∞ as n→∞. △

The gaps between each consecutive terms going to zero doesn’t mean that the sequence always converges.
The problem is, the gaps can tend to zero slower than the sequence tends towards any finite point. We
need a stronger condition.

Definition 34.3.1. A sequence (an) has the Cauchy property if for each ε > 0, there exists n ∈ N such
that |an − am| < ε for all n,m > N .

If a sequence has the Cauchy property, we say it is a Cauchy sequence. The Cauchy criterion is stronger
than Cleverclog’s, because Cauchy requires that every term past a certain point is no more than ε away
from each other, while Cleverclog only requires consecutive terms to become arbitrarily close.

This time, the Cauchy criterion is sufficient for convergence:

Lemma 34.3.8. Every Cauchy sequence is convergent.

Proof. Suppose (an) is Cauchy.

Let ε = 1. As (an) is Cauchy, there exists N ∈ N such that ∀n,m > N , |an− am| < 1, so, by the interval
property, −1 < an − am < 1 and am − 1 < an < am + 1, so (an) is eventually bounded for some fixed
m > N and all n > N . As (an) is eventually bounded, it is bounded.

By the Bolzano-Weierstrass theorem, (an) contains a subsequence, (ani
), that converges to a limit, a.

Let ε > 0, and let ε1,ε2 < ε
2 .

As (an) is Cauchy, there exists N1 ∈ N such that |an − ani
| < ε1 for all n,ni > N1. As ani

converges to
a, there exists N2 ∈ N such that |ani

− a| < ε2 for all ni > N2.

Let N = max(N1,N2). Then, |an − a| < |an − ani
|+ |ani

− a|, so |an − a| < ε1 + ε2, and |an − a| < ε for
all n > N , so an converges to a. ■
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It turns out, however, that Cauchy is not only sufficient for convergence, it is necessary:

Lemma 34.3.9. Every convergent sequence is Cauchy.

Proof. Suppose (an)→ a. Let ε > 0, and let ε1,ε2 < ε
2 .

(an) → a, so (am) → a by shift rule. By the definition of convergence, there exists N1 ∈ N such that
|an − a| < ε1 for all n > N1. Similarly, N2 ∈ N exists, such that |am − a| < ε2 for all m > N2. Let
N = max(N1,N2). Then, for all m,n > N ,

|an − am| = |an − am + a− a|
= |(an − a) + (a− am)|
≤ |an − a|+ |a− am|
≤ |an − a|+ | − (am − a)|
≤ |an − a|+ |am − a|
≤ ε1 + ε2

< ε

So (an) is Cauchy. ■

So, combining the two previous results, we have shown that being convergent and having the Cauchy
property are equivalent. This gives us a test for convergence:

Theorem (Convergence Test). A sequence is convergent if and only if it has the Cauchy property.

This test is incredibly powerful, because it applies to all sequences, not just monotonic ones, and also
doesn’t depend on us knowing what the limit is.

However, proving that a sequence is Cauchy can be somewhat difficult, so there is an easier test for some
cases.

Definition 34.3.2. A sequence is strictly contracting if, for some number 0 < l < 1, called the contrac-
tion factor,

|an+1 − an| ≤ l|an − an−1|

holds for all integer n ≥ 1.

Lemma 34.3.10. If (an) is a strictly contracting sequence, then |an+1 − an| ≤ |a2 − a1|ln−1

Proof. Let P (n) be the statement that |an+1 − an| ≤ |a2 − a1|ln−1, where n ∈ N. We induct on n.

P (1) holds as |a2 − a1| ≤ |a2 − a1|l0 holds. Now, assume that P (n) holds for some fixed arbitrary value
of n ≥ 1.

|an+2 − an+1| ≤ |an+1 − an|l
≤
(
|a2 − a1|ln−1

)
l

≤ |a2 − a1|ln

Thus, P (n) implies P (n + 1). As the base case has been shown to be true, and the inductive step has
been established, the statement P (n) holds for all natural numbers n by the principle of mathematical
induction. ■

Theorem 34.3.11. A strictly contracting sequence is Cauchy, and is hence convergent.

Notes on Mathematics | 585



Analysis Completeness

Proof. We begin by applying the triangle inequality repeatedly:

|an − am| ≤ |an − an−1|+ |an−1 − an−2|+ · · ·+ |am+1 − am|

And now apply the lemma to each term.

≤ |a2 − a1|(ln−2 + ln−3 + ln−4 + · · ·+ lm−1)

≤ |a2 − a1|
n−2∑

k=m−1

lk

≤ |a2 − a1|

(
n−2∑
k=0

lk −
m−2∑
k=0

lk

)

≤ |a2 − a1|
(
1− ln−1

1− l
− 1− lm−1

1− l

)
≤ |a2 − a1|

(
lm−1 − ln−1

1− l

)
≤ |a2 − a1|lm−1

(
1− ln−m

1− l

)
n > m and 0 < l < 1, so n−m > 0 and 0 < ln−m < 1.

≤ |a2 − a1|lm−1

(
1

1− l

)
As m →∞, lm−1 → 0. |a2 − a1| is a constant, as is 1

1−l , so by product rule, |a2 − a1|lm
(

1
1−l

)
→ 0, so

there exists an N ∈ N such that for all m > N , |a2 − a1|lm
(

1
1−l

)
< ε for any choice of ε > 0, so, for all

n > N ,

|an − am| < ε

Hence, (an) is Cauchy. ■

34.3.5 Decimal Sequences
The easiest decimal representations to deal with are finite or terminating decimals – ones which only
have a finite number of non-zero decimal places, followed by an infinite string of zeros. A positive finite
decimal has the form d0.d1d2 . . . dn, where d0 is a non-negative integer, and each of d1,d2, . . . ,dn is an
integer in [0,9]. Then, d0.d1d2 . . . dn is defined to be the number,

n∑
i=0

di
10i

= d0 +
d1
10

+
d2
102

+ · · ·+ dn
10n

Similarly, negative finite decimals have the form −d0.d1d2 . . . dn, where d0 is a non-negative integer, and
each of d1,d2, . . . ,dn is an integer in [0,9]. Then, d0.d1d2 . . . dn is defined to be the number,

n∑
i=0

− di
10i

= −d0 −
d1
10
− d2

102
− · · · − dn

10n

Infinite or non-terminating decimal representations are defined in terms of sequences. A positive real
number x has a representation as an infinite decimal if there is a non-negative integer d0 and a sequence
(dn) with dn ∈ [0,9] for all n, such that the sequence (an) given by

an :=

n∑
i=0

di
10i

= d0 +
d1
10

+
d2
102

+ · · ·+ dn
10n
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converges to x. If this is the case, then we write

x = d0.d1d2,d3 . . .

Similarly, a negative number requires the sequence

an =

n∑
i=0

− di
10i

= −d0 −
d1
10
− d2

102
− · · · − dn

10n

to converge to x, and we write,
x = −d0.d1d2,d3 . . .

We can easily generate the sequence (dn) by considering recursively considering sets of numbers:

d1 := max

{
i : d0 +

i

10
≤ x

}
d2 := max

{
i : d0 +

d1
10

+
i

102
≤ x

}
d3 := max

{
i : d0 +

d1
10

+
d2
102

+
i

103
≤ x

}
...

dn := max

j :
n−1∑
j=0

dj
10j

+
i

10n
≤ x


It is easy to verify that each digit is in the required interval. Additionally, after n digits, we have
x− 1

10n <
∑n
i=0

di
10i ≤ x, so the sequence converges to x by the sandwich theorem.

For negative real numbers, we similarly use

dn := max

j :
n−1∑
j=0

− dj
10j

− i

10n
≥ x


Theorem (Infinite Decimal Sequences). Every infinite decimal ±d0.d1d2d4 . . . represents a real number.

Proof. bn = d0 +
∑n
k=1

(
dk10

−k). 0 ≤ dk ≤ 9, so d0 +
∑n
k=1

(
0 · 10−k

)
≤ bn ≤ d0 +

∑n
k=1

(
9 · 10−k

)
, so

bn is bounded within [d0,d0 + 0.9̄].

bn+1 − bn =

n+1∑
k=0

(
dk10

−k)− n∑
k=0

(
dk10

−k)
= dn+110

−(n+1)

≥ 0

So bn is increasing. As bn is bounded and monotonic, it is convergent by the monotonic convergence
theorem. ■

Theorem 34.3.12. 0.999̄ = 1.
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Proof.

0.9̄ := lim
n→∞

n∑
i=0

9

10i

=

k∑
i=0

9

10i
+ lim
n→∞

n∑
i=k+1

9

10i

=

k∑
i=0

9

10i
+

9

10k+1
lim
n→∞

1− ( 1
10n−k )

1− 1
10

=

k∑
i=0

9

10i
+

1

10k

= 1

■

This last example shows one of the annoying features of decimals – there can exist two different decimal
representations of same real number. In particular:

Theorem 34.3.13. If a positive real number has two different representations as an infinite decimal,
then one of these representations terminates (or equivalently, ends with an infinite recurring string of
zeros), while the other ends with a infinite recurring string of nines.

Proof. Suppose a real number, x, has two decimal representations, a0.a1a2a3 . . . and b0.b1b2b3, . . .. Sup-
pose that the decimal representations agree until the kth place, where ak < bk. Then,

x = lim
n→∞

n∑
i=0

ai
10i

=

k∑
i=0

ai
10i

+ lim
n→∞

n∑
i=k+1

ai
10i

≤
k∑
i=0

ai
10i

+ lim
n→∞

n∑
i=k+1

9

10i

=

k∑
i=0

ai
10i

+
9

10k+1
lim
n→∞

1−
(

1
10n−k

)
1− 1

10

=

k∑
i=0

ai
10i

+
9

10k+1
· 1

1− 1
10

=

k∑
i=0

ai
10i

+
9

10k+1
· 10
9

=

k∑
i=0

ai
10i

+
1

10k

=

k−1∑
i=0

ai
10i

+
ak
10k

+
1

10k

=

k−1∑
i=0

ai
10i

+
ak + 1

10k
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≤
k∑
i=0

bi
10i

≤ lim
n→∞

n∑
i=0

bi
10i

= x

Since we started with x, and, through a series of inequalities, ended up with x, the inequalities must all
really be equalities. In particular, if any of the nines in the infinite tail is replaced by any other digit,
the third line then only holds strictly, breaking the equality, so one of the decimal representations will
always end with an infinite recurring string of nines. ■

We can now more formally categorise decimals into three types:

Definition 34.3.3. An infinite decimal ±d0.d1d2d3 . . . is:

• terminating if ∃N : ∀n > N : dn = 0 – the decimal ends in an infinite string of zeros;

• recurring if ∃N,r : ∀n > N : dn = dn+r – the decimal repeats;

• non-recurring if it is neither terminating nor recurring.

Because we generally don’t write out the infinite tail of zeros at the end of terminating decimals, finite
and terminating decimals are really the same thing.

Theorem (Characterisation of Terminating Decimals). A real number x can be represented by a termi-
nating decimal if and only if x = p

q , where p and q are integers and the only prime factors of q are 2 and
5.

Proof. If x has a terminating decimal expansion, multiplying by sufficiently large powers of 10 produces
an integer. So, if the decimal representation of x terminates after n digits, 10nx = k, where k is an
integer. It follows that x = k

10n = k
2n5n , proving the forward direction.

Now, suppose x = p
q , and that the only prime factors of q are 2 and 5. Then,

x =
p

q

x =
p

2n5m

Let k = max(n,m).

x =
p

2k5k2n−k5m−k

x =
p

10k2n−k5m−k

x =
p2k−n5k−m

10k

k ≥ n,m, so k − n and k −m are positive integers, so 2k−n and 5k−m are also integers. So, p2k−n5k−m
equals some integer, p′.

x =
p′

10k

which terminates after at most k digits, completing the backward direction. ■

Theorem (Characterisation of Recurring Decimals). Every recurring decimal represents a rational num-
ber.
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Proof. If x has a decimal representation that has recurring blocks of length k after the nth digit, then
dm = dm+k for all m > n, so 10kx is still repeating after the nth digit. As 10kx and x have the same
decimal representation after n digits, 10kx− x must have a terminating decimal representation. By the
previous theorem, 10kx− x = p

q , where the only prime factors of q are 2 and 5. Then,

10kx− x =
p

q

x(10k − 1) =
p

q

x =
p

q(10k − 1)

■

Theorem 34.3.14. Every rational number can be represented by a recurring decimal, or a terminating
decimal.

Proof. When dividing an integer p by another integer q, there are only q possible remainders (0,1,...,q−1).
If the remainder is ever 0, the decimal expansion terminates. If the remainder is never 0, then there are
only q − 1 other values possible. After at most q iterations of division, at least one value is repeated by
the pigeonhole principle, at which point the remainder values will begin to repeat, leading to a recurring
decimal expansion. As there are only q − 1 values possible for the remainder to take, the length of the
repeating block is at most q − 1. ■

Theorem (Classification of Decimal Representations).

• Every real number has a decimal representation, and every decimal represents a real number.

• The rationals are the set of terminating or recurring decimals.

• The irrationals are the set of non-recurring decimals.

• If a number has two distinct decimal representations, then one terminates and the other ends with
a recurring string of nines.

34.3.6 Axioms Equivalent to Completeness
We have proved many results that are consequences of the axiom of completeness. It turns out that
many of these are not only consequences of completeness, but are logically equivalent to the axiom of
completeness.

We have been saying that a sequence converges “by completeness”, as an abbreviation of “by the monotonic
convergence theorem”. This is justified because the monotonic convergence theorem is equivalent to the
axiom of completeness; in fact, each half of the monotonic convergence theorem is individually equivalent
to the axiom of completeness.

A set R is complete if any of the following hold:

1. Least upper bound property: for every subset S ⊆ R, if S is non-empty and has an upper bound,
then S has a supremum in R.

2. Greatest lower bound property: for every subset S ⊆ R, if S is non-empty and has a lower bound,
then S has an infimum in R.

3. Monotonic convergence theorem: every bounded above increasing sequence of elements of R is
convergent.
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4. Monotonic convergence theorem: every bounded below decreasing sequence of elements of R is
convergent.

5. Bolzano-Weierstrass theorem: every bounded sequence of elements of R has a convergent subse-
quence.

6. Cauchy criterion: every Cauchy sequence of elements of R is convergent.

7. Infinite decimal sequences: Every infinite decimal sequence is convergent.

“Equivalence” here means that we can prove any of these results assuming only one of them, so each
individual result as above can be used as an alternative formulation of the completeness axiom. Note, we
have not yet shown these equivalences, mostly only having proved the forward direction from the least
upper bound property.

34.4 Series

One useful type of sequence is a series – a sequence of sums. We already saw some of these in the previous
section when we explored decimals, but in this section, we will develop some more theory around these
series.

Definition 34.4.1. Let (an) be a sequence. The series

∞∑
n=1

ai

has partial sums (sn) given by

sn =

n∑
i=0

an

That is, the nth partial sum is the sum of the first n terms of (an).

We say that the series

• converges if (sn) converges, and if (sn)→ S, we say that S is the sum or limit of the series;

• diverges if (sn) fails to converge;

• diverges to infinity if (sn) diverges to infinity;

• diverges to minus infinity if (sn) diverges to minus infinity.

Note that there are two sequences associated with each series: the sequence being summed, (an), and
the sequence of partial sums, (sn). Also note that n is a bound variable in the first sum above, while n
is free in the second.

We sometimes omit the bounds of the summation when the series is clear.

34.4.1 Properties of Convergent Series

Theorem (Sum Rule for Series). Suppose
∑∞
n=1 an and

∑∞
n=1 bn are convergent series. Then, for all

c,d ∈ R,
∑∞
n=1(can + dbn) is a convergent series, and,

∞∑
n=1

(can + dbn) = c

∞∑
n=1

an + d

∞∑
n=1

bn
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Proof.

n∑
n=1

(can + dbn) = c

n∑
n=1

an + d

n∑
n=1

bn

→ c

∞∑
n=1

an + d

∞∑
n=1

bn

■

Theorem (Shift Rule for Series). Let N ∈ N. Then, the series
∑∞
n=1 an converges if and only if∑∞

n=1 aN+n converges.

Proof.
∞∑
n=1

an =

N∑
n=1

an +

∞∑
n=1

an+N

∑N
n=1 an is a finite sum, so, if

∑∞
n=1 an+N converges to a finite value, we have

∑∞
n=1 an equal to the sum

of two finite numbers, which is another finite number, so
∑∞
n=1 an converges if

∑∞
n=1 an+N converges.

Similarly,
∞∑
n=1

an+N =

∞∑
n=1

an +

(
−

N∑
n=1

an

)
∑N
n=1 an is a finite sum, so, if

∑∞
n=1 an converges to a finite value, we have

∑∞
n=1 an+N equal to the sum

of two finite numbers, which is another finite number, so
∑∞
n=1 an+N converges if

∑N
n=1 an converges.

As the implication has been shown in both directions,
∑∞
n=1 an converges if and only if

∑∞
n=1 an+N

converges. ■

Usually, it is extremely difficult to find an explicit formula for the sum of a series. For instance, consider
series of the form,

ζ(s) =

∞∑
n=1

1

ns

So, ζ(1) would be the harmonic series, for example.

It is known that ζ(n) converges for all positive integer n ≥ 2, but there is no known explicit formula for
the value of ζ evaluated at any odd integer.

The problem becomes even more difficult with series that can also contain negative terms.

So, we generally settle for proving whether a sequence converges or not, and we have a variety of tests
that we can try. For now, we will mainly focus on series with only non-negative terms.

34.4.2 Boundedness Condition
Intuitively, a sequence should only converge if the sequence of its partial terms is bounded. However,
if the sequence being summed consists of only non-negative terms, then this is not only necessary, but
sufficient to prove convergence.

Theorem (Boundedness Theorem). Suppose an ≥ 0 for all n. Then,
∑∞
n=1 an converges if and only if

the sequence of partial sums (sn) = (
∑n
i=1 ai) is bounded.
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Proof. an ≥ 0, so (sn) is increasing. If (sn) is bounded, it is convergent by the monotonic convergence
theorem, so

∑∞
n=1 an converges.∑∞

n=1 an = limk→∞
∑k
n=1 an = limk→∞ sk. Suppose that sk is not bounded. As (sk) is increasing and

unbounded, (sk) → ∞, so
∑∞
n=1 an diverges. By contraposition, if

∑∞
n=1 an converges, then (sn) is

bounded.

As the implication has been shown in both directions,
∑∞
n=1 an converges if and only if (sn) is bounded.

■

34.4.3 Null Sequence Test

Theorem. If (an) is not null, then
∑∞
n=1 an diverges.

Proof. If
∑∞
n=1 an converges to some value, s, then (sn) → s, and (sn+1) → s by shift rule. an+1 =

sn+1 − sn, so limn→∞ an+1 = s − s = 0, so (an+1) is a null sequence. By shift rule, (an) is also a null
sequence.

By contraposition, if (an) is not a null sequence, then
∑∞
n=1 an does not converge. ■

The null sequence test does not require the series to have only non-negative terms. However, it is a test
for divergence only, because the converse isn’t true – the series generated from a null sequence does not
always converge, as we will soon see. But first, another test:

34.4.4 Comparison Test
The comparison test allows us to test the convergence of a series by comparing it term by term against
a series with known behaviour.

Theorem (Comparison Test). Suppose 0 ≤ an ≤ bn for all n. If
∑∞
n=1 bn converges, then

∑∞
n=1 an also

converges, and
∑∞
n=1 an ≤

∑∞
n=1 bn.

Proof. Let sn =
∑n
i=1 an and rn =

∑n
i=1 bn. 0 ≤ an ≤ bn, so (sn) and (rn) are increasing, and,

a1 ≤ b1
a1 + a2 ≤ b1 + b2

a1 + a2 + · · ·+ ak ≤ b1 + b2 + · · ·+ bk
k∑

n=1

an ≤
k∑

n=1

bn

sn ≤ rn

If
∑∞
n=1 bn converges to some value, r, then (rn)→ r, so

0 ≤ sn ≤ rn
lim
n→∞

0 ≤ lim
n→∞

sn ≤ lim
n→∞

rn

0 ≤ lim
n→∞

sn ≤ r

So (sn) is bounded. As (sn) is also increasing, it is convergent by the completeness axiom. ■

So, if we can show that every term of a sequence is at most equal to the corresponding term in a second
sequence, and the series generated by summing the second sequence converges, then the series generated
by summing our original sequence also converges and does so to a smaller value. The contrapositive of
the theorem also gives a second test for divergence:
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Corollary (Comparison Test). Suppose 0 ≤ an ≤ bn for all n. If
∑∞
n=1 an diverges, then

∑∞
n=1 bn also

diverges.

Now we have enough machinery to see the counterexample to converse of the null sequence test.

34.4.5 Harmonic Series

The harmonic series is the series given by an = 1
n , or,

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ · · ·

It is named after the overtones and harmonics in music – the wavelengths of the overtones in a vibrating
medium are terms of the harmonic series multiplied by the medium’s fundamental wavelength. Each
term of the harmonic series is also the harmonic mean (§34.1.2) of its preceding and following term,
so the terms form a harmonic progression. The partial sums are also called harmonic numbers, often
denoted with Hn. The harmonic series has many applications, particularly in discrete mathematics.

While (an) is a null sequence, the harmonic series is actually divergent:

Theorem (Divergence of the Harmonic Series). Replace each denominator of the harmonic series with
the next largest power of two. Because the denominators are being replaced by larger numbers, this makes
the series smaller.

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+ · · ·

≥ 1 +
1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
+

1

16
+ · · ·

= 1 +
1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+

(
1

16
+ · · ·

= 1 +
1

2
+

1

2
+

1

2
+

1

2
+ · · ·

So this second series clearly diverges to infinity. Each term in the second series also

With a little more work, the above proof also easily shows that

2k∑
n=1

1

n
≥ 1 +

k

2

for all positive integers k.

The harmonic series diverges extremely slowly – later, we will show that the harmonic series has a
logarithmic growth rate.

34.4.6 Geometric Series
A geometric series is the sum of a geometric progression – a sequence of numbers where the ratio of each
pair of consecutive terms is constant.

Lemma (Geometric Progression). If r ̸= 1, then,

n∑
i=1

arn−1 = a

(
rn − 1

r − 1

)
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Proof.

n∑
i=1

arn−1 = a+ ar + ar2 + · · ·+ arn−1

(1− r)
n∑
i=1

arn−1 = (1− r)(a+ ar + ar2 + · · ·+ arn−1)

(1− r)
n∑
i=1

arn−1 = a+ ar + ar2 + · · ·+ arn−1 − ar − ar2 − ar3 − · · · − arn−1 − arn

(1− r)
n∑
i=1

arn−1 = a− arn

n∑
i=1

arn−1 =
a− arn

1− r
n∑
i=1

arn−1 = a

(
rn − 1

r − 1

)
■

Theorem (Geometric Series). The series
∑∞
n=0 x

n is convergent if and only if |x| < 1, and the sum is
1

1−x . The series is divergent otherwise.

Proof. Using the previous lemma, we have,

sn =

∞∑
n=0

xn

= lim
n→∞

n∑
i=0

xi

= lim
n→∞

1− xn+1

1− x

= lim
n→∞

1

1− x
− xn+1

1− x

If x > 1, then (xn+1) diverges, so (sn) diverges by sum rule. If x = 1, then sn evaluates to 1 + 1 + · · · ,
which diverges to infinity. If |x| < 1, then (xn+1)→ 0, so (sn)→ 1

1−x . If x ≤ −1, then (xn+1) diverges,
so (sn) diverges.∗

So, the series converges to 1
1−x if and only if |x| < 1, and diverges otherwise. ■

Geometric series are incredibly useful for the comparison test, because we know exactly when a geometric
series converges.

34.4.7 Ratio Test
All the previous tests rely on comparing two different series. Choosing a geometric series to compare
against gives another simple way to frame the comparison test.

Theorem (Ratio Test). Suppose an > 0 for all n ≥ 1, and
(
an+1

an

)
→ l. Then,

∑∞
n=1 an converges if

0 ≤ l < 1, and diverges if l > 1.
∗ The proofs for the (xn+1) sequences converging or diverging were set as exercises at the end of §34.2.6.
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Proof. Suppose
(
an+1

an

)
→ l < 1. Let l < r < 1, so an+1 < ran for any sufficiently large n, say, for all

n > N . So, an+i < rian for all n > N and any integer i > 0, and,

∞∑
i=N=1

an =

∞∑
i=1

aN+i <

∞∑
i=1

riaN = aN

∞∑
i=1

ri = aN
r

1− r
<∞

so the series converges.

Conversely, if l > 1, then an+1 > an for all sufficiently large n, so (an) is eventually increasing. Because
an > 0 for all n ≥ 1, and is eventually increasing, it cannot be a null sequence, so

∑∞
n=1 an diverges by

the null sequence test. ■

Note that, if l = 1, then the ratio test is inconclusive – we do not gain any information from this test
because there exist both convergent and divergent series which give l = 1.

34.4.8 Integral Test
As mentioned earlier, it is very difficult to find an explicit formula for the sum of a series, so we often
settle for approximations or bounds on the limit. We can compare sums of functions with integrals,
allowing us to use integration techniques to obtain very useful approximations.

First, we note that,
n∑
k=2

f(k) =

� n

1

f(⌈x⌉) dx

The ceiling turns the function into a series of steps with width 1, so integrating the new stepped function
is the same as summing the areas of the rectangles with heights determined by integer values of the
function.

We can rewrite this as,
n∑
k=2

f(k) =

� n

1

f(x) dx+

� n

1

f(⌈x⌉)− f(x) dx

If f is additionally decreasing, then x ≤ ⌈x⌉, so the second integral reduces the value of the whole
expression, so,

n∑
k=1

f(k) ≤
� n

0

f(x) dx

Through similar arguments, we also have,
� n+1

1

f(x) dx ≤
n∑
k=1

f(k)

And we don’t have to start at 1 either. Combining the two and generalising, we get,
� n+1

m

f(x) dx ≤
n∑

k=m

f(k) ≤
� n

m−1

f(x) dx

giving us very close bounds to the series, as long as f is decreasing.

This gives us two very useful tests for convergence:

Theorem (Integral Test for Convergence). Suppose the function f : [1,∞) → R is non-negative and
decreasing. Then

∑∞
n=1 f(n) converges if and only if the increasing sequence (

� n
1
f(x)dx) is bounded, or

equivalently, the sequence (
� n
1
f(x)dx) is convergent.
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Theorem (Integral Test for Divergence). Suppose the function f : [1,∞) → R is non-negative and
decreasing. Then

∑∞
n=1 f(n) diverges if and only if the increasing sequence (

� n
1
f(x)dx) is unbounded,

or equivalently, the sequence (
� n
1
f(x)dx) is divergent.

Proof. Integral test for convergence. If
(� n

1
f(x) dx

)
is bounded, it is convergent by the completeness

axiom as it is increasing. 0 ≤
∑n
k=2 f(k) ≤

� n
1
f(x) dx, so

∑n
k=2 f(k) converges by the comparison test.

It follows that
∑n
k=1 f(k) then also converges by the shift rule.

Integral test for divergence. Exercise. ■

Using the integral test, we can show that ζ(s) converges for p > 1, and diverges for 0 < p ≤ 1.

34.4.9 Alternating Series
Most of the tests we have covered so far only work with series that consist only of non-negative terms.
However, for certain simpler series, we can extend some of these tests to handle some extra cases.

An alternating series is a series whose terms alternate from positive to negative. That is, series of the
form,

∞∑
n=1

(−1)n+1an

where (an) is a non-negative sequence.

For instance,
∞∑
n=1

(−1)n+1

n

is the alternating harmonic series, and, unlike the regular harmonic series, the alternating harmonic
series converges.

Theorem 34.4.1. If (an) is decreasing and null, then the alternating series
∑∞
n=1(−1)n+1an is conver-

gent.

Proof. Suppose (an) is decreasing and null, and let sn be the alternating series of (an). Then,

S2(k+1)+1 = S2k+1 − a2k+2 + a2k+3

(an) is decreasing, so a2k+3 ≥ a2k+2, and,

≤ S2m+1

so the subsequence of odd partial sums is decreasing.

Similarly,

S2(k+1) = S2k + a2k+1 − a2k+2

≤ S2k+1

Because (an) is decreasing and null, we have an > 0 for all n, so,

S2k+1 = S2k + a2k+1

S2k+1 ≥ S2k

Combining the inequalities, we have,

a1 − a2 = S2 ≤ S2m ≤ S2m+1 ≤ S1 = a1

Notes on Mathematics | 597



Analysis Series

So both S2k and S2k+1 are bounded. Because they are both also monotonic, they converge by complete-
ness.

Then,
lim
k→∞

(S2k+1 − S2k) = lim
k→∞

a2k+1 = 0

so they converge to the same limit. ■

The alternating series test requires that the sequence (an) is decreasing and null. If either condition
is relaxed, then the alternating series may not converge, even if the terms of the sequence are still all
non-negative.

For instance, (an) = 1 is a decreasing sequence, but is not a null sequence. The alternating series
sn =

∑n
k=1(−1)k+1ak has the subsequence of odd terms s2k+1 = 1 + 1 + · · · which diverges to infinity,

while the subsequence of even terms s2k = −1 − 1 − · · · diverges to minus infinity. Because (sn) has
subsequences which have different limits, (sn) also diverges.

On the other hand, the sequence given by,

an =

{
2
n n is even
0 n is odd

has alternating series sn = 0+ 1+ 0+ 1
2 + 0+ 1

3 + 0+ · · · , which is the harmonic series, which diverges.

Additionally, the alternating series test is sufficient, but not necessary for convergence.∗ For instance,

∞∑
n=2

(−1)n

n+ (−1)n

is non-monotonic, but still converges.

34.4.10 General Series
The main reason why series with non-negative terms are easier to deal with is because the sequence of
partial terms is then monotonic, allowing us just prove that the series is bounded above, and letting
completeness prove convergence. However, in the general case, the sequence of partial sums is not
guaranteed to be monotonic.

However, we can still use the Cauchy criterion, which does not require monotonicity.

A series
∑∞
n=1 an is absolutely convergent if

∑∞
n=1 |an| is convergent.

If
∑∞
n=1 an converges, but

∑∞
n=1 |an| diverges, then we say the series is conditionally convergent.

For instance, the alternating harmonic series converges, but the absolute value gives the harmonic series,
which diverges, so the alternating harmonic series is conditionally convergent.

Theorem (Absolute Convergence). Every absolutely convergent series is convergent.

Proof. Suppose
∑∞
n=1 an is absolutely convergent, so

∑∞
n=1 |an| is convergent and hence Cauchy. So, for

any ε > 0, there exists N such that |
∑n
i=m |ai|| =

∑n
i=m |ai| < ε whenever n > m ≥ N .

By the triangle inequality, ∣∣∣∣∣
n∑

i=m

ai

∣∣∣∣∣ ≤
n∑

i=m

|ai|

∗ Specifically, monotonicity is not necessary for convergence. We know from the null sequence test that (an) being a null
sequence is necessary.

Notes on Mathematics | 598



Analysis Series

< ε

so
∑n
i=m ai is Cauchy, and hence convergent. ■

Now, we can extend the ratio test to handle general series. In fact, the proof of this extended version is
the exact same proof as before, just with absolute value bars instead of brackets.

Theorem (Ratio Test). Suppose
∣∣∣an+1

an

∣∣∣ → l. Then,
∑∞
n=1 an converges absolutely if 0 ≤ l < 1, and

diverges if l > 1.

Proof. Suppose
∣∣∣an+1

an

∣∣∣→ L < 1. Let L < r < 1, so |an+1| < r|an| for any sufficiently large n, say, for all

n > N . So |an+i| < ri|an| for all n > N and any integer i > 0, so,

∞∑
i=N=1

|an| =
∞∑
i=1

|aN+i| <
∞∑
i=1

ri|aN | = |aN |
∞∑
i=1

ri = |aN |
r

1− r
<∞

so the series converges absolutely.

Conversely, if L > 1, then |an+1| > |an| for all sufficiently large n, failing the null sequence test. ■

Note that, again, if l = 1, then this version of the ratio test is still inconclusive. There exist series which
give l = 1 that converge absolutely, converge conditionally, and diverge.

For instance, consider the three series,

∞∑
n=1

1,

∞∑
n=1

1

n2
,

∞∑
n=1

(−1)n+1

n

The first series is divergent, the second converges absolutely,∗ and the third converges conditionally.† The
value of

∣∣∣an+1

an

∣∣∣ for each series is 1, n2

(n+1)2 and n
n+1 , respectively, and in all three cases, limn→∞

∣∣∣an+1

an

∣∣∣ = 1.

Corollary (Ratio Test Variant). If
∣∣∣an+1

an

∣∣∣→∞, then
∑∞
n=1 an diverges.

Proof. If
∣∣∣an+1

an

∣∣∣ → ∞, then there exists N ∈ N such that for all n > N ,
∣∣∣an+1

an

∣∣∣ > C for any choice of
C > 0. Let C ≥ 1. It follows that, for all n > N , |an+1| > C|an|, so |an| is strictly increasing for all
n > N . |an| ≥ 0, so |an| cannot be null, so

∑∞
n=1 |an| diverges by the null sequence test. ■

∗ Finding an exact value for this series is known as the Basel problem, named after the hometown of the Bernoulli family
who had attempted this problem. The problem was eventually solved by Euler, who proved that the sequence converges
to π2

6
. Euler also generalised the problem to the reciprocals of other powers. Later, Riemann continued further with his

zeta function (this series is ζ(2)).
† This one converges to ln 2, and is considerably easier to prove.
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34.5 Riemann’s Rearrangement Theorem

Because addition is commutative and associative, for a finite set of numbers, we can add them up in any
order, and obtain the same result. However, it turns out that this seemingly reasonable idea does not
hold for infinite sums – rearranging the terms of certain types of series does not preserve their value.

A sequence (bn) is a rearrangement of a sequence (an) if there exists a permutation (§12.4.7.1) σ : N→ N
such that bn = aσ(n) for all n.

Theorem 34.5.1. Suppose
∑∞
n=1 an is convergent and consists only of non-negative terms. Then, if

(bn) is a rearrangement of (an), then
∑∞
n=1 bn converges, and

∑∞
n=1 bn =

∑∞
n=1 an.

Theorem 34.5.2. Suppose
∑∞
n=1 an is absolutely convergent. Then, if (bn) is a rearrangement of (an),

then
∑∞
n=1 bn is convergent and

∑∞
n=1 bn =

∑∞
n=1 an.

So far, nothing unusual. However, something interesting happens with conditionally convergent series.
Because the positive terms of a conditionally convergent series converge to infinity, and the negative
terms tend to minus infinity, we can rearrange the sequence so that we add up terms until we get past
a certain point, L, then have some negative terms until we are back below L. Since the series is infinite,
there’s no problem with pulling more positive or more negative terms in from further back, since there’s
always infinitely many more to come. Repeating this procedure, the series jumps back and forth around
L, and eventually, in the limit, converges to L.

Proof. Suppose an ̸= 0 for all n. Now, consider the sequences given by,

a+n =
an + |an|

2
, a−n =

an − |an|
2

Then, ■

WIP
34.6 Functions

34.6.1 Terminology & Notation
Recall that a sequence is really just a function with domain N, with an really being another way of
writing a(n) for some function a : N→ X (with the specific case of X = R in the previous sections). We
can extend our previous results from sequences to more general functions, but first, we state some basic
definitions.

Given two sets, A and B, a function from A to B assigns every element in A an element in B, and we
write f : A→ B. If we are talking about mapping specific elements a ∈ A to an element b ∈ B, we write
a 7→ b.

The set A is the domain of the function f , also written as dom(f), and the set B is the codomain of f ,
also written as cod(f) or cdm(f).

If every element in A is mapped to a distinct element in B, the function is injective. This property can
be written f(a) = f(b) =⇒ a = b or a ̸= b =⇒ f(a) ̸= f(b). If every element in B has an origin
element, the function is surjective. This property can be written as ∀b ∈ B, ∃a ∈ A such that f(a) = b.
If a function is both injective and surjective, it is bijective.

The set im(f) = {f(x) : x ∈ A} ⊆ B is the image of the function, and is a subset of the codomain;
surjectivity is also equivalent to im(f) = cdm(f).
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You may occasionally see the term “range” being used to refer to either the codomain, or the image of a
function, but these notions are distinct. It is recommended that the term “range” is avoided in general
– be specific and say “image” or “codomain” instead, as this is unambiguous.

An interval of the real line is a subset, I, of R with the property that if x < y < z, x ∈ I, and z ∈ I,
then y ∈ I. That is, an interval contains all points between its endpoints. But, the endpoints may or
may not be included themselves. This defines a few types of intervals of interest:

{x : a ≤ x ≤ b} = [a,b] a closed interval
{x : a < x < b} = (a,b) an open interval
{x : a ≤ x < b} = [a,b) a half-open interval
{x : a ≤ x} = [a,∞) a half-infinite interval

Note that we use an open interval bracket whenever we have ∞ as one of the endpoints, because ∞ is
not a member of the standard real numbers.

Also note that sometimes “ ]a,b[” is written to mean (a,b), but we will not be using this notation.

Two functions, f : A → B and g : X → Y are equal if A = X, B = Y and f(x) = g(x) for all x ∈ A.
That is, two functions are equal if their domains and codomains are equal, and they agree for all inputs.

34.6.2 Continuity
A function f : I → R is said to be continuous at a point c ∈ I if for all ε > 0, there exists δ > 0 such
that if x ∈ I and |x− c| < δ, then |f(x)− f(c)| < ε.

Example. The function x 7→ x is continuous for all x. △

Proof. Let δ = ε, so if |x− c| < δ, then |x− c| < ε and |x− c| = |f(x)− f(c)| < ε. ■

Example. The function x 7→ x2 is continuous for all x. △

Proof. We present a graphical method for working through these types of questions when the function
is easy to invert.
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c

f(c)

f(c) + ε

f(c)− ε

f−1(f(c)+ε)f−1(f(c)−ε)

x

f(x)

So clearly, if x is less than min
(
|c− f−1 (f(c)− ε|) ,|c− f−1 (f(c) + ε) |

)
away from c, then |f(x)−f(c)| <

ε. Thus, if we let δ = min
(∣∣c−√c2 − ε∣∣ , ∣∣c−√c2 + ε

∣∣), then |f(x)− f(c)| < ε as required. ■

Let L+ = limx→c+ f(x), and L− = limx→c− f(x). Using these quantities, we define three classes of
discontinuities. We say that the function f has:

• a removable discontinuity at c if L+ = L− = L and f(c) exists, but f(c) ̸= L. If L+ = L− but f(c)
is undefined, then f(c) is instead a removable singularity.

• a jump discontinuity at c if L+ ̸= L−. In this case, f(c) can take any value.

• an essential discontinuity at c if at least one of the limits L+ and L− do not exist.

Example.

−10 −5 5 10

−0.5

0.5

1

1.5

x

f(x)

−2 −1 1 2

−2

−1

1

2

x

g(x)

−2 −1 1 2

−2

−1

1

2

x

h(x)

f(x) =
sin(x)

x
g(x) =

{
−1 x < 1

1 x ≥ 1
h(x) = sin

(
1

x

)
△

• limx→0+ f(x) = limx→0− f(x) = 1, but f(0) is undefined, so f has a removable singularity at 0.

• limx→1+ g(x) = 1 ̸= 1 = limx→1− g(x), so g has a jump discontinuity at 1.

• limx→0+ h(x) and limx→0− h(x) both fail to exist, so h has an essential discontinuity at 0.
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Let f : I → R and c ∈ I. Then, f is sequentially continuous at a point c if f(xn) → f(c) for every
sequence (xn) ⊆ I which converges to c.

Theorem 34.6.1. A function is sequentially continuous if and only if it is continuous.

Proof. Suppose f : I → R is continuous, and let (xn) ⊆ I converge to c.

Because f is continuous, for any ε > 0, there exists δ > 0 such that |x − c| < δ implies |f(x) − f(c)| <
ε. Similarly, there exists N > 0 such that |xn − c| < δ for all n > N . Then, if n > N , we have
|f(xn)− f(c)| < ε, so f(xn)→ f(c) and f is sequentially continuous.

Conversely, suppose f is not continuous at c, so there exists ε > 0 such that for all δ > 0, there exists x
such that |x − c| < δ, but |f(x) − f(c)| ≥ ε. Fix this ε, and for each n ∈ N, let δn = 1

n , so there exists
at least one choice of xn such that |xn − c| < δn, but |f(x)− f(c)| ≥ ε. Then, (xn)→ c, but f(xn) does
not converge to f(c). ■

Theorem (Algebra of Continuous Functions). Let f,g : I → R be functions continuous at a point c ∈ I.
Then,

• f + g is continuous at c;

• fg is continuous at c;

• f
g and is continuous at c if g(c) ̸= 0.

Proof. Follows trivially from the algebra of sequences and the equivalence of continuity and sequential
continuity. ■

Theorem (Continuity of Polynomials and Rational Functions). If p is a polynomial, then p is continuous
over R. If r = p

q is the ratio of two polynomials, it is continuous wherever q ̸= 0.

Proof. f(xn) → f(c) and g(xn) → g(c), so applying algebra of sequences, we have (f + g)(xn) =
f(xn) + g(xn)→ f(c) + g(c), so (f + g)(x) is continuous by sequential continuity.

The proofs for the continuity of the product and ratio of continuous functions are similar. ■

Theorem (Composition of Continuous Functions). Let f : I → R and g : X → I. If g is continuous at
c and f is continuous at g(c), then the composition f ◦ g is continuous at c.

Proof. Let (xn) be a sequence in X converging to c. Then, g(xn) → g(c) ∈ I and hence f(g(xn)) →
f(g(c)). ■

34.7 The Intermediate Value Theorem

Intuitively, a continuous function is a function whose graph we can draw without lifting our pen off the
paper, and it should therefore be obvious that a continuous function can’t “skip” a value over an interval.
However, the proof is non-trivial because we have only defined continuity at each point individually.

The strategy for the proof is then to find the point where the function is supposed to take the correct
value and then use continuity at that point. When we are trying to demonstrate the existence of a
particular real number, we also usually have to use a completeness axiom.

Theorem (Intermediate Value Theorem). Let f : [a,b]→ R be continuous and suppose f(a) < k < f(b).
Then, there exists c ∈ [a,b] such that f(c) = k.
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Proof. Let f(a) < u < f(b) and let S = {x ∈ [a,b] : f(x) ≤ u}. S is non-empty as a ∈ S and is bounded
above by b. By completeness, the supremum, c = supS exists. We will show that f(c) = u.

Let ε > 0. As f is continuous, there exists δ > 0 such that |f(x)− f(c)| < ε whenever |x− c| < δ, so we
have;

f(x)− ε < f(c) < f(x) + ε (⋆)

for all x ∈ (c− δ,c+ δ) by the interval property. By the properties of the supremum, there exists some
a∗ ∈ (c− δ,c] that is contained in S. By construction, a∗ is within δ of c, so |a∗ − c| < δ holds, and we
may use the right side of (⋆) to write:

f(c) < f(a∗) + ε ≤ u+ ε

Picking a∗∗ ∈ (c,c + δ), we know a∗∗ /∈ S since c is the supremum of S and a∗∗ > c by construction.
Again, a∗∗ is within δ of c, so,

f(c) > f(a∗∗)− ε > u− ε

and combining both inequalities, we have,

u− ε < f(c) < u+ ε

and u is the only value of f(c) such that the above inequality holds for all ε > 0, so f(c) = u. ■

Corollary (Continuous Image of Intervals). If f : I → R is continuous over I, then the image of f is
also an interval.

Proof. If x and y are in the image of f , then by the IVT, every point between x and y is also in the
image of f , so the image of f is an interval. ■

This corollary is actually equivalent to the IVT, and can be taken to be an alternative statement of the
IVT.

The IVT has many applications, but one of the most obvious is that it guarantees the existence of
solutions to equations:

Theorem (Bolzano). If a continuous function has values of opposite sign inside an interval, then it has
a root in that interval.

Example. There is a solution of the equation x3 + x− 1 = 0 between 0 and 1.

Proof. Define f(x) = x3 + x− 1. Then, f(0) = −1 < 0, while f(1) = 1 > 0. △

△

Theorem (Existence of Square Roots). Every positive real number has a unique positive square root.

Proof. Let r be a positive real number and consider the function f defined by x 7→ x2. We have that
f(0) < r and f(r + 1) = r2 + 2r + 1 > r, so there exists a number c ∈ [0,r + 1] such that f(c) = r. It
follows that c2 = R, so c is a positive square root of r.

For uniqueness, suppose two distinct positive real numbers x and y exist such that f(x) = r and f(y) = r.
By trichotomy, and without loss of generality, suppose 0 < x < y. As x and y are positive and real, we
have x2 < y2, contradicting that f(x) = r and f(y) = r. ■

Corollary 34.7.0.1. For each positive real x and natural n, there is a unique positive nth root x
1
n , and

the map x 7→ x
1
n is continuous.
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Proof. Exercise. ■

Theorem (Existence of Inverses). Let f : [a,b] → R be continuous and strictly increasing. Then f has
a continuous inverse, f−1 defined over its image.

Proof. Let f(a) = c and f(b) = d. Since f is increasing, the image of f lies between c and d. In fact,
the image of f is exactly [c,d].

For each y, there is a unique number x such that f(x) = y as f is strictly increasing, so we let f−1 = g :
y 7→ x. By construction, g is increasing.

Let ε > 0, and suppose f(x) = y ∈ (c,d), so f(x− ε) < y < f(x+ ε), so there exists δ such that,

f(x− ε) < y − δ < y < y + δ < f(x+ ε)

and for any z ∈ (y − δ,y + δ), we have

x− ε < g(z) < x+ ε

so |g(z)− g(y)| < ε.

If instead y = a or y = b, the argument is the same, but with f(x − ε) and f(x + ε) replaced by c or
d. ■

34.8 The Extreme Value Theorem

A function f : I → R is:

• bounded above if ∃M ∈ R : f(x) ≤ M ∀x ∈ I – if there exists a real number M , called an upper
bound, such that f(x) ≤M for all x ∈ I;

• bounded above if ∃m ∈ R : f(x) ≥ m ∀x ∈ I – if there exists a real number m, called a lower bound,
such that f(x) ≥ m for all x ∈ I;

• bounded if it is bounded above and bounded below.

A continuous function on an open interval may take arbitrarily large values. For instance, 1
x is continuous

on (0,1), but limx→0+
1
x =∞. However, this cannot can’t occur if a function f is continuous on a closed

interval [a,b], since the function is supposed to approach f(a) as x approaches a. It turns out that indeed
a continuous function on a closed interval must be bounded.

Theorem (Boundedness of Continuous Functions). If f : [a,b]→ R is continuous, then f is bounded.

Proof. Suppose f is continuous, but unbounded. We construct a sequence, (xn), where |f(xn)| ≥ n for
all n. By Bolzano-Weierstrass, we can construct a subsequence, (xni) which converges to some value, say,
x. Since the interval over which f is defined is closed, x ∈ [a,b] by the closed interval rule. By sequential
continuity, f(xni

)→ f(x), but this is impossible as f(xni
) become arbitrarily large by the construction

of (xn). ■

As shown by the previous example, continuous functions on open intervals may not attain a maximum
or minimum. But on closed intervals, this again cannot happen.

Theorem (Extreme Value Theorem). Let f : [a,b] → R be continuous. Then, there exists numbers
c,d ∈ [a,b] such that f(c) ≤ f(x) ≤ f(d) for all x ∈ [a,b].
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Proof. Let M be the least upper bound of the set S = {f(x) : x ∈ [a,b]}. If there is no point, c, in the
interval where f(c) = M , then, the function g(x) = M − f(x) is strictly positive and continuous over
[a,b]. By the algebra of limits, 1

g(x) is continuous, and therefore bounded. Let R be an upper bound of
1

g(x) over the interval [a,b], noting that R > 0. Then, 1
R ≤ g(x) = M − f(x), so f(x) ≤ M − 1

R , and
M − 1

R is an upper bound of S. As R is positive, M − 1
R < M , contradicting that M is the least upper

bound of S.

It follows that the point c must exist, and f attains the maximum f(c) over [a,b]. The proof for the
minimum is similar. ■

34.9 Power Series

A power series is a series of the form
∑∞
n=0 an(x− c)n. We mostly focus on the specific case c = 0, with

everything easily transferring over to the general case.

Theorem (Radius of Convergence I). Let
∑∞
n=0 anx

n be a power series with
∑∞
n=0 ant

n convergent.
Then,

∑∞
n=0 anx

n converges absolutely for all x such that |x| < |t|.

Proof. Since
∑∞
n=0 ant

n converges, we know that antn → 0 as n→∞ so the sequence of partial sums is
bounded by some M such that |antn| < M for all n. Now,

N∑
n=0

|anxn| =
N∑
n=0

|antn|
∣∣∣x
t

∣∣∣n
≤M

N∑
n=0

∣∣∣x
t

∣∣∣n
≤M

∞∑
n=0

∣∣∣x
t

∣∣∣n
=M

1

1−
∣∣x
t

∣∣
which is finite, so the series converges absolutely. ■

Theorem (Radius of Convergence I). Let
∑∞
n=0 anx

n be a power series. Then, exactly one of the
following statements holds:

• There is a positive real R such that the series converges if |x| < R and diverges if |x| > R.

• The series converges only if x = 0.

• The series converges for all real x.

If R exists, it is called the radius of convergence of the series. In the second case, we say that the radius of
convergence is 0, and in the last case, we say the radius of convergence is ∞, or that the series converges
everywhere.

Theorem (Absolute Series). Let
∑∞
n=0 anx

n be a power series with radius of convergence R. Then,∑∞
n=0 |an|xn also has radius of convergence R.

Theorem (Geometric Series I). The series
∑∞
n=0 x

n has radius of convergence R = 1.

Theorem (Geometric Series II). If p is real, the series
∑∞
n=0 p

nxn has radius of convergence R = 1
|p| .

Proof.
∑∞
n=0 p

nxn=
∑∞
n=0(px)

n, which converges if |px| ≤ 1, so |x| ≤ 1
|p| . ■
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Theorem (Log Series). The series
∑∞
n=0

xn

n has radius of convergence R = 1.

Theorem (Continuity of Convergent Power Series). Let
∑∞
n=0 anx

n be a power series with radius of
convergence R. Then, the function, x 7→

∑∞
n=0 anx

n is continuous over (−R,R).

Proof. Let x ∈ (−R,R), and T such that |x| < T < R. It follows that T ∈ (−R,R) so
∑∞
n=0 |an|Tn

converges, so for each ε > 0 there exists N for which,

∞∑
n=N+1

|an|Tn <
ε

3

Now, if |y − x| < T − |x|, |y| < T and x < T , so,

∞∑
n=N+1

|an||x|n <
ε

3
and

∞∑
n=N+1

|an||y|n <
ε

3

The partial sum
∑N
n=0 |an|yn is a polynomial in y, and polynomials are continuous, so there exists some

δ0 such that if |y − x| < δ0, ∣∣∣∣∣
N∑
n=0

any
n −

N∑
n=0

anx
n

∣∣∣∣∣ < ε/3

So, letting δ = min(δ0,T − |x|), if |y − x| < δ, we have,∣∣∣∣∣
∞∑
n=0

any
n −

∞∑
n=0

anx
n

∣∣∣∣∣ ≤
∣∣∣∣∣

∞∑
n=N+1

any
n

∣∣∣∣∣+
∣∣∣∣∣
N∑
n=0

any
n −

N∑
n=0

anx
n

∣∣∣∣∣+
∣∣∣∣∣

∞∑
n=N+1

anx
n

∣∣∣∣∣
≤

∞∑
n=N+1

|an||y|n +

∣∣∣∣∣
N∑
n=0

any
n −

N∑
n=0

anx
n

∣∣∣∣∣+
∞∑

n=N+1

|an||x|n < ε

■

34.9.1 The Exponential Function
The exponential function exp(x) is defined to be the series:

exp(x) :=

∞∑
n=0

xn

n!

Theorem 34.9.1. The exponential series converges everywhere.

Proof.

xn+1

(n+ 1)!

n!

xn
=

x

n+ 1

→ 0

so the series converges for all x by the ratio test. ■

We then also have that x 7→ exp(x) is continuous by the continuity of convergent power series.
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Theorem (Characteristic Property of the Exponential). The exponential function satisfies the following
functional equation:

exp(x+ y) = exp(x) exp(y)

with exp(1) = e, where e is Euler’s constant.

Proof. For a fixed z ∈ R, consider the function f(x) = exp(x) exp(z − x). Differentating with respect to
x, we have f ′(x) = exp(x) exp(z−x)−exp(x) exp(z−x) = 0, so f(x) must be a constant function by the
mean value theorem. At x = 0, f(x) = exp(z), but, as f(x) is constant, we must have f(x) = exp(z) for
all x, so exp(x) exp(z−x) = exp(z) for all x. Let z = x+y, and we have exp(x) exp(y) = exp(x+y). ■

Theorem 34.9.2. exp(x) = ex for all real numbers x.

Theorem (Inequalities for the Exponential). The following inequalities hold:

• 1 + x ≤ ex;

• ex ≤ 1
1−x if x < 1.

Proof. If x ≥ 0 then ex = 1 + x + x2

2 + · · · ≥ 1 + x, and if 0 ≤ x < 1, ex = 1 + x + x2

2 + x3

6 + · · · ≤
1 + x+ x2 + x3 + · · · = 1

1−x .

If x < 0, let u = −x so eu ≥ 1 + u implies e−x ≥ 1 − x ⇔ 1
ex ≥ 1 − x ⇔ 1

1−x ≥ ex, so the second
inequality holds for all x < 1.

If x ≤ −1, then 1 + x ≤ 0, but ex > 0, so ex ≥ 1 + x for x ≤ −1. Now, if −1 < x < 0, then 0 < u < 1
and so eu ≤ 1

1−u , so e−x ≤ 1
1+x ⇔

1
ex ≤

1
1+x ⇔

1
+x ≤ e

x ■

Theorem 34.9.3. The exponential function is strictly increasing, and its image is (0,∞).

Proof. Suppose x < y. Then, ey = ey−xex ≥ (1 + y − x)ex > ex.

Since ex ≥ 1 + x, the exponential function takes arbitrarily large values for large choices of x, and since
e−x = 1

ex , the exponential function takes arbitrarily small values for very large negative choices of x. By
the IVT, the exponential takes all positive values. ■

34.9.2 The Logarithmic Function
The exponential function maps R to (0,∞) and is continuous and strictly increasing, so by the IVT,
the exponential function has a continuous inverse defined over (0,∞). This inverse function is called the
natural logarithm, written as ln or sometimes log (though log can also represent a logarithm with base
10, or rarely, 2).

The function ln : (0,∞) → R satisfies eln x = x for all positive real x, and ln(ey) = y for all real y. For
all positive real a,b, we have ln(ab) = ln a+ ln b.

Using the natural logarithm, we can extend the definition of exponentiation to irrational exponents: if
x > 0 and p ∈ R, we define xp = exp(p log x).

Theorem (Tangent to the Logarithm). If x > 0, then log x ≤ x− 1.
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34.10 Limits

Let I be an open interval and f a real-valued function defined over I, except possibly at a point c ∈ I.
We write

lim
x→c

f(x) = L

if for every ε > 0, there exists δ > 0 such that if 0 < |x− c| < δ, then |f(x)− L| < ε.

Theorem (Limits and Continuity). If f : I → R is defined over the open interval I and c ∈ I, then f
is continuous at c if and only if limx→c f(x) = f(c).

This gives an alterative characterisation of continuous functions: a function is continuous at a point if it
is equal to its limit at that point.

Theorem (Continuous and Sequential Limits). If f : I \ {c} → R is defined over the interval I \ {c},
then limx→c f(x) = L if and only if for every sequence (xn) of points in I \ {c} which converges to c, we
have f(xn)→ L.

Theorem (Algebra of Limits). If f,g : I \ {c} → R are defined over the interval I \ {c} and limx→c f(x)
and limx→c g(x) exist, then,

• limx→c(f(x) + g(x)) = limx→c f(x) + limx→c g(x);

• limx→c f(x)g(x) = limx→c f(x) limx→c g(x);

• if limx→c g(x) ̸= 0, then,

lim
x→c

f(x)

g(x)
=

limx→c f(x)

limx→c g(x)

Proof. Exercise. ■

Let f : [a,b]→ R. We write
lim
x→c+

f(x) = L

for the one-sided limit of f(x) to c from the right, if for every ε > 0, there exists δ > 0 such that if
c < x < c+ δ, then |f(x)− L| < ε. The one sided limit

lim
x→c−

f(x) = L

from the left is defined similarly.

Let I be an open interval and f a real-valued function defined over I, except possibly at a point c ∈ I.
We write

lim
x→c

f(x) =∞

if for every M > 0 there is a δ > 0 such that if 0 < |x− c| < δ then f(x) > M . The limit

lim
x→c

f(x) = −∞

is defined similarly.

Let f : R→ R be defined on all of R (or, on all sufficiently large inputs). We write

lim
x→∞

f(x) = L

if for every ε > 0 there is an N such that if x > N , then |f(x)− L| < ε.

Theorem (Uniqueness of Limits). If f(x)→M as x→ c, and f(x)→ L as x→ c, then M = L.
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Proof. Similar to uniqueness of limits for sequences. ■

Theorem (Sandwich Theorem for Limits). Let I be an interval containing the point a. Let g,f,h be
functions defined over I, except possibly at a. If for every x ∈ I, we have g(x) ≤ f(x) ≤ h(x) and
limx→a g(x) = limx→a h(x) = L, then limx→a f(x) = L.

Note that a does not have to lie within the interior of I, and can be an endpoint, with the limits above
being evaluated as one-sided limits. Similarly, the statement holds for infinite intervals, where x→ ±∞.

34.11 The Derivative

Let f : I → R and c ∈ I. The function f is differentiable at c if

lim
h→0

f(c+ h)− f(c)
h

exists, and if so, we denote this limit by f ′(c).

Letting x = c+ h, we can equivalently write the derivative as,

lim
x→c

f(x)− f(c)
x− c

Theorem (Differentiability Implies Continuity). If f : I → R is differentiable at c ∈ I then f is
continuous at c.

Proof. f(x)− f(c) = f(x)−f(c)
x−c · (x− c). f(x)−f(c)

x−c → f ′(c) as x→ c by the definition of a derivative, and
(x− c)→ 0 as x→ c, so f(x)−f(c)

x−c · (x− c)→ f ′(c) · 0 = 0, so f(x)− f(c)→ 0, and f(x)→ f(c). ■

Note that the converse does not hold; continuous functions are not necessarily differentiable. For instance,
|x| is continuous but not differentiable at 0.

Theorem (Sum and Product Rule). Suppose f,g : I → R are differentiable at c ∈ I. Then, f + g and
fg are differentiable at c, and:

• (f + g)′(c) = f ′(c) + g′(c);

• (fg)′(c) = f(c)g′(c) + f ′(c)g(c).

Proof. Exercise. ■

Theorem (Derivatives of Monomials). If n is a natural number, then the derivative of f(x) = xn is
f ′(x) = nxn−1.

Proof. For n = 1, we have f(x) = x. For every c, and h ̸= 0,

lim
h→0

f(c+ h)− f(c)
h

= lim
h→0

c+ h− c
h

= 1

Suppose the statement holds for arbitrary fixed n ≥ 1. Then, xn+1 = xf(x), so by the product rule, the
derivative is 1 · f(x) + xf ′(x) = xn + xnxn−1 = (n+ 1)xn, which is the statement for n+ 1, completing
the inductive step. ■

We prove a lemma useful for proving the chain rule:
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Lemma (Local Linearisation). Let f : I → R be a function and let c ∈ I. Then, f is differentiable at c
if and only if there is a number A and a function ε such that for all x ∈ I, we have,

f(x)− f(c) = A(x− c) + ε(x)(x− c)

and ε(x)→ 0 as x→ c. If this happens, then A = f ′(c).

This lemma is sometimes called the Weierstrass–Caratheodory criterion. Essentially, the lemma states
that if x is close to c, then f(x) is approximately given by the linear function

x 7→ f(c) + f ′(c)(x− c)

which you may recognise as the first-degree Taylor approximation for f .

Proof. If the condition holds, then
f(x)− f(c)

x− c
= A+ ε

which approaches A as x→ c, and hence f is differentiable with derivative f ′(c) = A.

Conversely, suppose f is differentiable at c. Define A = f ′(c) and define ε by

ε(x) =

{
f(x)−f(c)

x−c −A x ̸= c

0 c = x

If x ̸= c, then

f(x)− f(c) =
(
A+

f(x)− f(c)
x− c

−A
)
(x− c)

=
(
A+ ε(x)

)
(x− c)

= A(x− c) + ε(x)(x− c)

and if x = c, then

A(x− c) + ε(x)(x− c) = A(0) + 0(0)

= 0

= f(x)− f(x)
= f(x)− f(c)

as required. Then, we have

lim
x→c

ε(x) = lim
x→c

f(x)− f(c)
x− c

−A

= lim
x→c

f(x)− f(c)
x− c

− f ′(c)

= f ′(c)− f ′(c)
= 0

■

We are now ready to prove the chain rule.

Theorem (Chain Rule). Suppose f : I → R, g : X → I, g is differentiable at c ∈ X and f is
differentiable at g(c) ∈ I. Then, the composition f ◦ g is differentiable at c, and,

(f ◦ g)′(c) = f ′
(
g(c)

)
· g′(c)
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Proof. We have that f is differentiable at g(c), so for all y, we have,

f(y)− f
(
g(c)

)
= f ′

(
g(c)

)(
y − g(c)

)
+ ε(y)

(
y − g(c)

)
where ε(y)→ 0 as y → g(c), so,

f
(
g(x)

)
− f

(
g(c)

)
= f ′

(
g(c)

)(
g(x)− g(c)

)
+ ε
(
g(x)

)(
g(x)− g(c)

)
and hence,

f
(
g(x)

)
− f

(
g(c)

)
x− c

= f ′
(
g(c)

)(g(x)− g(c))
x− c

+ ε
(
g(x)

)(g(x)− g(c))
x− c

As x→ c, we have

g(x)− g(c)
x− c

→ g′(c)

while g(x)→ g(c), so ε
(
g(x)

)
→ 0 and hence,

f
(
g(x)

)
− f

(
g(c)

)
x− c

→ f ′
(
g(c)

)
g′(c)

as required. ■

34.12 The Mean Value Theorem

Theorem (Rolle). Suppose f : [a,b]→ R is continuous over [a,b] and differentiable over (a,b), and that
f(a) = f(b). Then, there is a point c ∈ (a,b) such that f ′(c) = 0.

Proof. If f is constant over the interval, then f ′ is 0 everywhere over the interval. If not, it takes values
distinct from f(a) = f(b).

As f is continuous, there f attains a maximum and minimum within the interval [a,b] by the extreme
value theorem. Suppose f attains a maximum at c ̸= a,b, so c ∈ (a,b).

If x ̸= c, then f(x) ≤ f(c), as c is a maximum, so

f(x)− f(c) ≤ 0 (⋆)

Suppose x > c. Then, x− c > 0, so 1
x−c > 0. Multiplying both sides of (⋆) by 1

x−c , we have,

f(x)− f(c)
x− c

≤ 0

so f ′(c) ≤ 0

Now suppose x < c. Then, x− c < 0, so 1
x−c < 0. Multiplying both sides of (⋆) by 1

x−c , we now need to
swap the direction of inequality as we are multiplying by a negative value, so we have,

f(x)− f(c)
x− c

≥ 0

so f ′(c) ≥ 0.

From the two above equations, we deduce that f ′(c) = 0. ■
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Theorem (Mean Value Theorem). Suppose f : [a,b]→ R is continuous over [a,b] and differentiable over
(a,b). Then, there is a point c ∈ (a,b) such that,

f ′(c) =
f(b)− f(a)

b− a

This theorem may be more useful in the form,

f(b)− f(a) = (b− a)f ′(c)

Informally, the theorem states that, for any arc between two endpoints, a and b, there exists at least
one point between the two endpoints such that the tangent to the arc is parallel to the line that passes
through its endpoints.

Another statement of the theorem that more accurately reflects its name, is that there exists at least
one point, c, between the two endpoints of the graph of y = f(x) such that the slope at f(c) is equal to
the average slope of the graph between the endpoints.

Proof. Let

g(x) = f(x)− xr

where r = f(b)−f(a)
b−a , which is a constant. Then,

g(b)− g(a) = (f(b)− br)− (f(a)− ar)
= f(b)− f(a)− (b− a)r
= f(b)− f(a)− (f(b)− f(a))
= 0

So, by Rolle’s Theorem, there exists a point c ∈ (a,b) such that g′(c) = 0. So, we have,

g′(x) = f ′(x)− r
g′(c) = f ′(c)− r

= 0

=⇒ f ′(c) = r

=
f(b)− f(a)

b− a

■

Corollary (Functions with Positive Derivative). If f : I → R is differentiable over the open interval I,
and f ′(x) > 0 for all x ∈ I, then f is strictly increasing over I.

Proof. If there were two points a and b such that a < b but f(a) ≥ f(b), then b−a > 0 and f(a)−f(b) ≥ 0,
so f ′(c) = f(b)−f(a)

b−a ≤ 0 for some point c ∈ I, contradicting that f ′(x) > 0 for all x ∈ I. ■

Corollary (Functions with Zero Derivative). If f : I → R is differentiable over the open interval I and
f ′(x) = 0 for all x ∈ I, then f is constant over I.

Proof. By the MVT, there exists c ∈ I such that (x− a)f ′(c) = f(x)− f(a). But, f ′(c) = 0 for all c ∈ I,
so f(x)− f(a) = 0 and f(x) = f(a). As the choice of x and a were arbitrary, letting f(a) = k, we have
f(x) = k for all x ∈ I. ■
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Theorem (Extrema and Derivatives). Suppose f : [a,b] → R is continuous and is differentiable over
(a,b). Then, f attains its maximum and minimum at points within the open interval where f ′ = 0, or at
one of the endpoints, a or b.

Example. Find the maximum of xe−x over R.

The derivative of f(x) = xe−x is f ′(x) = (1 − x)e−x. e−x is positive for all x, and (1 − x) is positive
if x < 1 and negative if x > 1, so the whole expression is positive if x < 1 and negative if x > 1. By
the MVT, the function increases until x = 1 and then decreases, so the maximum is attained at x = 1,
where f(1) = e−1. △

34.13 Inverses

Theorem (Derivatives of Inverses). Let f : (a,b) → R be differentiable with positive derivative. Then,
g = f−1 is differentiable, and,

g′(x) =
1

f ′(g(x))

Proof. Since f has positive derivative, it is continuous and strictly increasing and hence has a continuous
inverse. Let (c,d) be the range of the image of f , and let x ∈ (c,d) and g(x) = y. Then,

g′(x) = lim
u→x

g(u)− g(x)
u− x

Let v = g(u). As u→ x, we have g(u)→ g(x) as g is continuous at x, so v → y, and,

= lim
v→y

v − y
f(v)− f(y)

=
1

f ′(y)

=
1

f ′(g(x))

■

34.14 Power Series II

Theorem (Differentiability of Power Series I). Let
∑∞
n=0 anx

n be a power series with radius of conver-
gence R. Then, the series

∑∞
n=0 nanx

n−1 has the same radius of convergence.

Proof. The series
∑∞
n=0 |an|xn has the same radius of convergence by absolute series theorem. Let

0 < x < y < R, so
∑∞
n=0 |an|xn and

∑∞
n=0 |an|yn both converge. It follows that their difference,

∞∑
n=0

|an|yn −
∞∑
n=0

|an|xn =

∞∑
n=0

|an|(yn − xn)

also converges, and thus
∞∑
n=0

|an|
(yn − xn)
y − x

also converges. But
∞∑
n=0

|an|
(yn − xn)
y − x

=

∞∑
n=1

|an|(yn−1 + yn−2x+ · · ·+ xn−1)
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Noting that y > x, we have,

≥
∞∑
n=1

|an|(xn−1 + xn−2x+ · · ·+ xn−1)

≥
∞∑
n=1

|an|(xn−1 + xn−1 + · · ·+ xn−1︸ ︷︷ ︸
n

)

≥
∞∑
n=1

|an|nxn−1

so
∑∞
n=0 n|an|xn−1 also converges, further implying that

∑∞
n=0 nanx

n−1 converges (absolutely). ■

Theorem (Differentiability of Power Series II). Let
∑∞
n=0 anx

n be a power series with radius of conver-
gence R. Then, the function, x 7→

∑∞
n=0 anx

n is continuous and differentiable over (−R,R).

Proof. Let x ∈ (−R,R), and T such that |x| < T < R. It follows that T ∈ (−R,R) so, by the theorem
above,

∑∞
n=0 n|an|Tn−1 converges, so for each ε > 0 there exists N for which,

∞∑
n=N+1

n|an|Tn−1 <
ε

3

Now, if |y − x| < T − |x|, |y| < T and x < T , so,∣∣∣∣∣
∞∑

n=N+1

nanx
n−1

∣∣∣∣∣ ≤
∞∑

n=N+1

n|an||x|n−1 <
ε

3

and also ∣∣∣∣∣
∞∑

n=N+1

an
yn − xn

y − x

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=N+1

an(y
n−1 + yn−2x+ · · ·+ xn−1)

∣∣∣∣∣
≤

∞∑
n=N+1

|an|(|y|n+1 + · · ·+ |x|n−1)

≤
∞∑

n=N+1

n|an|Tn−1

<
ε

3

The finite sum,
N∑
n=1

an(y
n−1 + yn−2x+ · · ·+ xn−1)

is a polynomial in y equal to
∑N
n=1 nanx

n−1 when y = x, so there exists a delta0 > 0 such that if
0 < |y − x| < δ0,∣∣∣∣∣

N∑
n=1

an
yn − xn

y − x
−

N∑
n=1

nanx
n−1

∣∣∣∣∣ =
∣∣∣∣∣
N∑
n=1

an(y
n−1 + yn−2x) + · · ·+ xn−1 −

N∑
n=1

nanx
n−1

∣∣∣∣∣
<
ε

3

So, letting δ = min(δ0,T − |x|), if |y − x| < δ, we have,
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∣∣∣∣∣
∞∑
n=1

an
yn − xn

y − x
−

∞∑
n=1

nanx
n−1

∣∣∣∣∣ ≤∣∣∣∣∣
∞∑

n=N+1

an
yn − xn

y − x

∣∣∣∣∣+
∣∣∣∣∣
N∑
n=1

an
yn − xn

y − x
−

N∑
n=1

nanx
n−1

∣∣∣∣∣+
∣∣∣∣∣

∞∑
n=N+1

nanx
n−1

∣∣∣∣∣ < ε

■

Theorem (Derivative of the Exponential). The derivative of the exponential function is equal to the
exponential function.

Proof. Exercise. ■

34.15 The Trigonometric Functions

We define the (circular) trigonmetric functions as follows:

cos(x) :=

∞∑
n=0

(−1)n

(2n)!
x2n

= 1− x2

2!
+
x4

4!
− · · ·

sin(x) :=

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1

= x− x3

3!
+
x5

5!
− · · ·

Theorem (Addition Formulae). For all x,y ∈ R,

cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y)

sin(x± y) = sin(x) cos(y)± cos(x) sin(y)

Proof. Let f(x) = cos(x) cos(z−x)− sin(x) sin(z−x). f ′(x) = 0, so f(x) is constant by the MVT. When
x = 0, f(0) = cos(0) cos(z) − sin(0) sin(z) = cos(z), so f(x) = cos(z) for all x. Letting z = x + y, we
have cos(x) cos(y)− sin(x) sin(y) = f(x) = cos(z) = cos(x+ y).

The proof for sin(x+ y) is similar. ■

Theorem (Circular Property). For all x ∈ R,

cos2(x) + sin2(y) = 1

Proof. In the addition formula for cos(x+ y), let y = −x. By the even and odd properties of cos(x) and
sin(x), we have, 1 = cos(0) = cos(x− x) = cos(x) cos(−x)− sin(x) sin(−x) = cos2(x) + sin2(x). ■

34.16 Taylor’s Theorem

Theorem (Cauchy’s Mean Value Theorem). If f,g : [a,b] → R are continuous and differentiable over
(a,b), and g′(t) ̸= 0 for t ∈ (a,b), then there exists a point c such that,

f ′(c)

g′(c)
=
f(b)− f(a)
g(b)− g(a)
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Proof. Consider h(x) = f(x)[g(b)− g(a)]− g(x)[f(b)− f(a)].

h(a) = f(a)g(b)− f(a)g(a)− f(b)g(a) + f(a)g(a)

= f(a)g(b)− f(b)g(a)
h(b) = f(b)g(b)− f(b)g(a)− f(b)g(b) + f(a)g(b) = f(a)g(b)− f(b)g(a)

= f(a)g(b)− f(b)g(a)
= h(a)

So h(a) = h(b), and, by Rolle’s Theorem, there exists a point c ∈ (a,b) such that h′(c) = 0, and

h′(x) = f ′(x)[g(b)− g(a)]− g′(x)[f(b)− f(a)]
h′(c) = f ′(c)[g(b)− g(a)]− g′(c)[f(b)− f(a)]

= 0

so f ′(c)[g(b)− g(a)] = g′(c)[f(b)− f(a)]. If g(a) = g(b), then a stationary point of g would exist in (a,b)
by Rolle’s Theorem, but g′ is given to be non-zero over (a,b), so g(a) ̸= g(b). We can then divide both
sides of the equation by g′(c)[g(b)− g(a)], obtaining the result. ■

Theorem (L’Hôpital’s Rule). If f,g : I → R are differentiable on the open interval I and f(c) = g(c) = 0
at some point c ∈ I, then

lim
x→c

f(x)

g(x)
= lim
x→c

f ′(x)

g′(x)

provided the second limit exists.

Proof. Suppose that

lim
x→c

f ′(x)

g′(x)

does exist. Then, it cannot be that g′(x) = 0 at a sequence of points converging to c, so there is some
interval around c on which g′ is non-zero (except perhaps at c itself). So, g′ is non-zero on an interval
on each side of c. This allows us to apply Cauchy’s mean value theorem. Becausef(c) = g(c) = 0,

lim
x→c

f(x)

g(x)
= lim
x→c

f(x)− 0

g(x)− 0

= lim
x→c

f(x)− f(c)
g(x)− g(c)

As long as x is in the region around c where g′ ̸= 0, Cauchy’s mean value theorem ensures that there is
a point t (depending on x) between c and x where

f(x)− f(c)
g(x)− g(c)

=
f ′(t)

g′(t)

As x→ c, we have t→ c, so
f(x)

g(x)
=
f(x)− f(c)
g(x)− g(c)

→ lim
t→c

f ′(t)

g′(t)

■

Note that L’Hôpital’s rule cannot be used on expressions like limx→0
sin(x)
x , because L’Hôpital’s rule

relies on derivatives, but limx→0
sin(x)
x is used in to find the derivative of sin in the first place: applying

it here would be circular.

Theorem (Generalised L’Hôpital’s Rule). If f,g : R→ R are differentiable, and either
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• limx→∞ f(x) = 0 and limx→∞ g(x) = 0;

• or limx→∞ f(x) =∞ and limx→∞ g(x) =∞;

then,

lim
x→∞

f(x)

g(x)
= lim
x→∞

f ′(x)

g′(x)

provided the second limit exists.

L’Hôpital’s rule can be applied to some other indeterminate forms, given an appropriate transformation:

Indeterminate form Conditions Transformation to 0/0

0

0
lim
x→c

f(x) = 0, lim
x→0

g(x) = 0 –

∞
∞

lim
x→c

f(x) =∞, lim
x→0

g(x) =∞ lim
x→c

f(x)

g(x)
= lim
x→c

1/f(x)

1/g(x)

0 · ∞ lim
x→c

f(x) = 0, lim
x→0

g(x) =∞ lim
x→c

f(x)g(x) = lim
x→c

f(x)

1/g(x)

∞−∞ lim
x→c

f(x) =∞, lim
x→0

g(x) =∞ lim
x→c

(
f(x)− g(x)

)
= lim
x→c

1/g(x)− 1/f(x)

1/
(
f(x)g(x)

)
00 lim

x→c
f(x) = 0+, lim

x→0
g(x) = 0 lim

x→c
f(x)g(x) = exp lim

x→c

g(x)

1/ ln
(
f(x)

)
1∞ lim

x→c
f(x) = 1, lim

x→0
g(x) =∞ lim

x→c
f(x)g(x) = exp lim

x→c

ln
(
f(x)

)
1/g(x)

∞0 lim
x→c

f(x) =∞, lim
x→0

g(x) = 0 lim
x→c

f(x)g(x) = exp lim
x→c

g(x)

1/ ln
(
f(x)

)
34.16.1 Taylor’s Theorem with Remainders
Theorem (Taylor’s Theorem with Lagrange Remainder). If f : I → R is n times differentiable on the
open interval I, and x,a ∈ I, then,

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)

2
(x− a)2 + · · ·+ f (n−1)(a)

(n− 1)!
(x− a)n−1 +

f (n)(t)

n!
(x− a)n

for some t ∈ (x,a).

Proof. The function,

g(x) = f(x)−
(
f(a) + f ′(a)(x− a) + f ′′(a)

2
(x− a)2 + · · ·+ f (n−1)(a)

(n− 1)!
(x− a)n−1

)
satisfies g(a) = 0, g′(a) = 0, · · · , g(n−1)(a) = 0, and g(n)(x) = f (n)(x), because the bracket on the RHS
goes to 0 after n differentiations.

If we let,

h(x) = g(x)− g(b) (x− a)
n

(b− a)n

then the first (n− 1) derivatives of h also vanish at x = a, but we also have h(b) = 0.

Now, we proceed inductively. Since h(n) = h(a) = 0, there exists a point t1 ∈ (a,b) such that h′(t1) = 0
by Rolle’s Theorem. Since h′(t1) = h(a) = 0, we again apply Rolle’s Theorem so a there exists a point
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t2 ∈ (a,t1) such that h′′(t2) = 0. Repeating this process, we eventually find a point t = tn where
h(n)(t) = 0.

h(n)(t) = g(n)(t)− g(b) n!

(b− a)n

= 0

So,

g(n)(t) = g(b)
n!

(b− a)n

g(b) =
g(n)(t)

n!
(b− a)n

Recalling our definition of g(x), we have,

=
f (n)(t)

n!
(b− a)n

■

Theorem (Taylor’s Theorem with Cauchy Remainder). If f : I → R is n times differentiable on the
open interval I, and x,a ∈ I, then,

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)

2
(x− a)2 + · · ·+ f (n−1)(a)

(n− 1)!
(x− a)n−1 +

f (n)(t)

(n− 1)!
(x− t)n−1(x− a)

for some t ∈ (x,a).

Proof. Let G be continuous over [a,x] and differentiable over (a,x) with G′ ̸= 0, and let

F (t) = f(t) + f ′(t)(x− t) + f ′′(t)

2!
(x− t)2 + · · ·+ f (n)(t)

n!
(x− t)n

for t ∈ [a,x]. Note that F (x) = f(x) due to every term after the first having (x − t) as a factor. Then,
by Cauchy’s MVT, there exists some c ∈ (a,x) such that,

F ′(c)

G′(c)
=
F (x)− F (a)
G(x)−G(a)

(⋆)

Note that F (x)− F (a) = Rn(x) is exactly the remainder term of the Taylor polynomial of f(x).

F ′(t) =f ′(t) + [f ′′(t)(x− t)− f ′(t)] +
[
f (3)(t)

2!
(x− t)2 − f (2)(t)

1!
(x− t)

]
+ · · ·

+

[
f (n+1)(t)

n!
(x− t)n − f (n)(t)

(n− 1)!
(x− t)(n− 1)

]
=
f (n+1)(t)

n!
(x− t)n

Substituting the above into (⋆), we have,

Rn(x) =
f (n+1)(c)

n!
(c− x)nG(x)−G(a)

G′(c)

If we let G(t) = (x − t)k+1, we get the Lagrange form of the remainder. If we let G(t) = t − a, we get
the Cauchy form of the remainder. ■
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34.17 Riemann Integration

Given a function f : [a,b]→ R, we can interpret the Riemann integral as the signed area enclosed between
the graph of f and the x-axis.

We formalise this notion with the use of Darboux sums.

34.17.1 Partitions
We begin by introducing some terminology for intervals and partitions.

An interval [a,b] is non-trivial if a < b. Two intervals I and J are almost-disjoint if they have at most
one common point – that is, |I ∩ J | = 1.

Let I = [a,b] be a non-trivial closed interval over R. A partition of I is a collection {I1, . . . ,In} of
almost-disjoint non-trivial intervals called subintervals with union

⋃
i Ii = I.

Note that, because a partition must be almost-disjoint, but union to the total interval, it is entirely
determined by the set of points {xi}ni=0 satisfying

a = x0 < x1 < · · · < xn = b

corresponding to the endpoints of the component intervals.

Given a partition of P = {I1, . . . ,In} of an interval I = [a,b], we define the quantities:

M := sup
I
f m := inf

I
f

Mk := sup
Ik

f mk := inf
Ik
f

Note that if f is unbounded, then some of these quantities will be infinite.

Given a function f : [a,b]→ R and a partition P = {I1, . . . ,In} of [a,b], we define the upper Darboux sum
of f with respect to P as:

U(f,P ) :=

n∑
k=1

Mk|Ik|

and similarly, the lower Darboux sum of f with respect to P as:

L(f,P ) :=

n∑
k=1

mk|Ik|

Intuitively, the upper (lower) Darboux sum under-approximates (resp. over-approximates) the area
bounded by f and the x-axis by approximating the area A under the function over each subinterval
Ik as a rectangle with height infx∈Ik f(x) (resp. sup).

This gives, by construction,

m(b− a) ≤ L(f,P ) ≤ A ≤ U(f,P ) ≤M(b− a)

where the outer terms are the Darboux sums using the whole interval as a partition. If A fails to exist,
then the inequality is simply

m(b− a) ≤ L(f,P ) ≤ U(f,P ) ≤M(b− a)

Denote by P the set of all partitions of [a,b]. Then we define the upper Darboux integral of f by:

U(f) := inf
p∈P

U(f,P )
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and similarly, the lower Darboux integral

L(f) := sup
p∈P

L(f,P )

We say that a bounded function f : [a,b] → R is Darboux integrable or Riemann integrable∗ if U(f) =

L(f), and we define the Riemann integral
� b
a
f(x) dx by

� b

a

f(x) dx := U(f) = L(f)

noting that unbounded functions are not Riemann integrable by this definition, as one of the sums will
be infinite.

34.17.2 Refinements
A partition Q = {J1, . . . ,Jℓ} of [a,b] is a refinement of a partition P = {I1, . . . ,In} if every subinterval
Ik ∈ P is the union of intervals Jk ∈ Q.

Using our alternative characterisation of partitions as collection of interval endpoints, Q = {y0, . . . ,yℓ}
is a refinement of P = {x0, . . . ,xn} if and only if P ⊆ Q.

Note that this means that every partition is a refinement of itself. It is also possible for neither of two
partitions to be refinements of each other.

Theorem 34.17.1. Let f : I → R be a bounded function, and P,Q be partitions of I, with Q a refinement
of P . Then,

L(f,P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f,P )

That is, refining a partition gives a better approximation to the desired area.

Theorem 34.17.2. Let f : I → R be a bounded function, and P,Q be arbitrary partitions of I. Then,

L(f,P ) ≤ U(f,Q)

Corollary 34.17.2.1. Let f : I → R be a bounded function. Then,

L(f) ≤ U(f)

Theorem 34.17.3. Let f : I → R be a bounded function. Then, f is Riemann integrable if and only if
for every ε > 0, there exists a partition P of I such that

U(f,P )− L(f,P ) < ε

We give an alternative characterisation of Riemann integrability, through the use of sequences.

Theorem 34.17.4. Let f : I → R be a bounded function. Then, f is Riemann integrable if and only if
there exists a sequence of partitions Pn such that

lim
n→∞

U(f,Pn)− L(f,Pn) < ε

∗ The above sums are sometimes called “Riemann sums”, but general Riemann sums take the height of the function at
arbitrary points within each subinterval, often the leftmost and rightmost points, defining the left and right Riemann sums,
while Darboux sums take the infimum and supremum instead.

Unlike upper and lower Darboux sums, left and right Riemann sums do not obey a nice inequality, but in the limit, the
two notions agree, and indeed, a function is Darboux integrable if and only if it is Riemann integrable, and the values of
the two integrals agree whenever they exist.

To mark the distinction, and for consistency with most other sources, “Darboux” is used above when describing these
sums, but due to their equivalence in the limit, we will continue to use “Riemann” when describing these integrals.
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34.17.3 Continuity & Integrability
We recall that a function f : I → R is continuous at x ∈ I if for every ε > 0, there exists a δ(x,ε) > 0
such that for all y ∈ I,

|x− y| < δ → |f(y)− f(x)| < ε

noting that we may only talk about one-sided continuity for the endpoints of I. Then, we say that f is
continuous on I if f is continuous at every x ∈ I, with the case of endpoints understood as one-sided
continuity.

Note that, in this definition, δ is a function of both x and ε. If we restrict δ to be a function of ε, we
obtain the definition of uniform continuity :

Given a function f : I → R, we say f is uniformly continuous if for every ε > 0, there exists δ(ε) > 0
such that for all x,y ∈ I, we have,

|x− y| < δ → |f(y)− f(x)| < ε

The difference here is that, in uniform continuity there is a globally applicable δ that depends on only
ε, while in (ordinary) continuity there is only a locally applicable δ that depends on both ε and x.
Thus, continuity is a local property of a function – that is, whether a function f is continuous or not
at a particular point x can be determined by looking only at the values of f in an arbitrarily small
neighbourhood of x. Conversely, uniform continuity is a global property of a function.

Uniform continuity is a stronger continuity condition than continuity: that is, a function that is uniformly
continuous is continuous, but a function that is continuous is not necessarily uniformly continuous.

In particular, functions that are unbounded on a bounded domain cannot be uniformly continuous. For
instance, the function f : (0,1) → R defined by x 7→ 1

x approaches infinity at an increasing rate as x
approaches the origin, so it is not possible to find a δ independent of x that satisfies the definition of
continuity.

Functions that have gradients that become unbounded on an infinite domain also cannot be uniformly
continuous. For instance, f : R → R defined by x 7→ ex is continuous everywhere, but its gradient
becomes arbitrarily large, so it is possible to find arbitrarily small intervals in which f varies by more
than ε.

Theorem 34.17.5. Let I be a compact subset of R (i.e. a closed interval), and suppose f : I → R is
continuous. Then, f is uniformly continuous.

We now give some sufficient (but not necessary) conditions for Riemann integrability.

Theorem 34.17.6. If f : [a,b]→ R is continuous, then it is Riemann integrable.

Theorem 34.17.7. If f : [a,b]→ R is monotonic, then it is Riemann integrable.

34.17.4 Algebra of Integrals
Theorem 34.17.8. Let f,g : [a,b]→ R be Riemann integrable functions, and let c ∈ R. Then, f + g and
cf are Riemann integrable, and satisfy,

� b

a

cf = c

� b

a

f,

� b

a

(f + g) =

� b

a

f +

� b

a

g

Theorem 34.17.9. Let f,g : [a,b] → R be integrable functions such that f(x) ≤ g(x) for all x ∈ [a,b].
Then,

� b

a

f ≤
� b

a

g
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Corollary 34.17.9.1. If f : [a,b]→ R is integrable, then,

m(b− a) ≤
� b

a

f ≤M(b− a)

Corollary 34.17.9.2. If f : [a,b]→ R is continuous, then there exists c ∈ [a,b] such that

f(c) =
1

b− a

� b

a

f

Theorem 34.17.10. If f : [a,b]→ R is integrable, then |f | is integrable, and,∣∣∣∣∣
� b

a

f

∣∣∣∣∣ ≤
� b

a

|f |

Theorem 34.17.11. Let f : [a,b] → R and c ∈ (a,b). Then, f is integrable on [a,b] if and only if it is
integrable on [a,c] and [c,b], and moreover,

� c

a

f +

� b

c

f =

� b

a

f

Theorem 34.17.12. If f : [a,b]→ R is integrable and g : R→ R is continuous, then g ◦ f is integrable.

Note that the composition of two integrable functions is not necessarily integrable.

Theorem 34.17.13. If f,g : [a,b]→ R are integrable, then the product function fg is integrable, and, if
additionally 1

g is bounded, then f
g is integrable.

34.17.5 Fundamental Theorem of Calculus
The fundamental theorem of calculus links the notions of differentiation and integration together as
inverses.

Theorem 34.17.14 (FTC I). Let f : [a,b]→ R be continuous, and define F : [a,b]→ R by

F (x) =

� x

a

f(t) dt

Then, F is uniformly continuous on [a,b] and differentiable on (a,b), with F ′(x) = f(x) for all x ∈ (a,b),
and we say that F is an antiderivative of f .

Equivalently,

d

dx

� x

a

f(t) dt = f(x)

Proof. We compute the derivative of F (x) from the definition:

F ′(x) = lim
h→0

F (x+ h)− F (x)
h

= lim
h→0

1

h

[� x+h

a

f(t) dt−
� x

a

f(t) dt

]

= lim
h→0

1

h

� x+h

x

f(t) dt
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By the mean value theorem for integrals, there exists c ∈ [x,x+ h] such that f(c) · h =
� x+h
x

f(t) dt, so,

= lim
h→0

f(c)

c ∈ [x,x+ h], so by the sandwich theorem,

= f(x)

■

Corollary 34.17.14.1. Let f : [a,b]→ R be continuous with antiderivative F on [a,b]. Then,

� b

a

f(t) dt = F (b)− F (a)

Theorem 34.17.15 (FTC II). Let f : [a,b]→ R be integrable on [a,b] with continuous antiderivative F
on (a,b). Then,

� b

a

f(x) dx = F (b)− f(a)

Unlike in the corollary above, FTC II does not require continuity of f over [a,b], and is thus a slightly
stronger result.

Proof. We wish to show

L(f,P ) ≤ F (b)− F (a) ≤ U(f,P )

for every partition P of [a,b]. By taking a supremum on the left, and infimum on the right, we obtain
L(f) ≤ F (b)− F (a) ≤ U(f), and since f is integrable, both sides reduce to equalities.

Now, consider any partition P = {a = x0,x1, . . . ,xn−1,xn = b}. On every interval Ik = [xk−1,xk], for
every ck ∈ (xk−1,xk) we have,

inf
Ik
f(x)(xk − xk−1) ≤ f(ck)(xk − xk−1) ≤ sup

Ik

f(x)(xk − xk−1)

As F is continuous on [xk−1,xk] and differentiable on (xk−1,xk), by the mean value theorem there exists
ck such that F (xk)− F (xk−1) = f(ck)(xk − xk−1), so we have,

inf
Ik
f(x)(xk − xk−1) ≤ F (xk)− F (xk−1) ≤ sup

Ik

f(x)(xk − xk−1)

Summing over k = 1 to n, we have,

L(f,P ) ≤
n∑
k=1

F (xk)− F (xk−1) ≤ U(f,P )

This sum telescopes to,

L(f,P ) ≤ F (x0)− F (xn)≤ U(f,P )

L(f,P ) ≤ F (b)− F (a) ≤ U(f,P )

thus proving the result. ■
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Theorem 34.17.16. If f : [a,b]→ R is integrable on [a,b] and is continuous from the right at a, then,

lim
h→0+

1

h

� a+h

a

f(t) dt = f(a)

and similarly, if f is continuous from the left at b,

lim
h→0+

1

h

� b

b−h
f(t) dt = f(b)

More generally, if (Ih) is a sequence of intervals such that |Ih| → 0, x ∈ Ih for all h, and f is continuous
at x, then,

lim
h→0

1

|Ih|

�
Ih

f(t) dt = f(x)

Integration by parts and u-substitution are both consequences of the fundamental theorem of calculus:

Theorem 34.17.17 (IBP). If f,g : [a,b] → R are continuous on [a,b] and differentiable on (a,b) such
that f ′,g′ are integrable on [a,b], then,

� b

a

f(x)g′(x) dx = f(b)g(b)− f(a)g(a)−
� b

a

f ′(x)g(x) dx

Theorem 34.17.18 (u-sub). Let f : [a,b] → R be differentiable on [a,b] (understood as one-sided dif-
ferentiability at the endpoints) such that f ′ is integrable on [a,b], and let g be continuous on f

(
[a,b]

)
.

Then,
� b

a

g
(
f(x)

)
f ′(x) dx =

� f(b)

f(a)

g(u) du

34.17.6 Improper Integration
So far, we have only defined Riemann integrals for bounded functions over bounded intervals. Now, we
extend this definition to include unbounded functions and/or unbounded intervals using limits. This
extension is called an improper Riemann integral.

Let f : (a,b] → R be Riemann integrable over every interval [c,b] ⊂ (a,b]. Then, the improper intergral
of f on [a,b] is defined as,

� b

a

f(x) dx := lim
ε→0+

� b

a+ε

f(x) dx

If this limit is finite, then the improper integral converges, diverging otherwise.

Similarly, if f : [a,b)→ R is integrable over every interval [a,c] ⊂ [a,b), then the improper intergral of f
on [a,b] is defined as,

� b

a

f(x) dx := lim
ε→0+

� b−ε

a

f(x) dx

We can also define an inproper integral if the function is unbounded at an interior point c.

Let f : [a,b] \ {c} → R be a function integrable on any closed interval not containing c ∈ [a,b]. That is,
f is integrable on [a,c− ε1] and [c+ ε2,b] for all sufficiently small ε1,ε2 > 0. Then,

� b

a

f(x) dx := lim
ε1→0+

� c−ε1

a

f(x) dx+ lim
ε2→0+

� b

c+ε2

f(x) dx

Notes on Mathematics | 625



Analysis Sequences and Series of Functions

For unbounded domains of integration, we take a limit of ordinary integrals:

If f : [a,∞)→ R is integrable for every interval [a,y] ⊂ [a,∞), then,
� ∞

a

f(x) dx := lim
y→∞

� y

a

f(x) dx

Similarly, if f : (−∞,b]→ R is integrable for every interval [y,b] ⊂ (−∞,b], then,

� b

−∞
f(x) dx := lim

y→−∞

� b

y

f(x) dx

and if f : R→ R is integrable on every bounded interval [a,b], then,

� ∞

−∞
f(x) dx := lim

a→−∞

� c

a

f(x) dx+ lim
b→∞

� b

c

f(x) dx

for any c ∈ R.

The space of functions that are improperly Riemann integrable forms a linear space: that is, if f and g
are improperly integrable on the same domain, then αf +βg is also improperly integrable over the same
domain for any α,β ∈ R.

Theorem 34.17.19 (Absolute Comparison Test). Let f : [a,∞) → R be integrable on [a,b] for every
b > a. If

�∞
a
|f | <∞, then

�∞
a
f converges, and we say that

�∞
a
f is absolutely convergent.

Moreover, if g : [a,∞) → [0,∞) is a function such that |f | ≤ g and
�∞
a
g < ∞, then

�∞
a
f is absolutely

convergent.

34.18 Sequences and Series of Functions

34.18.1 Convergence
Let (fn)

∞
n=0 be a sequence of functions fn : Ω→ R. We say that (fn) converges pointwise to f : Ω→ R

if for every x ∈ Ω,

lim
n→∞

fn(x) = f(x)

and we denote this relation by fn → f .

Intuitively, a sequence (fn) of functions converges pointwise to a function f if, when we fix any choice
of input value x, the resulting sequence of output terms

(
fn(x)

)∞
n=0

(which is just a sequence of real
numbers) converges to the output value f(x) in the usual sense.

Note that pointwise limit do not preserve continuity. That is, the pointwise limit of a sequence of
continuous functions is not necessarily continuous.

For instance, consider the sequence of monomials

fn(x) = xn

defined over [0,1].
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Being polynomials, each fn is continuous, but the pointwise limit of the sequence is

f(x) =

{
0 x ∈ [0,1)

1 x = 1

which is discontinuous at x = 1.

Pointwise convergence is also very non-uniform in the sense that it is possible for fn(x)→ 0 for all x, but
supx |fn(x)− f(x)| → C > 0, or even supx |fn(x)− f(x)| → ∞ as n→∞, as in the next two examples:

gn(x) =


2nx x ∈ [0, 1

2n )

−2n
(
x− 1

n

)
x ∈ [ 1

2n ,
1
n )

0 x ∈ [ 1n ,1]

hn(x) =


2n2x x ∈ [0, 1

2n )

−2n2
(
x− 1

n

)
x ∈ [ 1

2n ,
1
n )

0 x ∈ [ 1n ,1]
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This latter sequence (hn) is also called the witch’s hat, and is often useful for providing counterexamples.

Every gn and hn are continuous piecewise linear functions, and both converge to the zero function f = 0.
However, for every n, we have gn

(
1
2n

)
= 1, so

sup
x∈[0,1]

|gn(x)− 0| = 1

Similarly, for every n, we have hn
(

1
2n

)
= n, so

sup
x∈[0,1]

|hn(x)− 0| =∞

Pointwise limits and integrals also do not interact well: even if the pointwise limit of a sequence of
functions is integrable, we do not necessarily have lim

�
fn =

�
lim fn.

For instance, consider fn(x) = χ[n,n+1)(x), where χI is the indicator function of the set I. Clearly, fn
converges pointwise to f = 0, but

1 =

� ∞

−∞
fn ̸=

� ∞

−∞
f = 0
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In a sense, the mass of the function “escapes to infinity” along the x-axis.

Similarly, gn(x) = nχ(0,1/n)(x) also converges pointwise to the zero function, but
�∞
−∞ gn = 1 for all

n, this time the mass escaping along the y-axis. Integrating the witch’s hat also provides a continuous
example of this case.

Let (fn)
∞
n=0 be a sequence of functions fn : Ω→ R. We say that (fn) converges uniformly to f : Ω→ R

if for any ε > 0, there exists N(ε) such that |fn(x)− f(x)| < ε for every x ∈ Ω and every n > N(ε), and
we denote this relation by fn ⇒ f .

Uniform convergence is to pointwise convergence what uniform continuity is to ordinary continuity: in
uniform convergence, N depends only on ε, and not on x, while in pointwise continuity, we began by
fixing a value of x.

To simplify notation, we define the ℓ∞, supremum or Chebyshev norm by:

∥f∥∞ := sup
x∈Ω
|f(x)|

Using this, we can simplify the definition of uniform convergence to:

fn ⇒ f := ∀ε > 0,∃N(ε),∀n > N(e) : ∥fn − f∥∞ < ε.

Theorem 34.18.1. Uniform convergence implies pointwise convergence, but not the converse.

A sequence (fn) of functions in Ω is uniformly Cauchy if for every ε > 0, there exists N(ε) such that
∥fn − fm∥∞ < ε for all n,m > N(ε).

Theorem 34.18.2. A sequence (fn) of functions is uniformly convergent if and only if it is uniformly
Cauchy.

Theorem 34.18.3. If a sequence of continuous functions (fn) in Ω converges uniformly to a function
f : Ω→ R, then f is continuous.

The space of bounded continuous functions on a space Ω is denoted Cb(Ω).

Theorem 34.18.4. (Cb(Ω),∥ · ∥∞) is a complete space: that is, every Cauchy sequence converges to a
continuous bounded function, etc.

Theorem 34.18.5. Let (fn) be a sequence of Riemann integrable functions fn : [a,b]→ R that converges
uniformly to a function f : [a,b]→ R. Then, f is Riemann integrable and

�
fn →

�
f .

Uniform convergence and differentiation do not interact as nicely. There are examples of sequences of
differentiable functions (fn), with (fn) converging uniformly to f , but (f ′n) does not converge to f ′ (or
f ′ may fail to exist). This also does not hold even if the sequence is of infinitely differentiable functions.

34.18.2 Multivariate Continuity

We now introduce definitions of (uniform) continuity of functions defined over subsets of R2.

We write Ck(Ω) to denote the space of functions that are k times continuously differentiable over Ω, and
C∞(Ω) for the space of functions infinitely differentiable over Ω, also called functions that are smooth
over Ω.

A function f : Ω ⊆ R2 → R is continuous at x ∈ Ω if for every ε > 0, there exists δ(x,ε) > 0 such that
for all y ∈ Ω,

∥x− y∥ < δ → |f(y)− f(x)| < ε
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Similarly, a function f : (Ω ⊆ R2) → R is uniformly continuous if for every ε > 0, there exists δ(ε) > 0
such that for all x,y ∈ Ω,

∥x− y∥ < δ → |f(y)− f(x)| < ε

and again, the difference here is that δ is independent of x.

Theorem 34.18.6. Let Ω ⊂ R2 be closed and bounded. Then, any continuous function f : Ω → R is
furthermore uniformly continuous.

Theorem 34.18.7. Let f : [a,b]× [c,d]→ R be continuous. Define I : [c,d]→ R by

I(t) :=

� b

a

f(x,t) dx

Then, I is continuous.

Theorem 34.18.8 (Leibniz Integral Rule). Let f,∂f∂t be continuous functions on [a,b]× [c,d]. Then, for
any t ∈ (c,d),

d

dt

� b

a

f(x,t) dx =

� b

a

∂f

∂t
(x,t) dx

Theorem 34.18.9 (Fubini’s Theorem for Continuous Functions). Let f : [a,b]× [c,d]→ R be continuous.
Then,

� b

a

� d

c

f(x,y) dy dx =

� d

c

� b

a

f(x,y) dx dy

Theorem 34.18.10. Let (fn) be a sequence of C1 functions on [a,b], and suppose fn → f (pointwise),
and f ′ ⇒ g (uniformly). Then, f is C1 and g = f ′ (that is, f ′n ⇒ f ′).

34.18.3 Series
We now define the notions of pointwise and uniform convergence for series of functions.

Let (fk) be a sequence of functions fk : Ω → R, and let (Sn) be the sequence of partial sums of (fk),
with Sn : Ω→ R defined by

Sn(x) =

n∑
k=1

fk(x)

Then, the series

∞∑
k=1

fk(x)

is said to converge pointwise to S : Ω→ R in Ω if Sn → S pointwise in Ω, and to converge uniformly to
S in Ω if Sn ⇒ S uniformly on Ω.

Theorem 34.18.11. If (fk) is a series of integrable functions fk : [a,b]→ R, and Sn converges uniformly,
then

∑∞
k=1 fk is Riemann integrable, and,

� ∞∑
k=1

fk =

∞∑
k=1

�
fk
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Theorem 34.18.12. Let (fk) be a sequence of C1 functions fk : [a,b] → R such that Sn converges
pointwise, and suppose that

∑n
k=1 f

′
k converges uniformly. Then,( ∞∑

k=1

fk

)′

=

∞∑
k=1

f ′k

That is, the series is differentiable and can be differentiated term-by-term.

Theorem 34.18.13 (Weierstrass M-test). Let (fk) be a sequence of functions fk : Ω→ R, and suppose
that exists a sequence (Mk) of non-negative reals such that

• |fk(x)| ≤Mk for all k ∈ N and all x ∈ Ω;

•
∑∞
k=1Mk converges.

Then, the series
∑∞
k=1 fn(x) converges absolutely and uniformly on Ω.

Proof. We show that the partial sums Sn =
∑n
k=1 fk(x) is uniformly Cauchy. Now, since

∑∞
k=1Mk

converges, given ε > 0, there exists N such that

n∑
k=m+1

Mk < ε

for all m,n > N . Now,

|Sn(x)− Sm(x)| =

∣∣∣∣∣
n∑
k=1

fk(x)−
m∑
k=1

fk(x)

∣∣∣∣∣
=

∣∣∣∣∣
n∑

k=m+1

fk(x)

∣∣∣∣∣
≤

n∑
k=m+1

|fk(x)|

≤
n∑

k=m+1

Mk

< ε

■

34.19 Complex Analysis

We quickly revisit some basic properties of the complex numbers.

The set of complex numbers C is given by

C = {x+ iy : x,y ∈ R}

where i is the imaginary unit, satisfying i2 = −1.

For a complex number z = x+ iy, we denote

• the real component of z by ℜ(z) = x;

• the complex component of z by ℑ(z) = y;

• the modulus or norm of z by |z| =
√
x2 + y2;
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• the complex conjugate of z by z̄ = x− iy.

Theorem 34.19.1. The following statements hold for any complex numbers z,w ∈ C.

• ¯̄z = z;

• z + w = z̄ + w̄;

• zw = z̄w̄;

• |z̄| = |z|;

• |z|2 = zz̄

A sequence (zn)
∞
n=1 ⊂ C converges to a complex number z ∈ C if limn→∞ |zn − z| = 0. That is, if for

every ε > 0, there exists N > 0 such that |zn − z| < ε for all n > N .

A set Ω ⊆ C is open if for every x ∈ Ω, there exists r > 0 such that Br(x) ⊂ Ω, and a set Ω ⊆ C is closed
if Ωc = C \ Ω is open.

A set K ⊂ C is sequentially compact if every sequence (xj)
∞
j=1 ⊂ K has a convergent subsequence

(xj(ℓ))
∞
ℓ=1 whose limit is in K.

A function f : (Ω ⊆ C) → C is continuous at z0 ∈ Ω if for every ε > 0, there exists a δ(x,ε) > 0 such
that for all z ∈ Ω,

|z − z0| < δ → |f(z)− f(z0)| < ε

This definition is identical to that of continuity for real functions, but with | · | now being a norm on C
rather than R, and in fact, coincides with the definition of continuity for functions R2 → R2.

34.19.1 Complex Differentiability
Recall that a function f : R→ R is differentiable at a point p if the limit

lim
h→0

f(p+ h)− f(p)
h

exists, and this limit is the value of the derivative.

In contrast, a function f : Rn → Rk is differentiable at a point p if there exists a linear map Df ∈
L(Rn;Rk) such that

lim
h→0

|f(p+ h)− f(p)−Df(p)h|
|h|

= 0

and this linear map Df is the value of the derivative.

We use this definition because for k > 1, there is no well-defined notion of division of vectors.

However, unlike in R2, C does have a notion of division we can use, so we can return to the original
definition of differentiability, and so, differentiability for functions C→ C is distinct from (and in many
ways, more well-behaved than) functions R2 → R2.

Let Ω ⊆ C be an open set. A function f : C→ C is complex differentiable at a point z0 ∈ Ω if the limit

lim
h→0

f(z0 + h)− f(z0)
h

exists, and this limit is the value of the derivative.

However, here, h is a complex number, so there are many ways we could send h to 0. If this limit exists,
then its value should be independent of the path taken. We will write f(x,y) as u(x,y) + iv(x,y) to
separate out the real and imaginary components.
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Now, consider approaching along the real axis. We have,

lim
h→0
h∈R

f(z0 + h)− f(z0)
h

=
∂f

∂x
(z0)

while approaching along the imaginary axis gives,

lim
h→0
h∈C

f(z0 + h)− f(z0)
h

=
1

i

∂f

∂y
(z0)

These values should be equal, and so,

i
∂f

∂x
=
∂f

∂y

i

(
∂u

∂x
+ i

∂v

∂x

)
=
∂u

∂y
+ i

∂v

∂y

−∂v
∂x

+ i
∂u

∂x
=
∂u

∂y
+ i

∂v

∂y

Equating the real and imaginary components, we have,

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x

or more compactly,

ux = vy, uy = −vx

These are the Cauchy-Riemann equations. For a complex derivative to exist, these equations must be
satisfied.

Moreover, if f : C→ C is a function that is differentiable when regarded as a function f : R2 → R, then
f is complex differentiable if and only if the Cauchy-Riemann equations hold.

This means that if the components u and v are real-differentiable functions of two real variables, then
u + iv is a complex-valued real-differentiable function, and is furthermore complex-differentiable if and
only if the Cauchy-Riemann equations hold. We can also replace the requirement that u and v are
differentiable with the requirement that all partial derivatives of u and v are continuous (as this implies
that u and v are real-differentiable).

Example. Consider the function f : C → C defined by z 7→ z2. u and v are clearly continuous, so f is
real-differentiable.

f(z) = (x+ iy)2

= x2 − y2 + 2ixy

so,

u(x,y) = x2 − y2, v(x,y) = 2xy

with partial derivatives

ux = 2x, uy = −2y, vx = 2y, vy = 2x

satisfying the Cauchy-Riemann equations, so f is also complex-differentiable. △
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A function f : Ω→ C is holomorphic at z0 ∈ Ω if there exists a neighbourhood U ⊆ Ω of z0 such that f
is complex-differentiable at all z ∈ U .

f is holomorphic in Ω if f is holomorphic at all z ∈ Ω, and we say that f is entire if it is holomorphic
on the whole of C.

A general function f : A→ B is analytic at a point if it is given locally by a convergent power series at
that point. That is, f is analytic at x0 if the Taylor series centred at x0 converges pointwise to f(x) for
every x in a neighbourhood U ⊆ B. Note that a function may be complex-differentiable at a point, but
not necessarily analytic.

Earlier, we mentioned that complex functions are sometimes more well-behaved than real functions; it
turns out that a complex-valued function is analytic if and only if it is holomorphic, so the terms are
sometimes used interchangably in the context of complex analysis.

Theorem 34.19.2 (Algebra of Complex Derivatives). Let f,g : Ω ⊆ C → C be complex-differentiable
functions. Then,

(f + g)′ = f ′ + g′, (fg)′ = f ′g + fg′,

(
f

g

)′

=
f ′g − fg′

g2
, (f(g))′ = f ′(g)g′

(assuming that g ̸= 0 in the third expression, and that the domains and codomains are appropriate in the
fourth).

Theorem 34.19.3. The function f : C→ C defined by z 7→ zn is entire for all n ∈ N, and f ′(z) = nzn−1.

34.19.2 Power Series
We define the notions of convergence of series in C similarly to that of series in R.

Let (an)∞n=0 be a sequence of complex numbers an ∈ C. The series
∑∞
n=0 an is convergent if the sequence

of partial sums Sk =
∑k
n=0 an is convergent in C, and is absolutely convergent if the series

∑∞
n=0 |an| is

convergent in C.

The geometric series
∑∞
n=0 an is absolutely convergent if and only if |z| < 1 with limit

∞∑
n=0

zn =
1

1− z

and partial sums

Sk =
1− zk+1

1− z

Theorem 34.19.4 (Ratio Test). Let (an)∞n=0 be a sequence of complex numbers an ∈ C with an ̸= 0 for
all sufficiently large n, and define the quantity,

L := lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
Then,

• if L < 1, then the series
∑∞
n=0 an converges absolutely;

• if L > 1, then the series
∑∞
n=0 an diverges;

• if L = 1 or the limit fails to exist, then the test is inconclusive.
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Using suprema and infima, we can strengthen this test: define the quantities,

R := lim sup

∣∣∣∣an+1

an

∣∣∣∣ , r := lim inf

∣∣∣∣an+1

an

∣∣∣∣
Then,

• if R < 1, then the series
∑∞
n=0 an converges absolutely;

• if r > 1, then the series
∑∞
n=0 an diverges;

• if
∣∣∣an+1

an

∣∣∣ > 1 for all sufficiently large n, then the series
∑∞
n=0 an also diverges;

• otherwise, the test is inconclusive.

Theorem 34.19.5. Consider
∑∞
n=0 an and define the quantity,

r := lim sup n
√
|an|

• If r < 1, then the series converges;

• If r > 1, then the series diverges;

• If r = 1, then the test is inconclusive.

The root test is stronger than the ratio test: whenever the ratio test determines the convergence or
divergence of an infinite series, the root test does too, but not the converse.

Theorem 34.19.6. Given any sequence (an)
∞
n=0, there exists R ∈ [0,∞] such that

∞∑
n=0

anz
n

converges for all |z| < R and diverges for |z| > R.

More specifically, this value is given by,

R =
1

lim sup n
√
an

Theorem 34.19.7. Let an ̸= 0 for all n ≥ N and suppose that limn→0
|an+1|
|an| exists. Then,

∑∞
n=0 anz

n

has radius of convergence,

R = lim
n→∞

|an|
|an+1|

Theorem 34.19.8. Suppose a series
∑∞
n=0 anz

n has radius of convergence R. Then, for all |z| < R,
the function f(z) =

∑∞
n=0 anz

n is differentiable and,

f ′(z) =

∞∑
n=1

nanz
n−1

That is, the derivative may be computed term by term.

Corollary 34.19.8.1. Let
∑∞
n=0 anz

n be a power series with radius of convergence R > 0. Then, the
function f(z) =

∑∞
n=0 anz

n is smooth (infinitely differentiable), and moreover,

f (n)(0)

n!
= an

for all n ∈ N0.

Notes on Mathematics | 634



Analysis Complex Analysis

Theorem 34.19.9. Let
∑∞
n=0 anz

n be a power series with radius of convergence R > 0. Then, for every
r < R, the sequence of functions,

fk :=

k∑
n=0

anz
n

converges uniformly in |z| ≤ r.

34.19.3 The Complex Exponential
In this section, we will write exp(z) instead of ez to emphasise that these power series are definitions
and not theorems, unlike the case for the real exponential.

We define the following power series for z ∈ C.

exp(z) :=

∞∑
n=0

1

n!
zn

= 1 + z +
z2

2!
+
z3

3!
+ · · ·

cos(z) :=

∞∑
n=0

(−1)n

(2n)!
z2n

= 1− z2

2!
+
z4

4!
− z6

6!
+ · · ·

cosh(z) :=

∞∑
n=0

1

(2n)!
z2n

= 1 +
z2

2!
+
z4

4!
+
z6

6!
+ · · ·

sin(z) :=

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1

= z − z3

3!
+
z5

5!
− z7

7!
+ · · ·

sinh(z) :=

∞∑
n=0

1

(2n+ 1)!
z2n+1

= z +
z3

3!
+
z5

5!
+
z7

7!
+ · · ·

These functions are entire, converging for any z ∈ C.

Theorem 34.19.10. The following identities hold for all z ∈ C:

cos(z) =
exp(iz) + exp(−iz)

2
, cosh(z) =

exp(z) + exp(−z)
2

,

sin(z) =
exp(iz)− exp(−iz)

2i
, sinh(z) =

exp(z)− exp(−z)
2

cos(iz) = cosh(z), cosh(iz) = cos(z), sin(iz) = i sinh(z), sinh(iz) = i sin(z)

Theorem 34.19.11. The complex exponential function exp(z) satisfies the following:

• (Characteristic Property of the Exponential) exp(z+w) = exp(z) exp(w) for all z,w ∈ C, exp(1) =
e;
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• exp(z) ̸= 0 for all z ∈ C;

• exp(z) = 1 if and only if z = 2kπi with k ∈ Z;

• exp(z) = −1 if and only if z = (2k + 1)πi with k ∈ Z.

The third property implies that exp(z + w) = exp(z) if and only if w = 2kπi, k ∈ Z, so the exponential
function is periodic along the imaginary axis with period 2π.

34.19.4 The Complex Logarithm

Every complex number z = x+ iy ∈ C \ {0} can be written as reiθ, where r is the modulus of z, |z|, and
θ is the phase of z – the angle that the vector rooted at the origin pointing to z makes with the positive
real axis, measured counterclockwise. Note that for z = 0, this angle is undefined, and in any other case,
is unique only up to factors of 2π.

We define the multivalued argument function arg : C \ {0} → P(R) by

arg(z) = {θ ∈ R : z = |z|eiz}

The argument function is not a function in the usual sense as the image of each input is not uniquely
defined: in particular, if θ ∈ arg(z), then θ + 2kπ ∈ arg(z) for all k ∈ Z.

Theorem 34.19.12. The argument function arg(z) satisfies the following:

• arg(αz) = arg(z) for all real α > 0;

• arg(αz) = arg(z) + π = {θ + π : θ ∈ arg(z)} for all real α < 0;

• arg(z̄) = − arg(z) = {−θ : θ ∈ arg(z)};

• arg
(
1
z

)
= − arg(z);

• arg(zw) = arg(z) + arg(w) = {θ + ϕ : θ ∈ arg(z),ϕ ∈ arg(w)}.

We define the principle value argument function Arg : C \ {0} → (−π,π] by taking the angle in arg(z)
that lies in the interval (−π,π]. Then, we have arg(z) = {Arg(z) + 2kπ : k ∈ Z}.

Note that the Arg function is not continuous in the entire complex plane. In particular, approaching the
negative real axis from the clockwise direction yields −π, while approaching from the counterclockwise
direction yields π. Making any other choice for the image of Arg leads to a similar issue along the
half-line where we define the ends of the image, where the arguments will differ by 2π when approaching
from different directions.

We wish to define an extension of the logarithm to the complex numbers, and to mark the distinction,
we will write ln to denote the ordinary real logarithm in R≥0, and log to denote our complex extension.
One defining characteristic of the real logarithm is that x = ln(y) if and only if ex = y – that is, the real
logarithm is the inverse of the real exponential.

Since ez = ez+2kπi for any k ∈ Z, then if w = log(z), then so is w + 2kπi, so the complex logarithm is
also multivalued.

Let z,w ∈ C such that w = log(z) = u+ iv. Then, we have,

z = eln(z)

= ew

= eu+iv

= (eu)eiv
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But, z = |z|ei arg(z), so, equating the modulus and argument, we have eu = |z|, and v = arg(z), with the
modulus equation in particular implying that u = ln |z|.

We define the multivalued complex logarithm log : C \ {0} → P(R) by

log(z) := ln |z|+ i arg(z)

again noting that log(z) is undefined for z = 0, as ln |z| = ln(0) is undefined.

Theorem 34.19.13. The complex logarithm function log(z) satisfies the following:

• log(zw) = log(z) + log(w) (mod 2πi);

• log
(
z
w

)
= log(z)− log(w) (mod 2πi);

• exp(log(z)) = z;

• log(exp(z)) = z (mod 2πi).

We define the principle branch logarithm Log : C \ {0} → R≥0 by

Log(z) := ln |z|+ iArg(z)

Because the Arg function is discontinuous along the half-line x ≤ 0, the Log function is also discontinuous
along the same line: if we consider points z = x+ iε for x < 0 and sufficiently small ε > 0, we have,

lim
ε→0

Log(x± iε) = Log |x| ± iπ

so the function cannot be extended continuously along {x ≤ 0}. This half-line is called a branch cut, and
any definition of the principle value argument function results in such a half-line.

From the identity,

eLog(z) = z

we have,

eLog(z)(Log(z))′ = 1

and hence,

(Log(z))′ =
1

z

With the complex extension of the natural logarithm, we can now define complex powers of complex
numbers. Given α,z ∈ C with z ̸= 0, we define,

zα := eLog(z
α)

= eαLog(z)

= eα ln |z|+αi arg(z)

= eα ln |z|+αiArg(z)+α2kiπ

= eα ln |z|+αiArg(z)eα2kiπ

where k ∈ Z, and we see that complex powers can be multivalued. Specfically, if α is an integer, then
eα2kiπ = 1, so there is only one value of zα. If α = p

q is rational with p ∈ Z,q ∈ N coprime, then

eα2kiπ = eα2(k+q)iπ

and zα will assume q distinct values. If α is irrational, then zα will take infinitely many values.
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34.19.5 Complex Integration
For a function f : [a,b]→ C, we define,

� b

a

f(t) dt :=

� b

a

ℜ
(
f(t)

)
dt+ i

� b

a

ℑ
(
f(t)

)
dt

So, integrating a complex-valued function reduces to integrating two real-valued functions.

Theorem 34.19.14. For every f,g : [a,b]→ C and every α,β ∈ C, we have,

� b

a

αf(t) + βg(t) dt = α

� b

a

f(t) dt+ β

� b

a

g(t) dt

Theorem 34.19.15. For any function f : [a,b]→ C,

� b

a

f(t) dt =

� b

a

f(t) dt∣∣∣∣∣
� b

a

f(t) dt

∣∣∣∣∣ ≤
� b

a

∣∣f(t)∣∣ dt
34.19.6 Contour Integrals
The previous definition of an integral is a natural extension of real integration for integrating functions
R→ C, but what would it mean to integrate a function C→ C? Single integrals only make sense when
evaluated along 1 dimensional curves, so there is no natural extension in this case.

Because of this, we will only consider integrals of complex-valued functions along curves in the complex
plane called contours:

�
Γ

f dz

where Γ is a contour in C. To evaluate such an integral, we begin by parametrising Γ by a function
γ : [a,b] → C given by γ(t) = x(t) + iy(t). We will also require that γ is C1, as we will require a
well-defined tangent at every point of the curve.

Given a function f : Ω ⊆ C → C and a contour Γ ⊂ Ω ⊆ C parametrised by γ : [a,b] → C, the contour
integral of f over Γ is given by:

�
Γ

f dz :=

� b

a

f
(
γ(t)

)
γ′(t) dt

=

� b

a

ℜ
(
f
(
γ(t)

)
γ′(t)

)
dt+

� b

a

ℑ
(
f
(
γ(t)

)
γ′(t)

)
dt

If Γ is only piecewise C1, then we define,

�
Γ

f dz :=

n∑
i=1

�
Γi

f dz

where (Γi)
n
i=1 are the C1 components of Γ.

Theorem 34.19.16. Let f : Ω ⊆ C→ C and Γ ⊂ Ω such that f
∣∣
Γ

is continuous, and parametrise Γ by
γ+ : [a,b]→ C. Then,
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• If γ− represents the parametrisation of Γ in the opposite direction from γ+, then,
�
γ−
f dz = −

�
γ+

f dz

If Γ has an attached notion of direction or orientation , we call it a directed curve or directed
contour. In this case, we denote by −Γ the same curve swept in the opposite direction, so we may
reformulate the above result without reference to any particular parametrisation by:

�
−Γ

f dz = −
�
Γ

f dz

• If γ̃ : [ã,b̃]→ C is another parametrisation of Γ that preserves orientation, then,
�
γ̃

f dz =

�
γ

f dz

This property is called reparametrisation invariance.

Given a function f : C→ C and a curve parametrised by γ : [a,b]→ C, we define,
�
γ

f dz̄ :=

� b

a

f
(
γ(t)

)
γ′(t) dt

Note that, unlike for functions f : [a,b]→ C, in general, for contour integrals,
�
γ

f(z) dz ̸=
�
γ

f(z) dz

We instead have,
�
γ

f(z) dz =

�
γ

f(z) dz̄

Given a function f : C→ C and a curve parametrised by γ : [a,b]→ C, we define,
�
γ

|f ||dz| :=
� b

a

∣∣∣f(γ(t))∣∣∣∣∣γ′(t)∣∣ dt
Note that

�
γ
|f ||dz| ≥ 0, so we have, ∣∣∣∣�

γ

f dz

∣∣∣∣ ≤ �
γ

|f ||dz|

If f(z) = 1, then we also have,
�
γ

|dz| = L(γ)

where L(γ) is the length of γ.

Theorem 34.19.17. Suppose that Ω is an open set, and F : Ω ⊆ C → C is holomorphic, such that
f(z) := dF

dz is continous. Let γ : [a,b]→ Ω be a C1 curve. Then,
�
γ

f dz = F
(
γ(b)

)
− F

(
γ(a)

)
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A set Ω ⊆ C is connected if it cannot be expressed as the union of non-empty open sets Ω1 and Ω2 such
that Ω1 ∩ Ω2 = ∅.

An open connected set Ω ⊆ C is simply connected if every closed curve in Ω can be continuously deformed
to a point (more precisely, every closed curve is homotopic to a constant function,§38.9.2).

An example of a set that is not simply connected is an annulus (a 2D torus; the region bounded by two
circles of differing radii centred on the same point): any closed curve that encircles the hole cannot be
continuous deformed into a point as it must always encircle the hole.

Theorem (Cauchy). Let Ω be non-empty, open, and simply connected, and let γ ⊂ Ω be a continuous
closed curve. If f : Ω→ C is holomorphic, then,

�
γ

f(z) dz = 0

This theorem says that the integral vanishes around regions where the integrand is holomorphic.

Theorem (Deformation of Contours). Let Ω ⊆ C be non-empty, open, and simply connected. Let
f : Ω → C be holomorphic, and let γ1,γ2 : [a,b] → C be simple regular piecewise C1 paths in Ω with
γ1(a) = γ2(a) and γ1(b) = γ2(b). Then,

�
γ1

f(z) dz =

�
γ2

f(z) dz

Informally, this means that contours may be deformed over regions where the integrand is holomorphic,
and this does not change the value of the integral along the contour.

A parametrisation of a simple closed curve is positively oriented if, when following the direction of
parametrisation, the interior is to our left, and is negatively oriented otherwise. For example, the
counterclockwise parametrisation of the unit circle given by γ(t) = (cos(t), sin(t)) is positively oriented.

However, take an annulus, for example. This region has two boundary curves; an exterior and interior
boundary. The exterior boundary is positively oriented if it has a counterclockwise parametrisation, but
the interior boundary is positively oriented if it has a clockwise parametrisation.

Corollary 34.19.17.1. Let Ω ⊆ C be a region bounded by two simple curves, γ1 exterior and γ2 interior,
both oriented positively, and let f be a function holomorphic over Ω ∪ γ1 ∪ γ2. Then,

�
γ1

f(z) dz +

�
γ2

f(z) dz = 0

If we denote by γ−2 the counterclockwise parametrisation of γ2, then,
�
γ1

f(z) dz =

�
γ−
2

f(z) dz

That is, the integral is the same along both curves when both are parametrised in the same direction.

Given a simple closed C1 curve γ, we denote by I(γ) the region interior to γ, and by E(γ) the region
exterior to γ.

Theorem (Cauchy’s Integral Formula). Let γ : [a,b]→ C be a positively oriented simple closed C1 curve,
and suppose g is a function holomorphic over γ ∪ I(γ). Then, for all z0 ∈ I(γ),

g(z0) =
1

2πi

�
γ

g(z)

z − z0
dz
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Proof. Fix z0 ∈ I(γ) and choose r sufficiently small such that Br(z0) ⊂ I(γ). By deformation of contours,
we have,

1

2πi

�
γ

g(z)

z − z0
dw =

1

2πi

�
∂Br(z0)

g(z0)

z − z0
dz

reducing the problem to considering γ as ∂Br(z0). Notice that this integral is the same for every r
sufficiently small. For now, we have,

1

2πi

�
∂Br(z0)

g(z)

z − z0
dz =

1

2πi

�
∂Br(z0)

g(z0) + g(z)− g(z0)
z − z0

dz

=
1

2πi

�
∂Br(z0)

g(z0)

z − z0
dz +

1

2πi

�
∂Br(z0)

f(z)− f(z0)
z − z0

dz

Denote the first integral by I, and the second integral by J . Note that I = g(z0) since

1

2πi

�
∂Br(z0)

g(z0)

z − z0
dw = g(z0)

1

2πi

�
∂Br(z0)

1

z − z0
dz = g(z0)

It remains to show that J = 0. Since g is holomorphic in I(γ), given any ε > 0, there exists r sufficiently
small such that ∣∣g(z)− g(z0)∣∣ ≤ ε
for all z ∈ ∂Br(z0). Parametrise ∂Br(z0) counterclockwise by γ(t) = z0 + reit for t ∈ [0,2π). Then, we
have γ′(t) = ireit and therefore

|J | =

∣∣∣∣∣ 1

2πi

�
∂Br(z0)

g(z)− g(z0)
z − z0

dz

∣∣∣∣∣
≤
∣∣∣∣ 1

2πi

� 2π

0

g(z0 + reit)− g(z0)
reit

ireit dt

∣∣∣∣
≤ 1

2π

� 2π

0

∣∣g(z0 + reit)− g(z0)
∣∣ dt

≤ ε

Since ε is arbitrary, we obtain the result. ■

This theorem says that we can recover the value of g at any point z by integrating along a closed curve
around that point, provided the curve is sufficiently regular, positively oriented, and contained in I(γ).
This is a very significant difference when compared to smooth functions in R2, for example.

Note that since the curve γ is a compact set, for any point z0 ∈ I(γ), the expression z − z0 found in the
denominator is bounded away from zero, indicating that we can differentiate the formula with respect
to z0 to obtain

g′(z0) =
1

2πi

�
γ

g(z)

(z − z0)2
dz

Of course, this requires justifying moving the derivative inside the integral. We have assumed that g
is holomorphic, so g′(z0) exists. This expression would then give a way of computing this derivative.
Notably, the right side can be differentiated arbitrarily many times, even though we have only assumed
that g is differentiable once: this formula implies that every holomorphic function is smooth. We will
show that this formula indeed holds:

Theorem 34.19.18. Let γ : [a,b] → C be a positively oriented simple closed C1 curve, and suppose g
is a function holomorphic over γ ∪ I(γ). Then, for all z0 ∈ I(γ), g is smooth (infinitely differentiable),
and the nth derivative is given by

g(n)(z) =
n!

2πi

�
γ

g(z)

(z − z0)n+1
dz
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Proof. Note that the Cauchy’s integral formula corresponds to the case n = 0. To prove the result for
n = 1, we use Cauchy’s integral formula on the difference quotient

g(z0 + h)− g(z0)
h

=
1

h

(
1

2πi

�
γ

g(z)

z − z0 − h
dz − 1

2πi

�
γ

g(z)

z − z0
dz

)
By deformation of contours, we can choose γ as ∂B2r(z0) with B2r(z0) ⊂ I(γ). We have, operating on
the right side,

g(z0 + h)− g(z0)
h

=
1

2πi

�
∂B2r(z0)

g(z)

(z − z0 − h)(z − z0)
dz

=
1

2πi

�
∂B2r(z0)

g(z)

(z − z0)2
dz +

1

2πi

�
∂B2r(z0)

g(z)

(
1

(z − z0 − h)(z − z0)
− 1

(z − z0)2

)
dz

=
1

2πi

�
∂B2r(z0)

g(z)

(z − z0)2
dz +

1

2πi

�
∂B2r(z0)

hg(z)

(z − z0 − h)(z − z0)2
dz

Denote the integral on the right by I. The task is now to prove that I → 0 as h→ 0.

Recall that we may choose r arbitrarily small without affecting the values of the integrals above. Choose
|h| < r such that for all z ∈ B2r(z0), we have

|z − z0 − h| ≥ |z − z0| − |h|
> r

where the first inequality is from the reverse triangle inequality, and the second is from the fact that
|z − z0| = 2r for any point z ∈ ∂B2r(z0). Parametrising ∂B2r(z0) with γ(t) = z0 + 2reit for t ∈ [0,2π),
we have γ′(t) = 2rieit, and therefore

∣∣γ′(t)∣∣ ≤ 2r. Since g is holomorphic, in particular, it is continuous,
and therefore there exists M > 0 such that

∣∣g(z)∣∣ ≤M for all z ∈ ∂B2r(z0). From this, we have∣∣∣∣∣
�
∂B2r(z0)

hg(z)

(z − z0 − h)(z − z0)2
dz

∣∣∣∣∣ ≤
� 2π

0

hM

r(2r)2
2r dt

=
πM

r2
h

which tends to 0 as h→ 0, proving the result for n = 1. Now, we induct on n. Assume the result holds
for all values less than some fixed arbitary n. Then, writing the incremential quotient for (n − 1), we
have

g(n−1)(z0 + h)− g(n−1)(z0)

h
=

1

h

(
(n− 1)!

2πi

�
γ

g(z)

(z − z0 − h)n
dz − (n− 1)!

2πi

�
γ

g(z)

(z − z0)n
dz

)
By deformation of contours, we can choose γ as ∂B2r(z0) with B2r(z0) ⊂ I(γ). We have, operating on
the right side,

g(n−1)(z0 + h)− g(n−1)(z0)

h
=

(n− 1)!

2πih

�
∂B2r(z0)

g(z)
(
(z − z0)n − (z − z0 − h)n

)
(z − z0 − h)n(z − z0)n

dz

=
n!

2πi

�
∂B2r(z0)

g(z)

(z − z0)n+1
dz

+
(n− 1)!

2πi

�
∂B2r(z0)

g(z)

((
(z − z0)n − (z − z0 − h)n

)
h(z − z0 − h)n(z − z0)n

− n

(z − z0)2

)
dz

=
n!

2πi

�
∂B2r(z0)

g(z)

(z − z0)n+1
dz
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+
(n− 1)!

2πi

�
∂B2r(z0)

g(z)
(z − z0)n+1 − (z − z0 − h)n(z − z0)− nh(z − z0 − h)n

h(z − z0 − h)n(z − z0)n+1
dz

Denote the integral on the right by I. As before, the task is to prove that I → 0 as h → 0. Choose h
and the parametrisation as above.

If we can show that ∣∣∣∣ (z − z0)n+1 − (z − z0 − h)n(z − z0)− nh(z − z0 − h)n

h

∣∣∣∣ ≤ C|h| (∗)

where C is a constant possibly depending on r, then the result will follow, since, as before |g| ≤M and
|z − z0 − h| ≥ |z − z0| − |h| > r implies∣∣∣∣ 1

(z − z0 − h)n(z − z0)n

∣∣∣∣ ≤ 1

(2r)nrn

So, to prove (∗), note that the binomial theorem gives

(z − z0 − h)n =
n∑
j=0

(
n

j

)
(z − z0)n−j(−h)j

and therefore

(z − z0)n+1 − (z − z0 − h)n(z − z0)− nh(z − z0 − h)n = −
n∑
j=2

(
n

j

)
(z − z0)n+1−j(−h)j

− nh
n∑
j=1

(z − z0)n−j(−h)n

which is of order h2, proving the result. ■

These theorems are often helpful in reverse for evaluating contour integrals.

Theorem (Taylor Series Expansion). Let f be holomorphic on Br(a) for a ∈ C, r > 0. Then, there
exist unique constants cn, n ∈ N such that, fo all z ∈ Br(a)

f(z) =

∞∑
n=0

cn(z − a)n

That is, a holomorphic function is analytic.

Moreover, the coefficients cn are given by

an =
1

2πi

�
γ

f(w)

(w − a)n+1
dw

=
f (n)(a)

n!

where γ is any positively oriented parametrisation of a simple closed curve Γ ⊂ Br(a) that is piecewise
C1 with a ∈ I(γ).

A function f defined on a subset of C is said to have a pole of order m ∈ N at a ∈ C if there is a
neighbourhood U of a such that for any z ∈ U ,

f(z) =
c−m

(z − a)m
+

cm−1

(z − a)m−1
+ · · ·+ c−2

(z − a)2
+

c−1

(z − a)
+ ϕ(z)

Notes on Mathematics | 643



Analysis Complex Analysis

where ϕ is analytic in U , (c−k)mk=1 ⊂ C, and c−m ̸= 0. The coefficient c−1 is called the residue of f at
a, also denoted Res

(
f(a)

)
. This expansion is also called a Laurent polynomial.

A function that is holomorphic at all points of an open subset Ω ⊆ C apart from some poles is said to
be meromorphic on Ω.

Theorem (Cauchy’s Residue Theorem). Let γ ⊂ C be a simple closed positively oriented piecewise C1

curve, and let f be meromorphic on I(γ) with poles (zk)
n
k=1 ⊂ I(γ). Then,

�
γ

f = 2πi

n∑
k=1

Res
(
f(zk)

)
Lemma 34.19.19. Let f,g : U → C be holomorphic on an open neighbourhood U of a ∈ C, and suppose
g(a) = 0, but g′(a) ̸= 0. Then, provided f(a) ̸= 0, the function f

g has a pole of order 1 at a, and,

Res

(
f

g
(a)

)
=
f(a)

g′(a)

34.19.7 Examples of Contour Integration
Example (Integrating around one pole). Let

I =

� ∞

−∞

1

x2 + 1
dz

Denote the integrand by f(z) = 1
z2+1 , which factorises to

f(z) =
1

(z − i)(z + i)

and we can see that f has poles at i and −i, and is analytic elsewhere.

For R > 0, we construct a positively oriented contour γR consisting of a line segment along the real axis
from −R to R, then closing the contour with a semicircular arc in the complex plane:

i

−i

R−R γaxis
R

γarc+
R

This contour can be decomposed into the line segment and the arc and parametrised separately by paths
γaxis
R : [−R,R]→ C and γarc+

R : [0,π]→ C given by

γaxis
R (t) = t

γarc+
R (t) = Reit
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Since I is absolutely convergent, we have

I = lim
R→∞

�
γaxis
R

f(z) dz

= lim
R→∞

(�
γR

f(z) dz −
�
γarc+
R

f(z) dz

)

We have �
γR

f(z) dz =

�
γaxis
R

f(z) dz +

�
γarc+
R

f(z) dz

By deformation of contours, �
γR

f(z) dz =

�
∂B1(i)

f(z) dz

for all R > 0, and Cauchy’s integral formula with g(z) = 1
z+i yields

�
∂B1(i)

f(z) dz =

�
∂B1(i)

1

(z − i)(z + i)
dz

=

�
∂B1(i)

1
z+i

z − i
dz

= 2πi · 1

z + i

∣∣∣∣∣
z=i

= π

Or alternatively, the residue at i is given by

f(z) =
1/(z + i)

(z − i)

Res[f(z)]z=i =
1

z + i

=
1

2i

so the residue theorem gives
�
∂B1(i)

f(z) dz = 2πiRes[f(z)]z=i

= 2πi
1

2i
= π

Next,
�
γarc+
R

1

z2 + 1
dz =

� π

0

1

(Reiθ)2 + 1

dz

dθ
dθ

=

� π

0

1

R2ei2θ + 1
iReiθ dθ

=

� π

0

iReiθ

R2ei2θ + 1
dθ
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∣∣∣∣∣
�
γarc+
R

1

z2 + 1
dz

∣∣∣∣∣ ≤
� π

0

∣∣∣∣ iReiθ

R2ei2θ + 1

∣∣∣∣ dθ
=

� π

0

R

|Rei2θ + 1|
dθ

≤
� π

0

R

|R2 − 1|
dθ

= π
R

|R2 − 1|

so the integral along the arc vanishes as R→∞.

So, we have

I = lim
R→∞

�
γaxis
R

f(z) dz

= lim
R→∞

(�
γR

f(z) dz −
�
γarc+
R

f(z) dz

)
= π

△

In this example, it would not have mattered if we chose to close the contour in the lower half of the plane
rather than the upper half. That is, if we instead defined γarc−

R : [0,π] → C by γarc−
R (t) = Re−it, then

almost identical reasoning yields the same answer.

This is not always the case.

Example (Choosing the correct contour). Let

I =

� ∞

−∞

eix

x2 + 9
dz

Denote the integrand by f(z) = eiz

z2+9 , which factorises to

f(z) =
eiz

(z − 3i)(z + 3i)

so f has poles at 3i and −3i, and is analytic elsewhere.

Construct a negatively oriented contour γR consisting of a line segment along the real axis from −R to
R, then closing the contour with a semicircular arc in lower half-plane:

R−R

3i

−3i

γaxis
R

γarc
R
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We have limR→∞
�
γarc−
R

f(z) dz = 0 since

lim
R→∞

∣∣∣∣∣
�
γarc−
R

f(z) dz

∣∣∣∣∣ ≤ lim
R→∞

� π

0

∣∣∣∣∣ eiRe
−it

(Re−it)2 + 9

∣∣∣∣∣ · |−iRe−it| dt
= lim
R→∞

� π

0

∣∣∣∣∣∣e
iR
(
cos(−t)+i sin(−t)

)
(Re−it)2 + 9

∣∣∣∣∣∣ · |−iRe−it| dt
≤ lim
R→∞

� π

0

e−R sin(t)

|R2 − 9|
·Rdt

≤ lim
r→∞

πR

|R2 − 9|
= 0

where the second last line follows from 0 ≤ e−R sin(t) ≤ 1 for all t ∈ [0,π] and all R > 0. So, by the
absolute convergence of I, we have,

I = lim
R=→∞

(�
γaxis
R

f(z) dz +

�
γarc−
R

f(z) dz

)

= lim
R→∞

�
γR

f(z) dz

Deformation of contours and Cauchy’s integral formula then give

I = lim
R→∞

�
γR

f(z) dz

= −2πi · eiz

z − 3i

∣∣∣∣∣
z=−3i

=
π

3e3

Note that we have a minus sign on the second line because γR is negatively oriented. △

In the above, it is important that the contour is closed over the lower half-plane, or otherwise the integral
along the arc does not vanish:

lim
R→∞

∣∣∣∣∣
�
γarc+
R

f(z) dz

∣∣∣∣∣ ≤ lim
R→∞

� π

0

∣∣∣∣∣ e−iRe
it

(Reit)2 + 9

∣∣∣∣∣ · |iReit| dt
= lim
R→∞

� π

0

∣∣∣∣∣∣e
−iR
(
cos(t)+i sin(t)

)
(Reit)2 + 9

∣∣∣∣∣∣ · |iReit| dt
≤ lim
R→∞

� π

0

eR sin(t)

|R2 − 9|
·Rdt

=∞

We can similarly show that
�∞
−∞

eix

x2+9 dx = π
3e3 by closing the contour in the upper half-plane.

Now, recall that for all z ∈ C, we have

cos(z) =
1

2
(eiz + e−iz)

= ℜ(eiz)

sin(z) =
1

2i
(eiz − e−iz)

= ℑ(eiz)
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So any real trigonometric integral can be converted into a complex exponential integral. For instance,
� ∞

−∞

cos(x)

x2 + 9
dz =

� ∞

∞

1
2 (e

ix + e−ix)

x2 + 9
dx

=
1

2

(� ∞

∞

eix

x2 + 9
dx+

� ∞

∞

e−ix

x2 + 9
dx

)
=

π

3e3

Example (Complexifying the integrand). Let

I =

� 2π

0

ecos(t) cos(sin(t)) dt

Note that

I = ℜ
(� 2π

0

ee
it dt

)
= ℜ

(
1

i

� 2π

0

ee
it

eit
· ieit dt

)

= ℜ
(
1

i

�
S1

ez

z
dz

)

Cauchy’s integral formula gives �
S1

ez

z
dz = 2πi

so

I = ℜ
(
1

i

�
S1

ez

z
dz

)
= ℜ (2π)

= 2π

△

Example (Pole at the origin). Let

I =

� ∞

−∞

sin(x)

x(x2 + 1)
dx

We can replace this with an exponential:

I = ℑ (J) , J =

� ∞

−∞

eix

x(x2 + 1)
dx

Denote the integrand by f(z) = eiz

z(z2+1) , which has poles at 0, i, and −i. This time, a semicircular
contour does not work, since we cannot integrate over the pole at the origin.

We create a new contour γ by modifying the previous contour, adding another semicircle around the
origin:
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i

−i

R−R ε−ε
γaxis+
R,εγaxis−

R,ε

γarc
R

γarc
ε

which decomposes into four paths

γaxis+
R,ε = t, t ∈ [ε,R]

γarc
R = Reit, t ∈ [0,π]

γaxis−
R,ε = t, t ∈ [−R,− ε]
γarc
ε = εeit, t ∈ [−π,0]

Then,

J = lim
R→∞

lim
ϵ→0

(�
γaxis+
R,ε

f(z) dz +

�
γaxis−
R,ε

f(z) dz

)
as the integral converges absolutely.

It is routine to check that limR→∞
�
γarc
R
f(z) dz = 0. For the other arc, we have

lim
ε→0

�
γarc
ε

f(z) dz = lim
ε→0

� 0

−π

eiεe
−it

εei−t
(
(εeit)2 + 1

) · (−iεe−it) dt
= −i lim

ε→0

� π

0

eiεe
it

(εeit)2 + 1
dt

= −i
� π

0

lim
ε→0

eiεe
it

(εeit)2 + 1
dt

= −i
� π

0

1 dt

= −πi

where uniform convergence of the integrand allowed the limit to commute in the second last line.

Deformation of contours and Cauchy’s integral formula then give

J + lim
ε→0

�
γarc
ε

f(z) dz = 2πi · eiz

z(z + i)

∣∣∣∣∣
z=i

= −π
e
i

so J = (π − π
e )i, so I = π − π

e . △

Example (Pie contour). Let

I =

� ∞

0

1

x3 + 1
dx
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Denote the integrand by f(z) = 1
z3+1 .

Extending the half-line to a semicircle contour does not work because of the pole at −1. Instead, for
R > 0, we take a line segment along the real-axis from 0 to R, and another line segment off the real-axis,
before joining them with an arc:

e
πi
3

e−
πi
3

−1
RγℜR

γray
R

γarc
R

which decomposes into three paths

γℜR = t, t ∈ [0,R]

γarc
R = Reit, t ∈ [0, 2π3 ]

γray
R = −e 2πi

3 t, t ∈ [−R,0]

Note
I = lim

R→∞

�
γℜ
R

f(z) dz

It is routine to check that limR→∞
�
γarc
R
f(z) dz = 0. Furthermore,

lim
R→∞

�
γray
R

f(z) dz = lim
R→∞

� 0

−R

1

(−e 2πi
3 )3 + 1

· (−e 2πi
3 ) dt

= −e 2πi
3 lim
R→∞

� R

0

1

t3 + 1
dt

= −e 2πi
3 I

Deformation of contours and Cauchy’s integral formula then give

I − e 2πi
3 I = lim

R→∞

(�
γℜ
R

f(z) dz +

�
γarc
R

f(z) dz +

�
γray
R

f(z) dz

)

= 2πi · 1

(z + 1)(z − e− 2πi
3 )

∣∣∣∣∣
z=e

πi
3

= π

(
1√
3
− 1

3
i

)
so I = 2π

3
√
3

△

Example (Keyhole contour). Let

I =

� 0

−∞

z
1
2

z2 − 5z + 4
dz
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This does not make sense as a real integral, as we are taking the square root of a negative number in the
numerator. However, in the complex plane, this is simply a contour integral along the negative real axis
with integrand f(z) = z

1
2

z2−5z+4 which factorises into

f(z) =
z

1
2

(z − 1)(z − 4)

so f has poles at 1 and 4. Since z
1
2 = e

1
2 log(z), f requires a branch cut to be defined continuously.

As is standard, we take the branch cut along the half-line (−∞,0]. We cannot integrate f along this
branch cut, so we use a contour γ made up of an arc of radius 0 < ε < 1, an arc of radius 4 < R, and
two line segments displaced from the negative real-axis by 0 < δ ≤ ε.

1 4 R

γarc
R

γarc
εγ+δ

γ−δ

which decomposes into

γarc
R = Reit, t ∈ [−π + arcsin( δR ),π − arcsin( δR )]

γarc
ε = εe−it, t ∈ [−π + arcsin( δε ),π − arcsin( δε )]

γ+δ = t+ iδ, t ∈ [−
√
R2 − δ2,−

√
ε2 − δ2]

γ−δ = t− iδ, t ∈ [
√
ε2 − δ2,

√
R2 − δ2]

We have �
γ

f(z) dz =

�
γarc
R

f(z) dz +

�
γ+
δ

f(z) dz +

�
γarc
ε

f(z) dz +

�
γ−
δ

f(z) dz

It is routine to check that the integrals along γarc
R and γarc

ε vanish as R → ∞ and ε → 0, respectively.
For the line segments, we have

lim
R→∞

lim
ε→0

lim
δ→0

�
γ+
δ

f(z) dz = lim
R→∞

lim
ε→0

lim
δ→0

� −
√
ε2−δ2

−
√
R2−δ2

(t+ iδ)
1
2

(t+ iδ)2 − 5(t+ iδ) + 4
dt

=

� 0

−∞

t
1
2

t2 − 5t+ 4
dt

= I

and

lim
R→∞

lim
ε→0

lim
δ→0

�
γ−
δ

f(z) dz = lim
R→∞

lim
ε→0

lim
δ→0

� √
R2−δ2

√
ε2−δ2

(−t− iδ) 1
2

(−t− iδ)2 − 5(−t− iδ) + 4
· (−1) dt
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=

� ∞

0

(−t) 1
2

(−t)2 − 5(−t) + 4
dz

= eit
� −∞

0

t
1
2

t2 − 5t+ 4

=

� 0

−∞

t
1
2

t2 − 5t+ 4

= I

So, �
γ

f(z) dz = 2I

The contour encircles two poles, so we have,

I =
1

2

�
γR

f(z) dz

=
1

2
· 2πi

(
z

1
2

z − 1

∣∣∣∣∣
z=4

+
z

1
2

z − 4

∣∣∣∣∣
z=1

)

=
πi

3

△

So far, every integrand we have seen has only had poles of order 1. However, we can still handle higher
order poles with the generalised Cauchy’s integral formula.

Example (Higher order poles). Let

I =

� ∞

−∞

cos(x)

(x2 + 1)4
dx

Let f(z) = eiz

(z2+1)4 which factorises as

f(z) =
eiz

(z − i)4(z + i)4

so f has poles at i and −i. Then,

I = ℜ
(� ∞

−∞
f(x) dx

)
Taking the usual semicircular contour γR of radius R > 0 in the upper half-plane, it is routine to check
that � ∞

−∞
f(x) dx = lim

R→∞

�
γR

f(z) dz

(i.e. the integral along the arc vanishes as R→∞). Cauchy’s integral formula then gives

I = ℜ
(

lim
R→∞

�
γR

f(z) dz

)
=

2πi

3!
· g(3)(i) where g(z) =

eiz

(z + i)4

=
37π

48e

△

Notes on Mathematics | 652



Analysis Complex Analysis

Example (Contour contains no poles). Let

I =

� ∞

−∞

1

z2 − 3iz − 2
dz

Denote the integrand by f(z) = 1
z2−3iz−2 which factorises as

f(z) =
1

(z − i)(z − 2i)

so f has poles at i and 2i, and is analytic elsewhere. Both of these poles lie in the upper half-plane.

Taking the semicircular contour γR of radius R > 0 in the lower half-plane, it is routine to check that

I = lim
R→∞

�
γR

f(z) dz

Cauchy’s theorem then gives I = 0. △

34.19.8 Liouville’s Theorem
Theorem (Liouville). Let f : C→ C be entire (analytic over C) and bounded. Then, f is constant.

Proof. Given two points x and y, consider the open balls Br(x) and Br(y), where r > |x − y|. For
sufficiently large r, the two balls coincide except for an arbitrarily small proportion of their volume.
Since f is bounded and entire functions are harmonic, by the mean value property, the averages of f
over the two balls are arbitarily close so f takes the same value at x and y. Since x and y were arbitrary,
f is constant. ■

Theorem (Fundamental Theorem of Algebra). Every non-constant polynomial p ∈ C[x] has a root in
C – that is, there exists α ∈ C such that p(α) = 0.

Proof. Suppose for a contradiction that |p(z)| ≠ 0 for all z ∈ C. Define f : C→ C by f(z) = 1
p(z) . Since

p does not vanish, f is holomorphic on all of C since it is the composition of two holomorphic functions
( 1z is holomorphic outside of the origin).

If p(z) =
∑n
k=0 ckz

k with cn ̸= 0 for n > 0, then at infinity, the polynomial behaves like cnzn, as that is
the highest power. T hus, |p(z)| → ∞ as z →∞, and satisfies |p(z)| > 1 for all |z| > R for some R > 0.

So, f is less than 1 for all |z| > R, and f is bounded on the compact set |z| ≤ R since it is continuous.
Then, by Liouville’s theorem, f is constant, and hence p is constant, which is a contradiction. ■

Theorem 34.19.20. Let Ω be open, and let fn : Ω → C be a sequence of analytic functions. If fn
converges uniformly to f , then f is analytic.

Proof. Fix a point z0 ∈ Ω. Choose r > 0 sufficiently small such that Br(z0) ⊂ Ω. Since fn is analytic on
Ω, Cauchy’s formula yields

fn(z0) =
1

2πi

�
∂Br(z0)

fn(z)

z − z0
dz

Taking limits as n tends to infinity, we have

f(z0) = lim
n→∞

1

2πi

�
∂Br(z0)

fn(z)

z − z0
dz
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If we could commute the limit and the integral, we would obtain

f(z0) =
1

2πi

�
∂Br(z0)

f(z)

z − z0
dz

which implies that f is differentiable (in fact, smooth), and an expression for its derivatives is given by
Theorem 34.19.18.

(In the proof of that theorem, it was assumed that f is analytic. However, if the above integral expression
is already given, analyticity of the left side can be proved using only that f is bounded in ∂Br(z0):
f
∣∣
∂Br(z0)

is continuous as the uniform limit of a sequence of analytic, and hence continuous, functions,
so f is bounded as ∂Br(z) is closed and bounded.)

To show that the limit may be moved inside the integral, parametrise ∂Br(z0) by γ(t) = z0 + reit for
t ∈ [0,2π). Then, γ′(t) = ireit, so

�
∂Br(z0)

fn(z)

z − z0
dz =

� 2π

0

fn(z0 + reit)

reit
ireit dt

= i

� 2π

0

fn(z0 + reit) dt (1)

As a function of t, fn(z0 + reit) converges uniformly to f(z0 + reit), so the integral of the sequence also
converges uniformly to the integral of the limit, so we have

lim
n→∞

�
∂Br(z0)

fn(z)

z − z0
dz = lim

n→∞
i

� 2π

0

fn(z0 + reit)

= i

� 2π

0

f(z0 + reit)

Replacing fn by f in (1), and reading the chain of equalities in reverse, we have

i

� 2π

0

f(z0 + reit) dt =

�
∂Br(z)

f(z)

z − z0

obtaining the result. ■
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Chapter 35

Asymptotics

“Hold infinity in the palm of your hand.”
— William Blake, Auguries of Innocence



Chapter 36

Variational Principles

“We are not randomly suboptimal in our decisions. We are systematically
suboptimal.”

— Leland Wilkinson, The Grammar of Graphics, Statistics, and Computing



Chapter 37

Point-Set Topology

“A linguist would be shocked to learn that if a set is not closed that does not mean
that it is open, or again that ‘E is dense in E’ does not mean the same thing as ‘E
is dense in itself ’.”

— John Edensor Littlewood, A mathematicians’ Miscellany

Topology is the branch of mathematics concerned with continuity and connectedness, and properties of
spaces that are invariant under continuous deformations.

For instance, the hairy ball theorem of algebraic topology states that there is no nonvanishing continuous
tangent vector field on the sphere (or “you can’t comb the hair on a coconut flat”). The object in
question being a sphere is not actually important to the theorem, and it holds on any smooth blob that
can be continuously deformed into a sphere. Note that this excludes say, a torus, which has a hole and
thus cannot be continuously deformed into a sphere. Topology makes precise this distinction between
a sphere and a torus (“homotopy classes”), and also formalises what it means to continously deform an
object (“homeomorphisms”).

In this chapter, we investigate the topologies of sets, in what is known as point-set or set-theoretic
topology, which has more of an analytic flavour. We begin by generalising the notion of lengths and
distances with normed and metric spaces, before investigating topological properties of those spaces and
dropping the precise measure of distance altogether in topological spaces.

In later chapters, we will investigate topological spaces using algebraic invariants and techniques.

37.1 Normed Spaces

A norm on a real or complex vector space X is a map ∥ · ∥ : X → R≥0 such that,

(i) ∥x∥ = 0 if and only if x = 0 (point separating or positive-definiteness);

(ii) ∥λx∥ = λ∥x∥ for all λ ∈ R or C and all x ∈ X (absolute homogeneity);

(iii) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality).

Note that these axioms imply that ∥x∥ ≥ 0 for all x ∈ X. The pair (X,∥ · ∥) is then called a normed
space.

As an example, the absolute value function | · | : R→ R≥0 is a norm on the one-dimensional vector spaces
R and C.



Point-Set Topology Normed Spaces

For a vector x = (x1,x2, . . . ,xn) in the vector space Rn, we define the Euclidean or standard norm as,

∥x∥ =

√√√√ n∑
i=1

|xi|2

We also have the taxicab or Manhattan norm,

∥x∥ℓ1 =

n∑
i=1

|xi|

and the uniform or maximum norm,

∥x∥ℓ∞ = max
1≤i≤n

∥xi∥

The closed unit ball denoted B or B in the normed space (X,∥ · ∥) is the set,

BX = {x ∈ X : ∥x∥ ≤ 1}

The open unit ball denoted B or B in the normed space (X,∥ · ∥) is the set,

BX = {x ∈ X : ∥x∥ < 1}

Let X be a vector space. A subset K ⊆ X is convex if, whenever x,y ∈ K, then λx+ (1− λ)y ∈ K for
0 ≤ λ ≤ 1. Informally, a set is convex if the straight line segment connecting any two points in the set
is contained within the set.

Lemma (Convexity of Balls). In any normed space (X,∥ · ∥), the open and closed unit balls are convex.

Proof. We show the case for the closed ball. The proof for the open ball is analogous.

Let x,y ∈ BX , then ∥x∥ ≤ 1 and ∥y∥ ≤ 1. Then, for 0 ≤ λ ≤ 1,

∥λx+ (1− λ)y∥ ≤ |λ|∥x∥+ |1− λ|∥y∥ [Triangle Inequality]
≤ λ+ (1− λ)
= 1

so ∥λx+ (1− λ)y∥ ≤ 1, giving λx+ (1− λ)y ∈ BX , as required. ■

Lemma (Equivalence of Convexity and Triangle Inequality). Suppose a function N : X → R≥0 satisfies
requirements (i) and (ii) of a norm, and in addition, that the set B := {x ∈ X : N(x) ≤ 1} is convex.
Then, N satisfies the triangle inequality,

N(x+ y) ≤ N(x) +N(y)

and thus defines a norm on X.

Proof. If N(x) = 0, then x = 0 and

N(x+ y) = N(y) = N(x) +N(y)

so we can assume N(x),N(y) > 0.

In this case, x/N(x) ∈ B and y/Ny ∈ B, so by convexity of B,

N(x)

N(x) +N(y)

(
x

N(x)

)
+

N(y)

N(x) +N(y)

(
y

N(y)

)
∈ B
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So,

x+ y

N(x) +N(y)
∈ B

By homogeneity,

N

(
x+ y

N(x) +N(y)

)
=

N(x+ y)

N(x) +N(y)
≤ 1

and multiplying through by N(x) +N(y) gives the result. ■

Because verifying the triangle inequality can be quite difficult, this lemma provides a simple way to
check if a function defines a norm based on verifying convexity of the closed unit ball the function would
generate.

For p ∈ [1,∞], the ℓp norms on Rn are defined by,

∥x∥ℓp :=

(
n∑
i=1

|xi|p
) 1

p

The standard norm corresponds to the choice p = 2, the taxicab norm to p = 1, and the max norm to
p =∞.

Theorem (Minkowski’s Inequality in Rn). For all 1 ≤ p ≤ ∞, if x,y ∈ Rn, then,

∥x+ y∥ℓp ≤ ∥x∥ℓp + ∥y∥ℓp

Proof. If p = ∞, this is straightforward. For p ∈ [1,∞), the function t 7→ |t|p is convex, so if x,y ∈ B,
then,

∥∥λx+ (1− λ)y
∥∥p
ℓp

=

n∑
i=1

∣∣λxi + (1− λ)y + i
∣∣p

≤
n∑
i=1

λ|xi|p + (1− λ)|yi|p

≤ 1

and so λx+ (1− λ)y ∈ B and B is convex. The result then follows from §37.1. ■

Two norms ∥ · ∥1 and ∥ · ∥2 on X are equivalent if there exists constants 0 < c1 ≤ c2 such that,

c1∥x∥1 ≤ ∥x∥2 ≤ c2∥x∥1

for every x ∈ X, or equivalently, if,

c1B(X,∥·∥1) ⊆ B(X,∥·∥2) ⊆ c2B(X,∥·∥1)

This notion of equivalence forms an equivalence relation on the space of norms of X.

Theorem (Equivalence of Finite Norms). All norms on a finite-dimensional vector space are equivalent.

The sequence space ℓp, 1 ≤ p ≤ ∞, consists of all sequences (xi)
∞
i=1 such that,

∞∑
i=1

|xi|p <∞

(in the case of p =∞, ℓ∞ is the space of bounded sequences) equipped with the corresponding ℓp norm.
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The ℓp spaces are infinite-dimensional, with the standard basis being given by (ei)
∞
i=1Minkowski′s,

where,

ei = (0, 0, . . . , 1
ith place

, 0, . . .)

Note that for any 1 ≤ q < p ≤ ∞, there are elements of ℓp that are not elements of ℓq – for instance, the
sequence (i−

1
q )∞i=1 – so the ℓp spaces are nested within each other, with ℓ∞ being the largest, and ℓ1 the

smallest.

Theorem (Minkowski’s Inequality in ℓp). For all 1 ≤ p ≤ ∞, if x,y ∈ ℓp, then x+ y ∈ ℓp and,

∥x+ y∥ℓp ≤ ∥x∥ℓp + ∥y∥ℓp

Proof. The case p =∞ is again straightforward. For p ∈ [1,∞), given x,y ∈ ℓp, we can use Minkowski’s
inequality in Rn to guarantee that(

n∑
i=1

|xi + yi|p
) 1

p

≤

(
n∑
i=1

|xi|p
) 1

p

+

(
n∑
i=1

|yi|p
) 1

p

≤ ∥x∥ℓp + ∥y∥ℓp

Taking the limit as n→∞, we deduce the result. ■

37.1.1 Normed Subspaces
If (X,∥ · ∥) is a normed space, and Y is a subspace of X, then (Y,∥ · ∥) is another normed space. Strictly
speaking, the norm ∥ · ∥Y defined on Y is the restriction of the norm ∥ · ∥ on X to Y , but we denote
them by the same symbol as the implied meaning is clear.

For example, c0, the space of all null sequences, is a subspace of ℓ∞. The space c00, the space of all
sequences with only a finite number of non-zero terms, is a subspace of ℓp for all p ∈ [1,∞].

37.1.2 Spaces of Continuous Functions

We denote by C
(
[a,b]

)
the space of (real-valued) continuous functions defined on the interval [a,b]. The

usual norm to use on this space is the supremum norm,

∥f∥∞ := sup
x∈[a,b]

|f(x)|

but by the extreme value theorem, this is equivalent to

= max
x∈[a,b]

|f(x)|

The Lp norms are defined on this space analogously to how the ℓp norms are defined on Rn:

∥f∥Lp :=

(� b

a

|f(x)|p
) 1

p

37.2 Metric Spaces

In many situations, we care less about a notion of length than about a generalised notion of distance.
This generalisation is given in the form of a metric.

Let X be any set. A metric d on X is a map d : X ×X → R≥0 such that,
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(i) d(x,y) = 0 if and only if x = y (point separating or positive-definiteness);

(ii) d(x,y) = d(y,x) for all x,y ∈ X (symmetry);

(iii) d(a,b) ≤ d(a,x) + d(x,b) for every a,b,x ∈ X (triangle inequality).

Note that these axioms imply that d(x,y) ≥ 0 for all x,y ∈ X. The pair (X,d) is then called a metric
space.

Theorem (Induced Metric). If (X,∥ · ∥) is a normed space, then d(x,y) = ∥x− y∥ defines a metric on
X.

Proof. We verify the metric axioms:

(i) If x = y, then d(x,y) = ∥x− y∥ = ∥0∥ = 0; if d(x,y) = ∥x− y∥ = 0, then x = y;

(ii) d(x,y) = ∥x− y∥ = ∥(−1)(y − x)∥ = |−1|∥y − x∥ = ∥y − x∥ = d(y,x);

(iii) d(a,b) = ∥a− b∥ ≤ ∥a− x∥+ ∥x− b∥ = d(a,x) + d(x,b). ■

The Euclidean or standard metric on Rn is the metric induced by the Euclidean ℓ2 norm:

d2(x,y) = ∥x− y∥ℓ2

=

√√√√ n∑
i=1

|xi − yi|2

The discrete metric on any non-empty set X is defined as,

d(x,y) :=

{
0 x = y

1 x ̸= y

Every point in a discrete metric space is equally distanced from every other distinct point. The discrete
metric is useful for counterexamples, as it is very different from metrics that arise from norms.

Let L be the set of words of length n constructed from a finite alphabet Σ of characters. The Hamming
distance on L is defined as the number of places in the strings which disagree. For example, the strings
abcdef and aacdef have a Hamming distance of 1. This metric has important applications in (en)coding
and information theory, as it measures, among other things, the error or noise in a signal.

Let G be a graph. The graph metric defined on the vertex set of G is the number of edges in a shortest
path connecting two vertices.

The jungle river metric on R2 is defined as,

d
(
(x1,y1)(x2,y2)

)
=

{
|y1 − y2| x1 = x2

|y1|+ |x1 − x2|+ |y2| x1 ̸= x2

37.2.1 Metric Subspaces and Product Spaces
If (X,d) is a metric space, and A is a subset of X, then the restriction d|A, also denoted dA, of d to A is
also a metric on A. Then, we say that (A,dA) is a (metric) subspace of (X,d).

For instance, any set A ⊆ R equipped with the usual Euclidean metric with the appropriate restriction
is a metric subspace of R.

If (X,d1) and (Y,d2) are metric spaces, we can define a metric on the Cartesian product of their underlying
sets. In fact, there are many ways to do so:
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Lemma 37.2.1. Let (X,d1) and (Y,d2) be metric spaces. Then, for any 1 ≤ p ≤ ∞,

ϱp
(
(x1,y1),(x2,y2)

)
:=


((
d1(x1,x2)

)p
+
(
d2(y1,y2)

)p) 1
p

1 ≤ p <∞
max

(
d(x1,x2),d(y1,y2)

)
p =∞

defines a metric on X × Y .

That is, we perform a pairwise computation analogous to the ℓp metrics on the components of the points.
This similarly extends to any finite product of metric spaces.

Theorem 37.2.2. Given a finite collection
(
(Xi,di)

)n
i=1

of metric spaces,

ϱp
(
a,b
)
=


(

n∑
i=1

(
di(ai,bi)

)p) 1
p

1 ≤ p <∞

max
1≤i≤n

(di(ai,bi)) p =∞

defines a metric on
∏n
i=1Xi.

37.2.2 Open and Closed Sets
Let (X,d) be a metric space. The open ball centred at a ∈ X of radius r is the set,

B(a,r) = {x ∈ X : d(x,a) < r}

also denoted by B(a,r) or Br(a)

Similarly, the closed ball centred at a ∈ X of radius r is the set,

B(a,r) = {x ∈ X : d(x,a) ≤ r}

also denoted by B(a,r) or Br(a).

Example. The open ball of radius 1 centred at 0 in R under the Euclidean metric is the interval B(0,1) =
(−1,1). In the subspace [0,2] ⊂ R, the same ball is instead given by B(0,1) = [0,1), so balls depend on
the ambient space containing them. △

Let (X,d) be a metric space. A subset S ⊆ X is bounded if there exists a ∈ X and r > 0 such that
S ⊂ B(a,r).

A subset U ⊆ X is open in X if for every x ∈ U there exists ε > 0 such that B(x,ε) ⊂ U . A subset
F ⊆ X is closed in X if its complement X \ F is open.

Note that the definition of a closed set here is different from the one given in §45.3, where closed sets are
defined to be sets closed under sequential limits, but these definitions are equivalent in metric spaces.
However, in more general topological spaces, these definitions are not equivalent.

Example.

• In any metric space (X,d), X and ∅ are both simultaneously open and closed (or clopen).

• In R, open intervals are open and closed intervals are closed. Half-open intervals are neither open
nor closed.

• In a discrete metric space, every singleton set {x} ⊆ X is open (take any ε < 1).

△
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Sets can be open, closed, both (clopen), or neither, so the adjectives “open” and “closed” do not have all
of their usual intuitive connotations when used in a mathematical context.

Lemma (Open Balls). Open balls are open sets.

Proof. Let (X,d) be a metric space, and let a ∈ X and r > 0. Let y ∈ B(a,r) so d(y,a) < r, and take
ε := r − d(y,a) > 0. Then, B(y,ε) ⊂ B(a,r), since, if d(z,y) < ε, we have,

d(z,a) ≤ d(z,y) + d(y,a) < ε+ d(y,a) = r

■

Corollary (Closed Balls). Closed balls are closed sets.

Lemma (Open Finite Intersection). If (Ui)ni=1 is a finite collection of sets open in (X,d), then
⋂n
i=1 Ui

is open in (X,d).

Proof. Take x ∈
⋂n
i=1 Ui. Then, for each i, x ∈ Ui, so there exists εi > 0 such that B(x,εi) ⊂ Ui. If

ε := min(ε1, . . . ,εn), then,

B(x,ε) ⊆ B(x,ε) ⊂ Ui

for all i, and hence B(x,ε) ⊂
⋂n
i=1 Ui. ■

However, the countable intersection of open sets is not necessarily open. For example,
(
− 1
n ,

1
n

)
is open

in R for all n, but,

∞⋂
n=1

(
− 1

n
,
1

n

)
= {0}

which is not open in R.

Corollary (Closed Finite Union). If (Fi)ni=1 is a finite collection of sets closed in (X,d), then
⋃n
i=1 Fi

is closed in (X,d).

Proof. By De Morgan’s laws,

X \
n⋃
i=1

Fi =

n⋂
i=1

(X \ Fi)

As Fi is closed, X\Fi is open, so
⋂n
i=1(X\Fi) is the finite intersection of open sets, and hence X\

⋃n
i=1 Fi

is open. It follows that
⋃n
i=1 Fi is closed. ■

Again, the countable union of closed sets is not necessarily closed. For example,
[
−1 + 1

n ,1−
1
n

]
is closed

in R for all n, but,

∞⋃
n=1

[
−1 + 1

n
,1− 1

n

]
= (−1,1)

which is not closed in R.

Lemma (Open Arbitrary Union). If (Ui)i∈I is an arbitrary collection of sets open in (X,d), then
⋃
i∈I Ui

is open in (X,d).

Proof. If x ∈
⋃
i∈I Ui, then x ∈ Ui for some i ∈ I. Since Ui is open, there exists ε > 0 such that

B(x,ε) ⊂ Ui ⊆
⋃
i∈I Ui, so

⋃
i∈I Ui is open. ■
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Corollary (Closed Arbitrary Intersection). If (Fi)i∈I is an arbitrary collection of sets closed in (X,d),
then

⋃
i∈I Fi is closed in (X,d).

Proof.

X \
⋂
i∈I

Fi =
⋃
i∈I

(X \ Fi)

and apply the preceding lemma. ■

37.2.3 Convergence of Sequences
We will now rephrase the ε-δ notion of convergence of sequences from analysis in terms of open sets in
metric spaces.

A sequence (xn)
∞
n=1 in a metric space (X,d) converges to x ∈ X if,

lim
n→∞

d(xn,x) = 0

or equivalently, in terms of open balls, for every ε > 0, there exists N ≥ 1 such that,

xn ∈ B(x,ε)

for all n ≥ N .

Lemma 37.2.3. A sequence in a metric space can have at most one limit.

Proof. Suppose that (xn)→ a and (xn)→ b so,

lim
n→∞

d(xn,a) = lim
n→∞

d(xn,b) = 0

Then,

0 ≤ d(a,b) ≤ d(a,xn) + d(xn,b)→ 0

so d(a,b) = 0 and hence a = b. ■

This may be rather familiar from analysis, but it turns out that this result may not hold in more general
spaces.

We can now characterise convergence purely in terms of open sets, without directly invoking the metric:

Lemma (Open Set Convergence). Let (xn)∞n=1 ⊂ (X,d) be a sequence. Then, (xn)→ x ∈ X if and only
if for every open set U containing x, there exists N ≥ 1 such that xn ∈ U for all n ≥ N .

Proof. If (xn) → x and U ∋ x is open, then B(x,ε) ⊂ U for some ε > 0. There exists N ≥ 1 such that
d(xn,x) < ε for all n ≥ N . That is, xn ∈ B(x,ε) ⊆ U for all n ≥ N .

Conversely, suppose that for every open set U containing x there is an N ≥ 1 such that xn ∈ U for all
n ≥ N . Then, given ε > 0, the set B(x,ε) is an open set containing x, so there exists N ≥ 1 such that
xn ∈ B(x,ε) for all n ≥ N . That is, d(xn,x) < ε for all n ≥ N , so (xn)→ x. ■

Lemma (Sequential Closure). A subset F of a metric space is closed if and only if whenever a sequence
(xn)

∞
n=1 ⊂ F converges to some x ∈ X, then x ∈ F .
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Proof. For the forward implication, suppose F is closed and (xn)
∞
n=1 ⊆ F converges to x. Suppose that

x /∈ F . Since X \ F is open, then by the previous lemma, there exists N ≥ 1 such that xn ∈ X \ F for
all n ≥ N . But this contradicts that xn ∈ F , so x ∈ F .

For the reverse implication, suppose otherwise that F is not closed. That is, X \ F is not open. Then
there exists some x ∈ X \ F such that there is no ε such that B(x,ε) ⊆ X \ F . Then, for each k ∈ N,
there exists xk ∈ B

(
x, 1k
)

such that xk /∈ X \ F , i.e., such that xk ∈ F . Then, (xk)→ x but x /∈ F . ■

37.3 Continuity

37.3.1 Metric Continuity
Let f : (X,dX)→ (Y,dY ) be a function between two metric spaces. For each point p ∈ X, we write,

lim
x→p

f(x) = y ∈ Y

if, for every ε > 0, there exists δ > 0 such that whenever 0 < dX(x,p) < δ, we have dY (f(x),y) < ε.

Then, f is continuous at a point p ∈ X if limx→p f(x) = f(p). That is, if for every ε > 0, there exists
a δ > 0 such that dX(x,p) < δ → dY (f(x),f(p)) < ε. We also say that f is continuous on a (sub)set
S ⊆ X if it is continuous at every point p ∈ S.

A function f : X → Y is Lipschitz continuous if there exists a constant M ≥ 0 such that

dY (f(x),f(y)) ≤MdY (x,y)

for every x,y ∈ X, and we say that M is a Lipschitz constant or modulus of (uniform) continuity for f .
Lipschitz continuity implies continuity, as we can take δ = ε

M .

Let A ⊂ X be non-empty. We define the distance of a point x ∈ X from the set A to be,

d(x,A) = inf
a∈A

d(x,a)

Lemma 37.3.1. If A ⊂ X is non-empty, then the function x 7→ d(x,A) is Lipschitz with modulus 1.

Proof. Let x,y ∈ X. Then, for every a ∈ A, we have,

d(x,A) ≤ d(x,a) ≤ d(x,y) + d(y,a)

Taking the infimum, we have,

d(x,A) ≤ d(x,y) + d(y,A)

d(x,A)− d(y,A) ≤ d(x,y)

The situation is symmetric with respect to y, so we also have,

d(y,A)− d(x,A) ≤ d(x,y)

giving,

|d(x,A)− d(y,A)| ≤ d(x,y)

■

Lemma (Sequential Continuity). Let (X,dX) and (Y,dY ) be metric spaces, and let (xn)
∞
i=n ⊂ X be a

sequence such that (xn) → x ∈ X. Then, a function f : X → Y is continuous at x if and only if
f(xn)→ f(x).
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Lemma (Algebra of Continuous Functions). Let (X,d) be a metric space. Then,

• If f,g : X → R are continuous, then f + g and fg are continuous, and f/g is continuous at all
points x where g(x) ̸= 0;

• If (Y,∥ · ∥) is a normed vector space, and f,g : X → Y are continuous, then f + g is coninuous.

Continuity and open sets are closely related, but perhaps not in the intuitive way one might expect.
In particular, the image of an open set under a continuous function need not be open (or closed). For
instance, sin : R → R sends the open set (−π,π) to the closed set [−1,1], and the function f : R → R
defined by f(x) = 1

1+x2 sends the open set R to the set (0,1], which is neither open nor closed.

Instead, the preimage of any open set under a continuous function is open. If f : X → Y is a function
and A ⊆ Y , then we write the preimage of A under f as,

f−1[A] = {x ∈ X : f(x) ∈ A}

Note that this does not require that f is invertible.

We now characterise continuity in terms of open sets:

Theorem (Characterisation of Continuity). For any function f : X → Y between metric spaces (X,dX)
and (Y,dY ), the following statements are equivalent:

1. f is continuous at all points of X;

2. f−1[U ] is open whenever U ⊆ Y is open;

3. f−1[F ] is closed whenever F ⊆ Y is closed.

Proof. (1→ 2): Suppose f is continuous. Take any open set U ⊆ Y and some point x ∈ f−1[U ].. Then
f(x) ∈ U , which is open, so there exists ε > 0 such that BY

(
f(x),ε

)
∈ U , i.e., dY

(
f(x),y

)
< ε implies that

y ∈ U . Since f is continuous, there exists δ > 0 such that dX(x′,x) < δ implies that dY
(
f(x′),f(x)

)
< ε,

so if x′ ∈ BX(x,δ), we have f(x′) ∈ By
(
f(x),ε

)
⊆ U , i.e., BX(x,δ) ∈ f−1[U ]. Hence f−1[U ] is open.

(2→ 1): Suppose that f−1[U ] is open whenever U ⊆ Y is open, and take x ∈ X and ε > 0. BY
(
f(x),ε

)
is open in Y , so f−1

[
By
(
f(x),ε

)]
is open in X. Since this set contains x, BX(x,δ) ⊆ f−1

[
By
(
f(x),ε

)]
for some δ > 0. But this inclusion says precisely that dY

(
f(x),f(x′)

)
< ε whenever dX(x′,x) < δ, so f

is continuous at x. Since x ∈ X was arbitrary, f is continuous.

(1↔ 3): Similar to previous. ■

Note that this does not imply that the image of an open (closed) set under a continuous function is open
(resp. closed): only inverse images preserve the topology of a set.

Lemma (Continuity of Compositions). Suppose that (X,dX), (Y,dY ), and (Z,dZ) are metric spaces, and
f : X → Y and g : Y → Z are continuous functions. Then, the composition g ◦f : X → Z is continuous.

A direct ε-δ proof is long and tedious, but using the inverse image characterisation of continuity simplifies
the proof considerably:

Proof. If U ⊆ Z is open, then g−1[U ] is open in Y , and hence f−1
[
g−1[U ]

]
= (g ◦ f)−1[U ] is open in

X. ■
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37.3.2 Topologically Equivalent Metrics
Suppose we have two metrics d1 and d2 defined on a set X. We have characterised continuity in terms of
open sets, so if the open sets (X,d1) are the same as the open sets in (X,d2), then any function f : X → Y
that is continuous on (X,d1) should be continuous on (X,d2).

More formally, we note that f = f ◦ idX , so we should require that the identity function idX : X → X
is also continuous. But idX is continuous from (X,d1) to (X,d2) if and only if every set that is open in
(X,d2) is also open in (X,d1).

Lemma 37.3.2. Suppose d1 and d2 are metrics on X. Then, the following statements are equivalent:

(i) Every set that is open in (X,d2) is open in (X,d1);

(ii) For any metric space (Y,dY ), if g : X → Y is continuous as a function (X,d2)→ (Y,dY ), then g is
continuous as a function (X,d1)→ (Y,dY );

(iii) For any metric space (Y,dY ), if f : Y → X is continuous as a function (Y,dY ) → (X,d1), then f
is continuous as a function (Y,dY )→ (X,d2).

Proof. We only show (i)↔ (ii), as the proof of (i)↔ (iii) is similar.

It follows from (i) that the identity map idX : (X,d1) → (X,d2) is continuous. So, if g : (X,d2) → Y is
continuous, then the composition g ◦ idX : (X,d1)→ Y is continuous.

For the reverse implication, take (Y,dY ) = (X,d2) and g = idX : (X,d2)→ (X,d1). Since g is continuous
from (X,d2) to (X,d2), it is continuous from (X,d1) to (X,d2), so for every open set U in (X,d2),
g−1[U ] = U is open in (X,d1). ■

Also applying this lemma in reverse, we obtain,

Theorem 37.3.3. Suppose d1 and d2 are metrics on X. Then, the following statements are equivalent:

(i) The open sets in (X,d2) and (X,d1) coincide;

(ii) For any metric space (Y,dY ), g : X → Y is continuous as a function (X,d1)→ (Y,dY ) if and only
if it is continuous as a function (X,d2)→ (Y,dY );

(iii) For any metric space (Y,dY ), f : Y → X is continuous as a function (Y,dY )→ (X,d1) if and only
if it is continuous as a function (Y,dY )→ (X,d2).

In this case, we say that d1 and d2 are topologically equivalent.

Two metrics d1 and d2 on X are Lipschitz equivalent if there exist constants 0 < m ≤M <∞ such that,

md1(x,y) ≤ d2(x,y) ≤Md1(x,y)

for all x,y ∈ X.

Lemma 37.3.4. If d1 and d2 are Lipschitz equivalent on X, then d1 and d2 are topologically equivalent.

Recall that two norms ∥ · ∥1 and ∥ · ∥2 on a vector space X are equivalent if there exist constants
0 < m ≤M <∞ such that,

m∥x∥ ≤ ∥x∥ ≤M∥x∥

for all x ∈ X.

Each norm induces a metric di(x,y) = ∥x − y∥i on X. The following corollary is immeditae from the
previous lemma:

Corollary 37.3.4.1. Metrices induced by equivalent norms are topologically equivalent.

Notes on Mathematics | 667



Point-Set Topology Continuity

Example. The metrics induced by the ℓp norms on Rn, 1 ≤ p ≤ ∞ are topologically equivalent to each
other (since the norms are equivalent). △

Example. The metrics d(x,y) and d1(x,y) := min
(
d(x,y),1

)
are topologically equivalent (they have the

same open sets). △

As illustrated by the previous example, topologically equivalent metrics are not necessarily Lipschitz
equivalent. However, for normed spaces, we have:

Lemma 37.3.5. If X is a vector space and two norms ∥·∥1 and ∥·∥2 on X induce topologically equivalent
metrics, then the norms are equivalent.

Proof. Since the metrics are topologically equivalent, the identity map idX : (X,d1) → (X,d2) is con-
tinuous; this is the same as considering the identity map between the two normed spaces (X,∥ · ∥1) and
(X,∥ · ∥2). In particular, the identity map is continuous at 0, so there exists δ > 0 such that ∥x∥2 < 1
whenever ∥x∥1 < δ.

For y ∈ X, take x = δy
2∥y∥1

, so that ∥x∥1 = δ
2 < δ. It follows that∥∥∥∥ δy

2∥y∥1

∥∥∥∥
2

< 1

That is, ∥y∥2 < 2
δ ∥y∥1. Similarly, the identity map is continuous from (X,∥ · ∥2) into (X,∥ · ∥1), so

∥y∥1 ≤ 2
δ′ ∥y∥2. ■

Example. The norms ∥ · ∥L1 and ∥ · ∥L2 on C[0,1] are not topologically equivalent. △

37.3.3 Isometries and Homeomorphisms
Suppose f : X → Y is a bijection such that,

dX(x,y) = dY (f(x),f(y))

for all x,y ∈ X. That is, f preserves distances. Then, f is an isometry, and X and Y are isometric.
Isometric spaces are essentially the same metric spaces, just with different labelling of points, and in
fact, isometries are exactly the isomorphisms of metric spaces.

If f and f−1 are both additionally continuous (f is bicontinuous), then f is a homeomorphism, and X and
Y are homeomorphic. If two spaces are homeomorphic, their open sets coincide, and the spaces are es-
sentially the same topological spaces, just with different labelling of points, and in fact, homeomorphisms
are exactly the isomorphisms of topological spaces.

Example.

• Every metric space is homeomorphic to itself under the identity map.

• Any two open intervals (a,b) and (α,β) are homeomorphic under

f(x) = α+
β − α
b− a

(x− a)

• (−1,1) is homeomorphic to R under

f(x) = tan
(πx

2

)
or f(x) =

x

1− |x|

• Any open interval is homeomorphic to R by composing the previous two examples.
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• The square is homeomorphic to the circle under a radial projection mapping.

△

Two metrics d1 and d2 on X are topologically equivalent if and only if the identity map idX : (X,d1)→
(X,d2) is a homeomorphism.

37.3.4 Topological Properties
If a property P of a metric space is preserved under homeomorphism, then P is a topological property.
Informally, topological properties are generally those properties that are set-theoretic in nature, and do
not care about the exact notion of distance imposed on the space.

Example. Topological properties on a space X:

• X is open in X;

• X is closed in X;

• X is finite; countably infinite; uncountable;

• X has a point x such that {x} is open in X (an isolated point);

• X has no isolated points;

• Every subset of X is open;

• Every continuous real-valued function on X is bounded.

△

Example. Non-topological properties (they intrinsically depend on the metric in some way):

• X is bounded;

• For each r > 0 there exists a finite set F such that every ball of radius r intersects F (X is totally
bounded);

△

37.4 Topological Spaces

In light of this, it seems that many properties of a space do not depend on our exact choice of measure
of distance, and we have already characterised convergence and continuity in metric spaces entirely in
terms of open sets. We then may be prompted to dispense with the metric entirely, and define a new
kind of space entirely in terms of open sets.

A topology on a set T is a collection of subsets T ⊆ P(T ), which we will call the “open sets” of T , such
that,

(T1) T and ∅ are open;

(T2) The intersection of finitely many open sets is open;

(T3) Arbitrary unions of open sets are open.

The pair (T,T ) is then a topological space.

Example.

• In any metric space (X,d), the induced collection of open sets forms a topology on the underlying
set X;
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• The discrete topology – every set is open (induced by the discrete metric);

• The indiscrete or trivial topology – only T and ∅ are open;

• The cofinite topology – a set is open if it is T , ∅, or if its relative complement in T is finite;

• The cocountable topology – a set is open if it is T , ∅, or its relative complement in T is countable;

• The Zariski topology on Rn – a set is open if it is Rn, ∅, or its complement is the set of zeros of
some polynomial p ∈ R[x].

△

Not every topology is induced by a metric. That is, there does not necessarily always exist a metric on T
that induces the same collection of open sets as T . More formally, there does not always exist a metric
d such that the metric space (T,d) is homeomorphic to the topological space (T,T ). If such a metric
exists, then (T,T ) is metrisable.

Theorem 37.4.1. The indiscrete topology is not metrisable on any set with more than one point.

Proof. Suppose the indiscrete topology is on T is induced by some metric d on T . Let x,y ∈ T be
distinct, so d(x,y) = ε > 0. The open ball B(x,ε/2) is open in (T,d). This ball contains x, so it is not
the empty set, and it does not contain y, so it is not T . But, ∅ and T are the only open sets in the
indiscrete topology. ■

It is sometimes possible to compare two topologies on the same space if they are subsets of one another.
If T1 and T2 are topologies on T , such that T1 ⊆ T2, then we say that T1 is coarser than T2, or that T2
is finer than T1. This defines a partial order on the set of topologies on T .

Sometimes we will say that a topology T is the coarsest or smallest topology that satisfies a given
property P . This means that if T ′ also satisfies P , then T ′ ⊆ T .

The discrete topology is the finest possible topology, and the indiscrete topology is the coarsest possible
topology.

The closed sets in a topological space are the complements of open sets. By De Morgan’s laws, the
collection F of closed sets satisfies:

(F1) T and ∅ are closed;

(F2) The union of finitely many closed sets is closed;

(F3) Arbitrary intersections of closed sets are closed.

Because the closed sets completely determine the open sets, we can equivalently define a topology in
terms of its open sets. In some cases, this is easier then specifying the open sets; for instance, the cofinite
topology can be more naturally specified as the topology with finite closed sets.

37.4.1 Bases
A base or basis for a topology T on T is a collection B ⊆ T such that every set in T is the union of sets
in B.

Example. A set U is open in a metric space (X,d) if for every x ∈ U , there exists εx > 0 such that
B(x,εx) ⊂ U , so,

U =
⋃
x∈U

B(x,εx)

so in any metric space, the collection of all open balls forms a basis for the induced topology. △
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A topology may have several distinct bases, but each basis generates a unique topology.

Theorem (Uniqueness of Topology for Basis). If B is a basis for two topologies T and T ′, then T = T ′.

Proof. Every set in T ′ is a union of sets in B ⊂ T , so T ′ ⊆ T . The situation is symmetric, so T ⊆ T ′

and T = T ′. ■

Theorem (Synthetic Bases). If B is a basis for T on T , then,

(B1) T is the union of some sets from B;

(B2) If B1,B2 ∈ B, then B1 ∩B2 is the union of some sets from B.

Conversely, let T be a set and let B ⊆ P(T ) satisfy (B1) and (B2). Then there is a unique topology T
on T whose basis is B; that is, the open sets are exactly those formed from union of sets from B.

T is then also the smallest topology that contains B.

Proof. We verify that the set T generated by the basis is a topology:

(T1) T is the union of sets from B by (B1);

(T2) If U,V ∈ T , then U =
⋃
i∈I Bi and V =

⋃
j∈J Cj with Bi,Ci ∈ B. Then,

U ∩ V =
⋃

i∈I,j∈J
Bi ∩ Cj

which is a union of sets in B by (B2), and is hence an element of T ;

(T3) Any union of union of sets from B is a union of sets from B.

So, T is a topology on T . ■

A sub-basis for a topology T on a set T is a collection B ⊆ T such that every set in T is a union of finite
intersections of sets in B.

Example. One sub-basis of R with the standard topology is given by,

B =
{
(a,∞),(−∞,b) : a,b ∈ R

}
as intersections give the open intervals (a,b) which form a normal basis. △

Theorem 37.4.2. If B is any collection of subsets of a set T whose union is T , then there is a unique
topology T on T with sub-basis B, formed precisely from the collection of all unions of finite intersections
of sets from B.

Proof. If B is a sub-basis for a topology T , then this topology has D, the collection of finite intersections
of elements of B as a basis. But D satisfies (B1) and (B2), so there is a unique topology T with basis D
by the previous lemma, which is also the unique topology with sub-basis B. ■

T is the smallest topology on T that contains B.
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37.4.2 Topological Subspaces and Finite Product Spaces
If (T,T ) is a topological space, and S ⊆ T , then the subspace topology on S is,

TS = {U ∩ S : U ∈ T }

and we call (S,TS) a (topological) subspace of (T,T ).

Lemma (Induced Subspaces). Suppose (X,d) is a metric space with induced topology T . If S ⊆ X, then
the subspace topology TS on S corresponds to the topology on S induced by the metric subspace (S,d|S).

If (T1,T1) and (T2,T2) are topological spaces, then the product topology on T1×T2 is the topology T with
basis,

B = {U1 × U2 : (U1,U2) ∈ T1 × T2,}

and we call (T1 × T2,T ) the (topological) product of T1 and T2.∗

Intuitively, the topological product is the smallest topology for which the left and right projections
π1 : T1 × T2 → T1 and π2 : T1 × T2 → T2 are continuous.

For finite n, the product topology on Rn agrees with the topologies induced by any of the ϱp metrics.

37.4.3 Closures, Interiors, and Boundaries
Let (T,T ) be a topological space. A neighbourhood of a point x ∈ T is a set N ⊆ T that contains an open
set U ∈ T such that x ∈ U ⊆ N . An open neighbourhood of x ∈ T is an open set U ∈ T that contains
x. General neighbourhoods are not used as often, so the unqualified term alone sometimes refers to an
open neighbourhood.

The closure A of a set A ⊆ T is the intersection of all closed sets that contain A:

A =
⋂
A⊆F

F closed

V

Note that if A is non-empty, then A is non-empty; A is also always closed, since it is the intersection
of closed sets; the closure of A is therefore the minimal closed set that contains A. It follows that A is
closed if and only if A = A.

For any sets A and B,

• A ⊆ B → A ⊆ B;

• A ∪B = A ∪B;

• in general, A ∩B ̸= A ∩B.

We give an alternative characterisation of closures:

Theorem (Characterisation of Closures). Given A ⊆ T , the closure A is the set,

A = {x ∈ T : U ∩A ̸= ∅ for all open neighbourhoods U ∈ T of x}
= {x ∈ T : every open neighbourhood of x intersects A}

∗ More correctly, this is the box topology, but for finitely many products, this topology agrees with the true product
topology discussed in §37.4.7. For infinite products, the product topology is more well-behaved, as it is a categorical
product.
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Proof. Let x ∈ A. Suppose there is an open set U such that x ∈ U and U ∩ A = ∅. Then, T \ U ⊇ A.
Since T \U is closed, A ⊆ T \U . However, this gives a contradiction, since x ∈ A∩U , and so A∩U ̸= ∅.
Therefore,

A ⊆ {x ∈ T : U ∩A ̸= ∅ for all open neighbourhoods U ∈ T of x}

Now suppose x ∈ T is such that U ∩ A ̸= ∅ for every open set that contains x, but x /∈ A. Then,
x /∈ F for some closed set that contains A. So, we have an open set T \ F which contains x and satisfies
(T \ F ) ∩A = ∅, a contradiction. Therefore,

A ⊇ {x ∈ T : U ∩A ̸= ∅ for all open neighbourhoods U ∈ T of x}

■

It follows easily from this lemma that in R, we have Q = R \Q = R. This shows that in general,

H ∩K ̸= H ∩K

e.g., take H = Q and K = R \Q. Then, H = K = R but H ∩K = ∅ = H ∩K.

In a metric spacce, we have another simple characterisation of the closure:

Theorem (Closure in Metric Spaces). If (X,d) is a metric space, and A ⊆ X, then,

A = {limits of convergent sequences in A}

Proof. If (xn)∞n=1 is a sequence in A, then it is also a sequence A. If the sequence converges to x ∈ X,
then, since A is closed, x ∈ A by sequential closure.

Conversely, if x ∈ A, then for every n ≥ 1, we hae B
(
x, 1n

)
∩ A ̸= ∅, so there exists xn ∈ A with

d(xn,a) <
1
n . Clearly, (xn)→ a as n→∞. ■

The interior A◦ of a set A ⊆ T is the union of all open subsets of A:

A◦ =
⋃
U⊆A
U open

U

Since A◦ is the union of open sets, it is open, and it is contained in A. It is the maximal open subset of
A. So, A is open if and only if A = A◦.

For any sets A and B,

• A ⊆ B → A◦ ⊆ B◦;

• (A ∩B)◦ = A◦ ∩B◦;

• in general, (A ∪B)◦ ̸= A◦ ∪B◦.

We give an alternative characterisation of interiors:

Theorem (Characterisation of Interiors). Given A ⊆ T , the interior A◦ is the set of all points for which
A is an open neighbourhood:

A◦ := {x ∈ T : x ∈ U ⊆ A,U ∈ T }

Proof. If x ∈ A◦, then x ∈ U for some open set U ⊆ A, so A is a neighbourhood of x. Conversely, if A
is a neighbourhood of x, then there is an open subset U ⊆ A such that x ∈ U , so x ∈ A◦. ■

Theorem 37.4.3. If A ⊆ T , then,
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1. A◦ = T \ T \A

2. A = T \ (T \A)◦

In this way, the interior operator is dual to the closure operator.

Proof. (1): If x ∈ A◦, then A is a neighbourhood of X that does not intersect T \ A, so x /∈ T \A,and
x ∈ T \ T \A. If x ∈ T \ T \A, then x /∈ T \A, so there is an open set containing x that does not meet
T \A. So this open set is a subset of A, so x ∈ A◦, and hence A◦ = T \ T \A.

(2): Similar to (dual of) previous. ■

The boundary ∂A of a set A is the set of all points x such that every neighbourhood of x intersects both
A and and its complement:

∂A = {x ∈ T : if U ∋ x is open, then U ∩A ̸= ∅ and U ∩ (T \A) ̸= ∅}

It is immediate from the definition that

∂A = A ∩ T \A

so ∂A is always closed. By the previous theorem, we also have,

∂A = A ∩ (T \A◦)

= A \A◦

Example. In R, ∂(a,b) = ∂[a,b] = {a,b}; ∂Q = R. △

Let S ⊆ T . A point x ∈ T is a limit point of S if every neighbourhood of x intersects S \ {x}. Note that
a limit point of S need not lie within S. Intuitively, a limit point is “nearby” other points in S, in that,
if we remove x from S and look in some neighbourhood around x, then we still see some other points
contained in S. In contrast, a point in S that is in S that is not a limit point of S is an isolated point.

Example.

• If S = (0,1) ⊂ R, then every point in [0,1] is a limit point of S;

• If S = [0,1] ∪ {2}, then 2 is not a limit point of S, as we can find a neighbourhood containing 2
that does not intersect S, say, (1.5,2.5), so 2 is an isolated point of S.

△

Note that if S is closed, then it contains all its limit points, or else we would have a limit point x ∈ T \S,
which would be an open set containing x that does not intersect S = S \ {x}, so,

S = S ∪ {x : x is a limit point of S}

A subset A ⊆ T is,

• dense in T if A = T ;

• nowhere dense in T if (A)◦ = ∅;

• meagre in T , or of the first category in T , if it is a union of countably many nowhere dense sets.

Example. Q is dense in R, as is R \ Q. In R, singleton sets are nowhere dense; so Q is meagre in R.
However, R \Q = ∅, so Q is not nowhere dense. △

Equivalently, a set A ⊆ T is nowhere dense if T \A is dense in T since,

(A)◦ = T \ T \A

If A is closed, this reduces to if T \A is dense.
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37.4.4 The Cantor Set
We construct a set that is pathological in many ways and serves as a useful counterexample to many
propositions.

The (middle third) Cantor set is constructed as follows:

(0) Let C0 = [0,1] ⊂ R.

(1) Remove the open middle third of this set, leaving,

C1 =

[
0,
1

3

]
∪
[
2

3
,1

]

(n) From each of the 2n−1 closed intervals from Cn−1, remove the open middle third to give a new set
that consists of 2n closed intervals.

Note that Cn consists of 2n closed intervals, each of length 3−n, so their total length is
(
2
3

)n → 0 as
n→∞.

Then, the set,

C =

∞⋂
n=0

Cn

is the (middle third) Cantor set.

Since each Cn is closed, C is closed as it is the intersection of closed sets. C is also non-empty as it
contains the endpoints of every open interval removed, but the interior of C is empty, as the set would
otherwise have non-zero length. Since C is closed, it is nowhere dense in [0,1].

We have ∂C = C, since C = C, and C◦ = ∅. C also contains no isolated points; for any ε > 0, any point
in C was at some point in an interval of length less than ε/2, and the two endpoints of this interval are
both in C.

37.4.5 The Hausdorff Property
Recall that a topological space (T,T ) is said to be metrisable if there is a metric d on T such that T
consists of the open sets in (T,d).

Not all topological spaces are metrisable, as we have seen with the indiscrete topology. But, there are
other more natural topologies that cannot be derived from a metric. One way to show that a topology is
not metrisable is to find a property that all metrisable spaces must satisfy and show that it fails to hold.
We will give such a necessary condition for a topological space to be metrisable in terms of convergence
of sequences.

A sequence (xn)
∞
n=1 ⊆ T in a topological space (T,T ) converges to x ∈ T if for every open neighbourhood

U of x, there exists N ≥ 1 such that xn ∈ U for all n ≥ N .

Note that this is the same definition of convergence for metric spaces we found earlier. However, in
topological spaces, this can lead to some unusual behaviours. Take T to have the indiscrete topology
where only T and ∅ are open. Then, any sequence (xn) ⊂ T converges to any point x in T ; the only
open neighbourhood of x is U = T , and xn ∈ T for all n ≥ 1, so (xn) → x for all x ∈ T . The problem
here is that in the indiscrete topology, distinct points cannot be separated into distinct open sets. This
motivates the next definition:

A topological space T is Hausdorff if for any distinct x,y ∈ T , there exist disjoint open sets U,V such
that x ∈ U and y ∈ V .
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Theorem 37.4.4. Metric spaces are Hausdorff.

Proof. Let (X,d) be a metric space. Take distinct x,y ∈ X, and let ε = d(x,y) > 0. Then, x ∈ B(x, ε2 )
and y ∈ B(y, ε2 ), but B(x, ε2 ) ∩ B(y, ε2 ) = ∅. ■

Example. The indiscrete topology on at least two points is not Hausdorff, since for any pair of points
x,y, the only open set containing x is T , which also contains y. So, the indiscrete topology on at least
two points is not metrisable. △

Example. The co-finite topology on any infinite set is not Hausdorff: since any two open sets have finite
complements, they must intersect. So, the co-finite topology is not metrisable △

Theorem 37.4.5. In a Hausdorff space T , any sequence has at most one limit.

Proof. Suppse (xn) → x and (xn) → y with x ̸= y. Then, there exist disjoint open sets U and V such
that x ∈ U and y ∈ V . By the definition of convergence, there exist N1 ≥ 1 and N2 ≥ 1 such that
xn ∈ U for all n ≥ N1 and xn ∈ V for all n ≥ N2.

If n ≥ max(N1,N2), we must simultaneously have xn ∈ U and xn ∈ V , but U ∩ V = ∅. ■

Note that the converse of this theorem does not hold: there exist non-Hausdorff topologies in which
convergent sequences have unique limits.

37.4.6 Topological Continuity
We previously characterised continuity between metric spaces in terms of open sets. We now reverse this
to define continuity between topological spaces to be in terms of open sets.

A map f : T1 → T2 between two topological spaces (T1,T2) and (T2,T2) is continuous if f−1[U ] ⊆ T1 is
open in T1 whenever U ⊆ T2 is open in T2.

Example.

• Any constant map that sends every x ∈ T1 to some fixed c ∈ T2 is continuous as f−1[U ] = T1 if
c ∈ U and f−1[U ] = ∅ if c ̸∈ U .

• The identity map f : T1 → T1 is continuous if the domain and codomain have the same topology.

• Continuous maps between metric spaces are also continuous maps between the induced topological
spaces.

• Any map with a discrete domain is continuous since every set in the domain is open.

△

To check that a map is continuous, it suffices to check that it is continuous on a sub-basis. (Since every
basis is also a sub-basis, we may also check for a basis.)

Lemma 37.4.6. Suppose that f : T1 → T2 is a map between two topological spaces (T1,T2) and (T2,T2),
and that B is a sub-basis for the topology T2. Then, f is continuous if and only if f−1[B] is open T1 for
every B ∈ B.

Proof. The reverse direction is clear since every element of the sub-basis is an element of T2.

Now, any element U of T2 can be written as U =
⋃
iDi where each set Di is a finite intersection of some

elements {Bj}nj=1 ⊆ B. So,

f−1[U ] = f−1

(⋃
i

Di

)
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=
⋃
i

f−1[Di]

=
⋃
i

f−1

 n⋂
j=1

Bj


=
⋃
i

n⋂
j=1

f−1[Bj ]

The innermost intersection is open by assumption, so f−1[U ] is thus the union of open sets and is hence
open. ■

Lemma (Continuity of Compositions). Suppose that (X,TX), (Y,TY ), and (Z,TZ) are topological spaces,
and f : X → Y and g : Y → Z are continuous functions. Then, the composition g ◦ f : X → Z is
continuous.

Proof. If U ⊆ Z is open, then g−1[U ] is open in Y , and hence f−1
(
g−1[U ]

)
= (g ◦ f)−1[U ] is open in

X. ■

We now discuss continuity in product spaces. Suppose that (X,TX) and (Y,TY ) are two topological
spaces. For the product X × Y , we define the left and right projections,

π1 : X × Y → X, π2 : X × Y → Y

by

π1(x,y) = x, π2(x,y) = y

Lemma 37.4.7. The projection mappings are continuous in the product topology.

Proof. If U ⊆ X is open, then π−1
1 [U ] = U × Y , which is open. A similar argument shows π2 is

continuous. ■

Theorem (Componentwise Continuity). A function f : T → X × Y with components f = (f1,f2) is
continuous if and only if its components are continuous.

Proof. Since πi is continuous, so is fi = πi ◦ f .

For the reverse implication, the open sets U × V , with U open in X and V open in Y form a basis of
X × Y , and we have,

f−1[U × V ] = f−1
1 [U ] ∩ f−1

2 [V ]

is open in T . ■

If we consider maps from T into R (or more generally, into any field K), then we can consider sums,
products, and quotients of these maps.

Lemma (Algebra of Continuous Functions). If f,g : T → R are continuous, then f + g and fg are
continous, and f/g is continous at all points x where g(x) ̸= 0.
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Proof. We give the argument for f+g. The intervals (a,∞) and (−∞,b) for every a,b ∈ R are a sub-basis
for the topology of R, so it is sufficient to show that (f + g)−1

[
(a,∞)

]
and (f + g)−1

[
(−∞,b)

]
are open

in T .

f(x) + g(x) > a ↔ f(x) > a− g(x)
↔ f(x) > r and r > a− g(x) for some r
↔ f(x) > r and g(a) > a− r for some r

It follows that {
x : f(x) + g(x) > a

}
=
⋃
r∈R

{
x : f(x) > r

}
∩
{
x : g(x) > a− r

}
which is open. Similarly,

f−1
[
(−∞,b)

]
=
{
x : f(x) + g(x) < b

}
is open. A similar argument works for products and quotients. ■

Alternative proof. The function σ : R2 → R given by σ(x,y) = x+ y is continuous from R2 to R. In fact,
it is Lipschitz continuous from (R2,ϱ1) into R since

dR(x1 + y1,x2 + y2) =
∣∣(x1 + y1)− (x2 + y2)

∣∣
≤ |x1 − x2|+ |y1 − y2|
≤ ϱ1

(
(x1,y1),(x2,y2)

)
The map x 7→

(
f(x),g(x)

)
is continous from T into R2 by componentwise continuity, so the composition(

σ ◦ (f,g)
)
(x) = f(x) + g(x) is continuous from T into R. A similar argument works for products and

quotients. ■

Example. The map from R2 to R2 given by

(x,y) 7→
(
x+ y, sin(x2y3)

)
is continuous because both components are the sum, product, and composition of the continuous functions
π1, π2, and sin. △

37.4.7 The Projective Topology
Consider a set T (without a topology), a collection of topological spaces (Ti,Ti)i∈I , and a collection of
maps fi : T → Ti. This data defines a topology on T :

The projective topology on T is the coarsest topology for which all the maps fi : T → Ti are continuous.

Recall that the coarsest topology is the one with the smallest collection of open sets. In order for fi to
be continuous, we must hae that f−1[U ] is open whenever U ∈ Ti, so the projective topology contains

B :=
⋃
i∈I

{
f−1
i [U ] : U ∈ Ti

}
This is not a basis for a topology, since if B1,B2 ∈ B, then B1 ∩ B2 is not necessarily a union of sets
in B. However, the union of sets in B is equal to T , since for any i, f−1

i [Ti] = T , so we can apply
Theorem 37.4.2 to get that the projective topology is the unique topology with B as a sub-basis.

An example of this topology is given by the product topology. Let (T1,T1) and (T2,T2) be topological
spaces. Recall that the product topology T on T1 × T2 is the topology with basis

B = {U1 × U2 : U1 ∈ T1,U2 ∈ T2}
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The product topology T may also be characterised as the coarsest topology, T ′, for which the two
projection maps are continuous.

First note that for any U1 ∈ T1, T ′ must contain π−1
1 [U1] = U1 × T2, and similarly, for any U2 ∈ T2, T ′

must contain π−1
2 [U2] = T1×U2. So, T ′ must also contain the intersection of such sets, i.e., U1×U2. That

is, T ′ ⊇ B, and therefore T ′ ⊇ T . Conversely, by definition, for U1 ∈ T1, T contains U1 × T2 = π−1
1 [U1],

and for any U2 ∈ T2, T contains T1×U2 = π−1
2 [U2]. So, T is a topology that makes π1 and π2 continuous.

Since T ′ is the coarsest such topology, T ⊇ T ′. Thus T = T ′ as required.

We now use this approach to define the product topology for an arbitrary product.

Let (Ti,Ti)i∈I be an arbitrary collection of topological spaces. Their product T =
∏
i∈I Ti is the set of

all functions x : I →
⋃
i∈I Ti such that x(i) ∈ Ti. (We will soon discuss this definition in more detail.)

The product topology T on T is the coarsest topology for which all the projections

πi : T → Ti : x 7→ x(i)

are continuous. We then call the topological space (T,T ) the topological product of the spaces (Ti,Ti)i∈I ,
and a sub-basis for the product topology consists of all sets of the form∏

i∈I
Ui

where Ui ∈ Ti, with Ui = Ti for all but finitely many i.

Now, why do we define T to be a set of functions? Let us consider the ordinary binary product X1×X2

of two sets X1 and X2. We are familiar with this being defined as a set of ordered pairs:

X1 ×X2 =
{
(x1,x2) : x1 ∈ X1,x2 ∈ X2

}
Similarly, for any collection (Xi)

n
i=1, we may define the product to be a set of ordered n-tuples:

n∏
i=1

Xi =
{
(x1, . . . ,xn) : ∀i ∈ {1, . . . ,n},xi ∈ Xi

}
Note that this definition agrees with induction on the binary case, up to a natural isomorphism of sets
to account for associativity.

Now, suppose that we have a collection (Xi)i∈N of sets indexed by the natural numbers. Then, we can
define the product of these sets to be a set of sequences:∏

i∈N
Xi =

{
(x1,x2,x3, . . .) : ∀i ∈ N,xi ∈ Xi

}
=
{
(xi)

∞
i=1 : ∀i ∈ N,xi ∈ Xi

}
More generally, if we have a collection of sets indexed by a countable set, we can simply biject to (an
initial segment of) N and again define the product to be a set of sequences.

Now suppose we have a collection (Xi)i∈Λ, where Λ is uncountable. How might we define∏
i∈Λ

Xi

We might be tempted to write the elements formally as (xi)i∈Λ, but what does this notation really mean?

We go back to the case where the indexing set is N, and the elements in our product are sequences. Now,
recall that a sequence (xi)i∈N ⊆ X is really just a function x : N→ X, and the notation xi = x(i) is just
syntactic sugar.
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In the product of (Xi)i∈N, we have xi ∈ Xi for all i, so the codomain of our sequence is just the union⋃
i∈NXi, and the elements (sequences) (xi)i∈N in the product are precisely the functions

x : N→
⋃
i∈N

Xi

satisfying x(i) ∈ Xi.

Note that nothing here is actually specific to N – only the cardinality of the indexing set is really relevant
– so this holds more generally.

For instance, in a binary product, an element (x1,x2) is isomorphic to a function x : {1,2} → X1 ∪X2,
where x(1) = x1 and x(2) = x2 (again {1,2} is arbitrary – we just need any two-element indexing set,
but the arguments matching up with the indices makes this a sensible choice). For an n-ary product, we
have functions

x : {1, . . . ,n} →
⋃

i∈{1,...,n}

Xi

where again, x(i) = xi.

More concretely, the isomorphism

∏
i∈I

Xi
∼=

{
x : I →

⋃
i∈I

Xi : ∀i ∈ I,x(i) ∈ Xi

}

is given by (xi)i∈I 7→ (x : i 7→ xi), with inverse x 7→
(
x(i)

)
i∈I .

Given this, it is natural to define the product set∏
i∈Λ

Xi

to be the set of functions
x : Λ→

⋃
i∈Λ

Xi : ∀i ∈ Λ,x(i) ∈ Xi

so when we write (xi)i∈Λ for an element of this product, we mean a function x : Λ →
⋃
i∈ΛXi defined

by x(i) = xi for all i ∈ Λ.

37.4.8 Homeomorphisms
Recall that a homeomorphism between metric spaces is a bijective and bicontinuous map. The notion of
a homeomorphism between topological spaces is essentially the same.

Let (T1,T1) and (T2,T2) be topological spaces. A function f : T1 → T2 is a homeomorphism if it is
bijective and any of the following equivalent conditions hold:

(i) both f and f−1 are continuous;

(ii) U ⊆ T2 is open in T2 if and only if f−1[U ] ⊆ T1 is open in T1;

(iii) V ⊆ T1 is open in T1 if and only if f(V ) ⊆ T2 is open in T2.

If a homeomorphism between (T1,T1) and (T2,T2) exists, then we say that (T1,T1) and (T2,T2) are
homeomorphic.

A property of topological spaces is a topological invariant or topological property if it is preserved by
homeomorphisms.

Example.
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• T is finite;

• T is Hausdorff;

• T is metrisable;

• every continuous real-valued function on T is bounded.

△

To show that two topological spaces are not homeomorphic, we can show that one space has a topological
invariant that the other does not. For instance, every continuous real-valued function on [0,1], but not
R, is bounded, so [0,1] and R are not homeomorphic.

37.5 Compactness

A cover of a set A is a collection U of sets whose union contains A. That is,

A ⊆
⋃
U∈U

U

and we say that the elements of U cover A. A subcover of a cover U is a subset of U whose elements still
cover A. A cover is open if every element of the cover is open.

Example.

• U = {(n − 2,n + 2) : n ∈ Z} is an (open) cover of R, with one possible subcover given by
S = {(n− 2,n+ 2) : n ∈ 2Z};

• U = {(n,n+ 1) : n ∈ Z} is not a cover of R since it does not cover the integers.

△

Note that a subcover is a subset of a cover – we do not modify (the size of) sets within the cover. That is,
while S = {(n− 1,n+1) : n ∈ Z} covers R, it is not considered a subcover of U = {(n− 2,n+2) : n ∈ Z}
because S ̸⊆ U .

A topological space T is compact if every open cover of T has a finite subcover.

Example.

• (0,1) is not compact because U = {(0,a) : a ∈ (0,1)} is an open cover with no finite subcover;

• R is not compact because U = {(−∞,a),a ∈ R} has no finite subcover.

△

A subset S of T is compact if every open cover of S by subsets of T has a finite subcover. This is
equivalent to S being compact with respect to the subspace topology.

Lemma 37.5.1. If (T,T ) is a topological space and S ⊆ T , then the two notions of compactness above
are equivalent.

Theorem (Heine–Borel). Any closed interval [a,b] is a compact subset of R with the standard topology.

Proof. Let U be a cover of [a,b] by open subsets of R, and let A denote the set of all points p ∈ [a,b] such
that [a,p] can be covered by a finite subcover S of U . We note that A is non-empty as [a,a] = {a} can
certainly be covered.

A is bounded above by b, so we can define c := supA ≤ b. Since a ≤ c ≤ b, we must have c ∈ U for some
open set U ∈ U . Since U is open, there exists δ > 0 such that (c− δ,c+ δ) ⊆ U .
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Since c = supA, there exists at least one point x ∈ A such that x ∈ (c− δ,c]. Since [a,x] can be covered
by S, and (c− δ,c+ δ) ⊂ U ∈ C, it follows that

[a,c+ δ) = [a,x] ∪ (c− δ,c+ δ)

also be covered by a finite collection of sets from U – namely S ∪ {U}.

If c < b, then this yields a finite subcover of[
a,min(c− δ

2 ,b)
]

which contradicts that c = supA, so c = b, and hence a finite subcover of U covers [a,b + δ) ⊃ [a,b], so
[a,b] is compact. ■

Lemma (Closed in Compact is Compact). Any closed subset S of a compact space T is compact.

Proof. Let U be any cover of S by open subsets of T . Because S is closed, T \ S is open, so U ∪ {T \ S}
is an open cover of T .

By the compactness of T , there exists an finite open subcover of this cover. This subcover (with extra-
neous elements like T \ S removed) also covers S, so S is compact. ■

Lemma (Compact in Hausdorff is Closed). Any compact subspace S of a Hausdorff space T is closed.

Proof. Let a ∈ T \ S. For each x ∈ S, there exist disjoint open sets U(x) and V (x) containing a and
x, respectively. The open sets {U(x) : x ∈ S} form an open cover of S, so there is a finite subcover{
U(xi)

}n
i=1

of S. Then,

Va =

n⋂
i=1

V (xi)

is open as it is the finite intersection of open sets; contains a as V (x) contains a for all x by construction;
and is disjoint from S by the Hausdorff property, and hence Va ⊆ T \ S for any a. Then,

T \ S =
⋃

a∈T\S

Va

so T \ S is the union of open sets and is hence open, so S is closed in T . ■

Lemma (Compact in Metric is Bounded). Any compact subspace S of a metric space (X,d) is bounded.

Proof. Fix any a ∈ X. For any x ∈ S, x ∈ B(a,r) for all r > d(a,x), so S is covered by the collection of
open balls U = {B(a,r) : r > 0}. By compactness of S, there is a finite subcover S = {B(a,ri)}ni=1, so

S ⊆
n⋃
i=1

B(a,ri) = B(a,max
i
ri)

and K is bounded. ■

Corollary (Compact in R iff Closed, Bounded). A subset S of R with the standard topology is compact
if and only if it is closed and bounded.

Proof. Since R is a metric space, any compact subset is bounded; since R is Hausdorff, any compact
subset is closed.

For the converse, if S ⊂ R is bounded, then there exists r > 0 such that S ⊆ [−r,r], which is compact in
R. Then, S is a closed subset of a compact set, so S is compact. ■
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Theorem 37.5.2. Let F1 ⊇ F2 ⊇ F3 ⊇ · · · be a chain of non-empty closed subsets of a compact space
T . Then,

∞⋂
i=1

Fi ̸= ∅

37.5.1 Compact Products and Compact Subsets of Rn

Theorem (Tychonov). The product of any collection of compact spaces is compact with the product
topology.

Theorem (Heine–Borel in Rn). A subset of Rn is compact if and only if it is closed and bounded.

Proof. Let S be a compact subset of Rn. It follows from a previous lemma that S is bounded. Metric
spaces are also Hausdorff, so S is closed.

For the converse, suppose that S is bounded, so there exists r > 0 such that S ⊆ [−r,r]n. Since [−r,r] is
compact (by Heine–Borel in R), it follows that [−r,r]n is compact (by Tychonov). If S is closed, then it
is a closed subset of a compact space, and is hence compact. ■

Note that this result does not hold in general metric spaces. For instance, (0,1) is bounded and is closed
in itself, but is not compact.

37.5.2 Continuous Functions on Compact Sets
Theorem (Continuous Image of Compact is Compact). Let f : T → S be a continuous function between
topological spaces. If T is compact, then f(T ) ⊆ S is compact.

Proof. Suppose U is an open cover of f(T ). Then, f−1[U ] is open for all U ∈ U , and the collection{
f−1[U ] : U ∈ U

}
of these sets covers T . Because T is compact, it has a finite subcover

{
f−1[Ui]

}n
i=1

,
and hence {Ui}ni=1 is a finite subcover of f(T ). ■

This corollary shows that compactness is a topological property.

Theorem 37.5.3. Let f : T → S be a continuous bijection. If T is compact and S is Hausdorff, then f
is a homeomorphism.

Proof. Let K ∈ T be closed, and hence compact. Then, f(K) is compact, and, since S is Hausdorff,
f(K) is closed. The inverse image of K under f−1 (that is, under (f−1)−1 = f) is then closed, so f−1

is continuous. ■

Corollary 37.5.3.1. If T is non-empty and compact, then a continuous function f : T → R is bounded
and attains its bounds.

37.5.3 Lebesgue Numbers and Uniform Continuity
Let U be an open cover of a metric space (X,d). A number δ > 0 is called a Lebesgue number for U if
for every x ∈ X, there exists an open set U ∈ U such that B(x,δ) ⊆ U .

In general, open covers do not have a Lebesgue number. For instance, U =
{
(x2 ,x) : x ∈ (0,1)

}
form

an open cover of (0,1), but the covering sets become arbitrary small as x → 0, so no Lebesgue number
exists.

Lemma (Lebesgue’s Number Lemma). Every open cover U of a compact metric space (X,d) has a
Lebesgue number.
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A map f : (X,dX) → (Y,dY ) between metric spaces is uniformly continuous if for every ε > 0 there
exists δ > 0 such that dY (f(x),f(y)) < ε whenever dX(x,y) < δ for all x,y ∈ X.

As usual in uniform definitions, δ may depend only on ε and not on x nor y.

Theorem (Compact Continuous is Uniform). A continuous map from a compact metric space into a
metric space is uniformly continuous.

37.5.4 Sequential Compactness
A subset K of a metric space (X,d) is sequentially compact if every sequence in K has a convergent
subsequence whose limit lies in K.

Lemma 37.5.4. If K us a sequentially compact subset of a metric space, then any open cover of K has
a Lebesgue number.

Proof. Suppose U is an open cover of K that does not have a Lebesgue number. Then, for every ε > 0,
there exists x ∈ K such that B(x,ε) is not contained in any element of U .

Let (xn)∞i=1 be a sequence such that B(xn, 1n ) is not contained in any element of U as above. By sequential
compactness, (xn) has a convergent subsequence (xni)→ x ∈ K, and since U covers K, x ∈ U for some
open set U ∈ U .

Since U is open, there exists ε > 0 such that B(x,ε) ⊆ U . Now, take suficiently large i such that
d(xni ,x) <

ε
2 and 1

ni
< ε

2 . Then, B(xni ,
1
ni
) ⊆ B(x,ε) ⊆ U , contradicting the construction of (xn) ⊇

(xni). ■

Theorem (Sequentially Compact is Compact). A metric subspace is sequentially compact if and only if
it is compact.

The equivalence of compactness and sequential compactness in metric spaces show that they are also
equivalent in normed spaces.

However, there exist closed bounded subsets in general normed spaces that are not compact. For instance,
the closed unit ball in ℓp is not compact for any 1 ≤ p ≤ ∞: consider the sequence of basis vectors (ei)∞i=1.
This sequence has no convergence subsequence, as any such subsequence would necessarily be Cauchy,
but,

∥ei − ej∥ℓp =

{
2

1
p 1 ≤ p <∞

1 p =∞

In fact, the compactness of the closed unit ball is necessary and sufficient for a normed space to be
finite-dimensional:

Theorem 37.5.5. A normed space is finite-dimensional if and only if its closed unit ball is compact.

37.6 Connectedness

A pair of sets (A,B) is a partition of a topological space T if T = A ∪ B and A ∩ B = ∅, and we say
that A and B partition T .

It is clear from the definition that if A and B partition T , they are open if and only if they are closed.

A topological space T is connected if the only partitions of T into open (closed) sets are (T,∅) and (∅,T ),
and is disconnected otherwise.

Lemma (Characterisation of Disconnected Spaces). The following statements are all equivalent:
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(i) T is disconnected;

(ii) T has a partition into two non-empty open sets;

(iii) T has a partition into two non-empty closed sets;

(iv) T has a clopen subset equal to neither ∅ nor T ;

(v) there is a continuous function from T to the two-point set {0,1} with the discrete topology.

Proof.

(i)↔ (ii): Follows from the definition of disconnected.

(ii)↔ (iii): If A and B are open and T = A ∪B, then A = T \B and B = T \A are closed in T .

(ii)↔ (iv): As above, if A,B satisfy the hypotheses of (ii), they are clopen, so (iv) holds. Now, suppose
(iv) holds, and let A ⊂ T be non-empty and clopen. Then, B = T \A is open and A,B partition T .

(ii) ↔ (v): Let χA be the indicator function of A. Then, χ−1
A

[
{1}
]
= A and χ−1

A

[
{1}
]
= B and

χ−1
A

[
{0,1}

]
= T , which are all open, so f is continuous. For the converse, suppose f : T → {0,1} is

a continuous surjection. Define A := f−1
[
{0}
]

and B := f−1
[
{1}
]
. Both A and B are open as f is

continuous; are non-empty as f is surjective; and A ∪ B = T and A ∩ B = ∅, so A and B partition
T . ■

Statement (v) allows us to show that a space is connected by showing that any continuous function
T → {0,1} must be a constant function. Equivalently, we can show that a space is disconnected by
exhibiting a non-constant (or equivalently, surjective) function T → {0,1}.

Statement (iv) shows that if a subset of T is clopen, then it is either empty or is all of T .

A subset S of T is connected (disconnected) if (S,TS) is connected (disconnected). That is, S is connected
(disconnected) as a topological space under the subspace topology.

A subset S ⊆ T is separated by sets U,V ∈ T if,

• S ⊆ U ∪ V ;

• S ∩ U ̸= ∅;

• S ∩ V ̸= ∅;

• S ∩ U ∩ V = ∅.

That is, S is at least (partially) contained within both U and V individually, contained entirely within
U and V together, but is not contained in any overlap between U and V (if any such overlap exists).

Theorem 37.6.1. A subspace (S,TS) of a space (T,T ) is disconnected if and only if it is separated by
some sets U,V ∈ T .

Proof. If S is disconnected, then there are non-empty A,B ∈ TS such that S = A ∪ B and A ∩ B = ∅.
By the definition of the subspace topology, there exist U,V ∈ T such that A = U ∩ S and B = V ∩ S.
Then, U and V separate S. Conversely, if U and V separate S, then U ∩ S and V ∩ S partition S and
S is disconnected. ■

37.6.1 Connected Subsets of Rn

An interval of the real line is any set of the form,

• [a,b] = {x ∈ R : a ≤ x ≤ b};

• [a,b) = {x ∈ R : a ≤ x < b};
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• (a,b] = {x ∈ R : a < x ≤ b};

• (a,b) = {x ∈ R : a < x < b}.

where a,b ∈ R ∪ {−∞,+∞}, with infinite values allowed only with strict inequalities.

Lemma 37.6.2. A set I ⊆ R is an interval if and only if whenever x,z ∈ I and x < y < z, then z ∈ I.

That is, an interval contains all points between any pair of points in the interval.

Proof. The intervals above are all defined to have this property. For the converse, suppose I ⊆ R satisfies
this property, and let a = inf I and b = sup I. Certainly, (a,b) ⊆ I, for if z ∈ (a,b), then there exists
α,β ∈ I with α < z < β by the definition of a and b, which implies that z ∈ I. Now,

(a,b) ⊆ I ⊆ (a,b) ∪ {a,b}

■

Theorem (Intervals are Connected). A subset of R is connected if and only if it is an interval.

Proof. If an interval I is not connected, then there is a continuous surjective map f : I → {0,1}. Note
that when considered as a function f : I → R, then this is also continuous, since given any open subset
U of R, we have

f−1[U ] =


f−1

[
{0}
]

0 ∈ U,1 /∈ U
f−1

[
{1}
]

0 /∈ U,1 ∈ U
f−1

[
{0}
]
∪ f−1

[
{1}
]

0,1 /∈ U
∅ 0,1 /∈ U

and all these sets are open. But, if f(x) = 0 and f(y) = 1, then f takes all values in between by the
intermediate value function, which is a contradiction.

For the reverse implication, suppose I ⊆ R is not an interval, so there exist x,y,z such that x < z < y,
and x,y ∈ I, but z /∈ I. Let A = (−∞,z) ∩ I and B = (z,∞) ∩ I. Then, A and B are disjoint, open in I
(by definition of the subspace topology), and non-empty, since x ∈ A and y ∈ B. We have I = A ∪ B,
since z /∈ I. So, I is not connected. ■

37.6.2 Operations on Connected Sets
Theorem (Union of Overlapping Connected Sets). If (Ci)i∈I are connected subsets of T and Ci∩Cj ̸= ∅
for all i,j ∈ I, then,

K =
⋃
i∈I

Ci

is connected.

Proof. Suppose f : K → {0,1} is continous. Since each Ci is connected, f(Ci) = {δi} where δi is either
0 or 1 for each i. Since Ci ∩ Cj is non-empty for all i,j ∈ I, it follows that f(Ci) takes the same value
for every i ∈ I, so f must be a constant function and hence K is connected. ■

Lemma 37.6.3. Suppose C and D are connected subsets of T and C∩D ̸= ∅. Then, C∪D is connected.

Proof. Let K = C ∪ D, and suppose f : K → {0,1} is continous (and {}). Suppose f(C) = {0} and
f(D) = {1} (we just require that C and D have disjoint images in {0,1}).

{1} is open in {0,1}, so f−1
[
{1}
]

is open in K, and is hence f−1
[
{1}
]
= U ∩K for some open set U ∈ T

by the definition of the subspace topology.
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Since C ∩D ̸= ∅, there exists x ∈ D such that every open neighbourhood of x in T intersects C. U ∋ x
is such a set, so U ∩ C ̸= ∅. But, C ⊆ K, so this is the same as,

∅ ̸= U ∩ C
= U ∩ (K ∩ C)
= f−1

[
{1}
]
∩ C

but f(C) = {0}, so this implies {1} ∩ {0} ≠ ∅. It follows that C and D cannot have disjoint images in
{0,1}, so f must be constant on K, so K is connected. ■

Theorem (Union of Connected Subspaces). Suppose C and (Ci)i∈I are connected subspaces of T and
C ∩ Ci ̸= ∅ for all i ∈ I. Then,

C ∪
⋃
i∈I

Ci

is connected.

Proof. Define C ′
i := C ∪ Ci for i ∈ I. Then, each C ′

i is connected by the previous lemma. We also
have C ′

i ∩ C ′
j = (C ∪ Ci) ∩ (C ∪ Cj) = C ∪ (Ci ∩ Cj) so C ′

i ∩ C ′
j ̸= ∅ for all i,j ∈ I, and

⋃
i∈I C

′
i =⋃

i∈I C ∪ Ci = C ∪
⋃
i∈I Ci = K, so the C ′

i and K satisfy the hypotheses of the previous theorem, and
hence K is connected. ■

Corollary (Subsets of Closure). If C ⊆ T is connected, then so is any set K satisfying C ⊆ K ⊆ C.

Proof. K = C ∪
⋃
x∈K{x}, and {x} ∩ C ̸= ∅ for all x ∈ K. ■

Theorem (Continuous Image of Connected is Connected). Let f : T → S be a continuous function
between topological spaces. If T is connected, then f(T ) ⊆ S is connected.

Proof. Suppose T is connected. If f(T ) is disconnected, then there exists a non-constant g : f(T ) →
{0,1}. But then, g◦f is a continuous non-constant function T → {0,1}, contradicting that T is connected.
It follows that no such g exists, so f(T ) is connected. ■

This corollary shows that connectedness is a topological property, i.e., if T is connected and T ∼= S, then
S is connected.

Theorem (Connected Product). If topological spaces T and S are connected, then the topological product
T × S is connected.

Proof. Let t ∈ T , s ∈ S and define C := T ×{s0} and Ct := {t}×S. Then, C is homeomorphic to T and
Ct is homeomorphic to S, so both are connected. C∩Ct is non-empty as (t,s) ∈ C,Ct, so C∩Ct ⊃ C∩Ct
is non-empty. We also have,

T × S = C ∪
⋃
t∈T

Ct

so T × S is connected as a union of connected subspaces. ■

To show that a set is connected, we can show that it can be constructed from the continuous images of
known connected sets (often intervals), via products, and via unions.

Example.

• R2 is connected as R2 = R× R and R = (−∞,∞) is connected as it is an interval.
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• The circle S1 is connected, as it is the continuous image of [0,2π] by t 7→ (sin t, cos t).

• The unit square is connected, as it is the image of S1 under a radial projection mapping, which is
continuous.

• R2 \ {(0,0)} is connected, since Rn \ {0} =
⋃
r∈R rS

1 is the union of circles.

• The topologist’s sine curve

S :=

{(
x, sin

1

x

)
: x ∈ R,x ̸= 0

}
∪
{
(0,0)

}
is a connected subspace of R2: let S− =

{(
x, sin(1/x)

)
: x < 0

}
and S+ =

{(
x, sin(1/x)

)
: x > 0

}
,

and O =
{
(0,0)

}
. S− and S+ are connected as the images of the intervals (−∞,0) and (0,∞),

respectively, under the continuous map x 7→
(
x, sin(1/x)

)
, and O is a point, so it is connected.

Note that O ⊆ S− and O ⊆ S+, so both S− ∪ O and S+∪ are connected by Lemma 37.6.3. Since
(S− ∪O) ∩ (S+ ∪O) = O ̸= ∅, it follows that

S = S− ∪O ∪ S+

is connected as it is the union of overlapping connected sets.

• The harmonic comb

H :=
{
(x,y) : y = 0,x ∈ (0,1]

}
∪
{(

1

n
,y

)
: n ∈ N,y ∈ [0,1]

}
∪
{
(0,1)

}
is connect as the union of vertical lines, all of which intersect the horizontal line, plus (0,1), which
is contained in the closure of the vertical lines.

△

We have shown that connectedness is a topological invariant. More useful, however, is that the property
“T \{x} is connected for every x ∈ T ” is a topological property. That is, if f : T → S is a homeomorphism,
then for any y ∈ S, the set S \ {y} is the continuous image of T \ {x} for some x ∈ T . This can be
used to show that certain sets are not homeomorphic by finding a point that disconnect one set when
removed, while proving no such points exist for the other.

Example.

• R2 is not homeomorphic to R: R \ {0} is disconnected, but R2 \
{
(0,0)

}
is still connected.

• [0,1] is not homeomorphic to S1: removing an interior point from [0,1] disconnects the set, but
removing a point from the circle leaves it connected.

• Similarly, [0,1] is not homeomorphic to the unit square.

△

37.6.3 Connected Components
We can define an equivalence relation on a topological space T by having x ∼ y if and only if x,y ∈ C for
some connected C ⊆ T . This relation is clearly reflexive and symmetric. For transitivity, suppose x ∼ y
and y ∼ z, so x,y ∈ C1 and y,z ∈ C2. C1 ∩ C2, is non-empty as it contains y, so C1 ∪ C2 is connected
and x,z ∈ C1 ∪ C2, so x ∼ z.

The equivalence classes of ∼ are called the connected components of T .
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• The connected component C containing x is the union of all connected subsets of T that contain
x:

C =
⋃

x∈S⊆T

S

• Connected components are connected;

• Connected components are closed;

• Connected components are maximal connected subsets of T .

Example. The connected components of T = (0,1)∪ (1,2) are (0,1) and (1,2); the connected components
of Q are the singleton sets {p}, where p ∈ Q; the connected components of R \Q are the singleton sets
{q}, where q ∈ R \Q. △

Since the continuous image of a connected space is connected, the number of connected components is a
topological invariant.

37.6.4 Path-Connected Spaces
Given two points s and t in a topological space T , a path from s to t, or a s-t-path, is a continuous map
φ : [0,1]→ T such that φ(0) = s and φ(1) = t.

A space T is path-connected if every pair of points T can be joined by a path in T .

Theorem (Path-Connected is Connected). A path-connected space is connected.

Proof. Fix s ∈ T , and let t ∈ T . The path Cv = φ
(
[0,1]

)
is then connected as it is the continuous image

of a connected space. Then, T = {u} ∪
⋃
v∈T Cv, and each Cv contains u, so T is connected. ■

In general, the converse of this theorem does not hold, so path-connectedness is a stronger notion of
connectedness. However, there are some specific cases where the two are equivalent.

Theorem 37.6.4. Connected open subsets of Rn are path-connected.

Proof. Let U ⊆ Rn be connected and open. Let u ∈ U , and let A be the set of all points in U that can
be reached from u by a path contained in U . Let B = U \A. We will show that B is empty by proving
that if it is not, then A and B form a partition of U .

Let a ∈ A. Since U is open, there exists ε > 0 such that B(a,ε) ⊆ U , so there is a path joining a to any
x ∈ B(a,ε). Concatenating the path from u to a to this path from a to x yields a path from u to x, so
B(a,ε) ⊆ A, so A is open.

For any b ∈ B, we have B(b,ε) ⊆ U , so if there is a path from u to z ∈ B(b,ε), there would be a path
from u to x, so B(b,ε) ⊆ B, so B is also open.

Now, if B is non-empty, we have U = A ∪ B, A ∩ B ∩ U = ∅, A ∩ U ̸= ∅, and B ∩ U ̸= ∅. But U is
connected. ■

Theorem 37.6.5. Connected components of open subsets of Rn are open.

Proof. Let U ⊆ Rn be open and let C be one of its connected components. If x ∈ C ⊆ U , then there
exists ε > 0 such that B(x,ε) ⊆ U as U is open. But C is the union of all connected subsets of U that
contain x, so B(x,ε) ⊆ C and C is open. ■
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Theorem 37.6.6. A subset U of R is open if and only if it is the union of countably many disjoint open
intervals:

U =
⋃
i∈I

(ai,bi), (ai,bi) ∩ (aj ,bj) = ∅ for all i ̸= j

Proof. Any union of open sets is open. For the converse, let U ⊆ R be open, and let (Ci)i∈I be the
collection of its connected components, which are mutually disjoint. These components are open by the
previous theorem, and since they are open and connected, they are open intervals. Then, for each Ci,
we can pick a rational qi in Ci, so we can index the connected components by Q, which is countable. ■

37.7 Completeness in Metric Spaces

Recall that a sequence (xn)
∞
n=1 converges in a metric space (X,d) if and only if it is Cauchy. That is, if

for every ε > 0, there exists N such that, for all n,m ≥ N ,

d(xn,xm) < ε

A metric space (X,d) is complete if every Cauchy sequence in X converges, and is incomplete otherwise.

It is implicit in the definition that the limit must lie in X. So, for example, R and C are complete, but
(0,1) is not complete, as ( 1n )

∞
n=1 is Cauchy, but 1

n → 0 ̸∈ (0,1). Since R and (0,1) are homeomorphic
(given by x 7→ 1

1+e−x , or any other sigmoid curve), this shows that completeness is not a topological
property. A topological space X that is metrisable with at least one metric d on X such that (X,d) is a
complete metric space is called completely metrisable.

Theorem 37.7.1 (Complete Subset is Closed). Let (X,d) be a metric space, and let S ⊆ X. If (S,d|S)
is complete, then S is closed in X.

Proof. Suppose (xn)
∞
n=1 ⊆ S with (xn) → x. Then, (xn) is Cauchy in S, and thus converges to some

y ∈ S. Since xn,y ∈ S, it follows that d|S(xn,y) = d(xn,y), so (xn) → y in X, i.e., x = y, and S is
closed. ■

Theorem 37.7.2 (Closed in Complete is Complete). Let (X,d) be a metric space, and let S ⊆ X. If
(X,d) is complete and S is closed, then (S,d|S) is complete.

Proof. If (xn)∞n=1 ⊆ S is Cauchy in S, then (xn) is also Cauchy in X, and thus converges to some x ∈ X.
Since S is closed, x ∈ S, so (xn)→ x in S. ■

Theorem (Compact Metric is Complete). Any compact metric space (X,d) is complete.

Proof. If (xn)∞n=1 is a Cauchy sequence in X, then it has a convergent subsequence (xni
) (since compact

implies sequentially compact in a metric space) with (xni
) → x ∈ X. But if a Cauchy sequence has a

convergent subsequence, then the whole sequence converges to x: given any ε > 0, find N such that

d(xn,xn) <
ε

2

for all n,m ≥ N , and I such that nI ≥ N and d(xni
,x) < ε

2 for all i ≥ I. Then, for all k ≥ nI , we have

d(xk,x) ≤ d(xk,xnI
) + d(xnI

,x)

<
ε

2
+
ε

2
= ε

■
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37.7.1 Examples of Complete Spaces
Note that all our examples will be normed spaces: a normed space is complete if it is complete as a
metric space, i.e., a Cauchy sequence is (xn)

∞
i=1 such that for every ε > 0, there exists N such that

∥xn − xm∥ < ε

for all n,m ≥ N , and any such sequence should converge to some x ∈ X, i.e., ∥xn − x∥ → 0 as n→∞.

A complete normed space is also called a Banach space.

Theorem 37.7.3. Rd is Banach for all d ∈ N.

Proof. Let (x(i))∞i=1 (the indices are written as superscripts as we need to access the subscripts to index
components) be a Cauchy sequence in Rd. Then, for every ε > 0, there exists N(ε) such that

∥∥x(n) − x(m)
∥∥ =

√√√√ d∑
i=1

∣∣∣x(n)i − x(m)
i

∣∣∣2 < ε

for all m,n ≥ N(ε). In particular, for each i = 1, . . . ,d we have∣∣∣x(n)i − x(m)
i

∣∣∣ < ε

for all m,n ≥ N(ε), so
(
x
(n)
i

)∞
i=1

is a Cauchy sequence. Since Cauchy sequences of real numbers converge,(
x
(n)
i

)
→ xi for some xi ∈ R. Now, set x = (x1, . . . ,xd). Then,

lim
n→∞

∥∥x(n) − x
∥∥ = lim

n→∞

√√√√ d∑
i=1

∣∣∣x(n)i − xi
∣∣∣2 = 0.

so
(
x(n)

)
→ x. ■

We proved this theorem using the standard Euclidean norm, but since all norms are equivalent on Rn,
Rn is complete in any norm.

Theorem 37.7.4. ℓp is complete for all 1 ≤ p ≤ ∞

Theorem 37.7.5. For any non-empty set X, the space B(X) of bounded real-valued functions defined
on X, f : X → R under the supremum norm,

∥f∥∞ := sup
x∈X
|f(x)|

is complete.

Proof. Let (fn)
∞
n=1 be a Cauchy sequence in B(X). Then, for every ε > 0 there exists N(ε) such that

∥fn − fm∥∞ = sup
x∈X

∣∣fn(x)− fm(x)
∣∣ < ε

for all n,m ≥ N(ε). In particular, for each x ∈ X, we have∣∣fn(x)− fm(x)
∣∣ < ε

for all n,m ≥ N(ε), so
(
fn(x)

)∞
n

is a Cauchy sequence in R. Since R is complete, fn(x) converges for
each x ∈ X. Now, define f : X → R by setting

f(x) = lim
n→∞

fn(x)
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for each x ∈ X. For any ε > 0, we have ∣∣fn(x)− f(x)∣∣ ≤ ε
for all n ≥ N(ε), by letting m→∞ in the previous equation.

Since N(ε) does not depend on x, this implies that∣∣fN(1)(x)− f(x)
∣∣ ≤ 1

for every x ∈ X, so f is bounded, i.e., an element of B(X), and that,

∥fn − f∥∞ ≤ ε

for all n ≥ N(ε), i.e., that (fn)→ f in the supremum norm. ■

Theorem 37.7.6. For any non-empty topological space (T,T ), the space Cb(T ) of bounded and contin-
uous real-valued functions defined on X, f : X → R under the supremum norm is complete.

Proof. Suppose f ∈ Cb(T ), where the closure is taken in B(T ). Then, for any ε > 0, there exists
fε ∈ Cb(T ) such that ∥f − fε∥∞ < ε. Next, we show that for any a ∈ R, we have{

x : f(x) > a
}
=
⋃
ε>0

{
x : fε(x) > a+ ε

}
Indeed, if f(x) > a, then we can take ε = f(x)−a

2 and then

fε(x) = f(x)−
(
f(x)− fε(x)

)
> f(x)− ε
= a+ ε

while if fε(x) > a+ ε, then

f(x) = fε(x)−
(
fε(x)− f(x)

)
> (a+ ε)− ε
= a

which proves the equality. Now, since each fε is continuous, each set in the union is open, and
so f−1

[
(a,∞)

]
is open. A similar argument works for

{
x : f(x) < a

}
, and f is continuous since{

(a,∞),(−∞,a) : a ∈ R
}

forms a sub-basis for the open sets of R. ■

Theorem 37.7.7. For any non-empty compact topological space T , the space C(T ) of continuous real-
valued functions defined on X is complete under the maximum norm

∥f∥∞ = max
x∈T

∣∣f(x)∣∣
Proof. If f ∈ C(T ) and T is compact, then f is bounded, so C(T ) = Cb(T ), and f attains its bounds, so

sup
x∈T

∣∣f(x)∣∣ = max
x∈T

∣∣f(x)∣∣
■
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37.7.2 Completions

Consider the space C[0,1] of continuous functions defined on [0,1] under the L1 norm. This space is not
complete as there exist Cauchy sequences that do not converge to a function in C[0,1]. For example,

fn(x) =


0 0 ≤ x < 1

2 −
1
n

1− n( 12 − x)
1
2 −

1
n ≤ x <

1
2

1 1
2 < x ≤ 1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

fn(x) for n = 2,3, . . .

For n > m,

∥fn − fm∥L1 =

(� 1

0

|fn(x)− fm(x)|1 dx
) 1

1

=

� 1

0

|fn(x)− fm(x)| dx

≤ 1

m

so this sequence is Cauchy. f converges in the L1 norm to the function

f(x) =

{
0 0 ≤ x < 1

2

1 1
2 ≤ x ≤ 1

since

∥fn − f∥L1 =

� 1

0

|fn(x)− f(x)| dx

=

� 1
2

1
2−

1
n

|fn(x)|

≤ 1

n

Clearly, f ̸∈ C[0,1], so C[0,1] with the L1 norm is incomplete.

An incomplete space can be completed by adding in the missing limit points, resulting in the completion
of that space. There are two methods of completing an incomplete space A:

(i) Find a complete metric space X ⊃ A such that A is dense in X. That is, A = X.

(ii) Find a complete metric space X and an isometry i : A→ Y with Y ⊆ X and Y = X.

Example.
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(i) Q is dense in R and R is complete, so R is the completion of Q.

(ii) R is the completion of Q with isometry i(x) = x or i(x) = −x.

△

The second method is more flexible in that we do not have to find a complete space that contains exactly
A, but only a space isometric to A.

Theorem 37.7.8. Every metric space (X,d) can be isometrically embedded into the complete space
metric space B(X).

Proof. Given (X,d), define i : X → B(X) by choosing some a ∈ X and then setting

[i(x)](z) = d(z,x)− d(z,a)

Note that for every z ∈ X we have ∣∣[i(x)(z)]∣∣ = ∣∣d(z,x)− d(z,a)∣∣
≤ d(x,a)

so i(x) ∈ B(X). Since ∣∣[i(x)](z)− [i(y)](z)
∣∣ = ∣∣d(z,x)− d(z,a)∣∣
≤ d(x,y)

and we have equality when z = x or z = y, it follows that∥∥i(x)− i(y)
∥∥
∞ = d(x,y)

so the map i is an isometry of (X,d) onto a subset of B(X). ■

Corollary 37.7.8.1. Every metric space has a completion.

Proof. Embed (X,d) into B(X) via the previous theorem. Then i(X) (with the closure taken in B(X))
is a closed subset of a complete space and is thus complete, and clearly, i(X) is dense in i(X). ■

One can also complete any normed space to find a complete normed space, but the construction is
significantly more involved.

37.8 The Contraction Mapping Theorem

A map f : X → X is a contraction if

d
(
f(x),f(y)

)
≤ κd(x,y)

for all x,y ∈ X and some κ ∈ [0,1). The smallest such value of κ is called the Lipschitz constant of f .

Any contraction is continuous, so if (xn)→ x, we have
(
f(xn)

)
→ f(x).

Theorem (Contraction Mapping). Let (X,d) be a non-empty complete metric space, and f : X → X be
a contraction. Then, f has a unique fixed point in X.

This theorem is also known as the Banach Fixed Point theorem.

Notes on Mathematics | 694



Point-Set Topology The Contraction Mapping Theorem

Proof. Let x0 ∈ X, and set xn+1 = f(xn). Then, for any j ∈ N,

d(xj+1,xj) ≤ κd(xj ,xj−1)

≤ κ2d(xj−1,xj−2)

≤ κ3d(xj−2,xj−3)

...

≤ κjd(x1,x0)

so if k > i,

d(xk,xi) ≤
k−1∑
i=j

d(xi+1,xi)

≤
k∑
i=j

κid(x1,x0)

≤ κi

1− κ
d(x1,x0)

It follows that (xn) is a Cauchy sequence in X. Since X is complete, (xn) → x for some x ∈ X, and
since f is continuous,

(
f(xn)

)
→ f(x), so,

x = lim
n→∞

xn+1

= lim
n→∞

f(xn)

= f(x)

Any such x must also be unique, since if f(x) = x and f(y) = y, then

d(x,y) = d
(
f(x),f(y)

)
≤ κd(x,y)

so (1− κ)d(x,y) = 0 and x = y. ■

We can use this theorem to prove the local existence and uniqueness of solutions of ordinary differential
equations:

Theorem (Picard–Lindelöf). Suppose f : Rn → Rn is Lipschitz continuous:∣∣f(x)− f(y)∣∣ ≤ L|x− y|
for all x,y ∈ Rn. Then, for any x0 ∈ Rn, the differential equation

ẋ = f(x), x(0) = x0

has a unique solution on [−T,T ] for any T < 1/L.

Proof. Rewrite the equation as

x(t) = x0 +

� t

0

f
(
x(s)

)
ds

so x : [−T,T ]→ Rn solves the equation if it is a fixed point of the map

F : C
(
[−T,T ]

)
→ C

(
[−T,T ]

)
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given by [
F(x)

]
(t) := x0 +

� t

0

f
(
x(s)

)
ds

We use the contraction mapping theorem in the space X :− C
(
[−T,T ]

)
with the supremum metric.

This map F is a contraction on X if LT < 1 since∣∣∣[F(x)](t)− [F(y)](t)∣∣∣ = ∣∣∣∣� t

0

f
(
x(s)

)
− f

(
y(s)

)
ds

∣∣∣∣
≤
� t

0

∣∣∣f(x(s))− f(y(s))∣∣∣ ds
≤
� t

0

L
∣∣x(s)− y(s)∣∣ ds

≤ LT∥x− y∥∞

so ∥∥F(x)−F(y)∥∥∞ ≤ LT∥x− y∥∞
■

37.9 The Arzelà-Ascoli Theorem

Let (X,dX) and (Y,dY ) be metric spaces. A family F of continuous functions X → Y is,

• equicontinuous at x0 ∈ X if for every ε > 0 there exists δ > 0 such that dY
(
f(x0)− f(x)

)
< ε for

every f ∈ F and x ∈ X such that dX(x0,x) < δ;

• (pointwise) equicontinuous if it is equicontinuous at every x ∈ X;

• uniformly equicontinuous if for every ε > 0 there exists δ > 0 such that dY
(
f(x),f(y)

)
< ε for

every f ∈ F and x,y ∈ X such that dX(x,y) < δ;

For comparison, the statement “all functions f in F are continuous” means that for every ε > 0, every
f ∈ F , and every x0 ∈ X, there exists a δ > 0 such that dY

(
f(x0),f(x)

)
< ε for all x ∈ X such that

dX(x0,x) < δ. Then,

• for continuity, δ may depend on ε, f , and x0;

• for uniform continuity, δ may depend on ε and f ;

• for pointwise equicontinuity, δ may depend on ε, x0;

• and for uniform equicontinuity, δ may depend only on ε.

Lemma 37.9.1. If X is compact, then A ⊆ C(X) is pointwise equicontinuous if and only if it is
uniformly equicontinuous.

A sequence (fn)
∞
n=1 of functions is uniformly bounded if there exists M ∈ R such that ∥fn∥∞ ≤ M for

all n.

Lemma (Diagonal Subsequence). Let (fn)
∞
n=1 be a uniformly bounded sequence of functions X → R.

Let D = {xk}∞k=1 ⊆ X be a countable subset of X. Then, (fn) has a subsequence fni
such that the

sequence of real numbers fni(xk) converges as i→∞ for each xk ∈ D.

Proof. Since (fn) is uniformly bounded, the sequence of real numbers
(
fn(x)

)
is bounded for every

x ∈ X.
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Since
(
fn(x1)

)
is bounded, by Bolzano-Weierstrass, (fn) has a subssequence (fn1,i

) such that
(
fn1,i

(x1)
)

converges. Let S1 be the set of these indices:

S1 = {n1,i}i∈N ⊆ N

Since
(
fn(x2)

)
is bounded (here n1,i ∈ S1), by Bolzano-Weierstrass, (fn1,i) has a subssequence (fn2,i)

such that
(
fn2,i

(x1)
)

converges. Let S2 be the set of these indices:

S2 = {n2,i}i∈N ⊆ S1

We continue this way.

Suppose k − 1 steps have been completed, and we already have a sequence fnk−1,i
with the set Sk−1 =

{nk−1,i}i∈N. Since
(
fnk−1,i

(xk)
)

is bounded, by Bolzano-Weierstrass, (fnk−1,i
) has a subsequence fnk,i

such that
(
fnk,i

(xk)
)

converges. Let Sk be the set of these indices:

Sk = {nk,i}i∈N ⊆ Sk−1

Then,
Sk ⊆ Sk−1 ⊆ · · · ⊆ S1 ⊆ N

This process can be continued forever for every k ∈ N. We now select the “diagonal subsequence”. For
each positive integer i, let ri = ni,i, i.e., the ith smallest number of Si. Note that for each k, at most
the first k − 1 terns of the sequence (fri)

∞
i=1 are not included in the sequence (fnk,i

)∞i=1 since

ri = ni,i∈Si⊆Sk

if i ≥ k. Therefore, as
(
fnk,i

(xk)
)

converges,
(
fri(xk)

)
converges too, for every k ≥ 1. ■

Lemma 37.9.2. Every compact metric space contains a countable dense set D = {xk}k∈N.

Proof. For each positive integer n, the open balls of of radius 1
n form an open cover

{
B
(
x, 1n

)
: x ∈ X

}
of X. It has a finite subcover consisting of Mn balls

B
(
xn,1,

1

n

)
, . . . ,B

(
xn,Mn

,
1

n

)
Let D be the countable set that contains all these points xn,i, n ≥ 1, i ∈ [1,Mn].

To show that D is dense, it is enough to prove that D intersects every open ball B(y,r) where y ∈ X
and r > 0. Let n be such that r > 1

n . The point y must be an element of one of the balls B(xn,i, 1n ), so
d(y,xn,i) <

1
n < r. Then, xn,i ∈ B(y,r) ∩D, so B(y,r) ∩D ̸= ∅. ■

Lemma 37.9.3. Let (X,d) be a compact metric space, and let D be dense subset of X. Let (fn) be
a uniformly equicontinuous sequence in C(X) such that fn(x) converges for every x ∈ D. Then, (fn)
converges in the maximum norm.

Proof. Let ε > 0. By unform equicontinuity, there exists a δ > 0 such that d(x,y) < δ implies
∣∣fn(x)−

fn(y)
∣∣ < ε for all n.

The collection of open balls of radius δ/2,
{
B(y,δ/2) : y ∈ X

}
is an open cover of X. As X is compact,

there is a finite subcover {B(yi,δ/2)}Mi=1 of X.

Since D is dense in X, there are points xi ∈ D ∩ B(yi,δ/2) for 1 ≤ i ≤M . Since xi ∈ D, limn→∞ fn(xi)
exists, so there is an integer Ni such that∣∣fm(xi)− fn(xi)

∣∣ < ε
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for all n,m ≥ Ni.

Let N = max1≤i≤M Ni, and let x ∈ X. Then, x ∈ B(yi,δ/2) for some i and

d(x,xi) ≤ d(x,yi) + d(yi,xi)

< δ

Then, if m,n ≥ N , we have∣∣fm(x)− fn(x)
∣∣ = ∣∣fm(x)− fm(xi) + fm(xi)− fn(xi) + fn(xi)− fn(x)

∣∣
≤
∣∣fm(x)− fm(xi)

∣∣+ ∣∣fm(xi)− fn(xi)
∣∣+ ∣∣fn(xi)− fn(x)∣∣

< ε+ ε+ ε

= 3ε

where we used uniform continuity and the choice of δ for the first and third summand, and the choice of
N for the second. Taking the maximum over all x ∈ X, we obtain

∥fm − fn∥∞ = max
x∈X

∣∣fm(x)− fn(x)
∣∣

≤ 3ε

for all m,n ≥ N . This means that (fn) is a Cauchy sequence in the maximum norm, as ε > 0 was
arbitrary, and N depends on ε. Since C(X) is complete, (fn) converges in the maximum norm. ■

Theorem (Arzelà-Ascoli). Let X be a compact metric space. Suppose that the sequence (fn)
∞
n=1 in

C(X) is uniformly bounded and uniformly equicontinuous. Then, (fn) has a subsequence that converges
in the maximum norm to a function f ∈ C(X).

Proof. Since X is compact, there is a countable dense set D ⊆ X by Lemma 37.9.2. Since (fn) is
uniformly bounded, we can apply the diagonal subsequence lemma to obtain (fri)

∞
i=1 such that fri(x)

converges for every x ∈ D. Since (fn), and thus (fri), are uniformly equicontinuous, (fri) converges in
the maximum norm by Lemma 37.9.3. ■

Here is one application of the Arzelà-Ascoli theorem:

Corollary (Peano). Suppose f : R2 → R is continuous. Then, there exists T > 0 such that the
differential equation

ẋ = f
(
t,x(t)

)
, x(0) = x0

has at least one solution for t ∈ (−T,T ).

Proof sketch. Assume, for simplicity, that x0 = 0. First we construct “approximate solutions”.

For each positive integer n, let xn : [0,∞)→ R be the unique continuous function that is linear on each
of the intervals [ in ,

i+1
n ) such that the (right) derivatives satisfy

ẋn(t) = f

(
i

n
,xn

(
i

n

))
if t ∈ [ in ,

i+1
n ), for every integer i ≥ 0; and x(0) = x0 = 0.

Assume that
∣∣f(t,x)∣∣ ≤M if |t| ≤ 1 and |x| ≤ 1. Set T = min(1,1/M). Then, the approximate solutions

xn on [0,T ] are uniformly bounded (by 1) and uniformly equicontinuous (for every ε > 0,δ = ε/M works).

By the Arzelà-Ascoli theorem, (xn) in C
(
[0,T ]

)
has a subsequence that converges in the maximum norm.

One then shows that the limit is a solution of the differential equation for t ∈ [0,T ). ■
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37.9.1 Completeness in Compact Metric Spaces
A metric space (X,d) is totally bounded or precompact if for every ε > 0, there is a finite ε-net in X, i.e.,
X can be covered by a finite collection of balls of radius ε:

X ⊆
n⋃
i=1

B(xi,ε)

Note that any totally bounded set is bounded, as a 1-net gives X ⊆
⋃n
i=1 B(xi,1), so for every x ∈ X,

d(x,x1) < r := 1 + max1≤i≤n d(x1,xi). The converse is not true, however, as shown by any infinite set
equipped with the discrete metric.

Lemma 37.9.4. A subspace Y of a metric space (X,d) is totally bounded if and only if for every ε > 0,
there is a finite collection of points {xi}ni=1 ⊆ X such that

Y ⊆
n⋃
i=1

B(xi,ε)

The forward direction is clear: if xi ∈ Y , then xi ∈ X.

Let ε > 0 and find a collection {xi}ni=1 such that

Y ⊆
n⋃
i=1

B
(
xi,

ε

2

)
We can assume that Y ∩B(xi, ε2 ) ̸= ∅ for each i; otherwise we can just remove the ball centred at xi from
the cover for each such ball.

Now for each i, choose a point yi ∈ Y ∩ B(xi, ε2 ). Then,

B
(
xi,

ε

2

)
⊆ B(yi,ε)

and so,

Y ⊆
n⋃
i=1

B(yi,ε)

as required.

Lemma 37.9.5. A subspace Y of a totally bounded metric space X is totally bounded.

Proof. As X is totally bounded, for any ε > 0, there is a finite collection of points {xi}ni=1 ⊆ X such
that

Y ⊆ X ⊆
n⋃
i=1

B(xi,ε)

so Y is totally bounded by the previous lemma. ■

Lemma 37.9.6. If a subspace Y of a metric space X is totally bounded, then so is Y .

Proof. Given ε > 0, let {xi}ni=1 be an ε/2-net for Y . Then, this is an ε−net for Y since given any y ∈ Y ,
there exists x ∈ Y with d(x,y) < ε/2 and xi such that d(x,xi) < ε/2, so d(y,xi) < ε. ■

Theorem 37.9.7. Any sequence in a totally bounded metric space (X,d) has a Cauchy subsequence.
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Proof. Take a sequence (xn)
∞
n=1 ⊆ X.

Since X is totally bounded, it has a finite 1
2 -net, so there is at least one ball B(y1, 12 ) containing infinitely

many elements of (xn). All elements of this subsequence are within distance 1 of each other.

Choose n1 such that xn1
∈ B(y1, 12 ) and let

X1 =
{
xi : i > n1,xi ∈ B(y1, 12 )

}
Since X has a finite 1

4 -net, there is at least one ball B(y2, 14 ) containing infinitely many elements of X1,
and all these points are within distance 1

2 of each other. Choose n2 such that xn2
∈ B(y2, 14 ) and let

X2 =
{
xi : i > n2,xi ∈ B(y2, 14 )

}
Continuing in this way, we obtain a sequence (xni) of (xn) that is Cauchy since xni ∈ B(yj ,2−j) for all
i ≥ j. ■

Theorem 37.9.8. A subspace Y of a complete metric space (X,d) is compact if and only if it is closed
and totally bounded.

Proof. If Y is compact, then it is closed as it is compact in a Hausdorff space X, and totally bounded
since the open cover

{
B(x,ε) : x ∈ Y

}
has a finite subcover which functions as an ε-net.

Conversely, if Y is totally bounded, then any sequence in Y has a Cauchy subsequence. Since X is
complete, this subsequence converges, and since Y is closed, the limit of this sequence lies in Y , so Y is
sequentially compact. Since (Y,d) is a metric space, Y is compact. ■

Theorem 37.9.9. A subspace Y of a complete metric space is bounded if and only if its closure is
compact.

Proof. If Y is totally bounded, then Y is totally bounded and so compact by the previous theorem.

If Y is compact, then it is totally bounded by the previous theorem and hence Y is bounded. ■

37.9.2 The Generalised Arzelà-Ascoli Theorem
The Arzelà-Ascoli theorem also gives a characterisation of the compact subsets of C(X) when X is a
compact metric space.

Theorem 37.9.10. Let X be a compact metric space. A subset A of C(X) is totally bounded if and
only if it is bounded and equicontinuous.

Proof. If A is totally bounded, then it is bounded. Since A is totally bounded, for any ε > 0 there exist
f1, . . . ,fn such that for every f ∈ A, there is an i with

∥f − fi∥∞ < ε

Since each of the fi are uniformly continuous, there exists δ > 0 such that for i = 1, . . . ,n, |fi(x)−fi(y)| <
ε/3 whenever d(x,y) < δ. Then, for any f ∈ A, choose j such that ∥fj − f∥∞ < ε/3; it follows that if
d(x,y) < δ, we have ∣∣f(x)− f(y)∣∣ = ∣∣f(x)− fj(x) + fj(x)− fj(y) + fj(y)− f(y)

∣∣
≤
∣∣f(x)− fj(x)∣∣+ ∣∣fj(x)− fj(y)∣∣+ ∣∣fj(y)− f(y)∣∣

≤ ∥f − fj∥∞ +
∣∣fj(x) + fj(y)

∣∣+ ∥fj − f∥∞
<
ε

3
+
ε

3
+
ε

3
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= ε

so A is uniformly equicontinuous (and hence equicontinuous).

Now, suppose A is bounded and equicontinuous, and let ε > 0. For every x ∈ X, by equicontinuity of
A, we find δ(x) > 0 such that for all y ∈ B

(
x,δ(x)

)
and every f ∈ A,∣∣f(y)− f(x)∣∣ < ε

3

Since X is compact, there is a finite set {xi}ni=1 ⊆ X such that

X ⊆
n⋃
i=1

B
(
xi,δ(xi)

)
We now make a collection F of elements of A that form a finite ε-net. For any {qi}ni=1 with qi ∈ Z for
which there exists a g ∈ A with

g(xi) ∈
[
qiε

3
,
(qi + 1)ε

3

]
we choose one such g and add it to F . Since A is bounded, there are only finitely many such choices of
{qi}ni=1 and so there are only finitely many functions in F .

Now, given any f ∈ A, for each i there are qi such that

f(xi) ∈
[
qiε

3
,
(qi + 1)ε

3

]
and so there is a g ∈ F such that

g(xi) ∈
[
qiε

3
,
(qi + 1)ε

3

]
which implies that

∣∣f(xi)− g(xi)∣∣ < ε
3 for each i ∈ [1,n].

Now, for each x ∈ X, we can find j such that x ∈ B
(
xj ,δ(xj)

)
, and then∣∣f(x)− g(x)∣∣ = ∣∣f(x)− f(xj) + f(xj)− g(xj) + g(xj)− g(x)

∣∣
≤
∣∣f(x)− f(xj)∣∣+ ∣∣f(xj)− g(xj)∣∣+ ∣∣g(xj)− g(x)∣∣

≤ ε

3
+
ε

3
+
ε

3
= ε

from which it follows that ∥f − g∥∞ < ε, i.e., A is totally bounded. ■

Corollary (Generalised Arzelà-Ascoli theorem). Let X be a compact metric space. A subset A of C(X)
is compact if and only if it is closed, bounded and equicontinuous.

One application is as follows:

Theorem 37.9.11. Suppose f : R→ R is continuous. Then there exists δ > 0 such that the differential
equation

ẋ = f(x), x(0) = x0

has at least one solution for t ∈ (−δ,δ).
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37.10 The Baire Category Theorem

If S is a non-empty subset of a metric space (X,d), we define

diam(S) = sup
x,y∈S

d(x,y)

Note that S is bounded if and only if diam(S) <∞.

Theorem (Cantor). If (X,d) is a complete metric space and (Fn) is a decreasing sequence of non-empty
closed subsets of X such that diam(Fn)→ 0, then

∞⋂
n=1

Fn ̸= ∅

Proof. For each n ∈ N, choose some xn ∈ Fn. Then, for al i ≥ n, we have xn ∈ Fn. So, if i,j ≥ n,
we have xi,xj ∈ Fn, so d(xi,xj) ≤ diam(Fn). It follows that (xn) is Cauchy, and so (xn) → x for some
x ∈ X.

Since Fn is closed and xi ∈ Fn for all i ≥ n, it follows that x ∈ Fn for each n. So, x ∈
⋂∞
n=1 Fn, i.e., the

intersection is non-empty. ■

Before we move on to the next theorem, we discuss various notions of “local compactness”.

Let X be a topological space. Then, it may satisfy a variety of generally non-equivalent conditions:

(1) Every point of X has a compact neighbourhood;

(2) Every point of X has a closed compact neighbourhood;

(2’) Every point of X has a neighbourhood whose closure is compact (is relatively compact or precom-
pact);

(2”) Every point of X has a local base of relatively compact neighbourhoods;

(3) Every point of X has a local base of compact neighbourhoods;

(4) Every point of X has a local base of closed compact neighbourhoods;

We have the following logical relations between these conditions:

• Each condition implies (1);

• Conditions (2), (2′), and (2′′) are equivalent;

• Conditions (2) and (3) do not imply each other;

• Condition (4) implies (2) and (3);

• Compactness implies (1) and (2), but not (3) or (4);

• These are all equivalent if X is Hausdorff.

Spaces that satisfy (1) are called weakly locally compact, as they satisfy the weakest of these conditions.
Spaces that satisfy any of (2), (2′), and (2′′), are called locally relatively compact or sometimes strongly
locally compact in contrast to weakly compact spaces. Spaces satisfying (4) are called locally compact
regular.

A Baire space is a topological space X that satisfies any of the following equivalent conditions:

1. Every countable intersection of dense open sets is dense;

2. Every countable union of closed sets with empty interior has empty interior;
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3. Every meagre set has empty interior;

4. Every non-empty open set is non-meagre;

5. Every comeagre set (a set with meagre complement) is dense;

6. Whenever a countable union of closed sets has an interior point, at least one of the closed sets has
an interior point.

A pseudometric is a generalisation of a metric that is not necessarily point separating. That is, the
distance between two distinct points may be zero under a pseudometric. Every metric space is a pseu-
dometric space.

Theorem (Baire Category Theorem I). Every complete pseudometric space is a Baire space. In partic-
ular, every completely metrisable topological space is a Baire space.

Theorem (Baire Category Theorem II). Every locally compact regular space is a Baire space. In par-
ticular, every locally compact Hausdorff space is a Baire space.

Neither of these theorems imply the other, since there are complete metric spaces that are not locally
compact (e.g. any infinite-dimensional Banach space), and there are locally compact Hausdorff spaces
that are not metrisable (e.g. any uncountable product of non-trivial compact Hausdorff spaces).

We prove a variant of the first Baire category theorem, using the first characterisation of Baire spaces:

Theorem (Baire Category Theorem). Every complete metric space is a Baire space.

That is, if {Gk}∞k=1 is a countable collection of open dense subsets of a complete metric space (X,d), then

G :=

∞⋂
k=1

Gk

is dense in X.

A set is called residual if it contains a countable intersection of open dense sets (like G in the above
theorem).

Proof. Take x ∈ X and r ≥ 0; we need to show that B(x,r) ∩ G is non-empty. Since each Gn is open
and dense, we can find y ∈ Gn and s > 0 such that

B(x,r) ∩Gn ⊇ B(y,2s) ⊇ B(y,s)

First choose x1 ∈ X and r1 < 1/2 such that

B(x1,r1) ⊆ B(x,r) ∩G1

then take x2 ∈ X and r2 < 2−2 such that

B(x2,r2) ⊆ B(x1,r1) ∩G2

and inductively, take xn ∈ X and rn < 2−n such that

B(xn,rn) ⊆ B(xn−1,rn−1) ∩Gn

This yields a sequence of nested closed sets

B(x1,r1) ⊇ B(x2,r2) ⊇ B(x3,r3) ⊇ · · ·

Since (X,d) is complete, by Cantor’s theorem, there exists x0 ∈ X such that

x0 ∈
∞⋂
i=1

B(xi,ri)
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Now observe that x0 ∈ B(x1,r1) ⊆ B(x,r), and that x0 ∈ B(xn,rn) ⊆ Gn for every n ∈ N. It follows that
x0 ∈ B(x,r) ∩G, and hence B(x,r) ∩G is non-empty, and G is dense in X. ■

An alternative formulation of this theorem says that you cannot make a complete metric spaces from
the countable union of sets that are too “small”. Recall that a subset W of (X,d) is nowhere dense if
W

◦
= ∅, or equivalently by Theorem 37.4.3, if X \W is dense in T , as

∅ =W
◦
= X \X \W

gives
X = X \W

Corollary 37.10.0.1. Let {Fi}∞i=1 be a countable collection of nowhere dense subsets of a non-empty
complete metric space (X,d). Then,

∞⋃
i=1

Fi ̸= X

Or more concisely, a complete metric space is not meagre in itself.

Proof. The sets X \ Fi are a countable collection of open dense sets. It follows that

∞⋂
i=1

X \ Fi = X \
∞⋃
i=1

Fi

is dense, and in particular, non-empty. ■

Lemma 37.10.1. The Cantor set C is uncountable.

Proof. Since C is a closed subset of R, it is complete as a metric space. For every x ∈ C, there are points
C arbitrary close to x, so C \ {x} is dense in C. Since {x} is closed, this shows that {x} is nowhere
dense. Then, we cannot have C =

⋃∞
i=1 xi, so C is uncountable. ■
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Chapter 38

Algebraic Topology

“Time and space were, from Death’s point of view, merely things that he’d heard
described. When it came to Death, they ticked the box marked Not Applicable. It
might help to think of the universe as a rubber sheet, or perhaps not.”

— Terry Pratchett, Hogfather

38.1 Glossary

isomorphism, ∼= A morphism with a two-sided inverse. Does not necessarily correspond
with a bijective morphism in any given category.

homeomorphism, ∼= A bicontinuous bijection of topological spaces; an isomorphism in Top.

quotient map The function q : X → X
/
∼ canonically defined by x 7→ [x]∼.

identification map A continuous surjection that preserves openness of sets in both directions.

cover A collection of (open) sets whose union is the covered space.

Lebesgue number Given a cover U of a metric space (X,d), a number δ > 0 is a Lebesgue
number for U if for every x ∈ X there exists an open set U ∈ U such that
B(x,δ) ⊆ U . Or equivalently, δ > 0 is a Lebesgue number for U if every
subset S ⊆ X with diameter at most diam(S) ≤ δ is contained within
some member of the cover.

retract A subset A ⊆ X is a retract of X if there is a continuous map r : X → A
such that r

∣∣
A
= idA, called the retraction.
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(strong)
deformation retract

A subset A ⊆ X is a (strong) deformation retract of X if there exists
a one-parameter family of maps ft : X → X, t ∈ I (or by uncurrying,
a single map F : X × I → X), such that f0 = idX ; f1(X) = A; and
ft
∣∣
A
= idA for all t ∈ I.

weak deformation
retract

Same as the above, but the final condition is relaxed to only t = 1.

(free) homotopy,
f ≃ g

A continuous map F : X × I → Y is a homotopy between the maps f1
and f2.

relative homotopy,
f
A≃ g

A homotopy that additionally fixes some subspace A ⊆ X for all t ∈ I.

homotopy relative to
the boundary, f

∂≃ g
A relative homotopy where A is the pair of endpoints of the paths.

linear homotopy The homotopy between f and g given by x 7→ (1− t)f(x) + tg(x).

homotopy
equivalence, X ≃ Y

A relaxation of isomorphism that only requires that the composition is
homotopic and not equal to the identity.

contractible A space is contractible if it is homotopy equivalent to the one-point space.

locally contractible A space X is locally contractible if for every x ∈ X and every open
neighbourhood U ⊆ X of x, there exists an open neighbourhood V ⊆ U
of x that is contractible.

null-homotopic A map is null-homotopic if it is homotopic to some constant map.

connected A space is connected if it cannot be partitioned into two disjoint open
sets.

path-connected A space is path-connected if every pair of points may be connected by a
path.

simply connected A space is simply connected if it is path-connected and every pair of
points has exactly one homotopy class of paths between them.

neighbourhood basis A neighbourhood basis at a point x is a collection B of neighbourhoods of
x such that for any neighbourhood V of x, there exists a neighbourhood
B ∈ B such that B ⊆ V .
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locally connected A space is locally connected if every point admits a neighbourhood basis
consisting of connected sets.

locally
path-connected

A space is locally path-connected if every point admits a neighbourhood
basis consisting of path-connected sets.

cover A covering of a space X is a map p : X̃ → X is a map p : X̃ → X such
that for every point x ∈ X, there exists an open neighbourhood Ux ⊆ X
of x whose preimage p−1[Ux] =

⊔
d∈Dx

Vd is a disjoint union of open sets
(Vi)i∈Ix , and the restriction p

∣∣
Vi

: Vi → Ux is a homeomorphism for every
i ∈ Ix. Such an open set Ux is said to be evenly covered by p, and the
open sets Vi are called the sheets of the covering. The pair (X̃,p) is then
a cover of X.

fibre The preimage of a singleton set under a covering.

deck transformation Given a covering p : X̃ → X, a deck transformation is a homeomorphism
τ : X̃ → X̃ such that p ◦ τ = p.

lift, f̃ Given a covering p : X̃ → X and a map f : Y → X, a lift of f is a map
f̃ : Y → X̃ such that p ◦ f̃ = f .

induced
homomorphism, f∗

Given a pointed map f : (X,x0) → (Y,y0), the induced homomorphism
of fundamental groups is the homomorphism f∗ : π1(X,x0) → π1(Y,y0)
defined by [α] 7→ [f ◦ α].

odd and even
function

A map f : X → Y is odd if f(−x) = −f(x); and even if f(−x) = f(x);
for all x ∈ X.

wedge sum, ∨ The one-point union of a collection of spaces; the disjoint union of a col-
lection of pointed spaces with the basepoints identified. This identified
point is a natural basepoint for the wedge sum, and picking this point
makes the wedge sum associative and commutative (up to homeomor-
phism).

reduced word A word in a free product is reduced if it does not contain any identities,
and if every pair of consecutive letters is not from the same group.
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38.2 Review of Point-Set Topology

38.2.1 Metric Spaces
Let X be any set. A metric d on X is a map d : X ×X → R≥0 such that,

(i) d(x,y) = 0 if and only if x = y (point separating or positive-definiteness);

(ii) d(x,y) = d(y,x) for all x,y ∈ X (symmetry);

(iii) d(a,b) ≤ d(a,x) + d(x,b) for every a,b,x ∈ X (triangle inequality).

Note that these axioms imply that d(x,y) ≥ 0 for all x,y ∈ X. The pair (X,d) is then called a metric
space.

Let (X,d) be a metric space. The open ball centred at a ∈ X of radius r is the set

B(a,r) = {x ∈ X : d(x,a) < r}

also denoted by B(a,r) or Br(a). If r = 1, we say that the ball is a unit ball, and we omit r from the
notation.

In a metric space (X,d), a set U ⊆ X is said to be open in X if for every point x ∈ U , there exists some
ε > 0 such that B(x,ε) ⊂ U . A set U ⊆ X is said to be closed in X if its complement is open in X. If
the ambient set X is clear, then we omit the “in X” and just say that a set is open or closed.

Example.

• In any metric space (X,d), X and ∅ are both simultaneously open and closed (or clopen).

• In R, open intervals are open and closed intervals are closed. Half-open intervals are neither open
nor closed.

• In a discrete metric space, every singleton set {x} ⊆ X is open (take any ε < 1).

△

Sets can be open, closed, both (clopen), or neither, so the adjectives “open” and “closed” do not have all
of their usual intuitive connotations when used in a mathematical context.

Lemma (Open Finite Intersection). If (Ui)ni=1 is a finite collection of sets open in (X,d), then
⋂n
i=1 Ui

is open in (X,d).

Proof. Take x ∈
⋂n
i=1 Ui. Then, for each i, x ∈ Ui, so there exists εi > 0 such that Bεi(x) ⊂ Ui. If

ε := min(ε1, . . . ,εn), then,

Bε(x) ⊆ Bεi(x) ⊂ Ui

for all i, and hence Bε(x) ⊂
⋂n
i=1 Ui. ■

Lemma (Open Arbitrary Union). If (Ui)i∈I is an arbitrary collection of sets open in (X,d), then
⋃
i∈I Ui

is open in (X,d).

Proof. If x ∈
⋃
i∈I Ui, then x ∈ Ui for some i ∈ I. Since Ui is open, there exists ε > 0 such that

B(x,ε) ⊂ Ui ⊆
⋃
i∈I Ui, so

⋃
i∈I Ui is open. ■

By De Morgan’s laws, we also have:

Corollary (Closed Finite Union). If (Fi)ni=1 is a finite collection of sets closed in (X,d), then
⋃n
i=1 Fi

is closed in (X,d).
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Proof.

X \
n⋃
i=1

Fi =

n⋂
i=1

(X \ Fi)

As Fi is closed, X\Fi is open, so
⋂n
i=1(X\Fi) is the finite intersection of open sets, and hence X\

⋃n
i=1 Fi

is open. It follows that
⋃n
i=1 Fi is closed. ■

Corollary (Closed Arbitrary Intersection). If (Fi)i∈I is an arbitrary collection of sets closed in (X,d),
then

⋃
i∈I Fi is closed in (X,d).

Proof.

X \
⋂
i∈I

Fi =
⋃
i∈I

(X \ Fi)

As Fi is closed, X \ Fi is open, so
⋃
i∈I(X \ Fi) is the intersection of open sets, and hence X \

⋂
i∈I Fi

is open. It follows that
⋂
i∈I Fi is closed. ■

38.2.2 Topological Spaces
Many properties of a metric space do not depend on our exact choice of metric, and many familiar
notions such as convergence and continuity may be defined in terms of open sets, with no mention of a
metric at all. This motivates the introduction of a more general kind of space defined entirely in terms
of open sets.

A topology on a set X is a collection Ω of subsets of X, such that

(T1) X and ∅ are open;

(T2) If (Ui)i∈I ⊆ Ω, then
⋃
i∈I Ui ∈ Ω (arbitrary unions of open sets are open);

(T3) If U,V ∈ Ω, then U ∩ V ∈ Ω (binary intersections of open sets are open).

The pair (X,Ω) is then a topological space. We call the sets in Ω “open”. Note that by induction, (T3)
implies that the finite intersection of open sets is open.

These axioms mimic the ways open sets in metric spaces behave, but without reference to any kind of
metric. Every metric space induces a topological space; and conversely, if a topology is induced by some
metric, then the topology is said to be metrisable.

We often omit the topology from notation and speak about a set X as a topological space alone. Ad-
ditionally, unless otherwise stated, when considering a metric space (X,d) as a topological space, the
topology used will always be the topology induced from the metric.

The closed sets in a topological space are the complements of open sets. By De Morgan’s laws, the
collection F of closed sets satisfies:

(T1’) T and ∅ are closed;

(T2’) Arbitrary intersections of closed sets are closed.

(T3’) The union of finitely many closed sets is closed;
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Let (X,Ω) be a topological space. A set B ⊆ Ω is a basis for the topology Ω, or that B generates the
topology Ω, if every open set can be written as the union of sets in B. That is, for each U ∈ Ω, there
exists a collection {Bi}i∈I ⊆ B such that

⋃
i∈I Bi = U .

Given x ∈ X, a set B ⊆ Ω is a neighbourhood basis for x, if for every open set U containing x there is a
set in the basis containing x that is a subset of U . That is, if for every U ∈ Ω with x ∈ U , there exists
B ∈ B such that x ∈ B ⊆ U .

38.2.3 Maps and Topological Equivalence
Let X,Y be topological spaces. A function f : X → Y is continuous if for any open set U ⊆ X, the
preimage f−1[U ] =

{
x ∈ X : f(x) ∈ U

}
is open. Continuous functions are sometimes abbreviated to

maps.

Lemma 38.2.1 (Pasting Lemma). Let X = A ∪ B, with A,B both closed or both open in X, and let
f : X → Y be a function such that the restrictions f

∣∣
A

and f
∣∣
B

are continuous. Then, f is continuous.

Proof. We prove the case for open A,B.

Let U ⊆ Y be open in Y . Then, f−1[U ] = f
∣∣−1

A
[U ] ∪ f

∣∣−1

B
[U ], and because f

∣∣
A

and f
∣∣
B

are continuous,
f
∣∣−1

A
[U ] and f

∣∣−1

B
[U ] are open in A and B, respectively. Because A and B are open, f

∣∣−1

A
[U ] and f

∣∣−1

B
[U ]

are also open in X, so f−1[U ] is open in X as it is the union of open sets, and hence f is continuous.

Exchanging “open” with “closed” in the previous yields a completely analogous proof for closed A,B. ■

Given topological spaces X and Y , a continuous map f : X → Y is a (topological) isomorphism or a
homeomorphism if there exists a continuous map g : Y → X such that

f ◦ g = idY , g ◦ f = idX

If a homeomorphism between X and Y exists, then X and Y are isomorphic topological spaces, or are
homeomorphic, and we denote this relation (as usual) as X ∼= Y .

38.2.4 The Subspace Topology
Let (X,Ω) be a topological space, and S ⊆ X be a subset. The subspace topology on S is the set

ΩS = {U ∩ S : U ∈ Ω} (38.1)

and we call (S,ΩS) a subspace of (X,Ω).

Example.

• The (unit) n-sphere Sn or Sn is a subspace of Rn+1 defined by

Sn =

{
x ∈ Rn+1 : ∥x∥2 =

n+1∑
i=1

x2i = 1

}
Note that the superscript denotes the dimension of the sphere, and not the ambient space it is
contained within.

• The (closed, unit) n-disc Dn or Dn is a subspace of Rn defined by

Dn =

{
x ∈ Rn : ∥x∥2 =

n+1∑
i=1

x2i ≤ 1

}
The unit disk is a special case of a closed ball centred at the origin with radius 1.

△
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38.2.5 Product Spaces
Let X,Y be topological spaces. The product topology∗ on X ×Y is the topology generated by sets of the
form U × V with U and V open in X and Y , respectively.

Example.

• The product topology on
∏n
i=1 R coincides with the Euclidean topology on Rn (the topology

induced by the ℓ2 metric).

• The topological torus Tn or Tn is defined as the n-fold product of 1-spheres:

Tn =

n∏
i=1

S1

Unless otherwise qualified, “torus” usually refers to T 2 – the surface of a doughnut.

△

38.2.6 Disjoint Unions
Given a family of sets {Xi}i∈I , the disjoint union of this family is the set⊔

i∈I
Xi =

⋃
i∈I

{
(x,i) : x ∈ Xi

}
Each set in the disjoint union is forced to be disjoint from every other via the use of the auxilliary index
i, marking which set each element came from, so taking a disjoint union cannot lose information like a
union. Intuitively, each of the sets Xi is canonically isomorphic to the set X̃i = Xi × {i}, so each set
is equipped with a canonical embedding into the disjoint union, and furthermore, the images of these
embeddings partition the disjoint union.

Given two topological spaces X and Y , we can endow the disjoint union X ⊔ Y of the underlying sets
with a topology generated by the basis consisting of sets of the form U ×{i} for some i ∈ I and U ⊆ Xi

open.

Intuitively, in the disjoint union, the component spaces are now considered to be part of a single new
space, but each space is completely detached and isolated from every other space, and retains its original
local topology.

38.2.7 The Quotient Topology
Recall that an equivalence relation ∼ on a set X is a relation such that for all x,y,z ∈ X,

• x ∼ x (reflexivity);

• if x ∼ y, then y ∼ x (symmetry);

• if x ∼ y and y ∼ z, then x ∼ z (transitivity).

The equivalence class [x] of an element x ∈ X under an equivalence relation ∼ is the set of all elements
of X equivalent to x. That is, the set

[x] = {y ∈ X : x ∼ y}

The set of equivalence classes of an equivalence relation is denoted by X
/
∼ and read as “the quotient of

X by ∼”, and the quotient map is the function q : X → X
/
∼ defined by x 7→ [x].

∗ More properly, this is the box topology, and not the true product topology, which is defined to be the coarsest topology
such that the projections onto each component are all continuous. For finite product spaces, these topologies coincide, but
for infinite products, the box topology is too fine and fails to satisfy a universal property.
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If X is a topological space, then the quotient topology on the set X
/
∼ is defined to have a set U ⊆ X

/
∼

open if and only if q−1[U ] =
{
x ∈ X : q(x) = [x] ∈ U

}
is open in X. Note that by definition, the

quotient map is continuous.

Example. Consider the unit interval I = [0,1], and let x ∼ y if and only if x = y and 0 ∼ 1 and 1 ∼ 0.
The quotient set I/∼, sometimes written as I

/
0 ∼ 1 as only 0 and 1 are identified, then consists of the

classes [x] = {x} for x ∈ (0,1) and [0] = [1] = {0,1}, so the endpoints of the interval have been “glued
together” into a circle, and in fact, the resulting space with the quotient topology is homeomorphic to
S1.

0 1

0 ∼ 1

△

More generally, let A ⊆ X be a subset of a topological space. This subset naturally induces the equiva-
lence relation defined by x ∼ y if and only if x = y or {x,y} ⊆ A, so every point of A is identified into
a single equivalence class, while the points x ∈ X \ A have singleton equivalence classes [x] = {x}. By
an abuse of notation, we write X/A for the corresponding quotient space where all the points of A are
identified into one point.

Example. Consider the square I2. Define an equivalence relation by (x,y) ∼ (x′,y′) if and only if
(x,y) = (x′,y′) or y = y′ and {x,x′} = {0,1}. That is, we identify points on the left boundary with points
on the right boundary with the same y-value. Visually, we represent this by marking an arrow on the
square:

Then, we may identify marked edges together, with the arrows pointing in the same direction:

And we can see that the quotient space I2/∼ is homeomorphic to a cylinder (without the end faces). △

The quotient map is an example of an identification map – a continuous surjective function f : X → Y
between topological spaces X and Y such that U ⊆ Y is open if and only if f−1[U ] ⊆ X is open.

The reverse direction follows from continuity, so a identification map may also be characterised as a
surjective map which also preserves open sets under direct images. Or put another way, f : X → Y is an
identification map if and only if Y has the finest topology such that f is continuous (the final topology
with respect to f).
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Theorem 38.2.2. A surjective map f : X → Y is an identification map if and only if for every space
Z and every function g : Y → Z, g ◦ f is continuous if and only if g is continuous.

38.3 Compactness

A cover of a set A is a collection U of sets whose union contains A. That is,

A ⊆
⋃
U∈U

U

and we say that the elements of U cover A. A subcover of a cover U is a subset of U whose elements still
cover A. A cover is open if every element of the cover is open.

Example.

• U = {(n − 2,n + 2) : n ∈ Z} is an (open) cover of R, with one possible subcover given by
S = {(n− 2,n+ 2) : n ∈ 2Z};

• U = {(n,n+ 1) : n ∈ Z} is not a cover of R since it does not cover the integers.

△

A topological space T is compact if every open cover of T has a finite subcover.

Example.

• (0,1) is not compact because U = {(0,a) : a ∈ (0,1)} is an open cover with no finite subcover;

• R is not compact because U = {(−∞,a),a ∈ R} has no finite subcover.

△

Note that, because compactness depends only on the open sets of a topological space, it is a topological
invariant.

38.3.1 Lebesgue Numbers
Let U be an open cover of a metric space (X,d). A number δ > 0 is called a Lebesgue number for U if
for every x ∈ X, there exists an open set U ∈ U such that B(x,δ) ⊆ U .

In general, open covers do not have a Lebesgue number. For instance, U =
{
(x2 ,x) : x ∈ (0,1)

}
form

an open cover of (0,1), but the covering sets become arbitrary small as x → 0, so no Lebesgue number
exists.

Lemma (Lebesgue’s Number Lemma). Every open cover U of a compact metric space (X,d) has a
Lebesgue number.
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38.4 Diagrams

The structure of a collection of objects and morphisms (sets and set functions, topological spaces and
continuous maps, etc.) is often visually represented as a directed graph, called a diagram. We are
already familiar with the notation A → B to denote a morphism from A to B, but we can also draw
larger diagrams with more objects and morphisms to represent more structure at once. For instance,
this diagram depicts 3 objects with morphisms between them:

X Y

Z

h

f

g

A diagram is commutative if for every pair of objects in the diagram, all routes between them are equal.
For instance, the diagram above is commutative if and only if h = g ◦ f . This also justifies the omission
of identity morphisms in general diagrams; they don’t meaningfully add any additional paths to the
diagram.

38.4.1 Isomorphisms
Suppose we have objects A and B and morphisms f : A → B and g : B → A such that the following
diagram is commutative:

A BidA idB

f

g

That is, f ◦ g = idB and g ◦ f = idA, so f and g are mutually inverse. Then, we say that f and g are
isomorphisms, and we alternatively label g by f−1. If an isomorphism between a pair of objects A and
B exists, we say that A and B are isomorphic and we write A ∼= B.

Isomorphic objects are, as far as the ambient category is concerned, effectively identical – anything you
can say about one object will apply just as well to any other isomorphic object.

38.5 The Fundamental Problem

The fundamental problem in topology is to classify topological spaces up to homeomorphism. That is,
given two topological spaces X and Y , can we determine whether X ∼= Y or not?

To show that two spaces are homeomorphic, one only needs to provide a homeomorphism. To prove that
they are not homeomorphicm is much more difficult. This involves finding a property that is invariant
under homeomorphism that is satisfied by one space, but not the other.

Example. {∗} ≁= R because {∗} is finite (bounded, countable, compact, etc.), but R is not. △

Example. R ̸∼= R2 because R can be disconnected by removing one point, but R2 cannot. △

But what about R2 and R3? Or R3 and R4? Or more generally, Rn and Rm?

Compactness and cut-point arguments don’t work in the general case, and most other topological in-
variants we have seen are also not sufficiently powerful to distinguish these spaces. One might think
these pairs of spaces are not homeomorphic, as one feels “bigger”; but set-theoretically, they all have the
same cardinality (apart from R0 ∼= {∗}). It turns out that showing that two real vector spaces are not
homeomorphic is non-trivial.

Theorem 38.5.1 (Invariance of Domain, Brouwer 1912). Rn ∼= Rm if and only if m = n.

We will develop some tools that will allow us to prove a partial version of this theorem in low dimensions.
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38.5.1 Retractions
A pair (X,A) consists of a topological space X and a subspace A ⊆ X. When A = {x} is a single point,
we instead write (X,x), and call the pair a pointed space (we sometimes call X alone a pointed space
with basepoint x).

A map of pairs f : (X,A)→ (Y,B) is a continuous function f : X → Y such that f(A) ⊆ B. If A and B
are points, then f is a pointed or based map.

A subset A ⊆ X is a retract of X if there is a map r : X → A, called the retraction, such that

r
∣∣
A
= idA

That is, r surjects X onto A while keeping all points of A fixed.

Example. For any pointed space (X,x0), the unique constant map r : X → {x0} is a retraction. △

Example. R2 \ {0} retracts to S1 via r(x) = x
∥x∥ . △

Example. I does not retract to {0,1}, as the continuous image of a connected space must be connected.
△

The following generalisation is non-trivial, and we will only be able to prove the n = 2 case later.

Theorem 38.5.2 (Brouwer). The disk Dn does not retract to Sn−1

A subset A ⊆ X is a (strong) deformation retract of X if there exists a one-parameter family of maps
ft : X → X, t ∈ I (or by uncurrying, a single map F : X × I → X), such that

• f0 = idX ;

• f1(X) = A;

• ft
∣∣
A
= idA for all t ∈ I.

Or, for all x ∈ X and a ∈ A,

• F (x,0) = x;

• F (X,1) = A;

• F (a,t) = a for all t ∈ I;

(A weak deformation retract relaxes the final condition for only t = 1. We will take the unqualified term
“deformation retract” to always refer to the strong case.) Note that, by construction, f1 is a retraction
from X to A.

Example. Rn retracts to 0 via F (x,t) = (1− t)x. This is the straight-line or linear homotopy. △

Example. Rn \ {0} deformation retracts to Sn−1 via F (x,t) = (1− t)x+ t x
∥x∥ △

Intuitively, a deformation retract continuously shrinks a space onto a subspace; as the parameter t
increases, the image of F continuously transitions from all of X to only all of A, with A being fixed
throughout the entire process.

We can also view F as a kind of mapping between the retraction f1 and the identity f0 = idX on X,
smoothly transforming one map to the other – and in fact, this kind of parametrised deformation between
two maps defines a construction called a homotopy.
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38.5.2 Homotopy
Let X and Y be topological spaces. A (free) homotopy is a continuous map F : X × I → Y . If
ft(x) = F (x,t), then we say that F is a homotopy from f0 to f1. Two maps f,g : X → Y are homotopic
if there exists a homotopy F : X × I → Y such that f = f0 and g = f1, and we write f ≃ g to denote
this relation.

Theorem 38.5.3. Homotopy is an equivalence relation on the set of continuous maps between two given
topological spaces. That is, if f,g,h : X → Y are continuous maps, then

(i) f ≃ f ;

(ii) If f ≃ g, then g ≃ f ;

(iii) If f ≃ g and g ≃ h, then f ≃ h.

Proof.

(i) The constant homotopy F (x,t) = f(x) is a homotopy between f and f .

(ii) If F is a homotopy from f to g, then F
(
−,(1− t)

)
is a homotopy from g to f .

(iii) If F is a homotopy from f to g and G is a homotopy from g to h, then

H(x,t) =

{
F (x,2t) t ≤ 1

2

G(x,2t− 1) t > 1
2

is a homotopy from f to h, with continuity given by the pasting lemma.

■

Recall that two spaces X and Y are homeomorphic if there exist a pair of maps between them with
compositions equal to identities:

X Y
f

g

g ◦ f = idX and f ◦ g = idY
If we relax these conditions and only require that these compositions are homotopic to identities, then
we obtain a weaker notion of likeness called homotopy equivalence:

X Y
f

g

g ◦ f ≃ idX and f ◦ g ≃ idY

We also say that f and g are homotopy inverse to one another.

Equality induces homotopy, but not the converse, so homeomorphic spaces are homotopy equivalent, but
not the converse. More importantly, this means that two spaces that are not homotopy equivalent cannot
be homeomorphic, allowing us another method to prove that two spaces are topologically distinguishable.

A space is always homotopy equivalent to any of its deformation retracts.

Example. Rn \ {0} ≃ Sn−1, as Sn−1 is a deformation retract of Rn.

In more detail, the homotopy equivalence is witnessed by the inclusion mapping f : Sn−1 ↪→ Rn \ {0}
and the retract g : Rn \ {0} → Sn−1 defined by x 7→ x

∥x∥ . Then, g ◦ f = idSn−1 , and f ◦ g is homotopic
to idRn via the straight-line deformation retract F (x,t) = (1− t)x+ t x

∥x∥ found earlier. △

Theorem 38.5.4. Homotopy equivalence is an equivalence relation on the class of topological spaces.
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Proof. Symmetry and reflexivity are obvious. For transitivity, suppose X ≃ Y and Y ≃ Z witnessed by
maps

X Y Z
f1

g1

f2

g2

and homotopies F1 from f1 ◦ g1 to idY and F2 from f2 ◦ g2 to idZ . (Note that this diagram does not
necessarily commute.)

Then, f = f2 ◦ f1 and g = g1 ◦ g2 are homotopy equivalence maps, with the homotopy from f ◦ g to idZ
given by

F (z,t) =

{
f2 ◦ F1(z,2t) ◦ g2 t ≤ 1

2

F2(z,2t− 1) t > 1
2

■

A topological space X is contractible if X ≃ {∗}. Or equivalently, if idX is homotopic to a constant map
(is null-homotopic).

Example. Euclidean space of any dimension is contractible: Rn ≃ R0 for any n ∈ N.

Consider the unique constant map f : Rn → R0 defined by x 7→ 0 and the inclusion map g : R0 ↪→ Rn.

Then, we have f ◦ g = idR0 , and the composition g ◦ f : Rn → Rn maps everything to zero, and is
homotopic to the identity via the straight-line homotopy

F : Rn × I → Rn : (x,t) 7→ tx

△

Example. Because {∗} ∼= R0, the above implies that Rn ≃ Rm for all n,m. More generally, for any
topological space X, X × Rn ≃ X. △

In general, it is much more difficult to show that a space is not contractible. For instance, the proof that
Sn is not contractible for any n ≥ 1 is non-trivial.

We can also compare the notions of contractibility with that of deformation retracts.

Theorem 38.5.5. If X deformation retracts to a point x0 ∈ X, then it is contractible.

Proof. Consider the retraction given by the unique constant map f : X → {x0}, and the inclusion
mapping g : {x0} ↪→ X. We have f ◦ g = id{x0}, and g ◦ f = f1 and idX = f0, where ft is the
deformation retraction. The deformation retraction then gives the required homotopy. ■

Note that the converse does not hold, as the ordinary free homotopy demanded by a contractible space
does not have to keep x0 fixed throughout the homotopy.

Theorem 38.5.6. The sphere Sn is not contractible for any n ≥ 0.

This theorem is highly non-trivial; we will only be able to prove the case n = 1 using the homotopy
theory developed here.

38.5.3 Paths
Let X be a topological space, and x,y ∈ X be two points. A path from x to y is a continuous map
f : I → X with f(0) = x and f(1) = y. We can view f(s) as the position of a particle traveling along
some curve in X as s varies from 0 to 1.

Note however, that a path is distinct from its image, and in particular, may not be injective. For instance,
the image of the path s 7→ exp(4πis) in S1 ⊂ C is the circle S1, but the path itself travels around the
circle twice and is distinct from, for example, the path s 7→ exp(2πis).
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Given two paths f,g : I → X with f(1) = g(0), the path f ∗ g : I → X defined by

(f ∗ g)(s) =

{
f(2s) s ∈ [0, 12 ]

g(2s− 1) s ∈ [ 12 ,1]

is called the concatenation of f and g, with continuity given by the pasting lemma. Intuitively, the
concatenation traverses the first path at double speed, then the second path at double speed.

Given a path f : I → X from x to y, the reverse path f defined by f(s) = f(1 − s) is the path from y
to x obtained by traversing f in the opposite direction.

We will often change the arguments to a map in concatenations and other similar operations, so it is
helpful to be able to rescale any interval [a,b] to [0,1]. This can be done via the affine map

f(x) =
x− a
b− a

i.e. translate down by a to reach zero, then rescale by the difference to reach 1.

Example. In the above concatenation, we have the intervals [0, 12 ] and [ 12 ,1]. The rescaled argument of f
is given by

(
1
2 − 0

)−1
(s− 0) = 2s, and of g by

(
1− 1

2

)−1 (
s− 1

2

)
= 2s− 1. △

Because paths are maps between topological spaces, we can also consider homotopies of paths. Given
two paths f,g : I → X, a homotopy between them is given by a map F : I × I → X satisfying f0 = f
and f1 = g.

Because the domain of such a homotopy is a square I × I, it can be visualised as

f

g

s = 0 s s = 1

t = 0

t

t = 1

Each horizontal slice of the square at represents one of the functions ft, with the bottom edge being f
and the top edge being g, while each vertical slice represents the trajectory of a fixed argument s under
the continuous deformation from f to g. This representation isn’t very interesting yet, but will become
helpful once we consider homotopies of concatenations.

The notion of free homotopy is, however, too weak to be very useful, since every path is homotopic to a
constant path (i.e. deformation retract to the constant map at any point on the path), and we don’t get
much useful information from this. Instead, we can consider only paths that share endpoints, and define
a more restricted notion of homotopy.

Let x,y ∈ X and f,g : I → X be paths from x to y. In contrast to a free homotopy, a homotopy relative
to the boundary or endpoints (sometimes abbreviated to “rel boundary”) from f to g is a homotopy
F : I × I → X satisfying

• f0 = f ;

• f1 = g;

• ft(0) = x for all t ∈ I;

• ft(1) = y for all t ∈ I.

Notes on Mathematics | 718



Algebraic Topology The Fundamental Problem

or as a diagram,

f

y

g

x

s

t

That is, a homotopy relative to boundaries is a continuous deformation of one path to another that keeps
the endpoints of the paths fixed for all values of the parameter t. If there exists a homotopy relative to
boundaries between f and g, then we write f

∂≃ g to denote this relation.

Example. The paths f,g : I → S1 defined by f(s) = exp(πis) and g(s) = exp(−πis) traverse the upper
and lower halves of the circle, respectively.

1−1

These paths are homotopic, as both can deformation retract to, for example, the point 1. However, they
are not homotopic relative to boundaries. Intuitively, there is no way to continuously deform one to
the other due to the hole in the circle that the two paths enclose. Proving this formally, however, is
difficult. △

Lemma 38.5.7. For any pair of points x,y ∈ X, relative homotopy is an equivalence relation on the set
of paths from x to y.

Proof. The proof is almost identical to that of free homotopy:

(i) The constant homotopy is a homotopy relative to boundaries from a path to itself.

(i) If F is a relative homotopy from f to g, then F
(
−,(1− t)

)
is a relative homotopy from g to f .

(i) If F is a relative homotopy from f to g and G is a relative homotopy from g to h, then

H(s,t) =

{
F (s,2t) t ≤ 1

2

G(s,2t− 1) t > 1
2

f

y

y

h

x

x

g
G

F

s

t

is a relative homotopy from f to h.

■
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Lemma 38.5.8. Let f,g : I → X be paths from x to y satisfying f
∂≃ g and f ′,g′ : I → X be paths from

y to z satisfying f
∂≃ g. Then, f ∗ f ′ ≃ g ∗ g′.

Proof. The proof is identical to that of transitivity in the previous lemma with the roles of s and t
reversed.

If F is a relative homotopy from f to g and G is a relative homotopy from g to h, then

H(s,t) =

{
F (2s,t) t ≤ 1

2

G(2s− 1,t) t > 1
2

f f ′

z

g′g

x y GF

s

t

is a relative homotopy from f ∗ f ′ to g ∗ g′. ■

More generally, a homotopy between maps f,g : Z → X may be relative to any subspace A ⊆ X. That
is, the homotopy fixes the elements of the subspace A, and we write f

A≃ g if such a homotopy exists. A
homotopy relative to boundaries is then the special case where the subspace consists of the two endpoints
of the paths involved.

If we write ι : A ↪→ X for the inclusion of A into X, then a deformation retract is just a special case of
a retraction r : X → A such that ι ◦ r is homotopic to idX , relative to A.

38.5.4 Loops
A loop is a special case of a path where the two endpoints coincide. That is, a continuous map f : I → X
with f(0) = f(1) = x0 ∈ X, and we say that f is a loop based at x0 or with basepoint x0.

Because loops are a special case of paths, homotopy relative to boundaries is also an equivalence relation
on the set of loops at some basepoint, so given a fixed point x0, we can form equivalence classes of the
form

[f ] =
{
(g : I → X) : g(0) = g(1) = x0, g

∂≃ f
}

A homotopy relative to boundaries between loops is also called a based homotopy, since the preserved
subspace is a single point, as in a pointed space.

Given a pointed space (X,x0), we denote the set of homotopy classes of loops based at x0 as

π1(X,x0) =
{
[f ] : f(0) = f(1) = x0

}
The concatenation of two loops based at x0 is also a loop based at x0, and we also have that if f ≃ g
and f ′ ≃ g′, then f ∗ f ′ ≃ g ∗ g′, so concatenation is compatible with homotopy. This allows us to define
an operation

[f ] • [g] := [f ∗ g]

For any pointed space (X,x0), the set π1(X,x0) equipped with this operation forms a group, called the
fundamental group or first homotopy group of (X,x0).
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Theorem 38.5.9. For any pointed space (X,x0), the
(
π1(X,x0),•

)
is a group, with unit [e], where e is

the constant loop, and the inverse [f ]−1 of the element [f ] is the class [f ], where f(t) = f(1 − t) is the
inverse loop.

Proof. A homotopy showing f ∗ e ∂≃ e ∗ f can be given as a diagram

f e

x0

fe

x0 f

x0

x0

s

t

To find the equation for this homotopy, we find the interval where f is applied to s; [ t2 ,
1+t
2 ], as the

homotopy will be constant outside of this interval; then find the affine function that varies from 0 to 1

as s varies from t
2 to 1+t

2 ;
(
1+t
2 −

t
2

)−1 (
s− t

2

)
= 2s− t:

F (s,t) =


x0 s ∈ [0, t2 ]

f(2s− t) s ∈ [ t2 ,
1+t
2 ]

x0 s ∈ [ 1+t2 ,1]

The homotopy e ∗ f ∂≃ f is then given by

f

x0

fe

x0 f

x0

s

t

We again find the argument,
(
1− t

2

)−1 (
s− t

2

)
= 2s−t

2−t , and then set the function to be constant past
the linear bound:

F (s,t) =

{
x0 s ∈ [0, t2 ]

f( 2s−t2−t ) s ∈ [ t2 ,1]

For inverses, let f : I → X be a loop at x0, and let f : I → X be the loop defined by f(s) = f(1 − s).
Then, the homotopy f ∗ f ∂≃ e is given by
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f f

x0

e

x0

f f

x0 x0

s

t

The concatenation f ∗ f represents walking along f (at double speed), then walking back along the same
path in reverse (also in double speed). Here, as t increases, the homotopy represents walking at the same
speed, but along less and less of the path before returning (so no rescaling is performed this time):

F (s,t) =


x0 s ∈ [0, t2 ]

f(2s− t) s ∈ [ t2 ,
1
2 ]

f(2s− 1 + t) s ∈ [ 12 ,1−
t
2 ]

x0 s ∈ [1− t
2 ,1]

Since reversal is involutive, replacing f by f in the previous argument yields a homotopy f ∗ f ∂≃ e.

For associativity, a homotopy (f ∗ g) ∗ h ∂≃ f ∗ (g ∗ h) is given by

f g h

x0

hgf

x0

f

g

h

s

t

For f , the argument is
(
1+t
4 − 0

)−1
(s − 0) = 4s

1+t ; for g,
(
2+t
4 −

1+t
4

)−1 (
s− 1+t

4

)
= 4s − 1 − t; and for

h,
(
1− 2+t

4

)−1 (
s− 2+t

4

)
= 4s−2−t

2−t :

F (s,t) =


f( 4s

1+t ) s ∈ [0, 1+t4 ]

g(4s− 1− t) s ∈ [ 1+t4 , 2+t4 ]

h( 4s−2−t
2−t ) s ∈ [ 2+t4 ,1]

■

38.5.5 The Fundamental Group

38.5.5.1 Path-Connected Spaces

A space X is path-connected if for every pair of points x,y ∈ X, there exists a path from x to y.

Theorem 38.5.10. If X is path-connected, then for any two points x0,x1 ∈ X, we have an isomorphism
of fundamental groups, π1(X,x0) ∼= π1(X,x1).

Theorem 38.5.11. For each path h : I → X from x0 to x1, define the map βh : π1(X,x0) → π(X,x1)
by [f ] 7→ [h ∗ f ∗ h].
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Then,

βh
(
[f ] • [g]

)
= βh

(
[f ∗ g]

)
= [h ∗ f ∗ g ∗ h]
= [h ∗ f ∗ h ∗ h ∗ g ∗ h]
= [h ∗ f ∗ h] • [h ∗ g ∗ h]
= βh

(
[f ]
)
• βh

(
[g]
)

so βh is a group homomorphism for any path h. In particular, the map βh induced by the reverse path is
also a group homomorphism.

Because h ∗ h ∂≃ ex0
and h ∗ h ∂≃ ex1

, we also have

βh ◦ βh
(
[f ]
)
= [h ∗ h ∗ f ∗ h ∗ h]
= [f ]

= idπ1(X,x0)

(
[f ]
)

and similarly, βh ◦ βh = idπ1(X,x1), so βh and βh are inverse maps and hence form an isomorphism
π1(X,x0) ∼= π1(X,x1).

Due to these isomorphisms, for path-connected spaces X, we may omit the basepoint and write just
π1(X) for the fundamental group.

38.6 Covering Spaces

Let X be a topological space. A covering of X is a map p : X̃ → X such that for every point x ∈ X,
there exists an open neighbourhood Ux ⊆ X of x whose preimage

p−1[Ux] =
⊔
i∈Ix

Vi

is a disjoint union of open sets (Vi)i∈Ix , and the restriction p
∣∣
Vi

: Vi → Ux is a homeomorphism for every
i ∈ Ix. Such an open set Ux is said to be evenly covered by p, and the open sets Vi are called the sheets
of the covering.

If p : X̃ → X is a covering, then the pair (X̃,p) is called a covering space or cover of X, and X is said
to be the base of the covering.

Intuitively, a covering is a surjective map that acts locally like a projection of multiple copies of a space
onto itself.

The preimage p−1
[
{x}
]

of any point x is called the fibre of x. A covering p : X̃ → X is called an n-fold
covering if the fibre p−1

[
{x}
]

consists of n points for all x ∈ X.

Example. For any k ∈ N, the map pk : S1 → S1 defined by z 7→ zk is a covering map. Given a point
z = exp(2πit) ∈ S1, we take the open neighbourhood U =

{
exp(2πis) : |s− t| < ε

}
for some 0 < ε < 1

2k ,
which has preimage

p−1[U ] =

{
k
√
exp(2πis),|s− t| < ε

}
=

⋃
0≤j<k

{
exp

(
2πi

s+ j

k

)
: |s− t| < ε

}
< ε
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These sets are all homeomorphic to V =
{
exp(2πis/k) : |s− t| < ε

}
, and because t+ε+j

k < t−ε+(j+1)
k for

each j, they are all disjoint, so,

=

n⊔
i=1

V

Intuitively, the preimage of the arc of length 2ε = 1
k centred on z is the collection of arcs that each cover

1
k th of the circle, centred on each root of z, and these arcs are disjoint as there are exactly k such roots
evenly spaced along the circle.

This covering is also an k-fold covering map, as the fibre of any point z = exp(2πit) consists of k many
kth roots of z – namely exp

(
2πi(t+ j)/k

)
, for 0 ≤ j < k. △

Example. The map p∞ : R → S1 defined by x 7→ exp(2πix) is a covering map. Given a point z =
exp(2πit) ∈ S1, we take the open neighbourhood U =

{
exp(2πis) : |s − t| < ε

}
for some 0 < ε < 1,

which has preimage

p−1[U ] =
⋃
j∈Z
{s+ i : |s− t| < ε}

=
⊔
j∈Z

V

△

Two coverings p : Y → X and q : Z → X are isomorphic if they factor through each other. That is,
there exist maps f and g such that

p = q ◦ f and q = p ◦ g

This also implies that f and g are inverse, so equivalently, p and q are isomorphic if there exists a
homeomorphism h : Y → Z such that

Y Z

X
qp

h
∼=

commutes.

Example. p2 is isomorphic to p−2 via the homeomorphism h(z) = z−1. △

Example. p2 and p3 are not isomorphic, as one is a 2-fold covering, and the other is a 3-fold covering. △

Let p : X̃ → X be a covering of X. A deck transformation is a homeomorphism τ : X̃ → X̃ such that
p ◦ τ = p. That is, τ witnesses an automorphism of p. The set of all deck transformations of a cover p is
denoted Deck(p), and has group structure under composition.

Example. The map z 7→ −z is a deck transformation for p2. △

38.6.1 Liftings

Given a covering p : X̃ → X and a map f : Y → X, a lift of f is a map f̃ : Y → X̃ such that

X̃

Y X

p

f

f̃

commutes. That is, f factors through f̃ .
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Lemma 38.6.1. Let p : X̃ → X be a cover, and let f̃ ,g̃ : Y → X̃ be continuous maps. Then,

(i) f̃ is a lift of p ◦ f̃ ;

(ii) If f̃ ≃ g̃, then p ◦ f̃ ≃ p ◦ g̃ (“homotopies descend”);

(iii) If α,β : I → X are paths with α(1) = β(0), then p ◦ (α ∗ β) = (p ◦ α) ∗ (p ◦ β) (“paths descend”).

Proof.

(i) The diagram

X̃

Y X
p◦f̃

f̃
p

trivially commutes.

(ii) Let F : Y × I → X̃ be a homotopy between f0 = f̃ and f1 = g̃. Then, p ◦ F : Y × I → X is a
homotopy between p ◦ f0 = p ◦ f̃ and p ◦ f1 = p ◦ g̃.

(iii) Expanding the definition of concatenation, we have

(
p ◦ (α ∗ β)

)
(s) = p ◦

{
α(2s) s ∈ [0, 12 ]

β(2s− 1) s ∈ [ 12 ,1]

=

{
p ◦ α(2s) s ∈ [0, 12 ]

p ◦ β(2s− 1) s ∈ [ 12 ,1]

=
(
(p ◦ α) ∗ (p ◦ β)

)
(s) ■

38.6.2 Homotopy Lifting Property
Let p : Z → X be a continuous map. Then, p has the homotopy lifting property (HLP) if for any
homotopy F : Y × I → X and lift g : Y ×{0} → Z of f0 (i.e. f0 = p ◦ g), there exists a unique homotopy
F̃ : Y × I → Z such that

(i) f̃0 = g;

(ii) p ◦ F̃ = F .

That is,
Y × {0} Z

Y × I X

g

p

F

ι
F̃

commutes.

If we take Y = {∗} to be a singleton set, we may interpret the homotopies above as paths, and a lift
g : {∗} × {0} → Z is simply a choice of a point in p−1

[
{x0}

]
:

Let p : Z → X be a continuous map. Then, p has the path lifting property (PLP) if for any path
f : I → X with f(0) = x0 and point x̃0 ∈ p−1

[
{x0}

]
, there exists a unique path f̃ : I → Z with
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f̃(0) = x̃0 and p ◦ f̃ = f .
{∗} × {0} ∼= {∗} Z

{∗} × I ∼= I X

g

p

f

ι
f̃

38.6.2.1 The Local Homotopy Lifting Property

Let U be an open cover of a metric space (X,d).

The diameter of a subset S ⊆ X is the least upper bound of the distance between any pair of points in
that subset:

diam(S) = sup
x,y∈S

d(x,y)

Recall that a number δ > 0 is called a Lebesgue number for U if for every x ∈ X, there exists an open
neighbourhood U ∈ U of x such that B(x,δ) ⊆ U .

Equivalently, δ > 0 is a Lebesgue number for U if every subset S ⊆ X with diameter at most diam(S) ≤ δ
is contained within some member of the cover.

Lemma. Let {Iα}α be an open cover of the unit interval I. Then, there exists a Lebesgue number for
this cover. That is, there exists some δ > 0 such that for every S ⊆ I with diameter diam(S) ≤ δ, we
have S ⊆ Iα for some α.

This is a special case of Lebesgue’s number lemma (§37.5.3) applied to the unit interval.

Recall that, given a covering space p : X̃ → X, we can find a covering of X by evenly covered sets {Uα}α
such that the preimage of each set Uα is a disjoint union of open sets {V βα }β

p−1[Uα] =
⊔
β

V βα

and furthermore, the restrictions of the covering to each of these sets is a homeomorphism

p
∣∣
V β
α
: V βα

∼=→ Uα

wth inverses denoted by qβα : Uα → V βα .

Let F : Y × I → X be a homotopy and g : Y × {0} → X̃ be a lift of f0, and suppose that the image
of F is contained within an evenly covered subset Uα ⊆ X. If the lift carries the domain of f0 to one
of the sheets V β – that is, if g(Y × {0}) ⊆ V β – then we can lift the whole homotopy F to a homotopy
F̃ := qβα ◦ F that extends g.

Lemma 38.6.2. Let p : X̃ → X be a covering, and let F : Y ×I → X be a homotopy. Let g : Y ×{0} → X̃
satisfy p ◦ g = f0. Then, for every y0 ∈ Y , there exists an open neighbourhood N ⊆ Y and a unique
homotopy F̃N : N × I → X̃ such that

• p ◦ F̃N = F
∣∣
N×I ;

• F̃N (−,0) = g
∣∣
N×{0}

Moreover, if M ⊆ Y is another such neighbourhood of y0, then

F̃M
∣∣
(M∩N)×I = F̃N

∣∣
(M∩N)×I = F̃M∩N
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Theorem 38.6.3. Covering maps satisfy the homotopy lifting property

Proof. Let p : X̃ → X be a covering of X and f : Y → X be continuous. Cover Y × I with open sets
Nα × I as in the previous lemma.

This yields a family of lifts F̃Nα : Nα × I → X̃ that coincide on the intersection of any two sets Ni × I
and Nj × I in the cover, and hence we have a well-defined function F̃ : Y × I → X̃ defined by piecing
these lifts together. Since each local lift is continuous, F̃ is continuous by the pasting lemma, and is
therefore itself a lift.

Uniqueness follows from the uniqueness of the homotopy given by the previous lemma. ■

38.6.3 The Fundamental Group of the Circle

Lemma 38.6.4. The map Φ : Z→ π1(S
1,1) defined by n 7→ [ωn] is a group homomorphism.

Proof. The map ω̃n : I → R defined by t 7→ nt satisfies

ωn = p∞ ◦ ω̃n

so it is a lift of ωn. Define the deck transformation τ : R→ R by t 7→ t+n and consider the composition
ω̃m · (τm ◦ ω̃n). This composition is a path in R from 0 to m + n, and is therefore homotopic to ω̃m+n

(e.g. via the straight-line homotopy).

Then,

Φ(m+ n) = [ωm+n]

= [p∞ ◦ ω̃m+n]

=
[
p∞ ◦

(
ω̃ · (τ ◦ ω̃n)

)]
= [p∞ ◦ ω̃m · p∞ ◦ τm ◦ ω̃n]
= [p∞ ◦ ω̃m] • [p∞ ◦ τm ◦ ω̃n]
= [p∞ ◦ ω̃m] • [p∞ ◦ ω̃n]
= [ωm] • [ωn]
= Φ(m) • Φ(n)

■

Theorem 38.6.5. The map Φ : Z→ π1(S
1,1) defined by n 7→ [ωn] is a group isomorphism.

Proof. By the path lifting property of covers, given a loop α ∈ S1, there exists a unique lift α̃ : I → R
such that

(i) p ◦ α̃ = α;

(ii) α̃(0) = 0.

Since α(1) = 1 and p ◦ α̃ = α, we have ã(1) ∈ p−1
[
{1}
]
= Z. Denote this value by n := α̃(1). We

then have α̃
∂≃ ω̃n since both are paths from 0 to n in R, with a homotopy given by the straight-line

homotopy. Since homotopies descend,

α = p∞ ◦ α̃
∂≃ p∞ ◦ ωn = ω

so [α] = [ωn] and Φ is surjective.
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Now, suppose that Φ(n) = [ωn] = [e]. That is, ωn
∂≃ e, given by a homotopy F : I × I → S1 from

f0 = ωn to f1 = e.

Define a map g : I × {0} → R by g(s,0) = ω̃n. The cover p then lifts F to a homotopy F̃ : I × I → R
from f̃0 = g to p ◦ F̃ = F . The other end of the homotopy f̃1 then satisfies p ◦ f̃1 = e, the constant loop.
Thus,

• f̃0(0) = 0 since f̃0 = ω̃n;

• f̃0(1) = n since f̃0 = ω̃n;

• f̃t(0) ∈ Z since p∞ ◦ f̃t(0) = ft(0) = 1;

• f̃t(1) ∈ Z since p∞ ◦ f̃t(1) = ft(1) = 1;

• f̃1(s) ∈ Z since p∞ ◦ f̃1(s) = e(s) = 1;

As the continuous image of a connected space is connected, any continuous map that takes values in
Z ⊆ R must be constant. Thus,

0 = f̃0(0)

= f̃t(0)

= f̃1(s)

= f̃t(1)

= f̃0(1)

= n

so Φ has trivial kernel. ■

38.7 Induced Homomorphisms

Recall that a pair of spaces (X,A) consists of two topological spaces satisfying A ⊆ X, and that a map of
pairs f : (X,A)→ (Y,B) is a continuous function f : X → Y such that f(A) ⊆ B, also called a pointed
or based map when A and B are singletons.

The induced homomorphism of a pointed map f : (X,x0)→ (Y,y0) is the map

f∗ : π1(X,x0)→ π1(Y,y0)

[α] 7→ [f ◦ α]

Lemma 38.7.1. The induced homomorphism f∗ is a group homomorphism.

Proof. Let α
∂≃ β, witnessed by F : I × I → X. Then, G = f ◦ F is a relative homotopy from f ◦ α to

f ◦ β, so we have f ◦ α ∂≃ f ◦ β, and the map is well-defined.

Now, let α,β be loops in π(X,x0). Then,

f∗
(
[α] • [β]

)
= f∗

(
[α ∗ β]

)
=
[
f ◦ (α ∗ β)

]
=
[
(f ◦ α) ∗ (f ◦ β)

]
= [f ◦ α] ∗ [f ◦ β]
= f∗

(
[α]
)
• f∗

(
[β]
)

■
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Example. Consider the covering map p2 : (S1,1) → (S1,1) defined by z 7→ z2, and let ωn be the loop
defined by ωn(s) = exp(2πins). Then, p2 ◦ ωn = ω2n, so the induced homomorphism (p2)∗ is defined by

(p2)∗
(
[ωn]

)
= [ω2n]

△

Theorem 38.7.2. Induced homomorphisms satisfy the following properties:

(i)
(
id(X,x0)

)
∗ = idπ1(X,x0);

(ii) Given two pointed maps f : (X,x0)→ (Y,y0) and g : (X,x0)→ (Y,y0), we have,

(g ◦ f)∗ = g∗ ◦ f∗

That is, the fundamental group is a functor π1 : Top∗ → Grp, acting on objects by (X,x0) 7→ π1(X,x0)
and on morphisms by f 7→ f∗.

Proof.

(i) Precomposing by the identity leaves the loop unchanged, and thus the fundamental group is un-
changed.

(ii) Given a loop γ, we have

(g ◦ f)∗
(
[γ]
)
=
[
(g ◦ f) ◦ γ

]
=
[
g ◦ (f ◦ γ)

]
= g∗

(
[f ◦ γ]

)
= (g∗ ◦ f∗)

(
[γ]
)

■

Theorem 38.7.3. If f : (X,x0)→ (Y,y0) is an isomorphism, then f∗ : π1(X,x0)→ π1(Y,y0) is also an
isomorphism.

Proof. Follows from functoriality. That is,

idπ1(X,x0) =
(
id(X,x0)

)
∗

=
(
f ◦ f−1

)
∗

= f∗ ◦ f−1
∗

(and similarly with f and f−1 reversed). ■

It follows that the fundamental group of a path-connected space is a topological invariant: if X ∼= Y ,
then π1(X) ∼= π1(Y ).

38.8 Homotopy Invariance

Recall that, given a pair (X,A), a retraction is a map r : X → A such that r
∣∣
A
= idA. Retractions and

inclusions naturally fit together in a square,

A A

X X

idA

ι

ι◦r

ι
r
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noting that the upper triangle gives r ◦ ι = idA.

Theorem 38.8.1. Let r : X → A be a retraction, ι : A ↪→ X be the inclusion. Then, for any point
x0 ∈ A, the induced homomorphisms r∗ : π1(X,x0) → π1(A,x0) and ι∗ : π1(A,x0) → π1(X,x0) have the
following properties:

(i) r∗ is surjective and ι∗ is injective;

(ii) If r is a deformation retract, then r∗ and ι∗ constitute an isomorphism.

Proof.

(i) Because r ◦ ι = id(A,x0), we have from functoriality of π1 that idπ1(A,x0) = (r ◦ ι)∗ = r∗ ◦ ι∗, so ι∗
and r∗ must be injective and surjective, respectively.

(ii) We have that r∗ is surjective, so to establish an isomorphism, it suffices to show that r∗ is also
injective if it is a deformation retract.

Denote by eA : I → A and eX : I → X the constant loops at x0 in A and X, respectively. Let
[γ] ∈ π1(X,x0), and suppose that [γ] ∈ ker(r∗), so r∗

(
[γ]
)
= [r◦γ] = [eA], or equivalently, r◦γ ∂≃ eA.

As r ◦ γ is a loop in A ⊆ X, postcomposing by the inclusion gives the loop ι ◦ r ◦ γ in X that is
homotopic to eX by the same homotopy that takes r ◦ γ to eA.

Because r is a deformation retract, we have ι ◦ r ∂≃ idX witnessed by a homotopy F : X × I → X
relative to A. Construct a new homotopy G : I×I → X by G(s,t) = F

(
γ(s),t

)
between g0 = ι◦r◦γ

and g1 = γ1. Note that G is a based homotopy (at the subspace {0 ∼ 1} ⊂ I) since F is a homotopy
relative to A, and x0 ∈ A, so gt(0) = ft(x0) = x0 for all t ∈ I.

Then, we have eX
∂≃ ι ◦ r ◦ γ ∂≃ γ so [γ] = [eX ]. It follows that r∗ has trivial kernel and is thus

injective.

Now, let [η] ∈ π1(X,x0), and define a new based homotopy from F in the same way as before;
G(s,t) = F

(
η(s),t

)
. Because f1(X) = r(X) = A, the loop g1 = f1 ◦ η is contained within A, so g1

is a loop in A and hence [g1] ∈ ι∗
(
π1(A,x0)

)
. Since G is a homotopy, g1

∂≃ η, so [g1] = [η], and ι∗
is surjective.

■

In particular, this also implies that (ι ◦ r)∗ : π1(X,x0) → π1(X,x0) is also an isomorphism for any
deformation retract r.

Theorem 38.8.2. If f : X → Y is a homotopy equivalence, then for any x0 ∈ X, the induced homo-
morphism f∗ : π1(X,x0)→ π

(
Y,f(x0)

)
is an isomorphism.

This shows that not only is the fundamental group a topological invariant, but more generally a homotopy
invariant: if X ≃ Y , then π1(X) ∼= π1(Y ).

38.9 The Brouwer Fixed Point Theorem

In the previous section, we showed that retractions induce surjective homomorphisms. One simple
application is as follows:

Theorem 38.9.1. There is no retract from the the unit disk D2 to the circle S1.

Proof. Such a retraction would imply a surjection π1(D
2,1) ↠ π1(S

1,1), but π1(D2,1) = 0, while
π1(S

1,1) ∼= Z. ■
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A more important consequence of this “no retract” theorem generalises the fact that a continuous function
f : I → I has a fixed point. This is a straightforward consequence of the intermediate value theorem (in
fact, the statement is true if f is only increasing, and not continuous, though this proof is more involved),
but the generalisation to maps f from I × I ∼= D2 to itself is surprisingly non-trivial.

Theorem (Brouwer Fixed Point Theorem). Every map f : D2 → D2 has a fixed point.

38.9.1 Applications
One application of the Brouwer fixed point theorem is to eigenvectors. The following result is a special
case of the Perron-Frobenius theorem:

Theorem 38.9.2. Let A ∈ R3×3 be a matrix with only positive entries. Then, A has an eigenvector v
with only positive entries.

Another application of the Brouwer fixed point theorem is the famous Borsuk-Ulam theorem, but first,
some additional theory is required for its proof.

38.9.1.1 Odd and Even Maps

Recall that an involution is an endofunction f : X → X that is its own inverse; f
(
f(x)

)
= x, or

f ◦ f = idX . One important example is the negation function, f(x) = −x – but note that this only
makes sense in spaces that are symmetric about the origin of their coordinate systems. For instance,
f(x) = −x does not make sense as function I → I.

Let X and Y be spaces with negation. A map f : X → Y is odd if f(−x) = −f(x), and even if
f(−x) = f(x) for all x ∈ X. Note that a map may be neither odd nor even.

Example.

• The zero map is the unique map that is simultaneously odd and even.

• The identity map is odd, as id(−x) = −x = − id(x);

• The map p2 : S1 → S1 defined by z 7→ z2 is even, as p2(z) = z2 = (−z)2 = p2(−z).

• The map p3 : S1 → S1 defined by z 7→ z3 is odd, as p3(−z) = −z3 = −p3(z).

• The (circular, hyperbolic) sine function is odd, while the (circular, hyperbolic) cosine function is
even.

• The exponential function exp : R→ R is neither odd nor even.

△

Lemma 38.9.3. The composition of,

(i) Two even functions is even;

(ii) Two odd functions is odd;

(iii) An even and odd function (in either order) is even;

(iv) Any function with an even function is even (but not the reverse).

Proof. Let f be any function and suppose g is even. Then,

(f ◦ g)(−x) = f
(
g(−x)

)
= f

(
g(x)

)
= (f ◦ g)(x)
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so f ◦ g is even. This covers (i), the reverse of (iii), and (iv).

For (ii), suppose f,g are odd. Then,

(f ◦ g)(−x) = f
(
g(−x)

)
= f

(
−g(x)

)
= −f

(
g(x)

)
= −(f ◦ g)(x)

and f ◦ g is odd.

For the other direction of (iii), suppose f is even and g is odd. Then,

(f ◦ g)(−x) = f
(
g(−x)

)
= f

(
−g(x)

)
= f

(
g(x)

)
= (f ◦ g)(x)

so f ◦ g is even. ■

38.9.2 Null-Homotopic Maps
A map f : X → Y is null-homotopic if it is free homotopic to a constant map. That is, if there exists a
constant map e and a free homotopy F : X × I → Y with f0 = f and f1 = e.

A pointed map f : (X,x0)→ (Y,y0) is null-homotopic relative to the basepoint if it is relatively homotopic
to the constant map ey0 . That is, there exists a homotopy F : X × I → Y such that

• f0 = f ;

• f1 = ey0 ;

• ft(x0) = y0 for all t ∈ I.

Conistent with the earlier notation for general relative homotopies, if f is null-homotopic relative to the
basepoint x0, we write f

x0≃ e.

Note that, even if the map f : X → Y is homotopic to ey0 , and x0 ∈ X is such that f(x0) = y0, we do
not necessarily have that the pointed map f : (X,x0) → (Y,y0) is null-homotopic, because a homotopy
for the former need not preserve the pointedness of the intermediary maps ft, while a null-homotopy of
a pointed map further requires that ft(x0) = y0 for all t.

Lemma 38.9.4. Let p : X̃ → X be a covering, and let γ : I → X be a loop such that γ
∂≃ ex0

. Let

x̃0 ∈ p−1
[
{x0}

]
, and let γ̃ be the lift of γ with γ̃(0) = x̃0. Then, γ̃

∂≃ ex̃0 .

Proof. Let F : I × I → X be a homotopy between γ amd ex0
. By the homotopy lifting property of

coverings, there is a unique homotopy F̃ : I × I → X̃ between γ̃ and ex̃0
:
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γ

x0

ex0

x0 F

s

t

HLP

γ̃

x̃0

ex̃0

x̃0 F̃

The left, right, and upper boundaries of the square on the right are all constant paths at x0, so γ̃ is a
loop at x̃0, which is homotopic to ex̃0

via F̃ . ■

Theorem 38.9.5. If f : S1 → S1 is odd, then f is not null-homotopic.

Proof. WIP ■

Corollary 38.9.5.1. If f : S2 → R2 is odd, then f has a root.

Proof. WIP ■

38.9.2.1 The Borsuk-Ulam Theorem

Theorem (Borsuk-Ulam). For any continuous map f : S2 → R2, there exists a point x ∈ S2 with
f(x) = f(−x).

That is, for any continuous mapping of the sphere to R2, there exists two antipodal points for which the
mapping has the same value.

One famous example of this theorem notes that mapping points on the Earth’s surface to their tem-
perature and atmospheric pressure can reasonably be assumed to be a continuous mapping, so the
Borsuk-Ulam theorem states that at any time, there exist two antipodal points on the Earth’s surface
with equal temperature and atmospheric pressure.

Proof. Define g : S2 → R2 by
g(x) := f(x)− f(−x)

We have g(−x) = f(−x) − f(x) = −g(x), so g is odd, so by the previous corollary, g has a zero. That
is, some x ∈ S2 such that

g(x) = 0

f(x)− f(−x) = 0

f(x) = f(−x) ■

38.9.3 Fundamental Groups of Product Spaces
Theorem 38.9.6. Let (X,x0) and (Y,y0) be pointed spaces. Then,

π1(X × Y,x0 × y0) ∼= π1(X,x0)× π1(Y,y0)

That is, π1 preserves binary products.

Notes on Mathematics | 733



Algebraic Topology Galois Correspondence

Proof. By the definition of the product topology, a map Z → X × Y is continuous if and only if the
components p1 ◦ f and p2 ◦ f are continuous, so a loop γ : I → X × Y is equivalent to a pair of loops
γ1 : I → X and γ2 : I → Y .

Similarly, a homotopy F between loops in X×Y is equivalent to a pair of homotopies F1 and F2 between
the equivalent loops in X and Y . That is, if α

∂≃ β, then p1 ◦ α
∂≃ p1 ◦ β, and p2 ◦ α

∂≃ p2 ◦ β.

This induces a bijection [γ] 7→
(
[p1 ◦ γ],[p2 ◦ γ]

)
, which gives the required isomorphism. ■

Example. The torus T 2 = S1 × S1 with basepoint (1,1) has fundamental group

π1
(
T 2,(1,1)

) ∼= π1(S
1,1)× π1(S1,1) ∼= Z× Z

△

Corollary 38.9.6.1. By induction,

π1

(
n∏
i=1

(Xixi)

)
=

n∏
i=1

π1(Xi,xi)

Example. The torus Tn =
∏n
i=1 S

1 has fundamental group

π1
(
Tn
) ∼= n∏

i=1

π1(S
1) ∼= Zn

△

Theorem 38.9.7. For all n ≥ 2, we have π1(Sn) ∼= 0.

Proof. WIP ■

38.10 Galois Correspondence

Lemma 38.10.1. Let p : X̃ → X be a covering, and let x0 ∈ X and x̃0 ∈ p−1
[
{x0}

]
. Then,

(i) The induced homomorphism p∗ : π1(X̃,x̃0)→ π1(X,x0) is injective;

(ii) If [α] ∈ π1(X,x0), and α̃ is the lift of α with α̃(0) = x̃0, then α̃ is a loop if and only if [α] ∈
p∗
(
π1(X̃,x̃0)

)
.

Proof.

(i) Suppose p∗ sends [α̃] ∈ π1(X̃,x̃0) to the constant loop [ex0 ]. That is, p ◦ α̃ ∂≃ ex0 . Then by

Lemma 38.9.4, α̃
∂≃ ex̃0

, so [α̃] = [ex̃0
] and p∗ has trivial kernel.

(ii) If α̃ is a loop, then p∗
(
[α̃]
)
= [p ◦ α̃] = [α] ∈ p∗

(
π1(X̃,x̃0)

)
.

Conversely, suppose that [α] = p∗
(
[γ̃]
)

for some [γ̃] ∈ π1(X̃,x̃0), so

α = p ◦ α̃
∂≃ p ◦ γ̃
= γ

so there is some relative homotopy F from α to γ that lifts to a homotopy from α̃ to γ̃:
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α

x0

γ

x0 F

s

t

HLP

α̃

x̃0

γ̃

x̃0 F̃

The left and right boundaries of F are constant, so they lift to constant paths at x̃0, so α̃ is a loop
(based at x̃0) as required.

■

This shows that for any covering p, the image p∗
(
π1(X̃,x̃0)

)
is a subgroup of π1(X,x0) that is isomorphic

to π1(X̃,x̃0).

Example. The covering p2 : S1 → S1 induces the doubling map n 7→ 2n, so

(p2)∗
(
π1(S

1,1)
) ∼= 2Z ≤ Z ∼= π1(S

1,1)

△

Let p : X̃ → X be a covering, and suppose X is connected. Then, the cardinality of the preimage of any
point in X is called the degree of the covering:

deg(p) :=
∣∣p−1

[
{x}
]∣∣

Recall that, given a group G and a subgroup H ≤ G, the index [G : H] of H in G is the number of right
(or left) cosets G/H = {Hg : g ∈ G}.

Lemma 38.10.2. Let p : X̃ → X be a covering and suppose that X̃ and X are path-connected. Let
x0 ∈ X and x̃0 ∈ p−1

[
{x0}

]
. Then,

deg(p) =
[
π1(X,x0) : p∗

(
π1(X̃,x̃0)

)]
Proof. WIP ■

38.11 Wedge Sums

Let
(
(Xα,xα)

)
α∈Λ

be a collection of pointed spaces. The wedge sum of this collection is the “one-point
union” of the spaces, defined as: ∨

α∈Λ

(Xα,xα) :=
⊔
α∈Λ

Xα
/
xα ∼ xβ

That is, the disjoint union of each space with all the basepoints identified.

Example. The wedge sum of two pointed circles is the figure-eight graph:
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S1 ∨ S1

△

The identified point is a natural choice of basepoint for the wedge sum, and selecting this point makes the
wedge sum associative and commutative (up to homeomorphism) over pointed spaces, as every basepoint
is always identified to the same point, so associativity and commutativity follow from disjoint unions
being associative and commutative.

However, we may also treat the output as an ordinary topological space without any distinguished
basepoint, in which case, the wedge sum is then not associative, as a new basepoint may be selected
between applications.

If an expression involving wedge sums is not bracketed, we will assume that the natural basepoint is
selected, so the resulting space is unambiguous and unique.

Example.

S1 ∨ S1 ∨ S1 (S1 ∨ S1) ∨ S1

In the first case, all three basepoints coincide, resulting in the bouquet of three circles. In the second,
we were free to pick a basepoint distinct from the centre of the figure-eight, where the third circle was
adjoined. △

Let us mark two loops a and b on S1 ∨ S1:

S1 ∨ S1

and denote their reverse paths by a−1 and b−1.

Note that any loop in S1 ∨ S1 can be decomposed into a string consisting of the symbols a, b, a−1, and
b−1. For example,

aaba−1b−1a

corresponds to the loop that travels along a twice, b once, a backwards, b backwards, then a.

Some strings of this form may be reduced up to homotopy, as any substring consisting of a loop adjacent
to its inverse is homotopic to the constant loop, which may then be removed from the string.

This structure is well-suited to be described by free products.
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38.11.1 The Free Product of Groups
Let {Gα}α be a collection of groups. A word on these groups is a finite sequence g1 · · · gm of elements
gi ∈ Gαi

, and m is the length of the word. The empty word of length 0 is denoted by ε. The product of
two words is their concatenation

(g1 · · · gm) ∗ (h1 · · ·hn) = g1 · · · gmh1 · · ·hn

A word is reduced if it does not contain the identity of any group, and if every pair of consecutive letters
is not from the same group.

Given any word g on the groups {Gα}α, we can reduce it to a reduced word g′ by recursively removing all
identity elements and replacing any consecutive elements gi,gi+1 from the same group with their group
product gi · gi+1.

Let ∗αGα be the set of reduced words on {Gα}α. We can define an operation on this set as follows:
given reduced words g = g1 · · · gm and h = h1 . . . hn, construct a new reduced word g • h by taking the
concatenation g ∗ h, then reduce the word recursively

g • h =


gh gm ∈ Gα,h1 ∈ Gβ , Gα ̸= Gβ

g1 · · · gm−1(gm · h1)h2 · · ·hn gm,h1 ∈ Gα, gm · h1 ̸= idGα

g1 · · · gm−1 • h1 · · ·hn gm,h1 ∈ Gα, gm · h1 = idGα

Then, (∗αGα,•) is a group called the free product of {Gα}α, with identity ε, and the inverse of an element
g1 · · · gm is given by g−1

m · · · g−1
1 .

Example. The free product of Z2 with itself is given by the semidirect product Z2 ∗ Z2
∼= Z ⋊ Z2. △

Example. If G = ⟨a | a4⟩ and H = ⟨b | b5⟩, then G ∗H = ⟨a,b | a4 = b5⟩. △

Every group Gα is a subgroup of the free product ∗αGα via the inclusion ια : Gα ↪→ ∗αGα that maps
each non-identity g ∈ Gα to the string g, and the identity to the empty string. The free product satisfies
the following universal property:

Lemma 38.11.1. Any pair of homomorphisms from groups G and H into K factor uniquely through
the free product.

That is, for any group homomorphisms φ : G→ K and ψ : H → K, there exists a unique homomorphism
φ ∗ ψ : G ∗H → K such that

G G ∗H H

K

φ ψ

ι1 ι2

φ∗ψ

commutes.

This holds more generally, with a collection of homomorphisms φα : Gα → K factoring uniquely through
a map ∗αϕα : ∗αGα → K:

Gα ∗αGα

K

φα

ια

∗αφα
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38.12 The Seifert-van Kampen Theorem

Let X be a topological space and {Uα}α be an open cover with inclusion maps ια : Uα ↪→ X, and further
suppose that the intersection

⋂
α Uα is non-empty.

Let x0 ∈
⋂
α Uα, and consider the pointed spaces (Uα,x0). The inclusion maps ια : Uα → X induce

homomorphisms between the fundamental groups based at x0:

(ια)∗ : π1(Uα,x0)→ π1(X,x0)

which factor through the free product map

Φ = ∗α(ια)∗ : ∗απ1(Uα,x0)→ π1(X,x0)

If the pairwise intersections Ua ∩ Ub are path-connected, then Φ is surjective; but in general, it is not
injective, as loops in the intersections are counted twice in the free product.

The inclusions ιab : Ua∩Ub → Ua of the intersections then also induce maps between fundamental groups,
completing the commutative diagram:

π1(Ua,x0)

π1(Ua ∩ Ub,x0) ∗απ1(Uα,x0) π1(X,x0)

π1(Ub,x0)

(ιba)∗

(ιba)∗

ia

ib

Φ

(ιa)∗

(ιb)∗

In categorical language, (ιa)∗ and (ιb)∗ form a pushout for all a,b.

Now, note that every class ω ∈ π1(Ua ∩ Ub,x0) is represented twice in ∗απ1(Uα,x0) as (ιab)∗(ω) and as
(ιba)∗(ω). Define the set

Vab =
{
(iab)∗(ω)(iba)∗(ω)

−1 : ω ∈ π1(Ua ∩ Ub,x0)
}

and define V =
⋃
a,b Vab. We then define N to be the normal closure of V . That is, the minimal normal

subgroup N of ∗απ1(Uα,x0).

Theorem (Seifert-van Kampen). Let X be a topological space, {Uα}α be an open cover with non-empty
intersection, and x0 some point in

⋂
α Uα. Then,

(i) If the intersection Ua ∩ Ub is path-connected for all a,b, then the free product map

Φ = ∗α(ια)∗ : ∗απ1(Uα,x0)

is surjective.

(ii) If in addition the intersection Ua ∩ Ub ∩ Uc is path-connected for all a,b,c, then ker(Φ) = N and
hence

π1(X,x0) ∼= ∗απ1(Uα,x0)
/
N

Example. Consider the sphere Sn for n ≥ 2, with the cover {U1,U2} given by the sets obtained by
deleting two distinct points from the sphere. The intersection is path-connected, so

Φ : π1(U1,x0) ∗ π1(U2,x0)→ π1(S
n,x0)

Notes on Mathematics | 738



Algebraic Topology CW Complexes

is surjective. The open sets U1 and U2 are also both homeomorphic to Rn, which is contractible, so their
fundamental groups, and hence the free product, are trivial, so π1(Sn,x0) must also be trivial.

This argument fails for S1 as the intersection U1 ∩ U2 is disconnected. △

Example. Let (X,x) =
∨
α(Xα,xα) be the wedge product with natural basepoint x = [xα], and suppose

that for every α, there exists a contractible open neighbourhood Nα ⊆ Xα of xα. Then, for each α,
define Uα = Xα ∨

∨
β ̸=αNβ .

Each Uα is open in X, and the basepoint is contained in their intersection
⋃
α Uα by construction, and

each pairwise intersection is
∨
α Uα, which deformation retracts to x, i.e. is contractible. It follows that

the pairwise intersections have trivial fundamental groups, so by Seifert-van Kampen, we have

π1

(∨
α

Xα,x

)
∼= ∗απ1(Xα,xα)

△

38.13 CW Complexes

Given spaces X and Y , a subspace A ⊆ X, and a map f : X → Y , we can form the space

X ∪f Y := X ⊔ Y
/
∼

where ∼ is the equivalence relation defined by x ∼ f(x) for all x ∈ A. This space is equipped with the
quotient topology via the surjective map X ⊔Y → X ∪f Y , where X ⊔Y has the disjoint union topology.

We will mostly be studying a important class of spaces built from this gluing process called CW complexes
(where C stands for closure-finite and W for weak topology). Informally, these are spaces constructed by
recursively gluing together discs of various dimensions.

Formally, we begin with a 0-skeleton consisting of a disjoint union X0 =
⊔
iD

0
i of 0-discs, or 0-cells.

Then, given an (n−1)-skeleton Xn−1, we construct the Xn by gluing a collection of n-cells (i.e. n-discs)
Dn
α via attaching maps φα : ∂Dn

α = Sn−1
α → Xn−1.

That is, given the maps φj , we define the n-skeleton Xn to be the space

Xn = Xn−1 ∪⊔
j φj

⊔
j

Dn
j

The attaching maps of each Dn
j canonically extend to maps Φj : Dn

j → Xn over the entire disk. This
extension is called the characteristic map of the jth n-cell Dn

j .

This recursion then either stops at some finite level n, yielding a CW complex X := Xn, or continuing
infinitely with arbitrarily high dimensional discs, in which case we define X :=

⋃
nX

n, with a subset
U ⊆ X being open if and only if U ∩Xn is open for all n (the “weak topology”).

The closure-finiteness of a CW complex refers to the property that the closure of any open cell intersects
with finitely many other cells.

Example. A one-dimensional CW complex is called a (topological) graph, consisting of a set X0 of vertices
and a set X1 of edges. △

Example. The torus is a two-dimensional CW complex, given by a point X0 = {p}, two 1-cells X1 =
{a,b}, and one 2-cell. The 1-cells are attached to the point p in the only way possible, yielding two
circles attached to a point, then gluing the square to the two circles by mapping the upper and lower
boundaries to one circle, and the left and right boundaries to the other.
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This is often visualised by drawing the square and annotating the edges with arrows to indicate which
edges are identified and in which orientation. The torus, real projective plane, and the Klein bottle can
all be constructed as quotients of a square in this way:

p p

p p

a a

b

b

T

p q

q p

a a

b

b

RP2

p p

p p

a a

b

b

K

△

These representations allow us to compute the fundamental groups of these objects. For instance, we
can cover RP2 as follows:

p q

q p

a a

b

b

RP2

∼= pp

v

v
v = a ∗ b RP2 ⊆ U ∪ V U∩V

Then, fix a basepoint x0 ∈ U ∩ V . The fundamental group π1(V,x0) is trivial, as V is just a disk, while
the intersection U ∩V is homotopic to a circle, represented by some loop ω, so π1(U ∩V,x0) =

〈
[ω]
〉 ∼= Z.

The set U is homeomorphic to a Möbius band, which deformation retracts, and is therefore homotopy
equivalent to, its boundary γ homeomorphic to S1, so π1(U,x0) =

〈
[γ]
〉 ∼= Z.

Since π1(V,x0) is trivial, π1(V,x0) ∗ π1(U,x0) ∼= π1(U,x0) ∼= Z. Because U encloses the boundary of a
Möbius band, the inclusion U ∩V ↪→ U wraps twice around the circle the band retracts to, so [ω] 7→ [γ]2.
By Seifert-van Kampen, we then have

π1(RP2,x0) ∼=
〈
[γ]
〉
/
〈
[γ]2
〉 ∼= Z/2Z

38.13.1 Properties of CW Complexes
A topological space is normal if any two disjoint closed subsets have disjoint open neighbourhoods.
This is related to the Hausdorff condition, which requires that every two distinct points have disjoint
neighbourhoods. Note, however, that neither condition implies the other.

Lemma 38.13.1. CW complexes are normal and Hausdorff.

A topological space is locally contractible if for every x ∈ X and every open neighbourhood U ⊆ X of x,
there exists an open neighbourhood V ⊆ U of x that is contractible.

Lemma 38.13.2. CW complexes are locally contractible.

A subcomplex of a CW complex X is a space A that is a union of cells eαn in X such that the closure of
each cell is also in A.

Lemma 38.13.3. A compact topological subspace of a CW complex X is contained within a finite
subcomplex.
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Lemma 38.13.4. If A ⊆ X is a subcomplex of X, then there exists an open set U ⊆ X with A ⊆ U
such that U deformation retracts to A.

Theorem 38.13.5. For a path-connected CW complex X with x0 ∈ X2, the inclusion X2 ↪→ X induces
an isomorphism of fundamental groups π1(X2,x0) ∼= x1(X,x0).

Intuitively, this means that the fundamental group of a CW complex depends only on its 2-skeleton:
loops cannot distinguish higher-dimensional topological properties.

Firstly, note that a map φ : S1 → X induces a loop f : I → X based at φ(1) via any parametrisation of
the circle with I, i.e. f(t) = φ

(
exp(2πit)

)
(and intuitively, the image of a circle is precisely a loop).

In particular, the attaching map φα : S1
α → X of any 2-cell D2

α into a space X induces a loop in this
way. While this loop may not be null-homotopic in X, it is certainly null-homotopic in

Y := X ⊔D2
α

/(
x ∼ φα(x)

)
after attaching the cell. If X is path-connected, then for any basepoint x0, there is a path hα : I → X
with from x0 to φα(1), which induces a loop γα = hα ∗ fα ∗ hα (here, ∗ is path concatenation, not free
product!) in Y . The inclusion X ↪→ Y then induces a map of fundamental groups π1(X,x0)→ π1(Y,y0),
and the class [γα]of every such loop γα is contained with the kernel of this map.

Theorem 38.13.6. Let X be path-connected, and for a fixed n, let φnα : Sn−1
α → X be a collection of

attaching maps, and define
Y := X ⊔

⊔
α

Dαn

/
x ∼ φnα(x)

Let x0 ∈ X be a point. Then,

• If n = 2, then
π1(Y,x0) ∼= π1(X,x0)/N

where N is the normal subgroup generated by [γα] as defined above;

• If n > 2, then
π1(Y,x0) ∼= π1(X,x0)

38.14 Generators and Relations

A presentation is a method of specifying a group G via a set S of generators – so that every element
of the group may be expressed as a product of generators – and a set R of relations between those
generators, and we write that G has presentation

⟨S | R⟩

Informally, G is the “most general” or “freest” group generated by S constrained only by relations in R.
Formally, G has presentation ⟨S | R⟩ if it is isomorphic to

G ∼= ⟨S⟩
/
⟨⟨R⟩⟩

where ⟨⟨R⟩⟩ is the normal subgroup generated by R.

Example. The cyclic subgroup Zn has presentation

⟨a | an = 1⟩

This may also be written as
⟨a | an⟩

where the convention is that any terms without an equality symbol are taken to be equal to the group
identity. △

Notes on Mathematics | 741



Algebraic Topology Generators and Relations

A group is finitely generated if its set of generators S is finite; finitely related if its set of relators R is
finite; and finitely presented if both S amd R are finite.

Example. Consider the Klein bottle K,

p p

p p

a a

b

b

K

The 1-skeleton X1 consists of the loops a and b, and the 0-skeleton is the single point p, so the generators
are the classes corresponding to the cycles a and b, and the single relation is the loop that forms the
boundary, given by baba−1, so we have the presentation

⟨a,b | baba−1⟩

However, there are several cell structures on K. One rearrangement is as follows:

a a

b

b

c

bb

a
c c

c b

b

c

a

p p

p p

c b

b

c

The resulting presentation is then
⟨b,c | b2c2⟩

This is of course obtainable purely group-theoretically by defining new elements in terms of old ones, but
we also see that each presentation corresponds to a different way of describing a topological space. △

38.14.1 CW Complexes and Fundamental Groups

Recall that a topological graph X consists of a set of vertices X0 and a set of edges X1 = {S0
α}α with

attaching maps φα : S0
α → X0 that assigns each interval D1

α = Iα to its endpoints. We also have the
characteristic map Φα : D1

α → X1 that maps each interval to its image in the graph.

We use the term “edge” to refer both to the pair (D1
α,φα), which records combinatorial data, and the

image Φα(D
1
α), as a topological subspace of the graph.

Given a topological graph X, an edge-path is a graph-theoretic path, i.e. a sequence or concatenation of
connected edges in the graph

γ = e1 ∗ · · · ∗ en
where n is the length of the path; and an edge-cycle or edge-loop is a graph-theoretic cycle, i.e. a path
that begins and ends at the same vertex.

Given a CW complex X and a point x0 ∈ X, we can compute a presentation of the fundmaental group
π1(X,x0). As the path-components not containing x0 are irrelevant to the fundamental group, we may
replace X by the path-component that does contain x0. We may also move the basepoint to lie in X1 (or
even X0), as this component is path-connected. Finally, we may restrict to the 2-skeleton, and assume
without loss of generality that X = X2 is a path-connected two-dimensional CW complex.

Then,
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• Given a maximal spanning tree of T ⊆ X1 (found via, for example, Kruskal’s or Prim’s algorithm),
let A be the set of edges not in the tree. By definition of a maximal spanning tree, pasting any edge
e ∈ A into T yields a cycle, so T ∪{e} contains a subgraph homotopic to a circle. The fundamental
group of X1 is then generated by these edge cycles:

π1(X
1,x0) ∼= ∗

e∈A
Z

as every edge not in T yields a loop when adding it in T , and conversely, every loop in X1 based
at x0 is homotopic to a combination of such edge-cycles.

• Let e2α ⊆ X2 be a 2-cell and φα : S1
α → X1 be its attaching map. As usual, a map from the circle

induces a loop γα(t) via parametrisation, and furthermore, this loop is homotopic to an edge-cycle.
Let x1 lie along this loop, and let gα be a path from x0 to x1. Then,

ωα = [gα ∗ γα ∗ γ] ∈ π1(X1,x0)

corresponds to a reduced word uα in A. Define U = {uα}α to be the set of these words. Then,

π1(X,x0) ∼= π1(X
1,x0)

/
⟨⟨U⟩⟩

In more detail,

• Every cycle in the graph X1 corresponds to a loop based at x0 as we may travel from x0 to the
base of the loop (as X is path-connected), along the loop, then along the reverse path back to
x0 to close the loop. Each such cycle then corresponds to a generator of the fundamental group
π1(X,x0).

• Each loop in X may be represented as a combination of such cycles, corresponding to a reduced
word in the generators of π1(X,x0).

• A loop is null-homotopic if it is homotopic to a boundary of a 2-cell in X, and each such loop
corresponds to a relation on the set of words in π1(X,x0).

Example. Recall that one CW complex structure on RP2 is given by

pp

γ

γ

The points and lines are identified together, so the 1-skeleton X1 is just a loop,

p γ

and the spanning tree is consists of the unique edge in the graph. The fundamental group is then
generated by this one cycle, whose homotopy class we denote by say, a. The relations are then all the
cycles that are the boundary of a 2-cell. As can be seen in the original CW complex structure, one
such loop is given by γ ∗ γ, so it is represented by a2. Thus, the fundamental group has presentation
⟨a | a2⟩ ∼= Z/2Z. △
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Theorem 38.14.1. For every group G, there exists a path-connected two-dimensional CW complex XG

such that
π1(XG) ∼= G

Example. Consider the cyclic group G = ⟨a | an⟩ ∼= Z/nZ. To construct a corresponding topological
space, consider X1 = S1, and define a = [ω], where ω(t) = exp(2πit).

Then, we want an attaching map φ : S1 → X1 for the 2-cell D2 such that the induced loop γ (i.e. the
boundary of the disc) satisfies [γ] = an. This is given via the n-fold covering φ(z) = pn(z) = zn. △

38.15 List of Useful (Counter)examples

• The topologist’s sine curve is the subspace T ⊆ R2 defined by

T =

{(
x, sin

1

x

)
: x ∈ (0,1]

}
∪
{
(0,0)

}

0.5 1

−1

−0.5

0.5

1

The topologist’s sine curve is connected but not path-connected because the origin cannot be
separated from the rest of the curve, but also cannot be connected to the rest of the curve via a
path.

• Define Cn ⊆ R2 as the circle of radius 1/n centred at (0,1/n). The Hawaiian earring is the union

H =
⋃
n∈Z+

Cn

equipped with the subspace topology.

The Hawaiian earring looks similar to the infinite wedge sum

X =
∨
n∈N

S1

but they are not homeomorphic:

– The fundamental group π1(X) is countable, while π1(H) is uncountable.

– The Hawaiian earring is compact, while the wedge sum is not.

– In the Hawaiian earring, every open neighbourhood of the intersection point completely con-
tains all but finitely many of the circles (i.e. an ε-ball around (0,0) contains every circle whose
radius is less than ε/2), while in the wedge sum, such a neighbourhood may contain no circles
at all.
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• The topologist’s comb is the subset C ⊆ R2 defined by

C =
(
{0} × [0,1]

)
∪
({

1

n
: n ∈ N+

}
× [0,1]

)
∪
(
[0,1]× {0}

)

The comb space is contractible but does not deformation reformation to any point on the line
segment {0} × [0,1].

• The closed long ray is the product of the first uncountable ordinal ω1 with the half-open interval
[0,1):

L =
∏
i∈ω1

[0,1)

equipped with the lexicographical order topology. (Compare with the real number line, which can
be constructed as the product of N copies of [0,1).)

The open long ray is obtained by removing (0,0), and the long line is then obtained by gluing
together two copies of the closed long ray at the origin.

– The long rays and line are path-connected but not contractible.

– The long rays and line are normal, Hausdorff, and sequentially compact, but not compact nor
metrisable.
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Chapter 39

Homology

“Of course, topologists don’t care about any of this ‘applied math’ nonsense. They’re
just trying to find all the shapes.”

— Milo Beckman, Math Without Numbers

The (fundamental) homotopy groups discussed in the previous chapter are a powerful invariant for some
topological spaces, but they are unable to distinguish topological spaces in higher dimensions, and the
higher dimensional analogues of nth homotopy groups become incredibly difficult to calculate – even for
simple spaces like n-spheres, the homotopy groups are generally unknown. Instead, we study homology
groups, which are slightly less powerful, but generally much easier to compute. But in exchange, we
require significantly more preamble before we may develop much theory.

39.1 Preliminary Concepts

39.1.1 Note on Notation
In general, we will take the word “map” to mean a continuous function, and “space” to mean a topological
space.

We will write X ↣ Y to denote an injective map (more generally, a monomorphism) and X ↠ Y for a
surjective map (more generally, an epimorphism). In some texts, X ↪→ Y is used for monomorphisms,
but here we reserve this symbol exclusively for inclusion maps. We use no special notation for projection
maps.

We write f−1[X] for the preimage of a set X under a function f .

39.1.2 Common topological spaces
We list some standard topological spaces:

• The unit interval I is the subspace I := [0,1] ⊂ R.

• The (closed) n-disk Dn is the subspace of Rn defined by

Dn :=

{
x ∈ Rn :

n∑
i=1

x2i ≤ 1

}
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• The n-sphere Sn is the boundary of the (n+ 1)-disc

Sn := ∂Dn =

{
x ∈ Rn :

n∑
i=1

x2i = 1

}

• The n-cube In is the n-fold product of the unit interval I:

In :=

n∏
i=1

I ∼=
{
x ∈ Rn : 0 ≤ xi ≤ 1

}
• The n-torus Tn is the n-fold product of the 1-sphere:

Tn :=

n∏
i=1

S1 ∼= Rn/Zn

39.1.3 Homotopies
If f,g : X → Y are maps between topological spaces X and Y , then a homotopy from f to g is a map
H : X × I → Y such that H(−,0) = f and H(−,1) = g. This second variable is commonly denoted
by t and called the time parameter. Intuitively, a homotopy parametrises (in the second variable) a
continuous deformation of f to g.

If there exists a homotopy between f and g, we say they are homotopic and write f ≃ g (or occasionally
f ≃H g, if the particular homotopy is relevant).

Two topological spaces X and Y are homotopy equivalent if there exist maps f : X → Y and g : Y → X
such that g ◦ f ∼= idX and f ◦ g ∼= idY .

A space is contractible if it is homotopy equivalent to a point.

39.1.4 Pairs
A pair (X,A) consists of a topological space X and a subspace A ⊆ X. We denote the interior of A by
A◦, the closure of A by A, and the boundary of A by ∂A = A \A◦. When A = {x} is a single point, we
instead write (X,x), and call the pair a pointed space (we sometimes call X alone a pointed space with
basepoint x).

A map of pairs f : (X,A)→ (Y,B) is a continuous function f : X → Y such that f(A) ⊆ B. If A and B
are points, then f is a pointed or based map. If f,g : (X,A)→ (Y,B) are maps such that f

∣∣
A
= g
∣∣
A
, then

a homotopy relative to A from f to g is a homotopy H : X × I → Y such that H(x,t) = f(x) = g(x) for
all x ∈ A and t ∈ I. That is, a homotopy relative to A is a homotopy that is constant over A. Again, if
A and B are points, then H is a pointed homotopy.

Given a pair (X,A), a retraction is a map r : X → X such that r(X) = A and r
∣∣
A

= idA. That is,
a retraction is a (necessarily surjective) mapping from a space X onto a subspace A that preserves all
points within that subspace. For instance, any non-empty space retracts to a point in the obvious way
(just take the constant map). If a retraction exists, then A is a retract of X.

A deformation retract is a homotopy H relative to A between the identity idX , and a retraction r. That
is, H(x,0) = x, H(x,1) ∈ A, and H(a,1) = a for every x ∈ X and a ∈ A. A deformation retract
captures the idea of continuously compressing a space onto a subspace: H(−,0) is the identity on X
and as the time parameter increases to 1, this mapping continuously shrinks down to the identity on A.
Note that every deformation retract induces a retract H(−,1) : X → X, but in general, retracts need
not be deformation retracts – for instance, the constant map in any non-empty space is a retract, but is
a deformation retract only if the space is contractible. Note also that a deformation retract induces a
homotopy equivalence A ≃ X.
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39.1.5 Quotient Spaces
Given a topological space X, we can endow a topology on any subset A ⊆ X called the subspace topology
by taking the open sets of A to be the open sets of X intersected with U .

This construction has the following universal property: if Y is any topological space and f : Y → A is a
function, then f is continuous if and only if the composite

Y A X
f ι

is continuous as a function Y → X, where ι is the canonical inclusion of A into X.

A similar construction can be performed for quotients; that is, a surjective set map π : X → B. A
topology can be placed on B by declaring that a set U ⊆ B is open if and only if π−1[U ] is open in X.
This construction is called the quotient topology on B, and has the following universal property dual to
that of subspaces: if Y is any topological spaec and g : B → Y is a function, then g is continuous if and
only if the composite

X B Yπ g

is continuous as a function X → Y .

We sometimes prefer to describe a quotient as an equivalence class on X. This characterisation is
equivalent to a surjective map π : X → B, as given such a π, we may define an equivalence relation ∼
by x ∼ y if and only if π(x) = π(y), so elements with the same image are identified under this relation.
Conversely, given ∼ on X, we define B to be the set of equivalence classes and π to be the map defined
by x 7→ [x].

If we have A ⊆ X, then we can define an equivalence relation ∼ such that x ∼ y if and only if both
x,y ∈ A or x = y. That is, every point in A is identified under ∼, and every point in X \ A lies within
its own singleton equivalence class. By a small abuse of notation, the resulting quotient space is denoted
by X/A. Intuitively, this is the quotient space obtained by contracting all of A into a single point.

39.1.6 Gluing and CW Complexes
Given spaces X and Y , a subspace A ⊆ X, and a map f : X → Y , we can form the space

X ∪f Y := X ⊔ Y
/
∼

where ∼ is the equivalence relation defined by x ∼ f(x) for all x ∈ A. This space is equipped with the
quotient topology via the surjective map X ⊔Y → X ∪f Y , where X ⊔Y has the disjoint union topology.

We will mostly be studying a important class of spaces built from this gluing process called CW complexes
(where C stands for closure-finite and W for weak topology). Informally, these are spaces constructed
by recursively gluing together discs of various dimensions.

Formally, we begin with a 0-skeleton consisting of a disjoint union X0 =
⊔
iD

0
i of 0-discs, or points.

Then given an (n−1)-skeleton Xn−1, we glue a collection of n-discs {Dn
j } via attaching maps φj : ∂Dn

j =

Sn−1
j → Xn−1.

That is, given the maps φj , we define the n-skeleton Xn to be the space

Xn = Xn−1
⋃

⊔
j φj

⊔
j

Dn
j

The attaching maps of each Dn
j canonically extend to maps φ : Dn

j → Xn, and the images of these maps
are called the n-cells of X, and the extension of φj is called the characteristic map of this n-cell.

This recursion then either stops at some finite level n, yielding a CW complex X := Xn, or continuing
infinitely with arbitrarily high dimensional discs, in which case we define X :=

⋃
nX

n, with a subset
U ⊆ X being open if and only if U ∩Xn is open for all n.
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39.1.7 Group Theory

39.1.7.1 Free Products

Let {Gα}α be a collection of groups. A word on these groups is a finite sequence g1 · · · gm of elements
gi ∈ Gαi

, and m is the length of the word. The empty word of length 0 is denoted by ε. The product of
two words is their concatenation

(g1 · · · gm) ∗ (h1 · · ·hn) = g1 · · · gmh1 · · ·hn
A word is reduced if it does not contain the identity of any group, and if every pair of consecutive letters
are not from the same group.

Given any word g on the groups {Gα}α, we can reduce it to a reduced word g′ by removing all identity
elements and replacing any consecutive elements gi,gi+1 from the same group with their group product
gi · gi+1.

Let ∗αGα be the set of reduced words on {Gα}α. We can define an operation on this set as follows:
given reduced words g = g1 · · · gm and h = h1 . . . hn, construct a new reduced word g • h by taking the
concatenation g ∗ h, then reduce the word recursively

g • h =


gh gm ∈ Gα,h1 ∈ Gβ , Gα ̸= Gβ

g1 · · · gm−1(gm · h1)h2 · · ·hn gm,h1 ∈ Gα, gm · h1 ̸= idGα

g1 · · · gm−1 • h1 · · ·hn gm,h1 ∈ Gα, gm · h1 = idGα

Then, (∗αGα,•) is a group called the free product of {Gα}α, with identity ε, and the inverse of an element
g1 · · · gm is given by g−1

m · · · g−1
1 .

39.1.7.2 Cokernels

Given a group homomorphism ϕ : A→ B of abelian groups, we have two fundamental subgroups, given
by the image im(ϕ) ≤ B, and the kernel ker(T ) ⊴ A. A third fundamental subspace is given by the
cokernel, defined as the quotient

coker(ϕ) := B/ im(ϕ)

For intuition on this definition, note that this definition makes sense for linear maps and vector spaces.
A linear map T : A → B is a way to transform A into B. The kernel can be viewed as the space of
elements in A that are “destroyed” by T . Then, the cokernel can be viewed as the space of elements in B
that are “created” by T , in the sense that A is mapped to im(A) ⊆ B, so any other element in B is new.

39.1.7.3 Smith Normal Form and the Structure Theorem for Finitely Generated Abelian
Groups

Given two finite-dimensional vector spaces V and W over a field K and any linear map T : V → W ,
there exist bases of V and W with respect to which the matrix of T is a block matrix of the form[

Ir 0
0 0

]
where r is the rank of T . A slightly weaker result holds if instead of vector spaces, we work with finitely
generated free modules over Z. Note that these modules are exactly the finitely generated abelian groups,
so we phrase this theorem in terms of groups.

Given any group homomorphism ϕ : Zn → Zm, there exist bases of Zn and Zm and a diagonal matrix of
the form

D =


d1

d2
. . .

dr
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with invariants di ∈ Z+ and d1 | d2 | d3 | . . . | dr (where | is the divides relation), such that the matrix
of ϕ with respect to these bases is a block matrix of the form

Σ =

[
D 0
0 0

]
That is, for any m× n matrix M with entries in Z, there exist change of basis matrices P ∈ Zm×m and
Q ∈ Zn×n such that PMQ = Σ is of the above form, called the Smith normal form of M .

This form is convenient for calculating the kernel and cokernel of φ. First note that r ≤ min(n,m).
Then,

kerφ ∼= Zn−r

(note, n− r is the number of zero columns) and

cokerφ ∼=

(
r⊕
i=1

Z/dr

)
⊕ Zm−r

(note, m− r is the number of zero rows).

Since every finitely generated abelian group is the cokernel of some map, we see that every finitely
generated abelian group must be of this form:

A ∼=

(
r⊕
i=1

Z/dr

)
⊕ Zk

and we call k the rank of A, written as k = rkZ(A).
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39.2 Introduction

The goal of algebraic topology is to translate questions in topology into questions in algebra, most
commonly by constructing algebraic invariants of topological spaces. That is, given a space X, we
wish to construct an algebraic structure A(X) such that if spaces X and Y are homeomorphic (or just
homotopy equivalent), then the associated algebraic objects are isomorphic:

X ≃ Y −→ A(X) ∼= A(Y )

For an algebraic invariant A(−) to be useful, we require that:

1. it is “easy” to compute A(−) and to tell when the algebraic objects are not isomorphic;

2. the algebraic invariant is “fine” enough in that A(X) ̸∼= A(Y ) often, for non-homeomorphic X and
Y .

We have previously constructed the fundamental group (or first homotopy group) π1(−). This invariant
takes a pointed space (X,x) as input and returns the group of homotopy classes of pointed maps (S1,∗)→
(X,x), or loops in X based at x, under the operation of path concatenation.

The fundamental group is a complete invariant for compact surfaces, but fails to capture the topology
of higher-dimensions, only detecting the 1-dimensional hole structure of a space. For instance, the
fundamental groups of R3 and R4 are both trivial and cannot be used to distinguish them. Fundamental
groups are also in general non-abelian, so it is difficult to determine whether two such groups are non-
isomorphic.

One natural generalisation of this is to consider pointed maps not just from the circle S1, but from
n-spheres into a pointed map: given a pointed space (X,x), the nth homotopy group πn(X,x) is the
group of homotopy classes of pointed maps (Sn,∗)→ (X,x). The nth homotopy groups are a much more
fine invariant, and can tell apart many topological spaces, but they are extremely difficult to compute.
Even for simple spaces like spheres, the homotopy groups are generally unknown.

Here, we study a more computable alternative: homology groups. These invariants are abelian groups
and are easier to distinguish and compute than homotopy groups – for instance, the homology groups of
spheres are all known – but conversely, they contain less information than homotopy groups.

39.2.1 Homology
Consider the following graph, X1, consisting of two 0-cells connected with four oriented 1-cells:

y

x

a db c

The fundamental group of X1 consists of loops formed by sequences of edges, starting and ending at
some fixed basepoint. For instance, at the basepoint x, one possible loop is given by ab−1, travelling
along a, then along b in reverse direction. Another loop is given by ad−1bc−1ac−1. Because these loops
must be continuous paths, the fundamental group is generally non-abelian.

To simplify, let us consider what happens if we abelianise this group. For example, the loops ab−1 and
b−1a are equal if we allow a to commute with b−1. Note that these loops are really the same circle, just
with a different basepoint – x for ab−1 and y for b−1a. Choosing a new basepoint in a loop just cyclically
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permutes its edges, so we no longer have to consider pointed spaces: instead of loops, we have cycles,
independent of a choice of basepoint.

Now working with an abelian group, we swap to additive notation, so cycles are Z-linear combinations
of edges. More generally, a (1-)chain is any such linear combination of edges. Even more generally, for
any cell complex X, an n-chain in X is a linear combination of n-cells – that is, the group of n-chains in
a space X with k n-cells {ci}ki=1 is the free abelian group Cn(X) =

⊕k
i=1 Z · ci ∼= Zk on the basis {ci}.

Note that not all 1-chains may be interpreted as paths, as endpoints do not have to match up. For
instance a + b is a chain, but not a meaningful path. In any case, the order of concatenation of edges
is immaterial in an 1-chain. Note also that chains may have multiple decompositions into cycles: for
instance, (a− b) + (c− d) = (a− d) + (c− b), so more generally, we define a cycle to be any chain that
has at least one decomposition into a cycle of the previous geometric sense. How can we determine when
a chain admits such a decomposition?

In a geometric cycle, interpreted as a path, every vertex is entered and exited the same number of times.
In the above graph, given a chain αa+βb+γc+ δd, the net number of times y is entered is α+β+γ+ δ,
and similarly, the net number of times x is entered is −α − β − γ − δ. For a chain to be a cycle, we
require that these quantities are simultaneously zero, so in the above graph, a chain is a cycle if and only
if α+ β + γ + δ = 0.

Let C1 be the free abelian group with basis a,b,c,d, and C0 the free abelian group with basis x,y. Elements
of C1 are then linear combinations of edges, which are exactly the 1-chains, and similarly, elements of
C0 are linear combinations of vertices, or 0-chains.

We define the (1st) boundary homomorphism ∂1 : C1 → C0 by sending each basis element (edge) to
the vertex at its head, minus its vertex at the tail. For instance, for the graph above, every edge is
sent to y − x, as every edge points from x to y. Then, the action of this homomorphism on a chain
αa+βb+γc+ δd is given by (α+β+γ+ δ)y− (α+β+γ+ δ)x. Thus, the cycles are precisely the kernel
of ∂1. It is easy to verify that a− b, b− c, and c− d form a basis for this kernel – so every cycle in X1

is a linear combination of these three cycles. In this way, this kernel captures the geometric information
that the graph X1 has three “(1-dimensional) holes”.

Let us expand the graph by attaching a 2-cell, A, along the cycle a− b to produce a 2-dimensional cell
complex X2.

A

y

x

a db c

We similarly define the group C2 to be the free abelian group with basis A. We can also define another
boundary operator ∂2 : C2 → C1, but this requires a choice of orientation for A.

If we regard A as being oriented clockwise, its boundary is then the cycle a− b. This cycle now no longer
encloses a hole as it did in X1, as it can be linearly contracted to a point over A. This suggests that we
form a quotient of the group of cycles in the previous example by factoring out the subgroup generated
by a − b. For instance, the cycles a − c and b − c would now be equivalent in this quotient, consistent
with them being homotopic in X2. This quotient group is exactly ker ∂1/ im ∂2 – the 1-cycles modulo
those that are boundaries of 2-cells. This quotient group is the homology group H1(X2). In this case,
H1(X2) is free abelian on 2 generators, corresponding to filling A having removed one of the three holes.

We can also compute H1(X1) by taking C2 = 0 to be the trivial group, as there are no 2-cells in X1,
and ∂2 to be the trivial homomorphism; so we have H1(X1) = ker ∂1/ im ∂2 = ker ∂1 is free abelian on 3
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generators, corresponding to our three 1-dimensional holes.

We could attach another 2-cell along the same cycle a − b, forming a kind of hollow banana shape in
X3. H1(X3) is unchanged, but now ∂2 has a non-trivial kernel – the group generated by the spherical
2-cycle A − B. Just as the three cycles in X1 detected 1-dimensional holes, the presence of the 2-cycle
A − B indicates the existence of a 2-dimensional hole – the missing interior of this sphere. We could
expand this cell complex again, attaching a 3-cell C along A − B. This creates a new chain group C3,
and we can define a boundary homomorphism ∂3 : C3 → C2 by sending C to A−B (note that this again
depends on a choice of orientation for C). Now, H2(X4) = ker ∂2/ im ∂3 is trivial, as this 2-hole has now
been filled in.

39.3 Simplicial Homology

The general pattern is now clear: for any cell complex, we have chain groups Cn(X) of n-chains in
X, and boundary operators ∂n : Cn(X) → Cn−1(X), from which we define the nth homology group
Hn(X) = ker ∂n/ im ∂n+1.

The difficulty is in how we define ∂n in general. For n = 1, this is not hard: the boundary of an edge
is the vertex at its head minus the vertex at its tail. However, for arbitrary n, this becomes rather
complicated.

For now, we start with a simplified version of homology called simplicial homology, where we deal only
with topological spaces that can be expressed in terms of simplices which admit an easier notion of
boundary mapping.

39.3.1 ∆-Complexes

The standard n-simplex ∆n ⊆ Rn+1 is the subspace

∆n :=

{
x ∈ Rn+1 : xi ≥ 0,

n∑
i=0

xi = 1

}
whose vertices v0,v1, . . . ,vn are the unit vectors along the coordinate axes. More generally, any homeo-
morphic space will also be called an n-simplex and labelled ∆n.

x0

∆0

x0

x1

∆1

x0

x1
x2

∆2

The standard n-simplex for n = 0,1,2

From now, on we suppress the coordinate axes and draw general (non-standard) simplices (particularly
as drawing axes in > 3 dimensions is rather difficult!).

For the purposes of simplicial homology, it is important to keep track of the ordering of these vertices,
so we also refer to a simplex by an ordered list of its vertices: [v0, . . . ,vn]. This representation also has
a side effect of determining the orientation of its edges [vi,vj ] according to increasing subscripts. When
drawing simplices, the convention is to annotate the edges with an arrow pointing in ascending order of
vertices:
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v0 v0 v1

v0 v1

v2

v0

v1

v2

v3

Deleting one of the n + 1 vertices of an n-simplex ∆n = [v0, . . . ,vn], say vj , the remaining n vertices
span an (n−1)-simplex [v0, . . . ,v̂j , . . . ,vn] (where ̂ indicates omission) called the jth face of [v0, . . . ,vn],
denoted by ∂j∆n.

More concretely, in terms of the standard n-simplex, the jth face of ∆n is the subspace ∂j∆n ⊆ ∆n of
points whose jth coordinate is zero. That is,

∂j∆
n = {x ∈ ∆n : xj = 0}

=

{
x ∈ Rn+1 : xj = 0,xi ≥ 0

n∑
i=0

xi = 1,

}

Note that, geometrically, the jth face is the one opposite the deleted jth vertex.

For instance, in the above simplices: the 0th face of ∆1 is the vertex v1, and the 1st face is v0; the 0th
face of ∆2 is the edge [v1,v2], the 1st face the edge [v0,v2], and the 2nd face the edge [v0,v1]; and the 0th
face of ∆3 is the triangle [v1,v2,v3], etc.

The boundary ∂∆n of ∆n is then the union of its n+ 1 faces. Note that the unique face ∂0∆0 of ∆0 is
the empty set, so ∂∆0 = ∅.

A ∆-complex X is a topological space∗ defined inductively as follows:

1. Start with a collection of 0-simplices, or points. This is the 0-skeleton X0.

2. Inductively, the n-skeleton Xn is obtained from Xn−1 by attaching n-simplices ∆n
α where each face

∂i∆
n
α is identified with an (n− 1)-simplex ∆n−1

β in Xn−1.

3. If k is the minimal k such that Xk = Xk+1, i.e., there are no m-cells added for any m > k, then
X = Xk has dimension k.

More generally, X =
⋃
n∈NX

n, in which case, a subspace U ⊆ X is open if and only if U∩Xn ⊆ Xn

is open for all n.

Example. Start with a single point X0 = ∆0, and attach a single 1-simplex ∆1 in the only possible way.
That is, both boundary points are identified with the 0-skeleton:

△

Example. Now start with two points X0 = {p,q}, and attach two 1-simplices a,b as follows:

∗ More properly, a ∆-complex structure on a space X.
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qp

a

b

with the arrows indicating that the 0th face of a is identified with p, the 1st face with q; and the 0th
face of b is identified with q, and the 1st face with p.

Note that both of these spaces are homeomorphic to a circle, so a topological space can have multiple
∆-complex structures. △

Example. The torus T2, real projective plane RP2, and the Klein bottle K can all be constructed as
quotients of a square by identifying opposite edges. They can all be constructed as ∆-complexes as
follows:

p p

p p

c
a a

b

b

S

T

T2

p q

q p

c
a a

b

b

S

T

RP2

p p

p p

c
a a

b

b

S

T

K
△

A ∆-complex is essentially just combinatorial data. That is, it is determined up to homeomorphism by the
sets of n-simplices, Sn, n ≥ 0, together with the attaching rules – namely, the face maps dni : Sn → Sn−1,
0 ≤ i ≤ n, specifying that ∂i∆n

α is identified with ∆n−1
dni (α)

. These maps are not arbitrary, but satisfy the
relation

dn−1
i ◦ dnj = dn−1

j−1 ◦ d
n
i

whenever i < j.

Writing the simplex as [v0, . . . ,vi, . . . ,vj , . . . ,vn], this relation is just saying that removing vj , then vi,
should be the same as removing vi, then vj ; removing vi first means that vj is the (j − 1)th vertex in
the intermediary simplex.

Such a collection of combinatorial data S = (S•,d
•
•) is called a ∆-set or semi-simplicial set.

Given a ∆-set S, we denote the associated ∆-complex, called its geometric realisation, by |S|. More
precisely, a ∆-complex is really a topological space X equipped with a homeomorphism X ∼= |S| for
some ∆-set S, the latter of which is then called a ∆-complex structure on X. As in the earlier examples
of circles, a topological space can admit distinct ∆-complex structures.

Example. In the torus T2 above, we have

S0 = {p}, S1 = {a,b,c}, S2{S,T}

with face maps

d20(S) = b,

d21(S) = c,

d22(S) = a,

d20(T ) = a,

d21(T ) = c,

d22(T ) = b;

d10(a) = d10(b) = d10(c) = p,

d11(a) = d11(b) = d11(c) = p;
d00(p) = ∅

△
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39.3.2 Simplicial Homology
Previously, we defined some homology groups on simple CW complexes in terms of certain boundary
operators. For arbitrary CW complexes, defining these operators for higher dimensions is tricky, but for
∆-complexes, the situation is a little easier.

• For a 0-simplex, i.e. a point,

v0

the boundary is empty.

• For a 1-simplex,

v0 v1

we define its oriented boundary to be the formal difference between the vertices at its head and its
tail, just like we did for CW complexes.

v1 − v0
Note that the choice of orientation is arbitrary, and v0 − v1 would work just as well.

• For a 2-simplex,

v0 v1

v2

⟲ ab

c

we define its oriented boundary as
a− b+ c

Again, this choice is arbitrary, and orienting clockwise works equally well.

• Similarly, for a general n-simplex s, the boundary is then the alternating sum of its faces:

∂n(s) =

n∑
i=0

(−1)idni (s)

∂n
(
[v0, . . . ,vn]

)
=

n∑
i=0

(−1)i[v0, . . . ,v̂i, . . . ,vn]

where ̂ indicates omission.

From this point, the theory is entirely the same as in the introduction:

Let S be a ∆-set.

• The group of n-chains in S is the free abelian group on Sn, denoted by ∆n(S).

• The boundary operator ∂ : ∆n(S)→ ∆n−1(S) is the homomorphism given on the generators s ∈ Sn
by the formula above, noting that ∆−1(S) is the trivial group 0, and that ∂0 is the zero map.

• The group of n-cycles Zn(S) is the kernel of the nth boundary operator,

Zn(S) := ker(∂n)
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• The group of n-boundaries Bn(S) is the image of the (n+ 1)th boundary operator,

Bn(S) := im(∂n+1)

• The nth simplicial homology group H∆
n (S) is the group of n-cycles modulo those that are bound-

aries,

H∆
n (S) :=

Zn(S)

Bn(S)
=

ker(∂n)

im(∂n+1)

and elements of this group are called homology classes.

Of course, for this last expression to hold, we require that Bn(S) ⊆ Zn(S) for all n and all ∆-sets S.

Lemma 39.3.1. Let S be a ∆-set. Then, ∂n ◦ ∂n+1 = 0. Equivalently, Bn(S) ⊆ Zn(S).

Proof. The equivalence of the two statements is clear from the definition of cycles and boundaries.

Let s ∈ Sn+1. Then,

∂n∂n+1(s) = ∂n

n+1∑
j=0

(−1)jdn+1
j (s)


=

n∑
i=0

n+1∑
j=0

(−1)i+jdni dn+1
j (s)

=
∑

0≤i<j≤n+1

(−1)i+jdni dn+1
j (s) +

∑
0≤j≤i≤n

(−1)i+jdni dn+1
j (s)

=
∑

0≤i<j≤n+1

(−1)i+jdnj−1d
n+1
i (s) +

∑
0≤j≤i≤n

(−1)i+jdni dn+1
j (s)

=
∑

0≤i<j≤n+1

(−1)i+j−1dnj d
n+1
i (s) +

∑
0≤j≤i≤n

(−1)i+jdni dn+1
j (s)

= 0

■
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Example. We calculate the homology groups of the following ∆-sets.

pa

S

qp

a

b

T

For S, we have boundary operators

∂1 : Za = ∆1(S)→ ∆0(S) = Zp
∂0 : Zp = ∆0(S)→ ∆−1(S) = 0

respectively defined on the generators a and p by

∂1(a) = p− p = 0

∂0(p) = 0

with all other boundary operators trivially the zero map, as there are no simplices of any other dimension.
These boundary operators both vanish, so Z1(S) = Z0(S) = Z, and Bn(S) = 0 for all n. So, H0(S) =
H1(S) = Z/0 ∼= Z.
For T , we have boundary operators

∂1 : Za⊕ Zb = ∆1(S)→ ∆0(S) = Zp⊕ Zp
∂0 : Zp⊕ Zq = ∆0(S)→ ∆−1(S) = 0

defined by

∂1(a) = p− q,
∂1(b) = q − p;

∂0(p) = 0,

∂0(q) = 0

which we can represent more compactly by

· · · 0 Za⊕ Zb Zp⊕ Zq 0
a b

p
q

[
1 −1
−1 1

] p q
∗
[
0 0

]
∂0∂1

with all other n-chains trivial. By inspection, we find that ker(∂1) = Z(a+ b) and im(∂1) = Z(p− q), but
we can do this more generally by examining the Smith normal form of the matrix associated with ∂1:[

1 0
0 0

]
Along the diagonal, we have a single 1, so im(∂1) ∼= Z, and the remaining zero row gives ker(∂1) ∼=
Z2−1 = Z. The zero matrix for ∂0 also gives ker(∂0) = Zp⊕ Zq ∼= Z2.

H0(T ) =
ker(∂0)

im(∂1)

=
Z2

Z
= Z

H1(T ) =
ker(∂1)

im(∂2)

=
Z
0

= Z

and all other homology groups 0. △
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We just saw that these two ∆-sets S and T , which have the same geometric realisation, have the same
homology groups. This is not a coincidence. Though it is not clear at all at this point, it turns out that
homology is an invariant of the geometric realisation.

If X is a topological space with a ∆-complex structure |S| ∼= X, we define its nth simplicial homology
group to be

H∆
n (X) := Hn(S)

Note that, once we have the chain groups and boundary operators, computing the simplicial homology
is an entirely mechanical process:

Algorithm 12 Simplicial Homology
1: Determine the matrix of each boundary operator

∂n
(
[v0, . . . ,vn]

)
=

n∑
i=0

(−1)i[v0, . . . ,v̂i, . . . ,vn]

2: Determine the Smith normal form for each boundary operator.
3: For each pair of matrices

Zℓ A−→ Zm B−→ Zn

with BA = 0, we have
kerB

imA
∼=

(
r⊕
i=1

Z/di

)
⊕ Zm−a−b

where {di}ri=1 are the invariants of A (i.e. the diagonal elements), and a = rank(A) and b = rank(B)
(i.e. the number of invariants of A and B, respectively).

Example. We compute the simplicial homology of the torus

p p

p p

c
a a

b

b

S

T

T

We have the chain of boundary operators

· · · 0 ZS ⊕ ZT Za⊕ Zb⊕ Zc Zp 0
S T

a
b
c

−1 1
−1 1
1 −1

 a b c
p
[
0 0 0

]
∂0∂1∂2

where ∂2 has Smith normal form 1 0
0 0
0 0
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and ∂1 already in Smith nornal form, so we have rank(A) = 1 and rank(B) = 0, giving,

H1(T ) =

(
1⊕
i=1

Z/1

)
⊕ Z3−1−0

= Z/1⊕ Z2

= Z2

For H0(T ), ∂1 has no invariants; ∂1 has rank 0; and ∂0 is the zero map which also has rank 0, so

H0(T ) = Z1−0−0

= Z

and for H2(T ), ∂3 is the zero map with no invariants, so

H2(T ) = Z1−0−0

= Z

All other boundary maps are trivial, so all other homology groups are 0, giving

H∆
n (T ) ∼=


Z⊕ Z n = 1

Z n = 0,2

0 n ≥ 3

△

39.3.3 Chain Complexes
So far, we have been computing homology groups of ∆-sets, first by mapping them to free abelian groups
of n-chains with boundary operators between them, before finally computing the homology groups in
terms of these operators.

S 7→
(
∆•(S),∂•

)
7→ H•(S)

Algebraically, this middle step takes the form of sequences of abelian groups with homomorphisms
between them,

· · · → ∆n+1(S)
∂n+1−−−→ ∆n(S)

∂n−→ ∆n−1(S)→ · · · → ∆1(S)
∂1−→ ∆0(S)

∂0−→ 0

It will be useful to discuss this structure independently from the specific situation here, as this process
will recur repeatedly in the future in multiple different contexts.

A chain complex C• = (C•,∂•) is a family of abelian groups (Cn)n∈Z equipped with maps called differ-
entials ∂n : Cn → Cn−1,

· · · → Cn+1
∂n+1−−−→ Cn

∂n−→ Cn−1 → · · ·

such that ∂n ◦ ∂n+1 = 0 for each n.

In general, if we only define Cn for n ∈ [a,b], then it is understood that Cn = 0 for all n /∈ [a,b], and we
call such a chain complex bounded (or bounded above/below, if instead defined on a half-infinite interval),
or say that the chain complex is concentrated in degrees [a,b].

Example. Let S be a ∆-set. Then, the collection of chain groups in S and the boundary operators between
them form a (bounded below) chain complex ∆•(S) called the simplicial chain complex associated with
S. △
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Let C• be a chain complex.

• The n-cycles are
Zn(C•) = ker(∂n)

• The n-boundaries are
Bn(C•) = im(∂n+1)

and since ∂n ◦ ∂n+1 = 0, we have Bn ⊆ Zn, so

• The nth homology group is

Hn(C•) :=
Zn
Bn

=
ker(∂n)

im(∂n+1)

• If Hn(C•) = 0, or equivalently, if im(∂n+1) = ker(∂n), then we say that C• is exact in degree n. If
C• is exact in all degrees, then we say that C• is exact.

Let (C•,∂•) and (D•,∂
′
•) be chain complexes. A chain map f• : C• → D• is a family of maps fn : Cn →

Dn, such that

· · · Cn+1 Cn Cn−1 · · ·

· · · Dn+1 Dn Dn−1 · · ·

∂n∂n+1

∂′
n+1 ∂′

n

fn−1fnfn+1

commutes for all n. That is,
∂′n ◦ fn = fn−1 ◦ ∂n

Lemma 39.3.2. A chain map f• : C• → C ′
• restricts to maps

• fn : Zn(C•)→ Zn(C
′
•);

• fn : Bn(C•)→ Bn(C
′
•),

and hence induces maps fn : Hn(C•)→ Hn(C
′
•).

Proof. If ∂n(α) = 0, then ∂′n
(
fn(α)

)
= fn−1

(
∂n(α)

)
= 0, so fn sends cycles to cycles. Also, fn sends

boundaries to boundaries as fn−1

(
∂n(β)

)
= ∂′n

(
fn(β)

)
. Hence, fn induces homomorphisms in homology.

■

Let S = (S•,d•) and T = (T•,d
′
•) be two ∆-sets. A map of ∆-sets f• : S → T is a family of maps

fn : Sn → Tn such that every square in

· · · Cn+1 Cn Cn−1 · · ·

· · · Tn+1 Tn Tn−1 · · ·

fn−1fnfn+1

dn+1
• dn•

d′n+1
• d′n•

commutes. That is, for all 0 ≤ i ≤ n,

fn ◦ dni = dn+1
i ◦ fn+1

whenever both sides of the equation are defined.
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Lemma 39.3.3. A map of ∆-sets f• : S → T induces a chain map f• : ∆•(S)→ ∆•(T ).

Proof. Define fn : ∆n(S)→ ∆n(T ) on generators s ∈ Sn by

ZSn −→ ZTn
s 7−→ fn(s)

Then,

∂′n ◦ fn(s) = ∂′n
(
fn(s)

)
=

n∑
i=0

(−1)id′ni
(
fn(s)

)
=

n∑
i=0

(−1)ifn−1

(
di(s)

)
= fn−1

(
n∑
i=0

(−1)idi(s)

)
= fn−1 ◦ ∂n(s)

■

Combining the previous two results, we have,

Corollary 39.3.3.1. Every map of ∆-sets induces a map in simplicial homology.

39.4 Singular Homology

In the previous section, we defined the simplicial homology for ∆-complexes. That is, spaces equipped
with homeomorphisms to a ∆-set. There are two main problems with this result. Firstly, topological
spaces often do not have an obvious ∆-complex structure – and some topological spaces admit no such
structure at all. Secondly, even if a given space admits a ∆-complex structure, it may not be unique,
and we haven’t yet proven that simplicial homology is independent of choice of ∆-complex structure.

We now present an alternative theory of homology that avoids these difficulties, and will eventually allow
us to prove the independence mentioned above.

Let X be a topological space and let n ≥ 0. A singular n-simplex in X is a continuous map σ : ∆n → X.

Example.

1. A singular 0-simplex is a function σ : ∆0 ∼= {∗} → X. Such a function just picks out a point x ∈ X
and we sometimes identify the two.

2. A singular 1-simplex is a function σ : ∆1 ∼= [0,1]→ X, which is just a path in X from σ(0) to σ(1).

3. If X is a ∆-complex, then any n-simplex in X can be viewed as the image of a simplex ∆n under
a function into X, i.e. a singular n-simplex in X.

△

Now, recall the definition of the oriented boundary of a simplex in a ∆-complex:

∂n
(
[v0, . . . ,vn]

)
=

n∑
i=0

(−1)i[v0, . . . ,v̂i, . . . ,vn]
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Because a singular simplex σ : ∆n = [v0, . . . ,vn] → X is a map, the ith “face” of this simplex is just
the restriction of σ to the ith face of the standard simplex. So, the oriented boundary of σ : ∆n =
[v0, . . . ,vn]→ X is

∂n(σ) =

n∑
i=0

(−1)iσ
∣∣
∂i∆n

where ∂i is the boundary operator for standard simplices found earlier. That is,

=

n∑
i=0

(−1)iσ
∣∣
[v0,...,v̂i,...,vn]

Note that these faces that σ is restricted to are themselves homeomorphic to the standard (n−1)-simplex,
so we can view each restriction as a singular (n−1)-simplex themselves, and thus this expression becomes
a formal linear combination of singular (n− 1)-simplices in X, i.e., an element of Cn−1.

Example. Let σ : ∆2 = [v0,v1,v2]→ X be a singular simplex. Then, the boundary of σ is

∂(σ) = σ
∣∣
[v1,v2]

− σ
∣∣
[v0,v2]

+ σ
∣∣
[v0,v1]

△

Let X be a topological space and n ≥ 0.

• The group of singular n-chains in X is the free abelian group on the singular n-simplices, denoted
by Cn(X) := Z · {σ : ∆n → X}.

• The boundary operator ∂ : Cn(X) → Cn−1(X) is the homomorphism given on the generators
σ ∈ Cn(X) by the alternating sum of faces as above.

Note that the groups Cn(X) are usually infinite, and frequently uncountable, as there are many ways to
map a standard simplex into a space.

The same proof as for ∆-sets then translates across to singular simplices:

Lemma 39.4.1. Let X be a topological space. Then, ∂n ◦ ∂n+1 : Cn+1(X)→ Cn−1(X) is the zero map.

That is, (C•(X),∂•) forms a chain complex called the singular chain complex associated with X. The
singular homology groups of X are then the homology groups of this chain complex, i.e.,

Hn(X) := Hn

(
C•(X)

)
Example. Let X = {∗} be a point. For each n ≥ 0, there is a unique singular n-simplex given by the
constant map cn : ∆n → X at the unique point of X, so the singular chain complex is

· · · → Z ∂n−→ Z→ · · · → Z ∂2−→ Z ∂1−→ Z ∂0−→ 0

Now,

∂n(cn) =

n∑
i=0

(−1)icn|∂i∆n

=

n∑
i=0

(−1)ncn−1

=

{
cn−1 n ≥ 0 even
0 otherwise
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and hence the differentials are:

· · · → Z
∼=−→ Z 0−→ Z

∼=−→ Z 0−→ Z 0−→ 0

At degree zero, we have
Z 0−→ Z 0−→ 0

so H0(X) = ker(0)
im(0) = Z

0 = Z. At all other even degrees, we have

Z
∼=−→ Z 0−→ Z

so Hn(X) = ker(0)
im(∼=) =

Z
Z = 0, and at odd degrees, we have

Z 0−→ Z
∼=−→ Z

so Hn(X) = ker(∼=)
im(0) = 0

0 = 0. So,

Hn

(
{∗}
)
=

{
Z n = 0

0 n ̸= 0

△

We see that, even for the most trivial of topological spaces, the singular chain complex is decidedly
non-trivial. For larger spaces, the number of singular n-simplices quickly becomes unmanageable, and
direct computation is rarely a feasible strategy.

Eventually, we will develop some theory that will enable the computation of singular homology groups
without having to work with the singular chain complex directly, but for now, we give some interpretations
of H0 and H1 in topological spaces.

39.4.1 Reduced Homology
It is often convenient for us to have a version of homology for which the one-point space has trivial
homology groups in every dimension.

Let π : X → ∗ be the unique morphism to the point. The reduced homology of X is defined as

H̃n(X) := ker
(
Hn(X)

π∗−→ Hn(∗)
)

Equivalently, reduced homology can also be characterised as the homology of the augmented chain
complex

· · · → C2(X)
∂2−→ C1(X)

∂1−→ C0(X)
ε−→ Z→ 0

where ε (
∑
i niσi) =

∑
i ni. Note that by convention, we only consider reduced homology of non-empty

spaces X, or else various pathologies can arise.

Since ε ◦ ∂1 = 0, ε vanishes on im(∂1) and hence induces a map H0(X) → Z with kernel H̃0(X), so
H0(X) ∼= H̃0(X)⊕ Z. Also note that, by construction, Hn(X) ∼= H̃n(X) for n > 0.

39.4.2 Low-Degree Interpretation
Two n-chains x and y are homologous if they are in the same equivalence class or homology class in
Hn(X) = Zn(X)

Bn(X) , that is, if they differ by a boundary (i.e. an element of Bn(X) = im(∂n+1)) – or
equivalently, if their formal difference x− y or y− x is itself a boundary – and we write x ∼ y to denote
this relation.
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Example. Let x and y be singular 0-simplices (points) in a space X, and suppose they lie in the same
path-connected component. Let γ : ∆1 ∼= [0,1]→ X be a singular 1-simplex with γ(0) = x and γ(1) = y,
i.e., a path from x to y. Then,

∂1(γ) = y − x

and hence x and y are homologous, as they differ by the boundary of γ. △

Lemma 39.4.2. Let X be a non-empty and path-connected∗ topological space. Then, H0(X) = Z.

Proof. By definition,

H0(X) :=
Z0

(
C•(X)

)
B0

(
C•(X)

) =
ker(∂0)

im(∂1)

The differential ∂0 : C1(X)→ 0 maps into the trivial group, so the kernel ker(∂0) = C0(X) is the entire
group. The idea is now to define a homomorphism from C0(X) to Z with kernel B0

(
C•(X)

)
= im(∂1),

which, combined with the first isomorphism theorem, the result will follow.

Define the degree homomorphism deg : C0(X)→ Z by sending every basis element x ∈ X (i.e. singular
0-simplex) to 1 ∈ Z.

Because X is non-empty, there exists at least one basis element x ∈ X which maps to the generator
1 ∈ Z, so deg is surjective.

We also have B0(X) ⊆ ker(deg), since the boundary ∂1(γ) ∈ B0(X) of any singular 1-simplex has degree

deg
(
∂1(γ)

)
= deg

(
γ(1)− γ(2)

)
= 1− 1 = 0

so ∂1(γ) ∈ ker(deg). The reverse containment ker(deg) ⊆ B0(X) also holds:

Let L =
∑
x∈X λx · x ∈ ker(deg) be a 0-chain whose degree vanishes. Then,

L =
∑
x∈X

λx · x

=
∑
y∈X
λy>0

λy · y +
∑
z∈Z
λz<0

λz · z

=
∑
y∈Y
λy>0

λy · y −
∑
z∈Z
λz<0

(−λz) · z

Since deg(L) = 0, these two sums are equal, so we can pair up terms from each sum and write

L =
∑
i

(yi − zi)

for some (possibly repeated) points yi,zi ∈ X. Since X is path-connected, there is a path γi from yi to
zi for all i, so yi − zi = ∂1(γi) ∈ B0(X), and hence L ∈ B0(X).

So, ker(deg) = B0(X). The first isomorphism theorem then gives

H0(X) :=
ker(∂0)

im(∂1)
=
C0(X)

B0(X)
=

C0(X)

ker(deg)
∼= im(deg) = Z

as required. ■

To interpret the 0th singular homology group for general spaces, we need the following intuitive fact:
∗ We will assume that path-connected spaces are non-empty, and will not mention it from this point onwards.
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Theorem 39.4.3. Let X be a topological space and (Xα)α∈Λ its path-connected components. Then,

Hn(X) =
⊕
α∈Λ

Hn(Xα)

Proof. If σ : ∆n → X is a singular n-simplex, then its image is path-connected and thus lies entirely
in one of the Xα. That is, we have Cn(X) ∼=

⊕
α∈Λ Cn(Xα). Moreover, the oriented boundary of σ is

a linear combination of (n − 1)-simplices, all of which also lie in Xα, so ∂n is the sum of the boundary
operators for each Xα. That is, C•(X) =

⊕
α∈Λ C•(Xα) as chain complexes. This decomposition

therefore passes to cycles and boundaries, and eventually to homology. ■

Corollary 39.4.3.1. Let X be a topological space. Then, H0(X) = Zπ0(X). That is, H0(X) is the free
abelian group with generators the path-connected components of X.

Proof. By definition, π0(X) is the collection of path-connected components of X. Applying the previous
two results then yields the desired result. ■

There is a similarly close relation between the first homology group H1(X) and the first homotopy group
π1(X,x), as any path f : [0,1]→ X can also be interpreted as a singular 1-simplex. In particular, if f is
a loop a a path, then it is also a cycle as a singular 1-simplex, since ∂1(f) = f(1)− f(0) = 0.

Lemma 39.4.4. For any topological space X and all loops f,g ∈ π1(X,x),

(i) If f is a constant path, then f ∼ 0. That is, f is a boundary.

(ii) If f ≃ g, then f ∼ g.

(iii) f · g ∼ f + g where · on the left is path concatenation.

(iv) f−1 ∼ −f where f−1 is the reverse path of f .

Proof.

(i) If f has constant value x, then the singular 2-simplex σ : ∆2 = [v0,v1,v2]→ X with constant value
x has boundary

∂2(σ) = σ
∣∣
[v1,v2]

− σ
∣∣
[v0,v2]

+ σ
∣∣
[v0,v1]

= f − f + f

= f

(ii) Let H : [0,1]2 → X be the homotopy between f and g relative to their endpoints:

cx cy

f

g

where cx and cy are the constant maps at x and y, respectively. By subdividing the square into
two triangles [v0,v1,v3] and [v0,v2,v3], we obtain a pair of singular 2-simplices in X:

Notes on Mathematics | 766



Homology Singular Homology

h
cx cy

f

g

σ1

σ2

v0 v1

v2 v3

with h(t) = H(t,t) the diagonal. Then,

∂2(σ2 − σ1) = ∂2(σ2)− ∂2(σ1)
= (γ2 − γ + cx)− (cy − γ + γ1)

= (γ2 − γ1) + (cx − cy)

By property (i), the constant maps cx and cy are boundaries, so f ∼ g.

(iii) Let f and g be two loops based at x, and consider the following 2-simplex:

v0 v1

v2

gf · g

f

Now, define σ : ∆2 → X to be the orthogonal projection of ∆2 = [v0,v1,v2] onto the edge [v0,v2]
composed with by f · g : [v0,v2]→ X:

v0 v1

v2

g

f

Then, the three faces of σ are σ
∣∣
[v0,v1]

= f , σ
∣∣
[v1,v2]

= g, and σ
∣∣
[v0,v2]

= f · g, so σ has boundary

∂(σ) = g − f · g + f

and we have f · g ∼ f + g.

(iv) Using the previous properties, f + f ∼ f · f ≃ cx ∼ 0.

■

Together, these properties imply that the map

h1 : π1(X,x)→ H1(X)

defined by h1
(
[γ]
)
= [γ] – where the brackets on the left mean homotopy class, and those on the right

mean homology class – is a group homomorpism.

Property (i) shows that identities are mapped to identities, (ii) shows that this map is well defined, and
(iii) shows that h1

(
[f ] · [g]

)
= [f ] + [g]. Note, however, that this homomorphism is generally not an

isomorphism, as H1(X) is abelian, while π1(X,x) is generally not.
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For a group G, the commutator subgroup [G,G] is the normal subgroup generated by the elements
ghg−1h−1 for g,h ∈ G. The abelianisation of G, denoted Gab is then the quotient G/[G,G].

Example. If G is abelian, then ghg−1h−1 = idG for all g,h ∈ G, so the commutator subgroup is trivial
and hence Gab = G. △

Lemma 39.4.5. The abelianisation of a free product is the direct sum of the abelianisations. That is,

(G ∗H)ab ∼= Gab ⊕Hab

Example. If G = Z ∗ Z, then Gab = Z⊕ Z. △

If G = ⟨S | R⟩ is a presentation, then the abelianisation is given by adjoining the commutator [x,y] to
the relations, for all generators x,y ∈ S.

Example. If G is given by
G = ⟨x,y | x3 = y5⟩

then the abelianisation has presentation:

Gab = ⟨x,y | 3x = 5y,x+ y = y + x⟩

Then, because x and y now commute, every element of G may be expressed in the form ax+ by, and is
equal to the identity precisely when a = 3k and b = −5k for some k ∈ Z, so Gab ∼= Z2/Z(3,−5) ∼= Z. △

By construction, Gab is abelian, and is in fact universal with respect to this property. That is, if
ϕ : G→ A is a morphism to an abelian group A, then there exists a unique morphism ϕ̄ : Gab → A such
that the following diagram commutes:

G A

Gab

ϕ̄

ϕ

ι

where ι : G→ Gab is the quotient map.

Lemma 39.4.6. For every group homomorphism ϕ : G→ A, [G,G] ⊆ ker(ϕ).

This gives another strategy for finding abelianisations of groups:

Example. Consider the symmetric group, Sn. The sign function sgn : Sn → {−1,1} ∼= Z/2 defined by

σ 7→

{
+1 σ is even
−1 σ is odd

Because Z/2 is abelian, the commutator subgroup [Sn,Sn] is contained in the kernel ker(sgn) = An. We
also have An ⊆ [Sn,Sn], since any two transpositions are conjugate in Sn, since σ(i,j)σ−1 =

(
σ(i),σ(j)

)
.

So, all transpositions are sent to the same element in (Sn)
ab. Because Sn is generated by transpositions,

all non-identity elements are identified in the abelianisation, so (Sn)
ab ∼= Z/2. △

This universal property also implies that the map h1 : π1(X,x) → H1(X) sending homotopy classes to
homology classes factors uniquely through a morphism

h̄1 : π1(X,x)
ab → H1(X)
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Theorem 39.4.7. For any path-connected space X, H1(X) ∼= π1(X,x)
ab. More specifically, the isomor-

phism is given by the induced map h̄1.

Proof. Since X is path-connected, we may choose for every point y ∈ X some fixed path ηy from x to y.
To any path γ : ∆1 → X, we associate the following loop based at x:

γ 7→ ηy(0) · γ · η−1
γ(1)

i.e. the loop that travels along the previously fixed path η from x to the starting point of γ, along the
path γ, then along the fixed η path in reverse direction back to x.

This association linearly extends from these generators to a group homomorphism C1(X)→ π1(X,x)
ab

which we can restrict to Z1(X),
g : Z1(X)→ π1(X,x)

ab

Now, consider a singular 2-simplex σ : ∆2 → X:

v0 v2

v1

γ2γ1

γ3

Then, γ1 · γ2 is homotopic to γ3 relative to their endpoints. To see this, we can embed this 2-simplex
into the square and project vertically onto the 2-simplex [v0,v2]:

cv0 cv2

γ3

γ1γ2

It follows that in π1(X,x)ab we have

g
(
∂2(σ)

)
= g(γ1 + γ2 − γ3)
= g(γ1) + g(γ2)− g(γ3)
= [ηv0 · γ1 · η−1

v1 ] + [ηv1 · γ2 · η−1
v2 ]− [ηv0 · γ3 · η−1

v2 ]

= [ηv0 · γ1 · η−1
v1 ] + [ηv1 · γ2 · η−1

v2 ] + [ηv2 · γ−1
3 · η−1

v0 ]

= [ηv0 · γ1 · η−1
v1 · ηv1 · γ2 · η

−1
v2 · ηv2 · γ

−1
3 · η−1

v0 ]

= [ηv0 · γ1 · γ2 · γ−1
3 · η−1

v0 ]

= [ηv0η
−1
v0 ]

= 0

so g passes to ḡ : H1(X)→ π1(X,x)
ab.

Let γ ∈ π1(X,x)ab be a loop based at x. Then,

ḡ ◦ h̄
(
[γ]
)
= ḡ
(
[γ]
)

= [ηx · γ · η−1
x ]
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= [ηx] + [γ]− [ηx]

= [γ]

so ḡ ◦ h̄1 = id.

Now, let L =
∑
i λiγi, λi ∈ Z be a 1-cycle in Z1(X). With relabelling and allowing repetition of paths

in the sum, we may assume each λi is ±1 (e.g. 2γ1 − 3γ2 = γ1 + γ1 − γ2 − γ2 − γ2).

Even further, by property (iv), we can eliminate all the negative coefficients by replacing any γi with
γ−1
i if necessary, and thus take λi = 1 for all i, so L =

∑
i γi.

Because ∂(L) = 0, if some γi is not a loop, then there must be some γj such that the chain γi · γj is
valid as a path, i.e., γi(1) = γj(0). By (iii), we may replace γi + γj in the sum by γi · γj . Repeating this
relabelling, we can reduce L to a single loop γ in X, based at say, y. Then,

h̄1 ◦ ḡ
(
[γ]
)
= [ηy · γ · η−1

y ]

= [ηy] + [γ]− [ηy]

= [γ]

so h̄ ◦ ḡ = id, and hence the maps constitute an isomorphism π1(X,x)
ab ∼= H1(X). ■

Corollary 39.4.7.1. If X is simply connected (and hence path-connected and non-empty), then H1(X) =
0.

Intuitively, all loops in a simply connected space can contract to a point, so the space has no one-
dimensional holes, and hence the first homology vanishes.

Corollary 39.4.7.2. H1(S
1) = Z, with a generator given by the homology class of the obvious surjective

map γ1 : ∆1 → S1 identifying the end points.

39.5 Fundamental Theorems

So far, we have only examined singular homology in degrees 0 and 1. For instance, we still haven’t
computed the higher homology groups of even basic spaces, such as the circle or higher n-spheres. As
noted earlier, the singular chain complex is much too large to admit any manual computation, so here, we
prove two fundamental theorems that allow us to compute the singular homology of topological spaces
without directly using the singular chain complex.

39.5.1 Homotopy Invariance
Given a continuous map f : X → Y , we can transform a singular n-simplex in X into a singular n-
simplex in Y by postcomposing the singular n-simplex σ : ∆n → X by f to obtain the composition
f ◦ σ : ∆n → Y . We can extend this to a group homomorphism f♯ : Cn(X) → Cn(Y ) by linearly
extending

f♯

(∑
i

niσi

)
=
∑
i

nif♯(σi)

=
∑
i

ni(f ◦ σi)

How do these maps act on boundaries? Expanding the definition, we have,

f♯
(
∂(σ)

)
= f♯

(∑
i

(−1)iσ
∣∣
[v0,...,v̂i,...vn]

)
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=
∑
i

(−1)if♯
(
σ
∣∣
[v0,...,v̂i,...vn]

)
=
∑
i

(−1)if ◦ σ
∣∣
[v0,...,v̂i,...vn]

= ∂(f ◦ σ)
= ∂

(
f♯(σ)

)
so, the following diagram commutes:

· · · Cn+1(X) Cn(X) Cn−1(X) · · ·

· · · Dn+1(X) Dn(X) Dn−1(X) · · ·

∂∂

∂ ∂

f♯f♯f♯

That is, the f♯ assemble into a chain map f• : C•(X)→ C•(Y ), which then induces a map in homology
(Lemma 39.3.2).

Lemma 39.5.1. Let f : X → Y be a continuous map. Then, there are induced maps in homology

f∗ : Hn(X)→ Hn(Y )

satisfying:

(i) (f ◦ g)∗ = f∗ ◦ g∗;

(ii) (idX)∗ = idHn(X).

That is, Hn(−) : Top→ Ab is a functor.

Proof. The construction is as above. Functoriality follows from the associativity of the composition
∆n σ−→ X

g−→ Y
f−→ Z and the definition of an identity map. ■

Theorem 39.5.2 (Homotopy Invariance). Suppose f,g : X → Y are homotopic. Then,

f∗ = g∗ : Hn(X)→ Hn(Y )

Corollary 39.5.2.1. If X ≃ Y are homotopy equivalent, then Hn(X) ∼= Hn(Y ) are isomorphic.

Proof. Let f : X → Y have homotopy inverse g : Y → X. Then,

f∗ ◦ g∗ = (f ◦ g)∗
= (idY )∗

= id(Hn(X))

g∗ ◦ f∗ = (g ◦ f)∗
= (idX)∗

= idHn(X)

so f∗ : Hn(X)→ Hn(Y ) and g∗ : Hn(Y )→ Hn(X) are inverse. ■

Corollary 39.5.2.2. Let X be a contractible space. Then,

Hn(X) =

{
Z n = 0

0 n ̸= 0

Proof. We have previously computed the homology of a point, in this example. If X is contractible, then
it is homotopy equivalent to the point, and hence has the same homology. ■
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Example. We therefore know the homology of real Euclidean space Rn, complex n-space Cn, the unit
ball Dn, the unit cube In, n-simplices ∆n,etc. and every other contractible space. △

By itself, homotopy invariance is not very powerful. For instance, the sphere Sn is not contractible, nor
is it homotopy equivalent to some other space whose homology we can compute (at least for n ≥ 1).
However, we can cover the sphere with (contractible) k-balls:

U1

U2

More generally, for any manifoldX, we can find an open covering {Ui}i such that each Ui is homeomorphic
to Rn for some n, and therefore contractible. If we can express the homology of X in terms of the
homology of the Ui, then we could apply Homotopy Invariance. Our second fundamental theorem allows
just that.

39.5.2 The Mayer–Vietoris Long Exact Sequence
We recall some material from homotopy theory:

Theorem (Seifert–van Kampen). Let X = U1 ∪ U2 be the union of two path-connected open subspaces
j1 : U ↪→ X, j2 : U2 ↪→ X such that U1 ∩ U2 is path-connected. Then, we have a map

π1(U1) ∗ π1(U2)
(j1)∗∗(j2)∗−−−−−−−→ π1(X)

where

1. (j1)∗ ∗ (j2)∗ is surjective;

2. its kernel is the normal subgroup generated by elements of the form i(γ) = (i1)∗(γ)(i2)∗(γ)
−1, where

ij : U1 ∩ U2 ↪→ Uj are the canonical inclusion maps.

We have this setup:

U1 ∩ U2 U2

U1 X

j2

i1 i2

j1

What do the induced maps in homology look like? Along the upper path, we have

(j2)∗ ◦ (i2)∗ = (j2 ◦ i2)∗

and along the lower path, we have
(j1)∗ ◦ (i1)∗ = (j1 ◦ i1)∗

by functoriality of homology. However, both maps are just the canonical inclusion of U1 ∩U2 into X, so
these must be equal.

Now, passing to homology, we abelianise the groups above (Lemma 39.4.5 is useful here) to obtain:

H1(U1 ∩ U2)

(
(i1)∗,−(i2)∗

)
−−−−−−−−−→ H1(U1)⊕H1(U2)

(j1)∗+(j2)∗−−−−−−−→ H1(X)

where
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1. j := (j1)∗ + (j2)∗ is surjective;

2. its kernel is precisely the image of i :=
(
(i1)∗,− (i2)∗

)
.

To clarify how these maps act, i is a map into a product, so i(σ) =
(
(i1)∗(σ),− (i2)∗(σ)

)
is a pair, while

(j1)∗ + (j2)∗ is a map out of a product, and it acts on each component as j(σ,τ) = (j1)∗(σ) + (j2)∗(τ).

The second point above is equivalent to saying that this chain complex is exact in the middle. Note that
to facilitate this, we had to add a negative sign in the map i; without it, the composition would be twice
the map induced by including U1 ∩U2 into X. Of course, this negative sign could be attached to any of
the four maps above; it is just convention that we put it in the second component of the first map here.

If we extend the chain complex by a 0 to the right, then the first point says precisely that the chain
complex is also exact at H1(X). However, as we will see, this does not typically hold when U1 ∩ U2 is
not path-connected.

In this, we require that U1, U2, and U1 ∩U2 are all path-connected, but this is rather restrictive: we still
cannot apply this to the circle. However, it turns out that we can drop these assumptions in homology:

Theorem (Mayer–Vietoris Long Exact Sequence). Let X = U1 ∪U2 be the union of two open subspaces
j1 : U ↪→ X, j2 : U2 ↪→ X. Then, there are connecting homomorphisms ∂ : Hn(X) → Hn−1(U1 ∩ Un)
such that

· · · → Hn+1(X)
∂−→ Hn(U1∩U2)

((i1)∗,−(i2)∗)−−−−−−−−→ Hn(U1)⊕Hn(U2)
(j1)∗+(j2)∗−−−−−−−→ Hn(X)

∂−→ Hn−1(U1∩U2)→ · · ·

is an exact chain complex.

Recall that in a chain complex, the composition of any two maps in the sequence is the zero map.
Equivalently, the image of each morphism is contained in the kernel of the next. Exactness means that
the converse also holds; the image of each morphism is precisely the kernel of the next. Equivalently, its
homology vanishes in each degree.

Note that, unlike for Seifert–van Kampen, the subspaces need not be open; the only requirement is that
their interiors jointly cover X.

Example. Consider the circle S1 with the same covering as previously.

The Mayer–Vietoris long exact sequence on either side of Hn(X) is then

· · · → Hn(U1)⊕Hn(U2)→ Hn(S
1)

∂−→ Hn−1(U1 ∩ U2)→ · · ·

We will consider this situation in degrees n ≥ 2 (so the lowest degree homology group possibly involved
is H1(U1 ∩U2)). U1 and U2 are contractible, so their homology is trivial, and similarly, their intersection
consists of two contractible path-connected components, and homology splits across path-connected
components, so the last term also vanishes, leaving:

· · · H1(X) H0(U1 ∩ U2) H0(U1)⊕H0(U2) H0(S
1) 0∂

(
(i1)∗,−(i2)∗

)
(j1)∗+(j2)∗

By exactness, Hn(S
1) = ker(∂) = im(f) = 0, so the homology of S1 vanishes in degrees n ≥ 2. For

degree n = 0, we note that S1 is path-connected, so H0(S
1) = Z; and for degree n = 1, we have

H1(S
1) = π1(S

1)ab = Z.

Overall, we have.

Hn(S
1) =

{
Z n = 0,1

0 n ̸= 0,1

△
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Example. We compute some of the maps at the end of the Mayer–Vietoris long exact sequence for S1:

· · · H1(S
1) H0(U1 ∩ U2) H0(U1)⊕H0(U2) H0(S

1) 0

Z⊕ Z Z⊕ Z Z

∂

(
(i1)∗,−(i2)∗

)
(j1)∗+(j2)∗

Let us label the generators more explicitly in the long exact sequence:

· · · → H1(S
1)

∂−→ Za⊕ Zb
(
(i1)∗,−(i2)∗

)
−−−−−−−−−→ Zp⊕ Zq (j1)∗+(j2)∗−−−−−−−→ Zs 0−→ 0

Because the zeroth homology groups are free abelian on the set of path-connected components, a gener-
ator is just a choice of point in each component. So, a and b are points in the intersection U1 ∩ U2, with
one in each component; p and q are points in U1 and U2, respectively; and s is some point in S1. For
instance,

U1

U2

a b
p

q

s

The induced map (i1)∗ sends the generators a and b to the generator p of Zp, and similarly, (i2)∗ sends
the generators a and b to the generator q of Zq. However, the map given by Mayer–Vietoris is given by(
(i1)∗,− (i2)∗

)
, so whenever we map into the second component, Zq, we have a negative in the matrix:

a b
p
q

[
1 1
−1 −1

]
The next map then sends both p and q to s, so the matrix is given by

p q
s
[
1 1

]
(Again, the placement of the negative sign is arbitrary; we could have equally negated the first row of
the first matrix, or either column of the second matrix, and the sequence would still be exact.) △

Corollary 39.5.2.3. Let k ≥ 1. Then,

Hn(S
k) =

{
Z n = 0,k

0 n ̸= 0,k

Proof. The sphere Sk can be written as the union of the upper and lower hemispheres (plus some extra
space to overlap) U1 and U2 respectively. The Mayer–Vietoris long exact sequence is then

· · · → Hn(U1)⊕Hn(U2)→ Hn(S
k)

∂−→ Hn−1(U1 ∩ U2)→ Hn−1(U1)⊕Hn−1(U2)→ · · ·

Each hemisphere is contractible, and the intersection U1 ∩ U2 is homotopy equivalent to Sk−1, so in
degrees n ≥ 2, this reduces to

· · · → 0→ Hn(S
k)

∂−→ Hn−1(S
k)→ 0→ · · ·
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so Hn(S
k) ∼= Hn−1(S

k−1). We also have H0(S
k) ∼= Z, since Sk is path-connected, and H1(S

k) = 0
for k ≥ 2, since Sk is simply connected. We have also already computed the homology for k = 1 in a
previous example.

So, by induction on k ≥ 2, we have

Hk(S
k)

∂−→∼= Hk−1(S
k−1) = Z

and zero elsewhere. Along with the base cases above, this completes the proof.

■

Using reduced homology, the previous corollary becomes:

Corollary 39.5.2.4. Let k ≥ 0. Then,

H̃n(S
k) =

{
Z n = k

0 n ̸= k

Theorem 39.5.3. If U1 and U2 have non-empty intersection, then there is a sequence in reduced ho-
mology that agrees with the ordinary Mayer–Vietoris sequence in positive degrees, and ends as:

· · · ∂−→ H̃0(U1 ∩ U2)

(
(i1)∗,−(i2)∗

)
−−−−−−−−−→ H̃0(U1)⊕ H̃0(U2)

(j1)∗+(j2)∗−−−−−−−→ H̃0(X)
0−→ 0

Example. We compute the simplicial homology of RP2:

p q

q p

a a

b

b

RP2

∼= qq

v

v
v = a+ b RP2 ⊆ U ∪ V U∩V

V is contractible, so,

Hn(V ) =

{
Z n = 0

0 n ≥ 1

U is homeomorphic to a Möbius band, which deformation retracts to S1, and is thus homotopy equivalent
to S1. U ∩ V deformation retracts to, and is therefore homotopy equivalent to, S1 also. So,

Hn(U) = Hn(U ∩ V ) = Hn(S
1) =

{
Z n = 0,1

0 n ≥ 2

Because RP2 is non-empty and path-connected, we haveH0(RP2) = Z, and because RP2 is 2-dimensional,
Hn(RP2) = 0 for n ≥ 3.
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Thus, the Mayer-Vietoris long exact sequence is

0 H2(U ∩ V ) H2(U)⊕H2(V ) H2(RP2)

H1(U ∩ V ) H1(U)⊕H1(V ) H1(RP2)

H0(U ∩ V ) H0(U)⊕H0(V ) H0(RP2) 0

∂

∂

∂

∂

which reduces to

0 0 0⊕ 0 ∼= 0 H2(RP2)

Z Z⊕ 0 ∼= Z H1(RP2)

Z Z⊕ Z H0(RP2) 0

∂

∂

∂

∂

or shorter still, to

0→ H2(RP2)
g−→ Z f−→ Z h−→ H1(RP2)

i−→ Z j−→ Z⊕ Z→ Z→ 0

Because U encloses the boundary of a Möbius band, the inclusion U ∩ V → U wraps twice around the
circle that the Möbius band retracts to, so f : Z→ Z is given by z 7→ 2z, which is injective. By exactness
at the first Z, im g = ker f = 0, but also by exactness at H2(RP2), g is injective, so H2(RP2) ∼= im g = 0.

j is defined by z 7→ (z,−z), which is injective, so ker j = 0, and by exactness, im i = ker j = 0. Then,
by exactness at H1(RP2), h is surjective, so H1(RP2) ∼= Z/ kerh = Z/ im f = cokerh = Z/2 by the first
isomorphism theorem.

Hn(RP2) =


Z n = 0

Z/2 n = 1

0 n ≥ 2

△

39.5.3 Applications

Corollary 39.5.3.1. Sk−1 = ∂kD
k is not a retract of Dk.

Proof. Suppose there is a retraction r : Dk → Sk−1, so r
∣∣
Sk = r ◦ ι = idSk . We then have the induced

maps in homology (r ◦ ι)∗ = id∗:

Z = H̃k−1(S
k−1)

ι∗−→ H̃k−1(D
k)

r∗−→ H̃k−1(S
k−1) = Z

but Dk is contractible, so H̃k−1(D
k) = 0, which r∗ cannot surject onto Z from. ■
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Corollary 39.5.3.2 (Brouwer’s Fixed-Point Theorem). Every continuous map f : Dk → Dk has a fixed
point. That is, a point x ∈ Dk such that f(x) = x.

In dimension k = 1, this is saying that a continuous map f : [0,1] → [0,1] necessarily has a fixed point.
In dimension k = 2, this implies that if you have a map of an area within the bounds of that area,
then there is a point on that map directly above the point it represents on the Earth; this holds even
if the map is folded up or crumpled into a ball, as these transformations are continuous. In dimension
k = 3, this implies that if you stir a cup of coffee continuously, then there is a molecule whose position
is unchanged after the stirring.

Proof. Suppose otherwise, that f(x) ̸= x for all x. For each x, consider the line connecting the distinct
points f(x) and x. Starting at f(x) and traveling towards x, this ray intersects Sk−1 at exactly one
point x′ as Dk is convex. Define a map g : Dk → Sk−1 by x 7→ x′. If x is already on the boundary, then
g(x) = x, so g is a retraction, contradicting the previous corollary. ■

We have another result from Brouwer:

Corollary (Invariance of Domain). If k ̸= ℓ, then Rk ̸∼= Rℓ.

Proof. Let k ̸= ℓ, and suppose f : Rk → Rℓ is a homeomorphism. Then, removing a point from Rk yields

Sk−1 ≃ Rk \ {0} ∼= Rℓ \
{
f(0)

}
≃ Sℓ−1

But then,

Z = H̃k−1(S
k−1) = H̃k−1

(
Rk \ {0}

) f∗∼= H̃k−1

(
Rℓ \ {f(0)}

)
= H̃k−1(S

ℓ−1) = 0

■

39.6 Proof of Fundamental Theorems

39.6.1 Homotopy Invariance
Theorem (Homotopy Invariance). Suppose f,g : X → Y are homotopic. Then,

f∗ = g∗ : Hn(X)→ Hn(Y )

The strategy for the proof is as follows:

1. Let H : X × [0,1]→ Y be the homotopy between f and g. Using the prism operator we produce a
chain homotopy between the chain maps f∗ and g∗.

2. We show that chain homotopic chain maps induce the same maps in homology.

39.6.1.1 Chain Homotopy

Let a•,b• : (C•,∂) → (C ′
•,∂

′) be two chain maps. A chain homotopy from a• to b• is a collection of
morphisms

ηn : Cn → C ′
n+1

such that, in this (non-commutative!) diagram,

· · · Cn+1 Cn Cn−1 · · ·

· · · C ′
n+1 C ′

n C ′
n−1 · · ·

∂′
n

∂′
n−1

∂n−1∂n∂n+1∂n+2

∂′
n+2 ∂′

n+1

bn+1−an+1 bn−an bn−1−an−1ηn−1ηn
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where the red path is equal to the sum of the blue and cyan paths. That is,

bn − an = ∂′n+1 ◦ ηn + ηn−1 ◦ ∂n

for all n ∈ Z. We say that a• and b• are chain homotopic if there exists a chain homotopy between them.

Lemma 39.6.1. Let a• and b• be chain homotopic. Then their induced maps in homology are equal:

an = bn : Hn(C•)→ Hn(C
′
•)

Proof. Let c ∈ Zn(C•) = ker(∂n) be an n-cycle. Then,

bn(c)− an(c) = ∂′n+1 ◦ ηn(c) + ηn−1 ◦ ∂n(c)
= ∂′n+1 ◦ ηn(c)
= ∂′n+1

(
ηn(c)

)
so bn(c)− an(c) is a boundary (of ηn(c)), so they are homologous. ■

39.6.1.2 Prism Operators

Given a singular n-simplex σ : ∆n → X and a homotopy H : X × I → Y between f and g, we can
compose them into a continuous map

H ◦ (σ × idI) : ∆
n × I → Y

This is a homotopy from H ◦
(
σ × {0}

)
= f ◦ σ = f∗(σ) to H ◦

(
σ × {1}

)
= g ◦ σ = g∗(σ), which can be

visualised as a prism (for n = 2):

f∗(σ)

g∗(σ)

The goal is now to produce an (n+ 1)-chain in Y from this data.

Denote the lower simplex by [v0, . . . ,vn], and the upper simplex by [w0, . . . ,wn]. The idea is to gen-
erate a sequence of n-simplices that starts from the lower simplex, and ends at the upper simplex, by
incrementally moving a vertex vi up to wi, starting with vn, and working backwards to v0.

So, the first step is to move [v0, . . . ,vn] to [v0, . . . ,vn−1,wn]; the second step is to move this simplex up
to [v0, . . . ,vn−2,wn−1,wn]; etc.

v0 v1

v2

w0 w1

w2

[v0,v1,v2]
v0 v1

v2

w0 w1

w2

[v0,v1,w2]
v0 v1

v2

w0 w1

w2

[v0,w1,w2]
v0 v1

v2

w0 w1

w2

[w0,w1,v2]
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More generally, we move [v0, . . . ,vi,wi+1, . . . ,wn] to [v0, . . . ,vi−1,wi, . . . ,wn]. The region between two suc-
cessive n-simplices is precisely the (n+1)-simplex [v0, . . . ,vi,wi, . . . ,wn], which has [v0, . . . ,vi,wi+1, . . . ,wn]
as its lower face, and [v0, . . . ,vi−1,wi, . . . ,wn] as its upper face.

The prism operator P : Cn(∆×I)→ Cn+1(∆
n×I) returns the alternating sum of these (n+1)-simplices:

P (∆n) =

n∑
i=0

(−1)i[v0, . . . ,vi,wi, . . . ,wn]

Lemma 39.6.2. For all n ≥ 0,

∂P (∆n) = [w0, . . . ,wn]− [v0, . . . ,vn]− P (∂∆n)

Geometrically, the left side of this equation represents the boundary of the prism, while the three terms
on the right represent these three pieces of the boundary:

∆n × {0} ∆n × {1} ∂∆n × I

Proof. First, we have

∂n+1P (∆
n) =

∑
j≤i

(−1)i+j [v0, . . . ,v̂j , . . . ,viwi, . . . ,wn]

+
∑
j≥i

(−1)i+j+1[v0, . . . ,vi,wi, . . . ,ŵj . . . ,wn]

Consider the terms with i = j. Here, we have
n∑
i=0

[v0, . . . ,vi−1wi, . . . ,wn]−
n∑
i=0

[v0, . . . ,vi,wi+1, . . . ,wn]

of which, all but two terms cancel out, leaving

[w0, . . . ,wn]− [v0, . . . ,vn]

For the remaining terms with i ̸= j, we apply the prism operator to each face [v0, . . . ,v̂j , . . . ,vn] of ∆n:

P
(
[v0, . . . ,v̂j , . . . ,vn]

)
=
∑
i<j

(−1)i[v0, . . . ,vi,wi, . . . ,ŵj , . . . ,wn]

+
∑
j<i

(−1)i+1[v0, . . . ,v̂j , . . . ,vi,wi, . . . ,wn]

hence, taking the alternating sum over all j, we have,

P (∂n∆
n) =

∑
i<j

(−1)i+j [v0, . . . ,vi,wi, . . . ,ŵj , . . . ,wn]

+
∑
j<i

(−1)i+j+1[v0, . . . ,v̂j , . . . ,vi,wi, . . . ,wn]

which is precisely the negative of the terms in the first equation yet to be accounted for (that is, those
with i ̸= j). ■
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Proof of Homotopy Invariance. Let H : X × I → Y be a homotopy from f to g, and let σ : ∆n → X be
a singular n-simplex in X. This induces a map on (n+ 1)-chains(

H ◦ (σ × idI)
)
∗ : Cn+1(∆

n × I)→ Cn+1(Y )

Define the chain map ηn : Cn(X)→ Cn+1(Y ) by

c 7→
(
H ◦ (c× idI)

)
∗

(
P (∆n)

)
Then,

∂ηn(σ) = ∂
(
H ◦ (σ × idI)

)
∗

(
P (∆n)

)
=
(
H ◦ (σ × idI)

)
∗

(
∂P (∆n)

)
=
(
H ◦ (σ × idI)

)
∗

(
[w0, . . . ,wn]− [v0, . . . ,vn]− P (∂∆n)

)
= g∗(σ)− f∗(σ)− ηn−1∂(σ)

so η is a chain homotopy from f∗ to g∗, so they induce equal maps in homology. ■

39.6.2 Mayer-Vietoris
Theorem (Mayer–Vietoris Long Exact Sequence). Let X = U1 ∪U2 be the union of two open subspaces
j1 : U ↪→ X, j2 : U2 ↪→ X. Then, there are connecting homomorphisms ∂ : Hn(X) → Hn−1(U1 ∩ Un)
such that

· · · → Hn+1(X)
∂−→ Hn(U1∩U2)

((i1)∗,−(i2)∗)−−−−−−−−→ Hn(U1)⊕Hn(U2)
(j1)∗+(j2)∗−−−−−−−→ Hn(X)

∂−→ Hn−1(U1∩U2)→ · · ·

is an exact chain complex.

As with the proof of Homotopy Invariance, the proof of Mayer–Vietoris involves a topological step
followed by a purely algebraic step:

1. A short exact sequence of chain complexes induces a long exact sequence in homology.

2. The relevant short exact sequence of chain complexes associated with the cover X = U1 ∪ U2 is:

0→ C•(U1 ∩ U2)→ C•(U1)⊕ C•(U2)→ C•(U1 + U2)→ 0

where C•(U1 + U2) ⊆ C•(X) is a subcomplex with the same homology groups. Showing that
these chain complexes have the same homology is the most involved part of the proof, requiring a
topological process called barycentric subdivision.

39.6.2.1 Short Exact Sequences of Chain Complexes

A short exact sequence of chain complexes

0→ A•
f•−→ B•

g•−→ C• → 0

is a pair of chain maps f• and g• such that

0→ An
fn−→ Bn

gn−→ Cn → 0

is a short exact sequence of abelian groups for all n ∈ Z.

Example. Let (B•,∂•) be any chain complex. Define a new chain complex A• by

An :=


Bn n > 0

ker(∂0) n = 0

0 n = 0
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and where the differentials are the restrictions of ∂• to A•. We may then define C• levelwise as Cn =
Bn/An with the induced differentials. The resulting short exact sequence 0→ A• → B• → C•0 of chain
complex looks as follows:

...
...

...

0 B2 B2 0 0

0 B1 B1 0 0

0 ker(∂0) B0 B0/ ker(∂0) 0

0 0 B−1 B−1 0

0 0 B−2 B−2 0

...
...

...

∂2 ∂2

∂1 ∂1

∂0 ∂0

∂−1 ∂−1

△

In the following proof, it will be helpful to have the following commutative diagram of a general short
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exact sequence of chain complexes

...
...

...

0 An+1 Bn+1 Cn+1 0

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

...
...

...

fn+1 gn+1

∂n+1 ∂ ∂

fn gn

∂ ∂ ∂

fn−1 gn−1

where all the rows are exact and the columns are chain complexes.

Theorem 39.6.3. Let
0→ A•

f•−→ B•
g•−→ C• → 0

be a short exact sequence of chain complexes. Then, there are connecting homomorphisms ∂ : Hn(C•)→
Hn−1(A•) such that

· · · Hn(A•) Hn(B•) Hn(C•)

Hn−1(A•) Hn−1(B•) Hn−1(C•) · · ·

∂ f∗ g∗

∂

f∗ g∗ ∂

is a long exact sequence in homology.

Proof. Let c ∈ Cn be a cycle, i.e. c ∈ ker(∂). By exactness at Cn, gn is surjective, so c = gn(b) for some
b ∈ Bn.

The element ∂(b) ∈ Bn−1 is in ker(gn−1) since, by commutativity of the lower right square, gn−1

(
∂(b)

)
=

∂
(
gn(b)

)
= ∂(c) = 0. Then, by exactness at Bn−1, ker(gn−1) = im(fn−1), so ∂(b) = fn(a) for some

a ∈ An−1.
b c

a ∂(b) ∂(c) = 0

gn

∂ ∂

fn−1 gn−1
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We claim that a is a cycle. First, apply the differential to a, then travel along fn−2:

b c

a ∂(b) ∂(c) = 0

∂(a) fn−2

(
∂(a)

)
= ∂

(
∂(b)

)
= 0

gn

∂ ∂

fn−1

∂

gn−1

∂

fn−2

By commutativity of this lower square, fn−2

(
∂(a)

)
= ∂

(
fn−1(a)

)
= ∂

(
∂(b)

)
= 0, and by exactness at

An−2, fn−2 is injective, so ∂(a) = 0, and a is a cycle, thus defining a homology class [a].

We define the connecting homomorphism, ∂ : Hn(C)→ Hn−1(A) by [c] 7→ [a]. This is well-defined since:

• The element a is uniquely determined by ∂b since fn−1 is injective.

• Suppose we chose a different preimage b′ of c in the first step. Repeating the previous construction,
we have

b′ c

a′ ∂(b′)

gn

∂

fn−1

Then, we have gn(b′) = c = gn(b), so gn(b′ − b) = gn(b
′) − gn(b) = 0, giving b′ − b ∈ ker(gn). By

exactness at Bn, ker(gn) = im(fn), so b′ − b = fn(σ) for some σ ∈ An. Applying the differential to
σ, we obtain the square:

σ b− b′ 0

∂(σ) ∂(b)− ∂(b′)

fn

∂

gn

∂

fn−1

Now, consider a − a′. By construction, fn−1(a) = ∂(b) and fn−1(a
′) = ∂(b′), so fn−1(a − a′) =

∂(b)− ∂(b′). By injectivity of fn−1, ∂(σ) = a− a′. Thus, a and a′ are homologous, so [a] = [a′].

• A different choice of c within its homology class would have the form c+ ∂(c′) for some c ∈ Cn+1.
By exactness at Cn+1, gn+1 is surjective, so c′ = gn(b

′) for some b′ ∈ Bn+1.

b′ c′

∂(b′) ∂(c′)

gn+1

∂ ∂

gn

Then, ∂(c′) = ∂
(
gn+1(b

′)
)
= gn

(
∂(b′)

)
, so c + ∂(c′) = gn(b) + gn

(
∂(b′)

)
= gn

(
b + ∂(b′)

)
. So, b is

replaced by b+ ∂(b′), which leaves ∂(b) and therefore also a unchanged.

Notes on Mathematics | 783



Homology Proof of Fundamental Theorems

This map is a group homomorphism since if [c1] 7→ [a1] and [c2] 7→ [a2] via b1 and b2 as above, then
gn(b1 + b2) = gn(b1) + gn(b2) = c1 + c2, and fn−1(a1 + a2) = fn−1(a1) + fn−1(a2) = ∂(b1) + ∂(b2) =
∂(b1 + b2), so [c1] + [c2] 7→ [a1] + [a2].

It remains to verify that the induced sequence in homology

· · · → Hn+1(C•)
∂−→ Hn(A•)

f∗−→ Hn(B•)
g∗−→ Hn(C•)

∂−→ Hn−1(A•)→ · · ·

is exact.

• Exactness at Hn(B•):

– im(f∗) ⊆ ker(g∗). This is immediate, since g• ◦ f• = 0 as chain maps, so g∗ ◦ f∗ = 0 in
homology.

– ker(g∗) ⊆ im(f∗). Let [b] ∈ ker(g∗) so g(b) = ∂(c′) for some c′ ∈ Cn+1. Since g is surjective,
c′ = g(b′) for some b′ ∈ Bn+1. Since ∂

(
g(b′)

)
= ∂(c′) = g(b), we have g

(
b − ∂(b′)

)
=

g(b)− g
(
∂(b′)

)
= g(b)− ∂

(
g(b′)

)
= 0.

So, b−∂(b′) = f(a) for some a ∈ An. This a is a cycle since f
(
∂(a)

)
= ∂

(
f(a)

)
= ∂

(
b−∂(b′)

)
=

∂b = 0, and f is injective. Thus, f∗
(
[a]
)
=
[
b− ∂(b′)

]
= [b], so f∗ surjects onto ker(g∗).

• Exactness at Hn(A•):

– im(g∗) ⊆ ker(∂). ∂ ◦ j∗ = 0 since ∂(b) = 0 by the definition of ∂.

– ker(∂) ⊆ im(g∗). If c represents a homology class in ker(∂), then a = ∂(a′) for some a′ ∈ An.
Then, b − f(a′) is a cycle since ∂

(
b − f(a′)

)
= ∂(b) − ∂

(
f(a′)

)
= ∂(b) − f(a) = 0, and

g
(
b− f(a′)

)
= g(b)− g

(
f(a′)

)
= g(b) = c, so g∗

([
b− f(a′)

])
= [c], so g∗ surjects onto ker(∂).

• Exactness at Hn(C•):

– im(∂) ⊆ ker(f∗). f∗ ◦ ∂ = 0 since f∗ ◦ ∂ maps [c] to
[
∂(b)

]
= 0.

– ker(f∗) ⊆ im(∂). If a ∈ An−1 is a cycle such that f(a) = ∂(b) for some b ∈ Bn, then g(b) must
be a cycle, since ∂

(
g(b)

)
= g
(
∂(b)

)
= g
(
f(a)

)
= 0, so ∂

([
g(b)

])
= [a].

■

Let U1,U2 ⊆ X be two subspaces, not necessarily open. We write Cn(U1+U2) for the subgroup of Cn(X)
consisting of n-chains that can be written as the sum of n-chains in U1 and n-chains in U2:

Cn(U1 + U2) :=

{
m∑
i=0

λiσi : λi ∈ Z,σi ∈ Cn(U1) ∪ Cn(U2)

}

The boundary of an n-chain in Uℓ is an (n − 1)-chain in Uℓ, so the differentials in C•(X) restrict to
C•(U1+U2), so C•(U1+U2) is a sub-chain complex. That is, the inclusion maps Cn(U1+U2) ↪→ Cn(X)
define a chain map.

Theorem 39.6.4. Let jℓ : Uℓ ↪→ X and iℓ : U1 ∩ U2 ↪→ Uℓ be the canonical inclusion maps for ℓ = 1,2.
Then, there is a short exact sequence of chain complexes

0→ C•(U1 ∩ U2)

(
(i1)∗,−(i2)∗

)
−−−−−−−−→ C•(U1)⊕ C•(U2)

(j1)∗+(j2)∗−−−−−−−→ C•(U1 + U2)→ 0

Proof.

• The subgroup Cn(U1 + U2) is precisely the image of (j1)∗ + (j2)∗, so this map is surjective.

• It suffices to check that one of the components of
(
(i1)∗, − (i2)∗

)
is injective, and indeed, (i1)∗ is

an inclusion and is hence injective.
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• The composition is given by(
(j1)∗ + (j2)∗

)
◦
(
(i1)∗,− (i2)∗

)
= (j1)∗(i1)∗ − (j2)∗(i2)∗

= (j1 ◦ i1)∗ − (j2 ◦ i2)∗
= 0

since j1 ◦ i1 = j2 ◦ i2 are both the inclusion k : U1 ∩ U2 ↪→ X. So, im(i) ⊆ ker(j).

Conversely, let (c1,c2) ∈ ker(j). That is, j(c1,c2) = (j1)∗(c1) + (j2)∗(c2) = 0, then (j1)∗(c1) =
−(j2)∗(c2). The left side of this equation is a chain whose simplices are contained in U1, while
the right side is a chain whose simplices are contained in U2. So, this equality implies that all of
these simplices are in the intersection U1 ∩ U2, so there exists a chain c ∈ Cn(U1 ∩ U2) such that
k∗(c) = (j1)∗(c1) = −(j2)∗(c2).

Then, (j1)∗(c1) = k∗(c) = (j1)∗
(
(i1)∗(c)

)
, so c1 = (i1)∗(c) by injectivity of (j1)∗, and similarly,

c2 = −(i2)∗(c). So, i(c) = (c1,c2), so ker(j) ⊆ im(i).

■

39.6.3 Barycentric subdivision
This is the last theorem required to prove Mayer–Vietoris, but its proof requires us to first develop some
more machinery.

Theorem 39.6.5. Let U1,U2 ⊆ X be subspaces, not necessarily open. If their interiors jointly cover X,
then the inclusion ι : C•(U1 + U2) ↪→ C•(X) induces an isomorphism in homology. That is,

Hn

(
C•(U1 + U2)

) ι∗∼= Hn

(
C•(X)

)
Let σ : ∆n → X be a singular n-simplex. Since the interiors of U1 and U2 cover X, we have an open
cover

σ−1[U◦
1 ] ∪ σ−1[U◦

2 ]

of ∆n. Let Ai = ∆n \ σ[U◦
i ], i = 1,2. be the closed complements, and define a function f : ∆n → R,

f(x) =
d(x,A1) + d(x,A2)

2

as the average distance of x to each of the two closed subsets. (If one of the Ai is empty, then σ(∆n) ⊆ Ui,
and we are done.) By compactness of ∆n, this function attains a minimum δ, which is necessarily positive,
or otherwise we wouldn’t have a cover.

One can then verify that every simplex [w0, . . . ,wn] ⊆ ∆n of diameter less than δ is entirely contained
in one of the σ−1[U◦

i ]. That is, that δ is a Lebesgue number (§37.5.3) for the given open cover of ∆n.

The point is that, if we can divide ∆n into simplices of diameter less than δ, then the restriction of σ to
each of these lies in Cn(U1 + U2). Barycentric subdivision is a systematic method of dividing simplices
into smaller ones such that the diameter tends to 0 as the process is iterated.

Given a Euclidean space V and some elements v0 . . . ,vn ∈ V , the linear simplex [v0, . . . ,vn] is the subspace{
n∑
i=0

xivi : xi ≥ 0,

n∑
i=0

xi = 1

}
⊆ V

Example. The standard n-simplex arises from taking the standard basis vectors in V = Rn+1. △
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If the difference vectors [vi,vj ] are linearly independent, then a linear simplex on n vertices will be
homeomorphic to ∆n (though generally not isometric). For this reason, we will also require linear
simplices to satisfy this condition.

The barycentre of a simplex [v0, . . . ,vn] is the point

b :=
1

n+ 1

n∑
i=0

vi

Example.

v0 = b v0 b v1

v0 b2 v1

b0

v2

b1
b

△

As suggested by the above, can find the barycentre recursively. Given the barycentre bi on the ith face
[v0, . . . ,v̂i, . . . ,vn], let ℓi be the line connecting bi and vi. Then, the barycentre of [v0, . . . ,vn] is the
intersection of all these lines ℓi.

Given a linear (n− 1)-simplex [w1, . . . ,wn] ⊆ ∆n, we define its barycentric cone as:

b[w1, . . . ,wn] := [b,w1, . . . ,wn] ⊆ ∆n

We extend this to linear combinations of linear (n− 1) simplices.

The barycentric subdivision S(∆n) ∈ Cn(∆n) of ∆n is defined by induction on n:

• We define S(∆0) = ∆0.

• For n > 0,

S(∆n) := bS∂∆n

=

n∑
i=0

(−1)ibS(∂i∆n)

Note that by induction, S(∂i∆n) is itself a linear combination of linear simplices, so this construction is
well defined.

Example. Compare with the examples above:

• S(∆0) = [v0];

• S(∆1) = bS[v1]− bS[v0] = [b,v1]− [b,v0];

• S(∆2) = [b,b0,v2]− [b,b0,v1]− [b,b1,v2] + [b,b1,v0] + [b,b2,v1]− [b,b2,v0];

• In dimension 3, we give a picture instead of the lengthy formula (and ignoring the signs):
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v0

v1

v2

v3

b0

b1

b2

b3
b

△

The signs are chosen such that the boundary of S(∆n) is (the subdivision of) the boundary of ∆n. That
is, all the internal boundaries cancel out. For instance,

∂S(∆1) = ∂
(
[b,v1]− [b,v0]

)
= v1 − b− v0 + b

= v1 − v0
= ∂∆1

We now prove this in general:

Lemma 39.6.6.

(i) ∂b(σ) + b∂(σ) = σ for every linear simplex σ;

(ii) ∂S(∆n) = S(∂∆n).

If we ignore the signs, the first identity says something intuitively clear: the boundary of the cone consists
of the base and the cones on its faces.

Proof.

(i) Let σ = [w1, . . . ,wn]. Then,

∂b[w1, . . . ,wn] = ∂[b,w1, . . . ,wn]

=

n∑
i=0

(−1)i∂i[b,w1, . . . ,wn]

= [w1, . . . ,wn]− b∂[w1, . . . ,wn]

(ii) We induct using (i). For n = 0, we have zero on both sides. For n > 0, we have

∂S(∆n) = ∂bS(∂∆n)

= (id−b∂)S(∂∆n)
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= S∂∆n − bS(∂2∆n)

= S(∂∆n)

where we used (i) in the second equality, and induction in the third.

■

Let X be a topological space and σ : ∆n → X be a singular n-simplex. The barycentric subdivision of σ
is then the n-chain

S(σ) = σ∗S(∆
n) ∈ Cn(X)

Linearly extending, we obtain a homomorphism

S : Cn(X)→ Cn(X)

Corollary 39.6.6.1. S : C•(X)→ C•(X) is a chain map.

Proof. We have

∂S(σ) = ∂σ∗S(∆
n)

= σ∗∂S(∆
n)

= σ∗S(∂∆
n)

=

n∑
i=0

(−1)iσ∗S(∂i∆n)

=

n∑
i=0

(−1)iS(∂iσ)

= S(∂σ)

so ∂S = S∂, as required. ■

Theorem 39.6.7. The barycentric subdivision is chain homotopyic to the identity:

S ≃ id : C•(X)→ C•(X)

Proof. To construct the chain homotopy T : Cn(X) → Cn+1(X) from S to id, the idea is to split the
prism ∆n × [0,1] into (n + 1)-simplices such that the lower face remains intact (as the identity), while
the upper face is subdivided:

v0 v1

w1w0 b

∆1 × [0,1]

Let us write ∆n
0 for the lower face ∆n × {0}, ∆n

1 for the upper face ∆n × {1}, and b for the barycentric
cone of ∆n

1 . Then, we set, recursively,

T (∆n) := b∆n
0 − bT∂∆n

0 ∈ Cn+1(∆
n × [0,1])

So, for example,
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• For n = 0, we have T (∆0) = [b,v0] = [w0,v0];

• For n = 1, we have T (∆1) = [b,v0,v1]− [b,w1,v1] + [b,w0,v0];

• For n = 2, we have (omitting signs):

v0

v1

v2

w0

w1

w2

b0

b1

b2

b

We verify the following identity reminiscent of the chain homotopy requirement:

∂T (∆n) + T (∂∆n
0 ) = ∆n

0 − S(∆n
1 )

For n = 0, both sides are [v0]− [w0], and for n > 0, we have

∂T (∆n) = ∂b∆n
0 − ∂bT (∂∆n

0 )

= ∂n0 − b∂(∆n
0 )− T∂(∆n

0 ) + b∂T (∂∆n
0 )

= ∂n0 − T (∂∆n
0 ) + b

(
∂T (∆n

0 )− ∂∆n
0

)
= ∂n0 − T (∂∆n

0 )− b
(
S(∂∆n

1 ) + T (∂2∆n
0 )
)

= ∂n0 − T (∂∆n
0 )− S∆n

1

Given a singular n-simplex σ : ∆n → X, let σ′ : ∆n × [0,1] → ∆n → X be composition of σ with the
projection onto the first component. If we define T : Cn(X) → Cn+1(X) by σ 7→ σ′

∗T (∆
n), then this

formula implies that T defines a chain homotopy S ≃ id, as required. ■

The last thing to prove is that the diameters of the simplices in Sk∆n tend to zero as k →∞.

Lemma 39.6.8. Let [w0, . . . ,wn] be a simplex in the barycentric subdivision of [v0, . . . ,vn]. Then,

diam
(
[w0, . . . ,wn]

)
≤ n

n+ 1
diam

(
[v0, . . . ,vn]

)
Proof. If n = 0, then [w0] = [v0] both have diameter 0, so suppose n > 0. We start with the following
observation about any linear simplex [x0, . . . ,xn]:

For every point x, its maximum distance to points in the simplex is attained at a vertex xi.

To see this, let y ∈ [x0, . . . ,xn] be such that ∥x−y∥ is maximal so y =
∑
i tixi with

∑
i ti = 1 and ti ≥ 0.

Then,

∥x− y∥ =

∥∥∥∥∥x−∑
i

tixi

∥∥∥∥∥
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=

∥∥∥∥∥∑
i

ti(x− xi)

∥∥∥∥∥
≤
∑
i

ti∥x− xi∥

≤ max ∥x− xi∥

with equality if and only if y is one of the vertices xi with ∥x− xi∥ maximal.

In particular, applying this observation twice, we see that the diameter of [w0, . . . ,wn] is the length of
the longest edge [x,y]. We have two cases:

• If neither of x and y are the barycenter b, then they must be vertices of a simplex in the barycentric
subdivision of one of the faces [v0, . . . ,v̂i, . . . ,vn]. By induction, we have

diam
(
[w0, . . . ,wn]

)
= ∥x− y∥

≤ n− 1

n
diam

(
[v0, . . . ,v̂i, . . . ,vn]

)
≤ n

n+ 1
diam

(
[v0, . . . ,vn]

)
• If, say, x = b, then y lies on some face of [v0, . . . ,vn], and furthermore, the observation above gives

that y is one of the vertices vi of that face. Let bi be the barycentre of [v0, . . . ,v̂i, . . . ,vn]. That is,

bi =
1

n

∑
i ̸=j

vj

Then,

b =
1

n+ 1

∑
j

vj

=
1

n+ 1
vi +

n

n+ 1
bi

It follows that

diam
(
[w0, . . . ,wn]

)
= ∥vi − b∥

≤ n

n+ 1
∥vi − bi∥

≤ n

n+ 1
diam

(
[v0, . . . ,vn]

)
■

Exercise. Verify this in low dimensions.

Proof of Mayer-Vietoris. By Theorem 39.6.3, the short exact sequence in Theorem 39.6.4 induces a long
exact sequence in homology:

· · · → Hn+1

(
C•(U1+U2)

) ∂−→ Hn(U1∩U2)
i−→ Hn(U1)⊕Hn(U2)

j−→ Hn

(
C•(U1+U2)

) ∂−→ Hn−1(U1∩U2)→ · · ·

Then, using Theorem 39.6.5, we may replace Hn

(
C•(U1 + U2)

)
by Hn

(
C•(X)

)
=: Hn(X). ■
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39.7 Applications

39.7.1 Fundamental Classes for Spheres

We have seen that the homology of the k-sphere Sk, k ≥ 1, is given by

H̃n(S
k) =

{
Z n = k

0 otherwise

A generator of H̃k(S
k) is called a fundamental class. Our goal is to explicitly describe these fundamental

classes for all spheres by giving a cycle whose homology class is such a generator.

Example. We can view the circle S1 as the quotient of the interval or 1-simplex. The singular 1-simplex
given by the quotient map

σ : ∆1 ∼= [0,1]→ [0,1]
/
0 ∼ 1 ∼= S1

has boundary
∂σ = ∗ − ∗ = 0

where ∗ : ∆1 → S1 is the constant path at the identified point. Thus, σ is a 1-cycle which generates
H1(S

1), i.e., the fundamental class of S1. △

However, if we try to extend this construction to S2, we run into a problem. The 2-sphere S2 can be
obtained by quotienting the 2-simplex by its boundary. The singular 2-simplex given by the quotient
map

σ : ∆2 → ∆2/
∂∆2 ∼= S2

then has boundary
∂σ = ∗ − ∗+ ∗ = ∗ ≠ 0

so σ is not a cycle.

This construction gives a fundamental class for Sk if and only if k is odd. We describe below a construction
that works in all dimensions.

Instead of taking S1 to be the quotient of a single 1-simplex, we instead split S1 into upper and lower
hemispheres:

S1
+

S1
−

or,

S1 ∼=
∆1 ⊔∆1

∼
where ∼ identifies the two 0th faces and two 1st faces of the two ∆1.

Let σ+,σ− : ∆1 → S1 be the singular simplices that pick out the upper and lower hemispheres, respec-
tively. Then, σ+ − σ− is a cycle that represents a fundamental class.
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Consider the identity map id∆k+1 on ∆k+1. This is a singular (k + 1)-simplex in ∆k+1, so we can apply
the boundary operator to it:

∂(id∆k+1) =

k+1∑
i=0

(−1)i[v0, . . . ,v̂i, . . . ,vn]

This is a linear combination of k-simplices, each in the geometric boundary ∂∆k+1 of ∆k+1, so it is an
element of the chain group Ck+1(∂∆

k+1) ≤ Ck+1(∆
k+1).

Theorem 39.7.1. The chain ∂(id∆k+1) is a cycle in Ck(∂∆
k+1). Moreover, it is a generator in homol-

ogy.

Proof. ∂(id∆k+1) is already a boundary, so ∂
(
∂(id∆k+1)

)
= 0. So, ∂(id∆k+1) is a cycle in Ck(∂∆k+1).

Now, we induct on k. If k = 0, the statement is clear, so assume k > 1.

Let U1 be an open neighbourhood of the last face dk+1∆
k+1 which deformation retracts onto this face,

and let U2 be an open neighbourhood of the remaining faces
⋃

0≤i≤k di∆
k+1 which deformation retracts

onto this union. Also choose these subspaces such that their intersection U1∩U2 deformation retracts to
the boundary of the final face ∂dk+1∆

k+1 = ∂[v0, . . . ,vk], and such that their union U1 ∪U2 deformation
retracts to the entire boundary ∂∆k+1 = δ[v0, . . . ,vk+1]. One such selection is illustrated below for k = 1.

v0 v1

v2

The Mayer–Vietoris long exact sequence for U1 and U2 covering X := U1 ∪ U − 2 is:

· · · → H̃k(U1)⊕ H̃k(U2)→ H̃k(U1 ∪ U2)
∂−→ H̃k−1(U1 ∩ U2)→ H̃k−1(U1)⊕ H̃k−1(U2)→ · · ·

Because U1 and U2 deformation retract to a face, which is a simplex, which is contractible, the outer
terms vanish, so we have an isomorphism

0→ H̃k(U1 ∪ U2)
∂∼= H̃k−1(U1 ∩ U2)→ 0

By the induction hypothesis, H̃k−1(U1∩U2) ∼= Z, so it suffices to show that ∂(id∆k+1) maps to a generator
in H̃k−1(U1 ∩ U2) under the connecting homomorphism ∂.

First, take the relevant segment of the short exact sequence of chain complexes:

Ck(U1)⊕ Ck(U2) Ck(U1 + U2)

Ck−1(U1 ∩ U2) Ck−1(U1)⊕ Ck−1(U2)

(j1)∗+(j2)∗

∂(
(i1)∗,−(i2)∗

)

starting with ∂(id∆k+1) ∈ Ck(U1 + U2). This cycle has a lift in Ck(U1)⊕ Ck(U2), given by(
(−1)k+1[v0, . . . ,vk],

k∑
i=1

(−1)i[v0, . . . ,v̂i, . . . ,vk+1]

)
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which maps down to (
(−1)k+1∂

(
[v0, . . . ,vk]

)
,

k∑
i=1

(−1)i∂
(
[v0, . . . ,v̂i, . . . ,vk+1]

))
So, we are looking for the unique (k − 1)-cycle σ in U1 ∩ U2 satisfying

(
(i1)∗(σ),− (i2)∗(σ)

)
=

(
(−1)k+1∂

(
[v0, . . . ,vk]

)
,

k∑
i=1

(−1)i∂
(
[v0, . . . ,v̂i, . . . ,vk+1]

))
By comparing the first components, it is clear that σ = (−1)k−1∂

(
[v0, . . . ,vk]

)
works. ■

Let Sk+ and Sk− be the upper and lower hemispheres of Sk. Choose homeomorphisms

σ+ : ∆k ∼=−→ Sk+ σ− : ∆k ∼=−→ Sk−

such that

• σ+ and σ− both map the boundary ∂∆k homeomorphically onto the equator Sk+ ∩ Sk−;

• the composition ∂∆k σ+−−→ Sk+ ∩ Sk−
(σ−)−1

−−−−−→ ∂∆k is the identity.

Corollary 39.7.1.1. The chain σ+ − σ− ∈ Ck(Sk) is a cycle, and represents a fundamental class for
Sk.

Proof. We have seen this for k = 0,1 above, so assume k ≥ 2.

The second requirement on σ+ and σ− say that their boundaries are the same, so ∂(σ+−σ−) = ∂(σ+)−
∂(σ−) = 0, so σ+ − σ− is a cycle.

Now, choose open neighbourhoods U+ and U− of the two hemispheres which deformation retract to
the hemispheres, and whose intersection U− ∩ U+ deformation retracts onto the equator. Then, the
Mayer–Vietoris long exact sequence for U1 and U2 covering Sk = U1 ∪ U2 is:

· · · → Hk(U+)⊕Hk(U−)→ Hk(S
k)→ Hk−1(U+ ∩ U−)→ Hk−1(U+)⊕Hk−1(U−)→ · · ·

The subspaces are contractible, so their homology vanishes, leaving an isomorphism

0→ Hk(S
k)

∂∼= Hk−1(U+ ∩ U−)→ 0

So, it suffices to prove that σ+−σ− ∈ Hk(S
k) maps to a generator under the connecting homomorphism.

Again, we take the relevant segment of the short exact sequence of chain complexes:

Ck(U−)⊕ Ck(U+) Ck(U+ + U−)

Ck−1(U+ ∩ U−) Ck−1(U+)⊕ Ck−1(U−)

(j1)∗+(j2)∗

∂(
(i1)∗,−(i2)∗

)

and chase σ+ − σ−

(σ+,− σ−) σ+ − σ−

∂(σ+) = ∂(σ−)
(
∂(σ+),− ∂(σ−)

)

(j1)∗+(j2)∗

∂(
(i1)∗,−(i2)∗

)
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So, the connecting homomorphism maps σ+−σ− to ∂(σ+). Then, by construction, U+∩U− ≃ Sk+∩Sk−
σ+∼=

∂∆k, and ∂(id∆k) is a generator of Hk−1(∂∆
k). ■

39.7.2 Jordan Curve Theorem

Recall that a Jordan curve is a simple closed curve in R2. Informally, the Jordan curve theorem states
that

Every jordan curve splits the plane into two regions.

One of the two regions is necessarily bounded and is thus interpreted as the interior, while the other
region is necessarily unbounded and is thus interpreted as the exterior. The Jordan curve is then the
boundary of each of these regions.

This is intuitively clear for any reasonably nice curve, but is difficult to interpret for, say, fractal curves.

Theorem 39.7.2 (Jordan Curve Theorem). Let γ : S1↣ R2 be an injective continuous map with image
C ⊆ R2. Then,

Hn(R2 \ C) =


Z2 n = 0

Z n = 1

0 n > 1

Because R2\C is locally path-connected, the partH0(R2\C) = Z2 is saying precisely that the complement
of C has two path-connected components.

We translate the problem as follows: let R2 ↪→ R2 ∪ {∞} ∼= S2 be the one-point compactification of R2.
Then,

Hn(S
2 \ C) =

{
Z2 n = 0

0 n > 0

To prove this, we need a few more lemmata.

Lemma 39.7.3. Let κ : [0,1]↣ S2 be an injective continuous map with image D ⊆ R2. Then,

Hn(S
2 \D) =

{
Z n = 0

0 n > 0

Proof of Jordan Curve Theorem. We compute the homology of S2 \C. Let S1
+ and S1

− be the upper and
lower semicircles in S1 such that S1

+ ∩ S1
− = S0. Now, apply Mayer–Vietoris in reduced homology with

• U+ := S2 \ γ(S1
+);

• U− := S2 \ γ(S1
−);

• X := U+ ∪ U2 = S2 \ γ(S0);

• U+ ∩ U1 = S2 \ C.

As S1
+ and S1

− are homeomorphic to [0,1], we have the homology groups of U+ and U− from the previous
lemma, and in reduced homology, these vanish in all degrees. Also, X is the twice-punctured 2-sphere –
the punctured 2-sphere is homeomorphic to the plane R2, and the punctured plane is homotopy equivalent
to the circle S1 – so X ≃ S1, and these homology groups also vanish in degrees n > 1.

So, the long exact sequence is zero everywhere past H1(X). The end of the sequence is then given by:

· · · → 0→ H̃1(X)→ H̃0(U+ ∩ U−)→ 0⊕ 0→ 0→ 0

so H̃0(S
2 \ C) = H̃0(U+ ∩ U−) ∼= H̃1(X) = Z. So, H0(S

2 \ C) = Z2. ■
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39.7.3 Relative Homology
Let A ⊆ X be a subspace, and ι : A ↪→ X be the canonical inclusion map. Then, there is an induced
inclusion between chain groups, Cn(A) ↪→ Cn(X), and these inclusions assemble into a chain map
C•(A)→ Cn(X).

However, the induced map in homology ι∗ : Hn(A)→ Hn(X) is not injective in general (nor surjective).
For instance, if A = S1 and X = D2, then H1(A) = Z cannot inject into H1(X) = 0.

We define the group of relative singular n-chains Cn(X,A) as the quotient Cn(X)/Cn(A).

Cn(A) ↪→ Cn(X)→ Cn(X)

Cn(A)
=: Cn(X,A)

Because C•(A) is a sub-chain complex of C•(X), C•(X,A) also inherits the structure of a chain complex
called the relative singular chain complex, with the differentials ∂ : Cn(X,A) → Cn−1(X,A) induced
from ∂ : Cn(X) → Cn−1(X). The quotient maps Cn(X) → Cn(X,A) also assemble into a chain map
C•(X)→ C•(X,A).

The relative homology of the pair (X,A) is then given by the homology of the relative singular chain
complex:

Hn(X,A) := Hn

(
C•(X,A)

)
• Call an n-chain c ∈ Cn(X) a relative n-cycle if ∂(c) ∈ Cn−1(A). For example, a singular n-simplex
σ : ∆n → X is a relative n-cycle if the image of the boundary ∂∆n is contained in A.

• Call an n-chain c ∈ Cn a relative n-boundary if it is homologous to some n-chain in A. That is, if
there exists a ∈ Cn(A) such that the difference c− a = ∂w is the boundary of some (n+ 1)-chain
w ∈ Cn+1(X). Note that every relative n-boundary is a relative n-cycle since ∂c = ∂a.

By construction,

Hn(X,A) ∼=
relative n-cycles

relative n-boundaries
Intuitively, the relative homology Hn(X,A) measures the homology of X with A “discarded”.

Corollary 39.7.3.1. There is an exact sequence in relative homology:

· · · Hn(A) Hn(X) Hn(X,A)

Hn−1(A) Hn−1(X) Hn−1(X,A) · · ·

∂

∂

∂

Proof. By construction, there is a short exact sequence of chain complexes

0→ C•(A)→ C•(X)→ C•(X,A)→ 0

so the claim follows from Theorem 39.6.3. ■

We can also describe the connecting homomorphism explicitly:

If [z] ∈ Hn(X,A) is represented by a relative cycle z ∈ Cn(X), then the connecting homomorphism is
defined by

∂[z] = [∂z]

Because z is a relative cycle, its boundary ∂z is contained in A, so this class [∂z] is an element of
Hn−1(A).
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Theorem 39.7.4 (Excision). Let Z ⊆ A ⊆ X, with Z̄ ⊆ A◦. Then,

Hn(X,A) ∼= Hn(X \ Z,A \ Z)

Intuitively, the relative homology ignores the interior of A, so we may excise a portion Z, with minor
restrictions.

Recall that a topological manifold of dimension k is a Hausdorff space such that every point has an open
neighrbourhood homeomorphic to Rk. Every smooth manifold is a topological manifold.

Corollary 39.7.4.1. Let M be a k-dimensional topological manifold and let x ∈M be a point. Then,

Hn(M,M \ x) ∼= Hn(Rk,Rk \ ∗) ∼=

{
Z n = k

0 n ̸= k

That is, relative singular homology is able to detect the dimension of a manifold.

Proof. Let U ∋ x be an open neighbourhood of x homeomorphic to Rk. Then, Excision gives the first
isomorphism with X =M , A =M \ x, and Z =M \ U . For the second isomorphism, consider the long
exact sequence of the pair

(
Rk,Rk \ ∗

)
. ■

Corollary 39.7.4.2 (Invariance of Domain II). Let U ⊆ Rk and V ⊆ Rℓ be non-empty open subsets. If
U ∼= V , then k = ℓ.

A pair (X,A) is good if:

(i) A ⊆ X is closed;

(ii) there exists an open neighbourhood V ⊇ A which deformation retracts onto A.

Example. If X is a CW-complex, then (X,A) is good for any subcomplex A. △

Example. Consider the Hawaiian earring H with h ∈ H the distinguished point where all the circles
meet.

h

Then, (H,h) is not a good pair, since any open neighbourhood of h contains infinitely many circles and
cannot be contractible; and in particular, cannot deformation retract to h. △

Theorem 39.7.5. Let (X,A) be a good pair. Then, the quotient map X → X/A induces isomorphisms

Hn(X,A) ∼= Hn(X/A,A/A) ∼= H̃n(X/A)

Example. Let X = [0,1] be the interval, and A =
{
1, 12 ,

1
3 ,

1
4 , . . . ,0

}
⊆ X.

(X,A) is not a good pair, because (X/A,A/A) would then also be a good pair. But (X/A,A/A) ∼=
(H,h). △

Example. (∆k,∂∆k) is a good pair for any k, so

Hn(∆
k,∂∆k) ∼= H̃n(S

k) ∼=

{
Z n = k

0 n ̸= k

△
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39.8 Degrees

Let f : Sk → Sk be a continuous map. Then, the induced map in kth homology,

f∗ : H̃k(S
k)→ H̃k(S

k)

is a group homomorphism Z → Z. Such a homomorphism is determined entirely by the image of the
generator 1 7→ d, and thus acts by multiplication by d. This integer d is called the degree of f , written
as deg(f).

Lemma 39.8.1. Let f,g : Sk → Sk. Then,

(i) deg(idSk) = 1;

(ii) deg(g ◦ f) = deg(g) · deg(f);

(iii) if f ≃ g, then deg(f) = deg(g);

(iv) if f is a homotopy equivalence, then deg(f) = ±1;

(v) if f is not surjective, then deg(f) = 0.

Proof.

(i) The identity induces the identity in homology.

(ii) (g ◦ f)∗ = g∗ ◦ f∗.

(iii) By homotopy invariance, f and g induce the same maps in homology, so they have the same degree.

(iv) If f is a homotopy equivalence, then it induces an isomorphism in homology. The only possible
images for the generator 1 are then the generators 1 and −1.

(v) Let x ∈ Sk be outside the image of f . Then, f factors as

Sk Sk

Sk \ x

f

f ι

Then in reduced homology, f∗ factors through H̃k(S
k \ x) = 0 since Sk \ x is contractible.

Z Z

0

f∗

so deg(f) = 0.

■

Example. Consider an endomorphism on the 0-sphere:

S0 S0

{a,b} {a,b}

f

∼= ∼=
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There are only four possible maps:

(a,b) 7→


(a,a)

(b,b)

(a,b)

(b,a)

The first two maps are not surjective, so they have degree deg(f) = 0. The third map is the identity, so
in this case, deg(f) = 1. For the final map, consider the reduced homology:

H̃n(S
0) = ker

(
H0(S

0)
π−→ H0(∗)

)
= ker

(
Za⊕ Zb π−→ Z∗

)
a− b is a generator of H̃0(S

0) since π(a− b) = ∗ − ∗ = 0, so H̃0(S
0) = Z(a− b). Then,

f∗(a− b) = b− a = −(a− b)

so deg(f) = −1. △

Example. Consider S1 as a subset of the complex numbers, and let f : S1 → S1 be defined by z 7→ zn for
some integer n. The loop σ : [0,1]→ S1 defined by t 7→ e2πit represents a generator of H1(S

1) ∼= H̃1(S
1).

Then, f∗
(
[σ]
)
= [f◦σ] is represented by the loop t 7→ e2πint which is homologous to nσ, so deg(f) = n. △

Theorem 39.8.2. Let k ≥ 1. For every integer n ∈ Z, there exists a map f : Sk → Sk of degree n.

Proof. The suspension SX of a space X is the space

X × [−1,1]
/
∼

where (x,1) ∼ (y,1) and (x,− 1) ∼ (y,− 1) for all x,y ∈ X.

X X × [−1,1] SX

Taking the upper and lower cones, plus some extra space for overlap:

C+X := X × (−ε,1]
/
X × 1 C−X := X × [−1,ε)

/
X ×−1

we have two open subspaces that jointly cover X, and their intersection deformation retracts to X. These
subspace are also contractible, so their homology vanishes, and Mayer–Vietoris gives an isomorphism

Hk+1(SX)
∂∼= Hk(X)

Then, any map f : X → Y induces a map Sf : SX → SY , and we have a commutative square

Hk+1(SX) Hk(X)

Hk+1(SY ) Hk(Y )

∂

Sf∗ f∗

∂

Notes on Mathematics | 798



Homology Degrees

Applying this with X = Y = Sk−1, and noticing the suspension of Sk−1 is homeomorphic to Sk, we
have deg(Sf) = deg(f). We can then reduce inductively to k = 1. ■

39.8.1 Antipodes

Lemma 39.8.3. Let Sk ⊆ Rk−1 be the unit circle. Let f : Sk → Sk be the reflection in a hyperplane
through the origin. Then deg(f) = −1.

Proof. Let H ⊆ Rk−1 be the fixed hyperplane. It splits the sphere Sk into two hemispheres Sk+ and Sk−.
Fix some homeomorphism σ+ : ∆k → Sk+, and set σ− = f ◦ σ+.

Because f is the identity on H, the composition

∂∆k σ+−−→ Sk+ ∩ Sk−
(σ−)−1

−−−−−→ ∂∆k

is the identity:

(σ−)
−1 ◦ σ+ = (f ◦ σ+)−1 ◦ σ+

= (σ+)
−1 ◦ σ+

= id∂∆k

so Corollary 39.7.1.1 applies. So, [σ+ − σ−] generates H̃k(S
k), and

f∗
(
[σ+ − σ−]

)
= [f ◦ σ+]− [f ◦ σ−] = [σ−]− [σ+] = −[σ+ − σ−]

so deg(f) = −1. ■

Theorem 39.8.4. Let T : Rk+1 → Rk+1 be a orthogonal linear transformation. It restricts to a homeo-
morphism f : Sk → Sk. Then deg(f) = det(T ).

Corollary 39.8.4.1. Let f : Sk → Sk be the antipodal map x 7→ −x. Then, deg(f) = (−1)k+1.

Corollary 39.8.4.2. If f : Sk → Sk has no fixed points, then deg(f) = (−1)k+1.

Proof. We show that f is homotopic to the antipodal map. The line through f(x) and −x passes through
the origin if and only if f(x) and −x are antipodal. That is, if f(x) = x.

f(x)

−x

x f(x) = x

−x

Since f has no fixed points, this cannot be the case, so the line tf(x) + (1− t)(−x) connecting the two
points, parametrised by t, is never zero. So, dividing by its norm yields an element of S1, so

(t,x) 7→ tf(x) + (1− t)(−x)
∥tf(x) + (1− t)(−x)∥

is a homotopy from the antipodal map to f . ■

Recall that a vector field on Sk is a continuous map v : Sk → Rk+1. A vector field is a tangent vector
field if v(x) is orthogonal to x for all x ∈ Sk.
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Example. The constant map v(x) = 0 is a tangent vector field on every sphere since the zero vector is
orthogonal to every vector. △

We are interested in tangent vector fields that vanish nowhere.

Example. On the 1-sphere,

is a non-vanishing tangent vector field. This construction generalises to other odd-dimensional spheres
as:

x = (x1, . . . ,x2m) 7→ v(x)− (−x2,x1,− x4,x3, . . . ,− x2m,x2m−1)

△

Do there exist non-vanishing tangent vector fields on even-dimensional spheres?

Corollary 39.8.4.3 (Hairy Ball Theorem). Every tangent vector field on an even-dimensional sphere
vanishes at some point.

Proof. Suppose for a contradiction that v : Sk → Rk+1 is a non-vanishing tangent vector field with k
even. Because v(x) and x are non-zero and orthogonal, they are linearly independent, so the map

Sk × [0,1] ∋ (x,t) 7→ cos(πt)x+ sin(πt)v(x) ∈ Rk+1

cannot vanish. So, we can divide by its norm to obtain a homotopy Sk × [0,1] → Sk from the identity,
at t = 0, to the antipodal map, at t = 1.

But, this is impossible, as identity has degree 1, while the antipodal map has degree (−1)k+1 = −1. ■

39.8.2 Local Degrees

Let k ≥ 1, and let f : Sk → Sk be a continuous map, and let y ∈ Sk such that its preimage f−1(y) =
{x1, . . . ,xn} is finite. We may choose disjoint open balls Ui ⊆ Sk around the xi.

So, f induces a map of pairs (U1,U1 \ xi) ↪→ (Sk,Sk \ y), and hence by excision, a map in homology

Hk(S
k,Sk \ xi) ∼= Hk(Ui,Ui \ xi)

f∗−→ Hk(S
k,Sk \ y)

Now, recall the long exact sequence in relative homology:

· · · → Hn(A)→ Hn(X)→ Hn(X,A)→ Hn−1(A)→ · · ·

We have A = Sk \ xi, which is contractible, so the outer terms vanish and we have an isomorphism

Hk(S
k) ∼= Hk(S

k,Sk \ xi)

Similarly, on the right we have A = Sk \ y, which is also contractible, so we again have an isomorphism

Hk(S
k) ∼= Hk(S

k,Sk \ y)
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So, the whole composition

Hk(S
k,Sk \ xi) Hk(Ui,Ui \ xi) Hk(S

k,Sk \ y)

Hk(S
k) Hk(S

k)

∼= f∗

∼=
f
∣∣∣
xi

∼=

can be viewed as an endomorphism

f
∣∣
xi

: Hk(S
k)→ Hk(S

k)

for each xi. Hk(S
k) ∼= Z, so these maps are given by multiplication by some integer, called the local

degree of f at xi, denoted by deg(f |xi).

Theorem 39.8.5. In the situation above,

deg(f) =

n∑
i=1

deg(f |xi
)

Example. Let p(z) ∈ C[z] be a non-constant polynomial interpreted as a map C → C. It extends to a
continuous map on the one-point compactification

fp : S
2 ∼= C ∪ {∞} → C ∪ {∞} ∼= S2

Let w ∈ C be such that p′(zi) ̸= 0 for all zi ∈ f−1
p

[
{w}

]
. Such a w always exists as p′ vanishes at finitely

many points. So, fp is invertible around each zi, so deg(fp|zi) = ±1. In fact, since polynomials are
orientation preserving, we must have deg(fp|zi) = 1. So,

deg(fp) =

n∑
i=1

deg(fp|zi) = n = deg(p)

△

39.9 Manifolds

We have already recalled the notion of a (topological) manifold: a Hausdorff space such that every point
has an open neighbourhood homeomorphic to Rk, for some fixed k called the dimension of the manifold.

Example.

• Euclidean space Rk is itself a k-manifold.

• The sphere Sk is a k-manifold: for any point that isn’t the north pole, take the open neighbourhood
to be the entire sphere minus the north pole, which is homeomorphic to Rk via sterographic
projection. For the north pole, take the open neighbourhodo to be the entire sphere minus the
south pole, which is again homeomorphic to Rk via sterographic projection.

• Any open subspace of a k-manifold is itself a k-manifold.

• The torus T2, Klein bottle K, and RP2 are all 2-manifolds.

△

Example. The interval [0,1] is not a manifold, since no open neighbourhood of 0 or 1 is homeomorphic
to Rk for any k. (Instead, it is a manifold with boundary, which we will not discuss.) △

Notes on Mathematics | 801



Homology Manifolds

Example. A 0-manifold is any space with the discrete topology (i.e. every set is open): for an open
neighourhood of a point x to be homeomorphic to R0 ∼= {∗}, it must be a singleton set, namely {x}, so
the topology is discrete. △

Theorem 39.9.1. Up to homeomorphism, the only connected compact 1-manifold is S1.

Proof sketch. Let M be a connected compact 1-manifold. By assumption, there are open subsets
U1, . . . , Un ⊆M all homeomorphic to R1. Choose n to be minimal, noting that n > 1, or elseM = U1

∼= R
is not compact. Since M is connected, we may assume, after relabelling if necessary, that U1 ∩ U2 ̸= ∅.
If π0(U1 ∩ U2) = ∗, then U1 ∪ U2

∼= R1, contradicting minimality.

Next, one shows that the only other possiblity is π0(U1 ∩U2) = ∗ ⨿ ∗, in which case M = U1 ∪U2
∼= S1.

(In particular, n = 2.) ■

Recall that a covering of a topological space X is a map p : X̃ → X such that for every point x ∈ X,
there exists an open neighbourhood Ux ⊆ X of x whose preimage

p−1[Ux] =
⊔
i∈Ix

Vi

is a disjoint union of open sets (Vi)i∈Ix , and the restriction p
∣∣
Vi

: Vi → Ux is a homeomorphism for every
i ∈ Ix. Such an open set Ux is said to be evenly covered by p, and the open sets Vi are called the sheets
of the covering. If p : X̃ → X is a covering, then the pair (X̃,p) is called a covering space or cover of X,
and X is said to be the base of the covering.

If X is connected, then the indexing set Ix does not depend on X. If |I| = n, then we say that p : X̃ → X
is an n-fold or n-sheeted cover.

Intuitively, a covering is a surjective map that acts locally like a projection of multiple copies of a space
onto itself.

Example. For any k ∈ N, the map pk : S1 → S1 defined by z 7→ zk is a covering map. The preimage of
the arc of length 1

k centred on z is the collection of arcs that each cover 1
k th of the circle, centred on each

root of z, and these arcs are disjoint as there are exactly k such roots evenly spaced along the circle.

This covering is also an k-fold covering map, as the fibre of any point z = exp(2πit) consists of k many
kth roots of z – namely exp

(
2πi(t+ j)/k

)
, for 0 ≤ j < k. △

Example. The map p∞ : R → S1 defined by x 7→ exp(2πix) is a covering map. Given a point z =
exp(2πit) ∈ S1, we take the open neighbourhood U =

{
exp(2πis) : |s − t| < ε

}
for some 0 < ε < 1,

which has preimage

p−1[U ] =
⋃
j∈Z
{s+ i : |s− t| < ε}

=
⊔
j∈Z

V

△

Lemma 39.9.2. Let X be a k-manifold, and let p : Y → X be a covering space. Then, Y is also a
k-manifold.

Proof. Let y1,y2 ∈ Y be distinct points, with images x1 = p(y1) = x1 and x2 = p(y2). If x1 ̸= x2,
then y1 and y2 are in different fibres: there exist disjoint open neighbourhoods Ui ⊆ X of xi since X is
Hausdorff; then, Vi := p−1[Ui] are disjoint open neighbourhoods of the yi.
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If x1 = x2, then y1 and y2 are in the same fibre, but different sheets, since y1 ̸= y2 and coverings are
homeomorphic on sheets: choose an evenly covered neighbourhood U ⊆ X of x1 = x2; then, y1 and y2
are in disjoint open sheets of U .

So, Y is Hausdorff.

Let y ∈ Y have image x = p(y). By assumption, there exists an evenly covered neighbourhood U ⊆ X of
x, so y is in a sheet Vy of U . Since U is open in X, it is also a manifold, so there is an open neighbourhood
V ⊆ U of x homeomorphic to Rk. Then, p−1[V ] ∩ Vy ∼= V ∼= Rk is an open neighbourhood of y. ■

Given a map f : (Y,y)→ (X,x) between pointed spaces and a covering p : (X̃,x̃)→ (X,x), when does a
lift f̃ : (Y,y)→ (X̃,x̃) exist?

(X̃,x̃)

(Y,y) (X,x)

p
f̃

f

Lemma 39.9.3. If X, X̃, and Y are connected manifolds, then the lift f̃ exists if and only if f∗
(
π1(Y,y)

)
⊆

p∗
(
π1(X̃,x̃)

)
. Moreover, such a lift is unique.

Two coverings p : Y → X and q : Z → X are isomorphic if they factor through each other. That is,
there exist maps f and g such that

p = q ◦ f and q = p ◦ g

This also implies that f and g are inverse, so equivalently, p and q are isomorphic if there exists a
homeomorphism h : Y → Z such that

Y Z

X
qp

h
∼=

commutes.

Example. p2 is isomorphic to p−2 via the homeomorphism h(z) = z−1. △

Example. p2 and p3 are not isomorphic, as one is a 2-fold covering, and the other is a 3-fold covering. △

Let p : X̃ → X be a covering of X. A deck transformation is a homeomorphism τ : X̃ → X̃ such that
p ◦ τ = p. That is, τ witnesses an automorphism of p. The set of all deck transformations of a cover p is
denoted Deck(p), and has group structure under composition.

Example. The map z 7→ −z is a deck transformation for p2. △

Theorem 39.9.4 (Galois Theory for Covering Spaces). Let X be a connected manifold. Then, there is
a bijection

{connected covering spaces of X}
/∼= ↔ {subgroups of π1(X)}

/
conjugacy

This bijection sends a covering space p : X̃ → X to the conjugacy class of subgroups p∗
(
π1(Y )

)
⊆ π1(X).

The trivial subgroup corresponds to the universal cover X → X – the connected and simply connected
covering space of X unique up to isomorphism. Moreover, π1(X) is the group AutX(X) of isomorphisms,
or deck transformations, X → X.
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Example. Since p∞ is a covering space, and R is connected and simply connected, it is the universal
cover. The group of deck transformations is then an infinite cyclic group generated by the map x 7→ x+1.
Hence, (if we didn’t already know) π1(S1) = Z. △

The index of the subgroup in π1(X) corresponds to the number of sheets in the covering. So, for example,
the n-sheeted covers pn : S1 → S1 correspond to the subgroups nZ ≤ Z.

39.9.1 Orientations
Let V be a non-zero finite-dimensional real vector space. Recall that two bases define the same orientation
if the change of basis transformation from one to the other has positive determinant. This defines an
equivalence relation whose two equivalence classes are the two possible orientations of V .

Conversely, we can think of invertible transformations with positive determinant as orientation-preserving,
and those with negative determinant as orientation-reversing.

Example. The determinant of any reflection is −1, so reflections reverse orientation. △

Since manifolds locally appear as finite-dimensional vector spaces, we should expect that orientations
can be generalised, at least locally, to manifolds.

Recall that, given a k-manifold M and any point x ∈M , then the relative homology group at x is given
by Corollary 39.7.4.1 to be infinite cyclic, and can therefore be identified with:

Hk(M,M \ x) ∼= Z ∼= Hk−1(S
k−1)

The choice of generator of Z is exactly analogous to the choice of basis in a vector space.

Vector Spaces k-Manifolds
V Hk(M,M \ x) ∼= Z

basis generator
linear transformation endomorphism of Z

orientation preserving (det > 0) deg = 1
orientation reversing (det < 0) deg = −1

A local orientation of M at x is a choice of one of the two generators of Hk(M,M \ x) ∼= Z.

Example. Let M be a 2-manifold, and let U ∋ x be an open neighbourhood of x that is homeomorphic
to R2. The long exact sequence for relative homology of the pair (U,U \ x) is:

· · · → Hn+1(U)→ Hn+1(U,U \ x)→ Hn(U \ x)→ Hn(U)→ · · ·

The open neighbourhood U ∼= R2 is contractible, so the outer terms vanish in degrees n ≥ 1, and we
have an isomorphism in the middle. Also, U \ x deformation retracts onto a small circle around x, so,

H2(U,U \ x) ∼= H1(U \ x) ∼= H1(S
1)

Choosing a local orientation ωx at x therefore amounts to choosing in which direction to traverse this
circle:

U

ωx

U

ωx

△
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In the above, choosing a local orientation at x also determines the local orientation of every other point
y contained in a small neighbourhood around x. In some manifolds, say R2, this extends to the entire
space: we can pick the clockwise or counterclockwise orientation globally.

This is not true on the open Möbius band; if we choose a local orientation and try to “transport” it along
a loop around the band, we end up with the opposite orientation after having traversed the band once.

Let B ⊆ M be a subset of a k-manifold. We say that B is a small open (resp. closed) ball if it has an
open neighbourhood U ⊇ B homeomorphic to Rk via, say f , such that f(B) is an open (resp. closed)
ball of finite radius.

U Rk

B B(x,r)

∼=
f

⊆
∼=

f
∣∣∣
B

⊆

The point of this definition is that by excision, then applying the homeomorphisms above:

Hk(M,M \B) ∼= Hk(U,U \B)
f∗∼= Hk

(
Rk,Rk \B(x,r)

)
Then, the long exact sequence in relative homology for the pair

(
Rk,Rk \B(x,r)

)
is:

· · · → Hk(Rk)→ Hk

(
Rk,Rk \B(x,r)

)
→ Hk−1

(
Rk \B(x,r)

)
→ Hk−1(Rk)→ · · ·

but Rk is contractible, so the outer terms vanish, and we have the isomorphism

Hk

(
Rk,Rk \B(x,r)

) ∼= Hk−1

(
Rk \B(x,r)

)
and finally, Rk \B(x,r) deformation retracts to the boundary ∂B(x,r), giving

Hk−1

(
Rk \B(x,r)

) ∼= Hk−1

(
∂B(x,r)

) ∼= Hk−1(S
k−1) ∼= Z

which is infinite cyclic. Chaining these all together, we have

Hk(M,M \B) ∼= Hk−1

(
∂B(x,r)

)
so we can think of a generator here as an orientation of the boundary of B.

Now, for every point y ∈ B, we then get an induced local orientation through the canonical inclusion
map

Hk(M,M \B)
spy−−→∼= Hk(M,M \ y)

because M \B ⊆M \ y.

A family of local orientations (ωy)y∈B is consistent if there is a generator ωB ∈ Hk(M,M \B) such that
spy(ωB) = ωy for all y ∈ B.

U

B

ωB
ωy

An orientation of a k-manifold M is a family of local orientations (ωx)x∈M which are locally consistent.
That is, for all x ∈ M , there exists a small open ball B such that the local orientations (ωy)y∈B are
consistent.

M is orientable if it admits an orientation and is non-orientable otherwise.
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Example. The k-sphere M = Sk is orientable. For k = 0, S0 is

Choose a generator ω ∈ Hk(S
k). Then, for each point x ∈ Sk, the long exact sequence in relative

homology for the pair (Sk,Sk \ x) is

· · · → Hk(S
k \ x)→ Hk(S

k)→ Hk(S
k,Sk \ x)→ Hk−1(S

k \ x)→ · · ·

Sk \ x is contractible, so the outer terms vanish, so the map in the centre is an isomorphism:

Hk(S
k)

fx−→ Hk(S
k,Sk \ x)

and hence this map induces local orientations ωx := fx(ω) at each point x ∈ Sk. These local orientations
are also locally consistent, since the map above factors through Hk(S

k,Sk \B) via inclusion for any small
open ball B around x. △

We define the orientation bundle M̃ to be the set of pairs (x,ωx), where x ∈ M and ωx is a local
orientation at x. This set is equipped with the map π : M̃ → M that projects to the first coordinate.
We can put a topology on this set using this map.

If B ⊆ M is a small open ball, then we have seen that there are precisely two collections of local
orientations (ωy)y∈B that are locally consistent in B. In other words,

π−1[B] =
(
y, spy(ωB)

)
y∈B ⊔

(
y, spy(−ωB)

)
y∈B

∼= B+ ⊔B−

where B±
π∼=B. We define the topology on M̃ to be generated by the sets B+ and B− for all small open

balls B ⊆M .

From this, we have that π : M̃ →M is a 2-fold covering, as, by construction, the preimage of any small
open ball consists of two open sets homeomorphic to B under π.

Example. Let M be the open Möbius band

M := [0,1]× (0,1)
/
∼

where (0,y) ∼ (1,1− y) for all y ∈ (0,1).

M̃

M

If we cut the Möbius band along these two dashed lines, then we can take the two halves, plus some
extra space to overlap, to be two small open balls that jointly cover M . M̃ is a two-fold cover, so we
have the setup on the right, where the two copies of M in M̃ have different local orientations.

Pick some orientation in the upper left piece, next to the red boundary. We can transport this orientation
down to the blue boundary. Also, the lower left piece must have opposite orientation.
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M̃

⟲

⟲

⟳

⟳
Now, the red boundary at the top must glue to one of the other red boundaries; suppose it glues to the
upper right piece. So, this piece shares the same local orientation, but this orientation is reversed by the
twist as we reach the blue boundary. Again, the piece below must have opposite local orientations, so
altogether, we have:

M̃

⟲

⟲

⟳

⟳

⟲

⟳

⟳

⟲

−→ ∼=

So M̃ ∼= S1 × (0,1). △

Lemma 39.9.5. Giving an orientation of M is equivalent to giving a continuous section to π.

Proof. Giving a section ω :M → M̃ (not necessarily continuous) amounts to choosing, for each x ∈M ,
a local orientation ωx at x, since the first component must be the identity.

The map ω is continuous if and only if for each small open ball B ⊆M , ω−1[B+] and ω−1[B−] are open
in M , where B+ ⊔B− := B ⊔B = π−1[B].

Since these preimages are disjoint and jointly cover B, this condition is equivalent to ω(B) = B+ or
ω(B) = B−,which means precisely that the local orientations (ωy)y∈B are consistent. ■

Theorem 39.9.6. Let M be a k-manifold. Then, its orientation bundle M̃ is an orientable k-manifold.
Furthermore, this orientation is natural, and the deck transformation (x,ωx) 7→ (x, − ωx) reverses this
orientation.

Let x ∈M and choose a local orientation ωx. A path in M from x to y has a unique lift to M̃ starting at
(x,ωx) and ending at (y,ωy) for some ωy. In other words, this path determins a unique local orientation
at y.

Corollary 39.9.6.1. If M is a connected manifold, then:

• either, M̃ is connected, and M is non-orientable;

• or, M̃ ∼=M ⊔M , and M admits precisely two orientations.

Example. We have seen that the orientation bundle of the Möbius band is homeomorphic to S1 × (0,1),
which is connected. Hence, the Möbius band is not orientable. △

Corollary 39.9.6.2. Any simply connected manifold is orientable.

Theorem 39.9.7. Let k ≥ 1. Then, RPk is orientable if and only if k is odd.
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39.9.2 Surfaces
We define a surface here to mean a compact connected 2-manifold. (In particular, a surface is non-empty.)

Example. S2, T2, K, and RP2 are surfaces. △

Let S1 and S2 be two surfaces, and let Di ⊆ Si be two small closed disks. We can glue S1 \ D◦
1 and

S2 \D◦
2 along ∂D1

∼= ∂D2. The resulting space is called the connected sum S1 # S2.

The connected sum operation is associative, commutative, and unital on the set of homeomorphism types
of surfaces, with the unit being given by the 2-sphere S2.

Example. The g-holed torus Σg can be obtained as the connected sum of g tori:

Σg = T2 # · · · # T2︸ ︷︷ ︸
g

g

· · ·

△

Example. K ∼= RP2 # RP2. △

Up to homeomorphism, every surface is one of:

(i) Σg, g ≥ 0: the integer g is called the genus of the surface;

(ii) Nh, h ≥ 1; the integer h is called the non-orientable genius of the surface.

Example. The torus T2 is of the first type, and has genus 1. The real projective plane RP2 is of the
second type, and has non-orientable genus 1. △

Within each subtype, orientable and non-orientable genus behave well with respect to connected sums.
That is,

Σa # Σb ∼= Σa+b Na # Nb ∼= Na+b

However, the connected sum of the torus T2 and the real projective plane RP2 is

T2 # RP2 ∼= N3

Theorem 39.9.8. The set of surfaces up to homeomorphism forms a commutative monoid with the
connected sum, isomorphic to the monoid with presentation

⟨t,r | t+ r = 3r⟩

where t represents T2, and r represents RP2.

39.9.3 Homology and Orientation of Surfaces
Recall that a compact 0-manifold is just a finite discrete set, so the 0th homology group classifies them
completely (is a complete invariant). Compact 1-manifolds are just finite disjoint unions of circles, so H0

is also classifies them. H1 can also distinguish 1-manifolds from 0-manifolds, so (H0,H1) is a complete
invariant for compact manifolds of dimension at most 1.

This pattern continues into dimension 2: we will show that (H0,H1,H2) is a complete invariant for
compact manifolds of dimension at most 2.
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Let
(
(Xα,xα)

)
α∈Λ

be a collection of pointed spaces. Recall that the wedge sum of this collection is the
“one-point union” of the spaces, defined as:∨

α∈Λ

(Xα,xα) :=
⊔
α∈Λ

Xα
/
xα ∼ xβ

That is, the disjoint union of each space with all the basepoints identified.

Example. The wedge sum of two pointed circles is the figure-eight graph:

S1 ∨ S1

△

Lemma 39.9.9. If each pair in
(
(Xα,xα)

)
α∈Λ

is a good pair, then

H̃n

(∨
α∈Λ

(Xα,xα)

)
=
⊕
a∈Λ

H̃n(Xα)

Proof. We prove it for the binary case with good pairs (X,x) and (Y,y).

As (X,x) and (Y,y) are good pairs, there exist open and contractible A ⊆ X and B ⊆ Y such that x ∈ A
and y ∈ B.

Let U = A∪Y and V = X ∪B, noting that U,V are open in X ∨Y , being disjoint unions of sets open in
each part. We also have that U ∩ V = (A ∪ Y ) ∩ (X ∪B) = A ∪B is contractible, and U ∪ V = X ∪ Y .
Then, the reduced Mayer-Vietoris long exact sequence is:

· · · → H̃n(U ∩ V )→ H̃n(U)⊕ H̃n(V )→ H̃n(X ∨ Y )→ H̃n−1(U ∩ V )→ · · ·

The reduced homology of contractible spaces is trivial, so we have

· · · → 0→ H̃n(U)⊕ H̃n(V )→ H̃n(X ∨ Y )→ 0→ · · ·

and hence
H̃n(U)⊕ H̃n(V ) ∼= H̃n(X ∨ Y )

for all n. Because A and B are contractible, U and V deformation retract to, and are homotopy equivalent
to, Y and X, respectively, which yields

H̃n(X)⊕ H̃n(Y ) ∼= H̃n(X ∨ Y )

■

Theorem 39.9.10. The homology of the g-holed torus is

Hn(Σg) =


Z n = 0,2

Z2g n = 1

0 n ≥ 3

Corollary 39.9.10.1. The surfaces Σg, g ≥ 0, are orientable.

Notes on Mathematics | 809



Homology Comparison

Theorem 39.9.11. The homology of Nh is

Hn(Nh) =


Z n = 0

Zh−1 ⊕ Z/2 n = 1

0 n ≥ 2

Corollary 39.9.11.1. The surfaces Nh, h > 0, are non-orientable.

39.10 Comparison

At this point, we still have not proved that simplicial homology is an invariant of geometric realisation.
That is, that H∆

n (X) is independent from the choice of ∆-complex structure on X.

We will show that the simplicial homology of a space is isomorphic to the singular homology, regardless
of the choice of ∆-complex structure.

39.10.1 Simplicial = Singular

Let X be a topological space with a ∆-complex structure
(
T,f : |T | ∼= X

)
. Every n-simplex s ∈ T

induces a canonical continuous map ∆n → X, which we will also denote by s.

This extends to a homomorphism ∆n(T ) → Cn(X) from between simplicial and singular chain groups,
and in fact to a chain map ∆•(T )→ C•(X), since the boundary operator is defined in the same way in
both chains.

Recall that we defined the simplicial homology groups as:

H∆
n (X) := Hn(Y )

(
:= Hn

(
∆•(T )

))
Theorem 39.10.1. The induced map H∆

n (X)→ Hn(X) is an isomorphism.

Proof. Equivalently, the goal is to show that Hn(T )→ Hn

(
|T |
)

is an isomorphism.

Given a ∆-set A and a sub-δ-sets B ⊆ A, we define the relative simplicial chain complex by ∆•(A,B) :=
∆•(A)/∆•(B), and similarly, we define the relative homology as:

Hn(A,B) := Hn

(
∆•(A,B)

)
As usual, we have an induced long exact sequence in relative homology:

· · · → Hn+1(A,B)
∂−→ Hn(B)→ Hn(A)→ Hn(A,B)

∂−→ Hn−1(B)→ · · ·

Now, apply this with A = T k and B = T k−1, the ∆-sets of simplices in T of dimension at most k and
(k − 1), respectively. This gives a morphism of exact sequences

· · · Hn+1(T
k,T k−1) Hn(T

k−1) Hn(T
k) Hn(T

k,T k−1) Hn−1(T
k−1) · · ·

· · · Hn+1

(
|T k|,|T k−1|

)
Hn

(
|T k−1|

)
Hn

(
|T k|

)
Hn

(
|T k|,|T k−1|

)
Hn−1

(
|T k−1|

)
· · ·
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When k = 0, |T 0| is a discrete topological space on the set T 0, and the map Hn(T
0) → Hn(|T 0|) is

clearly an isomorphism. For k > 0, by induction and the five lemma, the middle vertical arrow in the
diagram above is an isomorphism if the first and fourth arrows are isomorphisms.

We will show that Hn(T
k,T k−1)→ Hn

(
|T k|,|T k−1|

)
is indeed an isomorphism by identifying both sides

independently with the free abelian group on the set Tk of k-simplices, and then observing that generators
are mapped to generators in the obvious way.

Note that ∆•(T
k−1) is a chain complex in degrees k − 1,k − 2, . . . ,0, and that ∆•(T

k) is essentially the
same chain complex, just with an additional term ZTk in degree k. It follows that ∆•(T

k,T k−1) is the
chain complex with ZTk concentrated in degree k. In particular, this gives:

Hn(T
k,T k−1) =

{
ZTk n = k

0 n ̸= k

On the other side, by construction of the geometric realisation we have homeomorphisms

|T k|
|T k−1|

∼=
∆k × Tk
∂∆k × T k

∼=
∨
Tk

∆k

∂∆k

∼=
∨
Tk

Sk

So,

Hn

(
|T k|,|T k−1|

) ∼= Hn

(
|T k|/|T k−1|

)
∼= Hn

(∨
Tk

Sk

)
∼=
⊕
Tk

Hn(S
k)

=

{
ZTk n = k

0 n ̸= k

with generators corresponding to elements s ∈ Tk via the relative cycles s : ∆K → |T k|. It follows that
the homomorphism identifies these two groups.

Now, if T = T k is finite dimensional, then we are already done. Otherwise, let z ∈ Zn(T ) be an n-cycle
whose image in Hn

(
|T |
)

vanishes. That is, there exists τ ∈ Cn+1

(
|T |
)

with ∂(τ) = z. Now, every
compact subspace of |T | is contained within some |T k|, so τ ∈ Cn+1

(
|T k|

)
for some k > n, so z maps to

zero in Hn

(
|T k|

)
. Then, z = 0 ∈ Hn(T

k) = Hn(T ), so the map Hn(T )→ Hn

(
|T |
)

is injective.

Similarly, let s ∈ Zn
(
|T |
)

be an n-cycle. As in the previous case, σ ∈ Zn
(
|T k|

)
for some k > n, and

similarly, [σ] has a preimage in Hn(T
k) = Hn(T ), so the map Hn(T )→ Hn

(
|T |
)

is surjective. ■

Corollary 39.10.1.1. The simplicial homology H∆
• (X) depends only on X and not on any ∆-complex

structure.

Corollary 39.10.1.2. If X has a ∆-complex structure with simplices in dimensions at most k, then
Hn(X) = 0 for all n > k.
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39.10.2 CW Complexes
Recall that a CW complex (“Closure finite, Weak topology”) is a topological space∗ X obtained as follows:

(i) Start with a 0-skeleton consisting of a disjoint union X0 =
⊔
iD

0
i of 0-discs (i.e. points), or 0-cells.

(ii) Given an (n−1)-skeleton Xn−1, we construct the Xn by gluing a collection of n-cells (i.e. n-discs)
Dn
α via attaching maps φα : ∂Dn

α = Sn−1
α → Xn−1:

Xn := Xn−1 ⊔
⊔
αD

n
α

/
∼

where x ∼ φα(x) for all x ∈ Sn−1
α .

This recursion then either stops at some finite level n, yielding a CW complex X := Xn of dimension
n, or continues infinitely, in which case we define X :=

⋃
n∈NX

n, with a subspace U ⊆ X being open if
and only if U ∩Xn is open in Xn for all n.

For each n-cell Dn
α, we define the characteristic map Φα : Dn

α → X to be the composition

Dn
α ↪→ Xn−1 ⊔

⊔
α

Dn
α

q−→ Xn ↪→ X

where q is the quotient map induced by φα, identifying x ∼ φα(x) for all x ∈ Sn−1
α , and the other two

maps are the canonical inclusions.

Every ∆-complex is a CW complex. The main difference between the two is that the attaching maps for
an n-cell (Dn) in a CW complexes may be any continuous map into anywhere in the (n − 1)-skeleton,
while in a ∆-complex, the attaching maps must glue each face of the n-cell (∆n) to an (n− 1)-simplex
already in the complex.

In particular, this means that CW complexes may “skip” dimensions, and add no cells in a particular
step, but add more cells after. This cannot be the case for a ∆-complex, because the face maps after a
skipped step would have no simplices to attach to.

Example. The sphere Sk for k > 0 admits a CW complex structure with a single 0-cell, and a single
k-cell, where the attaching map is the unique map sending ∂Dk = Sk−1 to the unique point of the
0-cell. △

Example. A 1-dimensional CW complex is the same thing as a 1-dimensional ∆-complex, and both can
be identified with a topological graph. △

Example. Real projective k-space can be constructed as the quotient RPk ∼= Sk/(x ∼ −x) of the k-
sphere under the antipodal map. Alternatively, it is the quotient of one of the two hemispheres Dk with
antipodal points on the boundary ∂Dk = Sk−1 identified. But, this boundary is precisely RPk−1, so RPk
can be obtained by attaching a k-cell to RPk along the quotient map Sk−1 → RPk−1.

Inductively, it follows that RPk has a CW structure with exactly one cell in each dimension 0,1, . . . ,k. △

Example. If we continue this process, we can construct the infinite real projective space RP∞ :=⋃
k∈N RPk as a CW complex with a single cell in each dimension. △

39.10.3 Cellular Homology
We would like to define a homology theory for CW complexes, similar to simplicial homology for ∆-
complexes. As before, we can take the group of n-chains CCW

n (X) to be the free abelian group on the
n-cells, but cells in a CW complex may be attached in much more complicated ways than in ∆-complexes,
so there isn’t an obvious way to define the oriented boundary of an n-cell.

∗ As with ∆-complexes, this only describes a CW complex structure on a space X, of which there can be many.
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Lemma 39.10.2. Let X be a CW complex with n-cells (Dn
α)α∈Λ, n > 0. Then,

Hk(X
n,xn−1) ∼=

{⊕
α∈Λ Z k = n

0 k ̸= n

That is, the nth relative homology of (Xn,Xn−1) is the free abelian group on the set of n-cells.

Proof. (Xn,Xn−1) is a good pair, so by Theorem 39.7.5,

Hk(X
n,Xn−1) ∼= H̃(Xn/Xn−1)

The boundaries of the n-cells in Xn are glued into the Xn−1 skeleton, so in this quotient, their boundaries
are all identified together, so

Xn/Xn−1 ∼=
∨
α∈Λ

Dn
α/∂D

n
α
∼=
∨
α∈Λ

Sn

Relative homology splits across wedge sums, so

H̃

(∨
α∈Λ

Sn

)
∼=
⊕
α∈Λ

H̃k(S
n) ∼=

{⊕
α∈Λ Z k = n

0 k ̸= n

■

We can describe this isomorphism explicitly as follows. Choose a homeomorphism f : ∆n
∼=−→ Dn. Then,

we have a continuous map given by the composition

∆
f−→ Dn Φα−−→ Xn

which is in fact a relative cycle for the pair (Xn,Xn−1), and its relative homology class generates the
copy of Z corresponding to Dn

α.

Lemma 39.10.3. Let X be a CW complex. Then,

(i) Hn(X
k) = 0 for all n > k.

In particular, the homology of X vanishes in all degrees n > dim(X);

(ii) Hn(X
k) ∼= Hn(X) for all n < k.

More specifically, the map ι∗ : Hn(X
k) → Hn(X) induced by the inclusion ι : Xk ↪→ X is an

isomorphism if n < k, and is surjective if n = k.

Proof.

(i) Consider the long exact sequence for relative homology of the pair (Xk,Xk−1):

· · · → Hn+1(X
k,Xk−1)→ Hn(X

k−1)→ Hn(X
k)→ Hn(X

k,Xk−1)→ · · ·

From the previous lemma, the left relative homology group vanishes for n + 1 ̸= k, and the right
group vanishes for n ̸= k. So, both outer terms vanish in degrees n ̸= k,k − 1, and we have an
isomorphism in the middle. So, if n > k,

Hn(X
k) ∼= Hn(X

k−1) ∼= · · · ∼= Hn(X
0) ∼= 0
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(ii) Suppose X has finite dimension d. If n < k, then we have

Hn(X
k) ∼= Hn(X

k+1) ∼= Hn(X
k+2) ∼= · · · ∼= Hn(X

d) = Hn(X)

so Hn(X
k) ∼= Hn(X).

Otherwise, if n = k, then only the right group vanishes, and we only have a surjection in this
degree, so

Hn(X
k)↠ Hn(X

k+1) ∼= Hn(X
k+2) ∼= · · · ∼= Hn(X

d) = Hn(X)

so Hn(X
k)↠ Hn(X).

If X is infinite-dimensional, the proof is complicated and is omitted.

■

We can now describe cellular homology. We will take the relative homology groups

Hn+1(X
n+1,Xn) Hn(X

n,Xn−1) Hn−1(X
n−1,Xn−2)

to be the chain groups. By Lemma 39.10.2, these are all free abelian on the set of cells of the matching
dimension. The task is now to construct these differentials.

We construct the long exact sequences for the three chain groups, and they fit together into a diagram:

0

0 Hn(X
n+1)

Hn(X
n)

Hn+1(X
n+1,Xn) Hn(X

n,Xn−1) Hn−1(X
n−1,Xn−2)

Hn−1(X
n−1)

0

dn+1 dn

α β

γ δ

The leftmost zero is Hn(X
n−1), which vanishes by Lemma 39.10.3; the upper zero is Hn(X

n+1,Xn),
which vanishes by Lemma 39.10.2; and the lower zero is Hn−1(X

n−2), which vanishes by Lemma 39.10.3.

Also, note that the group at the top Hn(X
n+1) is isomorphic to Hn(X) via Lemma 39.10.3.

We define the differentials to be the compositions

dn+1 := β ◦ α dn := δ ◦ γ

This defines a chain complex, since the composition dn ◦ dn+1 factors through β and γ, and these are
consecutive maps in a long exact sequence, so their composition is zero, and hence dn ◦ dn+1 = 0, as
required.

Let X be a CW complex. We define the cellular chain complex CCW
• (X) by

· · · → CCW
n+1 = Hn+1(X

n+1,Xn)
dn+1−−−→ CCW

n (X) = Hn(X
n,Xn−1)

dn−→ · · ·

The cellular homology groups are the homology of this chain complex:

HCW
n (X) := Hn

(
CCW

• (X)
)
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Lemma 39.10.4. The cellular homology group HCW
n (X) is canonically isomorphic to the singular ho-

mology group Hn(X).

Proof.

HCW
n (X) :=

ker(dn)

im(dn+1)

∼=
ker(γ)

im(dn+1)
[by injectivity of δ]

∼=
im(β)

im(dn+1)
[exactness at CCW

n (X)]

∼=
im(β)

im(β ◦ α)

∼=
Hn(X

n)

im(β ◦ α)
[by injectivity of β]

∼=
Hn(X

n)

im(α)
∼= coker(α)

∼= Hn(X
n+1)

∼= Hn(X)

■

Corollary 39.10.4.1. For any CW complex X, there are canonical isomorphisms HCW
n (X) ∼= Hn(X).

Theorem 39.10.5. The boundary operator for cellular homology is given by

• in degree n = 1:
d1(D

1
α) = φ

• in degrees n > 1:
dn(D

n
α) =

∑
β

dαβD
n−1
β

where
dαβ = deg

(
∆αβ : Sn−1

α
φα−−→ Xn−1 πβ−−→ Sn−1

β

)
39.11 The Euler Characteristic

A plane graph is a finite 1-dimensional CW complex embedded in the real plane R2. Equivalently, it is
a finite graph in the plane in which the edges do not cross.

a plane graph not a plane graph
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Note that this is distinct from the notion of a planar graph in graph theory. Some finite graphs, for
instance, the complete graph K5 or the complete bipartite graph K3,3, do not admit an embedding into
R2, so they are nonplanar. The example on the right above does admit an embedding into R2 as a
square, so it is planar, but the particular embedding shown is not a plane graph.

A face of a plane graph G is a connected component of R2 \ G :

F1 F2

F3

Theorem 39.11.1 (Euler). For a plane graph with v vertices, e edges, and f faces,

v − e+ f = 2

Example. The complete bipartite graph

has v = 6 vertices and e = 9 edges. Suppose that K3,3 admits an embedding into R2. Because it is
bipartite, all cycles have even length, so every face has at least 4 edges. Clearly, every edge meets at
most two faces, so, 4f ≤ 2e = 18, which simplifies to f ≤ 4. Hence,

v − e+ f ≤ −3 + 4 = 1

contradicting Euler’s formula, so K3,3 is nonplanar. △

By taking the one-point compactification of R2, a planar graph yields a CW complex structure on the
R2 ∪ {∞} ∼= S2 with v many 0-cells, e 1-cells, and f 2-cells.

This result is non-trivial to prove (compare with the Jordan curve theorem), and is a special case of the
Schoenflies’ theorem, which we will assume without proof.

Given a topological spaceX that admits a finite CW complex structure, we define the Euler characteristic
to be the alternating sum

χ(X) :=
∑
n∈N

(−1)n
∣∣{n-cells in X}

∣∣
of the number of n-cells in X.

Theorem 39.11.2. The Euler characteristic is independent of choice of CW complex structure.

Let A be a finitely generated abelian group. It decomposes as A = F ⊕ T , the direct sum of the
torsion-free part T ∼= Zr, which is necessarily free abelian, and a finite abelian group F . The integer r
is well-defined and is called the rank of A, denoted rkZ(A). (See §39.1.7.3.)

Alternatively, this rank is given by the dimension of the Q-vector space A⊗ZQ since Zr⊗ZQ = Qr, and
F ⊗Z Q = 0.

Theorem 39.11.3. For a short exact sequence 0 → A1 → A2 → A3 → 0 of finitely generated abelian
groups,

rkZ(A1)− rkZ(A2) + rkZ(A3) = 0
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Corollary 39.11.3.1. Let C• be a chain complex with finitely many non-zero terms, all of which are
finitely generated abelian groups. Then,∑

n

(−1)n rkZ(Cn) =
∑
n

(−1)n rkZ
(
Hn(C•)

)
Let X be a space with only finitely many non-zero homology groups, all of which are finitely generated
abelian groups. Then, its Euler characteristic is defined as

χ(X) :=
∑
n∈N

(−1)n rkZ
(
Hn(X)

)
Example.

χ(Sk) =

{
2 k even
0 k odd

△

Theorem 39.11.4. Let X = U ∪ V and either

• X is a CW complex and U,V are subcomplexes;

• or X is any topological space and U,V ⊆ X are open subsets.

Then, if χ(U), χ(V ), and χ(U ∩ V ) are all defined, then so is χ(X), and it is given by

χ(X) = χ(U) + χ(V )− χ(U ∩ V )

Corollary 39.11.4.1. We have

χ(Σg) = 2− 2g

χ(Nh) = 2− h

The Euler characteristic of a surface can therefore attain any integer less than or equal to 2, with equality
only in the case of the 2-sphere.

Every even non-positive integer is the Euler characteristic of precisely two surfaces, one orientable and
one non-orientable. In particular, surfaces are completely classified by

• whether they are orientable or not, and

• their Euler characteristic.

Theorem 39.11.5. Let X and Y be finite CW complexes. Then so is X × Y ,

χ(X × Y ) = χ(X) · χ(Y )

Theorem 39.11.6. Let p : Y → X be an n-fold covering, and suppose that X is a finite CW complex.
Then, Y is also a finite CW complex, and we have

χ(Y ) = n · χ(X)
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39.12 Homology Theories

So far, we have defined three homology theories:

• Simplicial;

• Singular;

• Cellular.

Importantly, we have seen that they are all the “same”. This is not a coincidence: everything that behaves
“like a homology theory” is in fact the same.

It turns out that very few axioms are required to characterise homology theories. It won’t be surprising
that many of the important theorems we have seen will appear as axioms. However, these axioms are
stated in the language of category theory.

39.12.1 Categories
For a more thorough overview, see §51.

A category C consists of:

• A class ob(C ) of objects in C .

• For all (ordered) pairs of objects A,B ∈ ob(C ), a class hom(A,B) of morphisms from A to B,
called the hom-set of morphisms from A to B, also sometimes written C (A,B) or homC (A,B)
(particularly useful if multiple categories are in use). If f ∈ hom(A,B), we write f : A → B or
A

f−→ B.

The collection of all of these classes is the hom-set of C , and is written hom(C ).

• For any three objects A,B,C ∈ ob(C ), a binary operation, ◦ : hom(A,B)×hom(B,C)→ hom(A,C),
(g,f) 7→ g ◦ f , called composition, such that,

– (associativity) if f : A→ B, g : B → C, and h : C → D, then h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

– (identity) for every object X ∈ ob(C ), there exists a morphism idX : X → X called the
identity morphism on X, such that every morphism f : A → X satisfies idX ◦ f = f , and
every morphism g : X → B satisfies g ◦ idX = g.

Example. We list a few simple examples of categories:

(i) The prototypical example of a category is the category of sets and set functions, Set. Identity
morphisms are identity functions, and associativity follows from basic properties of set functions.

(ii) The category of groups and group homomorphisms, Grp. Every group is a set with extra structure,
and every group homomorphism is a set function that happens to preserve this structure, so
associativity and identity are inherited from Set.

(iii) Similarly, collections of sets with extra structure and maps that preserve that structure generally
form categories; for instance, the categories of:

• Monoids and monoid homomorphisms, Mon;

• Rings and ring homomorphisms, Ring;

• Metric spaces and non-expansive maps, Met;

• Cp-manifolds and p-times differentiable maps Manp;

• Pointed sets and based maps, Set•;

Notes on Mathematics | 818



Homology Homology Theories

• Measurable spaces and measurable functions, Mea;

• Vector spaces and linear maps over a fixed field K, VectK ; etc.

More relevant to this chapter are perhaps the categories of:

• Topological spaces and continuous maps, Top;

• Topological spaces and homotopy classes of continuous maps, hTop;

• Pointed topological spaces and continuous based maps, Top•;

• ∆-sets and ∆-set maps, ∆Set;

• Chain complexes and chain maps, Cpx.

(iv) For any topological space X, its fundamental groupoid Π1(X) is a category. Its objects are points
in X, and morphisms are homotopy classes of paths, with composition given by path concatenation.

△

Suppose we have objects A and B in a category, and morphisms f from A to B and g from B to A such
that the following diagram is commutative.

A BidA idB

f

g

That is, f ◦ g = idB and g ◦ f = idA. f and g are then isomorphisms – morphisms with inverses – and
we alternatively label g as f−1. If an isomorphism between A and B exists, we say that A and B are
isomorphic, and we denote this relation as A ∼= B.

Example. This recovers the following notions in some familiar categories:

• In Grp: group isomorphisms;

• In Top: homeomorphisms;

• In Man: diffeomorphisms;

• In VectK : linear isomorphisms.

△

Let C and D be categories. A functor, F : C → D , consists of two parts: a mapping on objects, and a
mapping on morphisms, that follow two constraints. F : ob(C )→ ob(D) associates each object X in C
to an object, F (X), in D .

X 7→ F (X)

Similarly, the map F : hom(C ) → hom(D) associates each morphism f : X → Y in C to a morphism
F (f) : F (X)→ F (Y ) in D such that:

• F (idX) = idF (X) for every object X in C ;

• F (g ◦ f) = F (g) ◦ F (f) for all morphisms f : X → Y and g : Y → Z in hom(C ).

That is, the functor preserves identity morphisms and composition of morphisms.

A more concise way to phrase this is, for every pair of objects A,B ∈ ob(C ), the functor F induces a
mapping FA,B : homC (A,B)→ homD(F (A),F (B)) that respects the structure of the categories.

A B

F (A) F (B)

f

F (f)
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Example. We have already seen many functors:

• Hn : Top→ Ab;

• Hn : Cpx→ Ab;

• C• : Top→ Cpx;

• (−)ab : Grp→ Ab;

• π1 : Top• → Ab.

In fact, the first three of these compose into an commutative triangle:

Top Cpx

Ab

C•

Hn
Hn

△

Example. Let ∆ denote the simplex category, which has linearly ordered sets as objects and order ho-
momorphisms as morphisms. Then, a simplicial set is a functor ∆op → Set, where ∆op is the opposite
category to ∆, which has all morphisms reversed. △

Given categories and functors C D ,
F

G
a natural transformation is a mapping C D

F

G

η or

η : F ⇒ G between functors.

The functors F and G map objects and morphisms in C to objects and morphisms in D , so to define
a mapping F ⇒ G, we want to associate the images of objects and morphisms under F to their images
under G. For objects, this just means that if X is in C , then F (X) should be associated with G(X) –
this is just a morphism in homD(F (X),G(X)). So, the natural transformation η associates each object
X ∈ ob(C ) to a morphism hX : F (X)→ G(X) called the component of η at X.

C D

F (X)

X

G(X)

F

G

ηXη

However, there could be many morphisms F (X) → G(X) we could choose. We need a way of selecting
these components that is consistent throughout the whole category.

Consider a morphism f : A → B in C . Under F and G, we have the images F (f) : F (A) → F (B) and
G(f) : G(A) → G(B). Along with the components ηA : F (A) → G(A) and ηB : F (B) → G(B), this
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completes the square

C D

A F (A) G(A)

B F (B) G(B)

ηA

ηB

F (f) G(f)f

F

G

F

G

η

η

(∃!)?

In this diagram, there are two paths from F (A) to G(B), namely, ηB ◦F (f), and G(f) ◦ ηA, and without
any further conditions on the components of η, these paths may be distinct. However, if we require that
these paths are equal – that the diagram commutes – then this forces our selection of components to be
consistent throughout the whole category. This coherency condition is called the naturality requirement.

So, overall, a natural transformation a natural transformation η : F ⇒ G between functors F,G : C → D

is a collection of morphisms
(
F (X)

ηX−−→ G(X)
)
X∈ob(C )

indexed by the objects of C such that the
following diagram commutes:

A F (A) G(A)

B F (B) G(B)

ηA

ηB

F (f) G(f)f

That is, ηB ◦ F (f) = G(f) ◦ ηA for all f : A→ B in hom(C ).

39.12.2 Axioms
We denote by CW2 the category of CW pairs. Its objects are pairs (X,Y ) of CW complexes X and Y
where Y ⊆ X is a subcomplex, and its morphisms (X,Y ) → (X ′,Y ′) are continuous maps f : X → X ′

such that f(Y ) ⊆ Y ′.

A homology theory is a collection of functors (n ≥ 0),

hn : CW2 → Ab

and natural transformations with components

∂n : hn(X,Y )→ hn−1(Y ) := hn−1(Y,∅)

satisfying the following axioms:

(i) Homotopy Invariance: If f ≃ G : X → Y , then hn(f) = hn(g) : hn(X)→ hn(Y ).

(ii) Excision: If X = U1 ∪ U2, then the inclusion ι : (U1,U1 ∩ U2) → (X,U2) induces an isomorphism
hn(U1,U1 ∩ Y2)

ι∗−→ (X,U2).

(iii) Exactness: The sequence

· · · → hn+1(X,Y )
∂n+1−−−→ hn(Y )→ hn(X)→ hn(X,Y )

∂n−→ hn−1(Y )→ · · ·

is exact for every pair (X,Y ).
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(iv) Additivity: For any collection (Xα,Yα), the map ⊕αhn(Xα,Yα)→ hn
(⊔

α(Xα,Yα)
)

is an isomor-
phism.

(v) Dimension: hn(∗) = δn0Z.

The naturality square for ∂n looks like:

(X,Y ) hn(X,Y ) hn−1(Y )

(X ′,Y ′) hn(X
′,Y ′) hn−1(Y

′)

∂n

∂n

hn(f) hn−1(f)f

Theorem 39.12.1. Singular homology defines a homology theory.

Proof. Homotopy invariance is §39.6.1, Excision is Theorem 39.7.5, Additivity is Theorem 39.4.3, Exact-
ness is Corollary 39.7.3.1, and Dimension was computed in an example in §39.4. ■

Fix a homology theory hn. Let us see what we can compute just from the axioms. As before, we define
the reduced homology group as h̃n(X) :− ker

(
hn(X)→ hn(∗)

)
.

Example.

• For each triple X ⊇ Y ⊇ Z, the sequence

· · · → hn+1(X,Y )
∂n+1−−−→ hn(Y,Z)→ hn(X,Z)→ hn(X,Y )

∂n−→ hn−1(Y,Z)→ · · ·

is exact. This is a diagram chase, starting with the Exactness axiom.

• If X is contractible, then h̃n(X) = 0 for all n: the map hn(X)→ hn(∗) is an isomorphism by the
Homotopy Invariance axiom.

• Consider the exact sequence above for the triple (Dk,∂Dk,∗):

· · · → h̃n(D
k)→ hn(D

k,Sk−1)→ h̃n−1(S
k−1)→ h̃n−1(D

k)

As the outer terms vanish, we have an isomorphism in the middle, and by Excision, Additivity,
and Dimension, we have:

h̃n(S
k)

∼←− hn(Dk,Sk−1)
∼−→ h̃n−1(S

k−1)
∼←− · · · ∼−→ h̃n−k(S

0) = δnkZ

• From Excision, we have:

hn(X
k,Xk−1)

∼−→ h̃n(X
k/Xk−1)

∼−→ h̃n

(∨
α

Skα

)
∼←−
⊕
α

h̃n(S
k
α) =

⊕
α

δnkZ

where the leftward isomorphisms are deduced from Additivity and Excision, and where α ranges
over the k-cells in X.

△

In fact, everything we have computed (in terms of homology) in this chapter can be derived from just
the axioms:

Theorem 39.12.2. If (hn,∂n) is a homology theory, then there are natural isomorphisms

hn(X,Y ) ∼= Hn(x,y)
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These natural isomorphisms commute with the connecting homomorphisms ∂n, so in a suitable category
of homology theories, all objects are isomorphic.

This theorem implies that we can compute the homology of a space using whatever homology theory
we like, so we can use whichever theory is simplest for any given space. However, it also implies that
if two spaces cannot be distinguished by singular homology, then they cannot be distinguished by any
homology theory. Given that the goal of algebraic topology is to distinguish topological spaces, this may
be somewhat disappointing.

However, it is possible to weaken or modify the homology axioms to generate other theories.

39.12.3 Coefficients
Let A be an abelian group. A homology theory with coefficients in A is a collection of functors hn :
CW2 → Ab together with natural transformations ∂n satisfying the same axioms as for an ordinary
homology theory, but with the dimension axiom replaced by hn(∗) = δn0A.

For example, we can replace the singular chain complex C•(X) by the tensor product C•(X)⊗ZA. That
is, in degree n, we have the group

Cn(X;A) :=
⊕

σ:∆n→X

A[σ]

with the “same” differential as before. Then, we setHn(X;A) := Hn

(
C•(X;A)

)
, and similarly for relative

homology. This singular homology with coefficients in A satisfies these modified axioms.

One particularly useful group to consider is A = Z/2.

Example. The cellular chain complex for RPk with Z/2-coefficients is:

0→ Z/2 0−→ Z/2→ · · · → Z/2 0−→ Z/2 0−→ Z/2→ 0

so that

Hn(RPk;Z/2) =

{
Z/2 0 ≤ n ≤ k
0 n > k

and
Hn(RP∞;Z/2) = Z/2

for all n ≥ 0. △

However, for distinguishing more spaces, this modification of homology theory is not of much help:

Theorem 39.12.3. If Hn(X) ∼= Hn(Y ) for all n, then Hn(X;A) ∼= Hn(Y : A) for all homology theories
with coefficients in A. More specifically, there is an isomorphism

Hn(X;A) ∼=
(
Hn(X)⊗Z A

)
⊕ Tor

(
Hn−1(X),A

)
39.12.4 Generalised Homology Theories
A generalised or extraordinary homology theory is a collection of functors hn : CW2 → Ab together
with natural transformations ∂n satisfying the same axioms as for an ordinary homology theory except
for (possibly) the dimension axiom.

Some examples of generalised homology theories include (co)bordism and stable homotopy. These theories
have been studied extensively, but many questions remain open.

However, one thing that is clear is that no uniqueness theorem holds for generalised homology theories:
these two examples (and many others) are genuinely distinct from ordinary homology.
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39.12.4.1 Stable Homotopy

The homotopy groups for n > 0 of a pointed space are given by homotopy classes of pointed maps
Sn → X:

πn(X,x) = [Sn,X]

For n ≥ 2, it turns out that these groups are abelian.

So far, we have seen that homotopy equivalences and homeomorphisms induce isomorphisms in homology,
and very few instances (mainly surfaces) where the converse holds. The following theorem illustrates
how fine of an invariant homotopy groups are:

Theorem 39.12.4 (Whitehead’s Theorem). Let f : X → Y be a continuous map between CW complexes.
If it induces a bijection on connected components and

f∗ : πn(X,x)→ πn
(
Y,f(x)

)
is an isomorphism for all x ∈ X and all n, then f is a homotopy equivalence.

Given this, it is perhaps not surprising that computing these homotopy groups is very difficult in general.
As previously mentioned, the higher homotopy groups even for spheres are generally unknown.

Example (Hopf Fibration). Consider the map S3 → C ∪ {∞} defined by

(x1,x2,x3,x4) 7→
x1 + ix2
x3 + ix4

which maps to ∞ when the denominator vanishes. Identifying the one-point compactification C ∪ {∞}
with the 2-sphere, this defines a map η : S3 → S2, called the Hopf fibration. Over each point in S2, the
fibre of η consists of a circle S1, and for any pair of distinct points in S2, these circles pass through each
other precisely once.

What is the relation with homotopy groups? One might think that just as πn(Sk) = 0 for n < k, we
would also have πn(Sk) = 0 for n > k, with only πk(Sk) = Z being non-zero.

However, it turns out that the Hopf fibration is not null-homotopic, and in fact,

π3(S
2) ∼= Z[η]

is generated by the class of the Hopf fibration. △

However, there is a kind of stability that arises in these higher homotopy groups at a certain point.

Given two pointed spaces (X,x0) and (Y,y0), we define the smash product X ∧ Y as the quotient

X ∧ Y := X × Y
/
(x,y0) ∼ (x0,y)

where x ∈ X and y ∈ Y .

In the product X×Y , we can identify X and Y with the subspaces X×{y0} and {x0}×Y , respectively.
These subspaces intersect only at the point (x0,y0), so the union of these subspaces can be identified
with the wedge sum X ∨Y . In particular, {x0}×Y in X×Y is identified with Y in X ∨Y , and similarly
for X ×{y0} and X; and in X ∨Y , the subspaces X and Y intersect at the single point x0 ∼ y0. So, the
smash product is also given by the quotient

X ∧ Y := X × Y
/
X ∨ Y

The reduced suspension ΣX of a pointed space (X,x0) is the quotient

ΣX := X × I
/(
X × {0}

)
∪
(
X × {1}

)
∪
(
{x0} × I

)
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This is equivalent to taking the ordinary suspension SX, then collapsing the line {x}× I connecting the
two suspension points to a single point. The reduced suspension is also naturally a pointed space, with
the basepoint given by the equivalence class of (x0,0).

It can be shown that the reduced suspension of X is homeomorphic to the smash product X ∧S1. More
generally, the k-fold iterated reduced suspension is homeomorphic to the smash product

Σk ∼= X ∧ Sk

Theorem 39.12.5 (Freudenthal Suspension Theorem). Let X be a pointed CW complex. Then, the
suspension map

πn+k(Σ
kX) = [Sn+k,ΣkX]→ [ΣSn+k,Σk+1X] = [Sn+k+1,Σk+1X] = πn+k+1(Σ

k+1,X)

is an isomorphism for k ≫ n.

In fact, there are precise bounds on k,n (depending on X) for this map to become an isomorphism.

The theorem says that the group πn+k(ΣkX) is independent of k for large k. So, we can define a set of
groups based on this limiting behaviour as k becomes large:

Let X be a pointed CW complex. The stable homotopy groups are

πsn(X) := lim−→
k→∞

πn+k(Σ
kX)

Note that these make sense even for n < 0, and that these are all abelian.

These groups record only stable phenomena at the level of homotopy groups. Because of this, they are
somewhat easier to compute than the original “unstable” homotopy groups, although still (too) difficult.
For instance, the stable homotopy groups πsn(∗) are still largely unknown outside of small values of n,
though it is known that infinitely many of them are non-zero.

Theorem 39.12.6. Stable homotopy groups πsn define a generalised homology theory.

Note that this theory violates the dimension axiom in an extreme way: πsn(∗) is non-zero for infinitely
many n.

Exercise. The groups πsn(∗) are difficult to compute, but assuming these, would it then be possible to
compute πsn(X) for any CW complex X? An obvious idea would be to try reconstruct the uniqueness
theorem for ordinary homology theories, and to construct a cellular chain complex with terms given by
stable homotopy groups by spheres. What goes wrong?

Hint: note that πs•(Sn) = πs•−n(∗).
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39.13 Exercises

1. Let A be abelian and B1,B2 ≤ A be subgroups. Prove that B1
∼= B2 does not imply A/B1

∼= A/B2.

For instance, 2Z,3Z ≤ Z, and 2Z ∼= 3Z, but Z/2Z ̸∼= Z/3Z.

Remark. The point is that this naïve notion of isomorphism for subgroups is too weak! They are
isomorphic as groups, but not as subgroups of A: the isomorphism should also respect how these
subgroups embed into A. In this case, the isomorphism between the two subgroups does not factor
through the inclusions maps in both directions, so they are not isomorphic as subgroups. (See also
slice category and §52.6.)

2. Prove that every free abelian group is isomorphic to a direct sum of copies of Z.

3. Prove that the abelian group Q is not free abelian.

4. Compute the simplicial homology groups of the standard n-simplex ∆n.

5. Let G,H be groups. Prove that (G ∗H)ab ∼= Gab ⊕Hab.

6. Construct a ∆-complex structure on Sn and hence compute the simplicial homology groups.

7. Recall that the suspension SX of a space X is the quotient

X × [−1,1]
/
∼

where (x,1) ∼ (y,1) and (x,− 1) ∼ (y,− 1) for all x,y ∈ X. Prove that

Hn(X) ∼=

{
Hn+1(SX) n ≥ 1

H1(SX)⊕ Z n = 0

and H0(SX) ∼= Z. (Or in reduced homology, H̃n(X) ∼= H̃n+1(SX) for all n ≥ −1.)

8. Let C• and D• be chain complexes and f• : C• → D• be a chain map. Prove that the component
map fn : Cn → Dn induces a homomorphism

fn : Hn(C•)→ Hn(D•)

for all n ∈ Z.

9. Let X be a ∆-complex. Show that the natural map

∆•(X)→ C•(X)

from the simplicial to singular chain groups, given by regarding each n-simplex in the ∆-complex
of X as a singular n-simplex, is a chain map.

10. Prove that chain homotopy is an equivalence relation on the set of chain maps between two fixed
chain complexes.

11. Prove that chain homotopy respects composition. That is, if f,f ′ : C• → D• and g,g′ : D• → E•
are chain maps with f ∼ f ′ and g ∼ g′, then f ◦ g ∼ f ′ ◦ g′.

12. Let (C•,d•) be the chain complex concentrated in degrees [0,1] with Z and d1(n) = 2n; and let
(D•,d

′
•) be the chain complex concentrated in degrees [0,1] with Z2 and d′1(n,m) = (n−m,n+m).

Prove that C• and D• are chain homotopy equivalent.

13. Show that Homotopy Invariance and the Mayer–Vietoris long exact sequence holds in reduced
homology.

14. Compute the singular homology groups of RP2 using Homotopy Invariance and Mayer–Vietoris.
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15. Compute the singular homology groups of m-punctured Euclidean n-space, n ≥ 2, m ≥ 1.

16. Let X ⊇ A ⊇ B be topological (sub)spaces. Prove that there exists a long exact sequence

· · · Hn(A,B) Hn(X,B) Hn(X,A)

Hn−1(A,B) Hn−1(X,B) Hn−1(X,A) · · ·

in relative homology.

17. In this exercise, we generalise the Jordan Curve theorem to higher dimensions.

(a) Let γ : Ik → Sn be injective and continuous, with k < n. Show that

Hi

(
Sn \ γ(Ik)

) ∼= {Z i = 0

0 i ̸= 0

Hint: Write Ik = [0,1] × Ik−1 = [0, 12 ] × I
k−1 ∪ [ 12 ,1] × I

k−1 and show that any non-trivial
homology glass on Sn \ γ(Ik) is also non-trivial on either Sn \ γ

(
[0, 12 ] × I

k−1
)

or on Sn \
γ
(
[ 12 ,1] × I

k−1
)
. Repeat to contain a nested sequence of intervals I0 = [0,1] ⊃ I1 ⊃ · · · and

continue by induction on k.

(b) Let γ : Sk → Sn be injective and continuous, with k < n. Show that

Hi

(
Sn \ γ(Sk)

) ∼=

Z2 i = 0, k = n− 1

Z i = 0,n− k − 1, k < n− 1

0 else

(c) Let γ : Sn−1 → Rn be injective and continuous, with k < n. Show that

Hi

(
Rn \ γ(Sn−1)

) ∼=

Z2 i = 0

Z i = n− 1

0 else

18. Let p ∈ C[z] be a non-constant complex polynomial. This defines a map C → C, which we may
extend to a map to the one-point compactification

p : C ∪ {∞} → C ∪ {∞}

by setting p(∞) =∞.

(a) Verify that p is a continuous map.

(b) Noting that C ∪ {∞} ∼= S2, show that the topological degree of p is equal to its polynomial
degree.

Now, let p =
∑n
i=0 aix

i ∈ R[x] be a non-constant real polynomial, and similarly extend this to the
one-point compactification R ∪ {∞} ∼= S1.

(c) Show that

deg(p) =

{
0 n even
sgn an n odd
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19. In this exercise, we use degree theory to prove the fundamental theorem of algebra. That is, that
every non-constant polynomial in C[z] has a root.

(a) Suppose n > 0, and let
p(z) = zn + an−1z

n−1 + · · · a1z + a0

and define
pt(z) = zn + t(an−1z

n−1 + · · · a1z + a0)

for t ∈ [0,1]. Let BR be the open ball of radius R centred on the origin, and let S1
R := ∂BR be

its boundary. Show that if R is sufficiently large, then pt has no root on S1
R for any t ∈ [0,1],

so that
F : S1 × [0,1]→ S1 : (z,t) 7→ pt(Rz)

ptRz

is well-defined and continuous.

(b) Denote by F0 and F1 the maps S1 → S1 obtained by restricting F to S1 × {0} and S1 × {1},
respectively. Compute the degree of F0.

(c) Show that if p has no root in Br, then F1 has degree 0.

(d) Conclude that p must have a root in BR, and thus has a root in C.

20. Show that the Klein bottle is the connected sum

K ∼= RP2 # RP2

21. Let X = S1 ∨ S1 ∨ S2.

(a) Show that X has the same homology groups as the torus T2 for all n ∈ Z.

(b) Show that there is no map f : X → T2 that induces isomorphisms in homology in all degrees.

22. Compute the homology groups of Tn =
∏
n S

1 and Sn × Sm for n,m ≥ 1.

23. Let S1 and S2 be surfaces. Show that S1 # S2 is orientable if and only if S1 and S2 are both
orientable.

24. Let X be a CW complex or a ∆-complex. Show that the n and (n− 1)-skeletons (Xn,Xn−1) form
a good pair.

25. Let Σg be the g-holed torus, and set Σ0 = S2. Show that there exists an n-fold covering

π : Σh → Σg

if and only if h = n(g − 1) + 1.

26. Define R∞ to be the union
R∞ :=

⋃
n∈N

Rn

where Rn ⊂ Rn+1 as the subspace with (n+ 1)th coordinate being zero. Similarly, define

D∞ :=
⋃
n∈N

Dn S∞ :=
⋃
n∈N

Sn

(a) Show that S∞ is contractible.

(b) The proof of the Brouwer fixed point theorem does not apply to D∞. Find a map D∞ → D∞

that does not have a fixed point.

27. Prove any/all of the results in the next section.
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39.14 Results from Homological Algebra

39.14.1 Common Exact Sequences
If:

•
0→ A

f−→ B → 0

is exact, then A ∼= B; exactness at A gives ker(f) = im(0) = 0, so f is injective; and exactness at
B gives im(f) = ker(0) = B, so f is surjective.

•
0
f−→ A

g−→ 0

is exact, then A ∼= 0, as 0 = im(f) = ker(g) = A.

•
0→ A→ B → C → 0

is exact and C is free abelian (or projective), then B ∼= A⊕ C.

•
0→ A

a−→ B
f−→ C

b−→ D → 0

is exact, then A ∼= ker(f) and D ∼= coker(f): exactness at A gives ker(a) = im(0) = 0, so a is
injective and hence A ∼= im(a); by exactness at B, A ∼= im(a) = ker(f).

39.14.2 Splitting Lemma
Lemma 39.14.1. Given a short exact sequence

0→ A
q−→ B

r−→ C → 0

the following statements are all equivalent:

(i) Left split: There exists a morphism t : B → A such that t ◦ q = idA;

(ii) Right split: There exists a morphism u : C → B such that r ◦ u = idC ;

(ii) There is an isomorphism h : B → A ⊕ C, such that h ◦ q = ι1 : A ↪→ A ⊕ C is the canonical
inclusion mapping, and r ◦ h−1 = π2 : A⊕ C → C is the canonical projection mapping.

If any of these statements hold, then the sequence is called a split exact sequence, or the sequence is said
to split.

39.14.3 Five Lemma
Lemma 39.14.2 (Five Lemma). For the following commutative diagram,

A B C D E

A′ B′ C ′ D′ E′

a

α

b

β

c

γ

d

δ ε

a′ b′ c′ d′

if the two rows are exact, β and δ are isomorphisms; α is an epimorphism; and ε is a monomorphism,
then γ is an isomorphism.
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39.14.4 Nine Lemma
Lemma 39.14.3 (Nine Lemma). In the following commutative diagram,

0 0 0

0 A1 B1 C1 0

0 A2 B2 C2 0

0 A3 B3 C3 0

0 0 0

if all columns and the lower two rows are exact, then the top row is exact as well. Similarly, if all columns
and the upper two rows are exact, then the bottom row is exact as well.

The diagram is symmetric about the diagonal, so rows and columns may be interchanged in the above as
well.

39.14.5 Snake Lemma
Lemma 39.14.4 (Snake Lemma). In the following commutative diagram,

A B C 0

0 A′ B′ C ′

f

a

g

b c

f ′ g′

if the rows are exact, then there is a connecting homomorphism ∂ : ker(c) → coker(a) and an exact
sequence

ker(a)→ ker(b)→ ker(c)
∂−→ coker(a)→ coker(b)→ coker(c)

Moreover, if f is a monomorphism, then so is ker(a) → ker(b); and if g′ is an epimorphism, then so is
coker(b)→ coker(c).
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Cohomology

“It has been said that Poincaré did not invent topology, but that he gave it wings.
This is surely true, and verges on understatement. His six great topological papers
created, almost out of nothing, the field of algebraic topology.”
— Donal O’Shea, The Poincaré Conjecture: In Search of the Shape of the Universe
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Chapter 44

Introduction to Vector Calculus

“Using the chain rule is like peeling an onion: you have to deal with each layer at a
time, and if it is too big, you will start crying.”

— Unattributed

44.1 Curves & Parametrisation

A function, r, is vector-valued if it maps a number, t ∈ R to a vector r(t) ∈ Rn,n > 1.

If n = 1, then the function is instead scalar-valued. One way to represent a vector-valued function is to
write it in terms of its scalar-valued components, such as r(t) = x(t)i+ y(t)j+ z(t)k, where x, y and z
are scalar-valued, and i, j, and k are some basis vectors of R3.

Let r : I → Rn, where I is an interval over R. Then, the set C = {r(t)|t ∈ I} is a curve. r(t) can be
viewed as the position of a particle at time t, tracing out the curve. r′(t) then represents velocity, r′′(t)
represents acceleration, and so on.

The parametrisation of a curve is not unique. Additionally, if asked to parametrise a curve, ensure your
parametrisation traces out the curve in the correct direction if one is specified. If a direction is specified,
the curve is oriented, and non-oriented otherwise.

Example. Parametrise the semi-circle x2 + y2 = 4,y ≥ 0 in the anticlockwise direction. △

x2 + y2 = 4

y2 = 4− x2

y =
√

4− x2

Now, let x = t so we have,
r(t) = (t,

√
4− t2)

We also need bounds for t. x2 + y2 = 4, so x should range from −2 to 2, giving t ∈ [−2,2]. But now we
need to verify that the curve is being traced out in the right direction. r(−2) = (−2,0), so we appear to
be starting at the wrong side. We can fix this with the following equation:

r(t) = (−t,
√
4− t2),t ∈ [−2,2]
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More generally, to reverse the direction of a parametrisation, r(t) = (x(t), y(t)), t ∈ [a, b], let s(t) =
(x(a+ b− t),y(a+ b− t)),t ∈ [a, b]. In this case, a = −b, so we just replaced t with −t.

r(t) = (2 cos(t),2 sin(t))

is another valid parametrisation.

If r(t) is infinitely differentiable, r(t) parametrises a smooth curve.

A curve parametrised by r(t),t ∈ [a,b] is closed if r(a) = r(b).

A curve that does not intersect itself is embedded or simple. A curve being embedded is equivalent to its
parametrisation being injective (except possibly at the endpoints, if the curve is closed).

44.2 Vector Calculus

To differentiate a vector-valued function, differentiate each scalar-valued component.

If r(t) is a parametrisation of a curve, r′(c) is a tangent vector to the curve at the point t = c.

If r′(t) ̸= 0 for all t, then the curve parametrised by r(t) is regular.

Vector differentiation is linear (see §33.2.1 for a general overview of linearity and §33.6 for the linearity
of specifically differentiation).

If f(t) is a scalar-valued function and u(t), v(t) are vector-valued functions, then,

• f(t)u(t) = f(t)u′(t) + f ′(t)u(t);

• u(t) · v(t) = u(t) · v′(t) + u′(t) · v(t);

• u(t)× v(t) = u(t)× v′(t) + u′(t)× v(t);

• u(f(t)) = f ′(t)u′(f(t)).

Do not write u(t)v(t) as it is unclear as to which product (cross or dot) is being applied.

Let r(t) be a vector-valued function such that ||r(t)|| = C, where C is a constant. Then r(t) and r′(t)
are orthogonal.

Proof.

r · r = ||r||2

d

dt
(r · r) = d

dt
r2

r · r′ + r′ · r = 0

r′ · r = 0

■

If a curve is parametrised by r(t), the length of the curve between two given values of t, a and b, is given
by, � b

a

||r′|| dt

with b ≥ a. Note that this returns a scalar, but in contrast:
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The arc length function is given by the same integral, but with a new variable in the top bounds:

s(t) =

� t

a

||r′(u)|| du

This is a function, dependent on t.

The arc length parametrisation of r(t) is denoted r(s), where s is the arc length function. If r(t) is
regular, then ||r′(s)|| = 1. This function may also be called the unit-speed parametrisation.

44.2.1 Curvature & Torsion
To measure curvature, we define a quantity as follows:

κ(s) = ||r′′(s)||

where r(s) is a unit speed parametrisation.

The greater the value of κ(s), the more curvature the curve has.

Example. Let r(t) = at+ b, where ||a|| = 1. Find the curvature.

r′(t) = a,||r′(t)|| = ||a|| = 1, so r(t) is a unit speed parametrisation, and we may use our curvature
equation.

κ(s) = ||r′′(t)|| = 0, so a line has zero curvature, as we’d might expect. △

The curvature of a circle with radius R > 0 has constant curvature 1
R at all points. The quantity 1

κ(a)

is called the radius of curvature, and represents the radius of the circle that best approximates r(s) at
s = a. Such a circle is called the osculating circle of the curve at that point.

Curvature is independent of the choice of parametrisation: it is an intrinsic property of a curve.

For a non-unit-speed regular parametrisation, we alternatively have:

κ(t) =
||r′(t)× r′′(t)||
||r′(t)||3

=
T′(t)

r′(t)

where T(t) is the unit tangent.

44.2.2 Principle Normal & Binormal Vectors
As discussed earlier, the tangent vector of a curve is given by the derivative of its parametrisation. The
unit tangent, T(t), is the normalised tangent vector.

We define the principle normal vector, N(s) as the vector that satisfies,

r′′(s) = κ(s)N or equivalently, T′(s) = κ(s)N(s), or κ(s) = T′(s) ·N(s)

If κ(s) = 0, then the normal is undefined. The normal is perpendicular to the tangent, and points
towards the centre of the osculating circle of the curve.

The binormal is defined as:
B(s) = T(s)×N(s)

T, N, and B are always orthogonal and form an orthonormal basis of R3. The basis {T,N,B} is called
the Frenet-Serret frame.
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We define torsion, τ as,
B′(s) = −τN(s)

or,
τ = −B′(s) ·N(s)

Torsion is also independent of the choice of parametrisation.

Most of the results from the previous two sections can be compactly summarised as a matrix equation
as follows: T′

N′

B′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

TN
B


=

 κN
−κT+ τB
−τN


where T, N, and B are understood to be functions of the unit-speed function of t.

44.3 Multivariable Scalar-Valued Functions

A multivariable scalar-valued function maps vectors to scalars. For example, f(x,y) =
√
x2 + y2 is a

multivariable scalar-valued function.

For a general function, f : R3 → R, a set of points f(x,y, · · · ) = C where C is a constant is called a
level set. When n = 2, level sets are also called contour lines. When n = 3, level sets are also called
isosurfaces. For the function above, we may also represent f as a surface in R3 by setting z = f(x,y).

Multivariable functions require multiple derivatives to fully describe rates of change in every direction –
one for each dimension. For this, we use partial derivatives.

The partial derivative of a function f(x,y,z) with respect to x, is variously written as,

∂f

∂x
, fx, ∂xf

Other notations exist, but these are the main ones we will use.

The second-order partial derivative of f with respect to x is written as,

∂2f

∂x2
, fxx, ∂xxf, ∂

2
xf

and the second-order mixed derivative of f with respect to x, then y is given by,

∂2f

∂y∂x
, fxy, ∂yxf, ∂y∂xf

Let f , g be functions of (x,y, · · · ). Then,

∂

∂x
(fg) = f

∂g

∂x
+ g

∂f

∂x

Let f be a function of (x,y), and x, y be functions of t. Then,

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
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Let f : Rn → R. We define the gradient of f , denoted grad f or ∇f , as the vector ( ∂f∂x1
, ∂f∂x2

, ∂f∂x3
, . . . , ∂f∂xn

).

∇ is the grad operator, and is effectively a vector full of differential operators. ∇ takes a scalar, f(x,y,z),
and returns a vector, ∇f .

The directional derivative of f in the direction of a unit vector, v is given by D = v ·∇f . The directional
derivative is the rate of change of f in the direction of v.

44.3.1 Linear Approximations
Recall that the linear Taylor approximation of a function f(x) about a point x = a is given by f(a) +
f ′(a)(x− a). We can similarly approximate a surface in R3 as a plane using partial derivatives.

A function f(x,y) at the point (a,b) has a linear approximation given by

f(a,b) +

[
∂f

∂x
(a,b)

]
(x− a) +

[
∂f

∂y
(a,b)

]
(y − b)

This generalises to scalar valued functions of any number of variables. In general, the linear approxima-
tion of a function, f : Rn → R about a point a, is given by,

f(x) = f(a) + [∇f(a)] (x− a)

where ∇f(a) is ∇f evaluated at a.

Example. Find the linear approximation of f(x,y) =
√
1− x2 − y2 about the point (0,0).

Setting z = f(x,y), we have z =
√

1− x2 − y2, so x2+ y2+ z2 = 1, which is the upper half of the sphere
of radius 1 centred on the origin, so we should expect our linear approximation to be a horizontal plane
parallel to the x− y plane.

∇f =

(
− x√

1− x2 − y2
,− y√

1− x2 − y2

)
∇f(0,0) = 0

f(0,0) = 1

so f(x,y) is approximately 1 near (0,0). This corresponds to the plane z = 1 approximating the hemi-
sphere of radius 1. △

We can also find the normal vector to a curve at a given point. To do this, we can use the fact that
∇f(a,b) is normal to f(a,b).

Example. Let f(x,y) = x+ 2 sin(x+ y). Find the normal to the curve f(x,y) = 0 at the point (0,0).

∇f = (1 + 2 cos(x+ y),2 cos(x+ y))

∇f(0,0) = (3,2)

so the normal is (3,2), or any vector along the line y = 2x
3 . △

44.3.2 Critical Points

A critical point of a function, f(x) is a point where df
dx = 0. Critical points can be classified using the

second derivative test.

Suppose f ′(x) = 0 at x = a. If,
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• f ′′(a) > 0, the critical point is a local minimum;

• f ′′(a) < 0, the critical point is a local maximum;

• f ′′(a) = 0, the test is inconclusive.

Note: Say x = a is a local minimum/maximum point or that f(a) is a local maximum.

Now, we can extend this definition to functions of two variables. A function, f(x,y) has a critical point
at (a,b) if ∇f(a,b) = 0. That is, every partial derivative has to evaluate to 0 at the given point. We can
similarly classify these critical points using the Hessian matrix and the second partial derivative test.

H =

[
fxx fxy
fyx fyy

]
Let D = det(H) = fxxfyy − f2xy (fxy = fyx by Young’s theorem), and suppose ∇f(x,y) = 0 at (a,b). If,

• D > 0 and fxx > 0 at (a,b), then (a,b) is a local minimum point;

• D > 0 and fxx < 0 at (a,b), then (a,b) is a local maximum point;

• D < 0 at (a,b), then (a,b) is a saddle point;

• D = 0 at (a,b), then the test is inconclusive.

If it is easier to calculate, you may check fyy instead of fxx for the first two cases.

Performing this test on a single-variable function just gives the standard second-derivative test.

For functions or three or more variables, the determinant alone does not provide sufficient information
to classify the critical point. Instead, we check the eigenvalues of the Hessian.

Suppose we have f : Rn → R with n ≥ 3, and that ∇f(x) = 0 at x = a. If the Hessian has,

• all eigenvalues positive at a, then a is a local minimum point;

• all eigenvalues negative at a, then a is a local maximum point;

• both positive and negative eigenvalues at a, then a is a saddle point;

• other; the test is inconclusive.

44.4 Integration

Most of these methods are best explained through example.

44.4.1 Double Integration

Example. Write down the area between y = x2 and y = 2x as a double integral in two different orders. △

−1 1 2 3

2

4

x

y
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We observe that the points of intersection are (0,0) and (2,4), which will be helpful for some of our
integration bounds.

Let’s do the order dy dx first. Working from the outermost integral to the innermost integral: We’re
looking at dx first – the change in x. x varies between 0 and 2, so our outermost integral should go from
0, up to 2. Now, how does y vary? On the graph, x2 is below 2x, so we have x2 as our lower bound and
2x as our upper. Overall, we have � 2

0

� 2x

x2

1 dy dx

Doing the other order is very similar. y varies from 0 to 4, so our outermost integral goes from 0 to 4.
Now, how does x vary? Well, the line y = 2x is “below” the line y = x2 (taking right to be the positive
“upwards” direction), so we should go from y = 2x to y = x2. But we’re integrating with respect to x, so
we can’t have x in our integration bounds, so rearrange for y to get x = y

2 and x =
√
y as our bounds.

Overall, we have � 4

0

� √
y

y
2

1 dx dy

Note that, for a double integral for working out area, your outermost bounds should always be numbers
and not functions of any of the variables being integrated with respect to. If the sole integrand is 1, it
also may be tastefully omitted.

More generally, the double integral of some function
�
R

f(x,y) dA evaluated over some region, R, repre-

sents the volume between f(x,y) and the x− y plane over the region. If f(x,y) = 1 as above, then this
is just finding the area of the region.

You can also think of these multiple integrals in terms of finding masses, with f(x,y) being some kind
of density function. f(x,y) = 1 would then represent a constant density, just giving area in the 2D case.

44.4.2 Triple Integration
Example. Write down the volume contained within the tetrahedron with vertices (0,0,0), (1,0,0), (0,1,0)
and (0,0,1) as a triple integral. △

2

−1

1
2

2

Let’s integrate with the equilateral face being a function of x and y over the triangular region in the x−y
plane bounded by (0,0,0), (1,0,0) and (0,1,0). (Looking down at the tetrahedron from above, everything
is contained within the triangle bounded by those three points.)

The lines of interest are the x and y axes, and x+ y = 1.

Using our previous method, x varies from 0 to 1 in this region, so our outermost integral goes from 0 to
1. Now, how does y vary in terms of x? The line x+ y = 1 is above the x axis here, so we go from y = 0
to x+ y = 1, but again, no x’s in our bounds, so rearrange for y = 1−x, and we have our two outermost
integrals sorted.
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Now, just look at the z-axis. How does z vary in terms of x and y? The x− y plane is below the plane
x+ y + z = 1, so we go from the x− y plane, which is given by z = 0, to the plane x+ y + z = 1, which
is rearranged to z = 1− x− y. Overall, we have,

� 1

0

� 1−x

0

� 1−x−y

0

dz dy dx

44.4.3 Change of Coordinate System

44.4.3.1 Polar Coordinates

In R2, the Cartesian coordinates, (x,y), and polar coordinates, (r,θ) are related by,

x = r cos θ

y = r sin θ

We may convert the double integral,
�

R

f(x,y) dA =

� �
f(r cos θ,r sin θ)r dr dθ

Remember to multiply by an extra r.

In general, if you see many (x2 + y2)’s in f(x,y), converting to polar coordinates might be a good idea.

Example. Find the area in the first quadrant bounded by the polar curve r = 1 + cos θ. △

For polar double integrals, it is typically easier to use the angle in the outermost integral. So, using our
formula from before, f(x,y) = 1, so we have,

� �
r dr dθ

But what are our bounds? We’re looking for bounds in terms of angles, so clearly the first quadrant is
bounded by θ = 0 and θ = π

2 . Now, how does r vary? In this case, it’s fairly simple, as r just goes from
0 up to the given curve, so we have, � π

2

0

� 1−cos θ

0

r dr dθ

44.4.3.2 Cylindrical Coordinates

In R3, the Cartesian coordinates, (x,y,z), and cylindrical coordinates, (r,θ,z) are related by,

x = r cos θ

y = r sin θ

z = z

We may convert the triple integral,
�

Ω

f(x,y,z) dV =

� � �
f(r cos θ,r sin θ,z)r dr dθ dz

Remember to multiply by an extra r.

Again, if you see many (x2 + y2)’s in f(x,y,z), converting to cylindrical coordinates might be a good
idea.
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Example. Find the value of �

Ω

(x2 + y2) dV

where Ω is the region bounded by the surfaces x2 + y2 = 1, z = 2− x, and z = 0. △

First, plug in our formula:
�

Ω

x2 + y2 dV =

�

Ω

(r cos θ)2 + (r sin θ)2r dr dθ dz

Simplify the sines and cosines to get, �

Ω

r3 dr dθ dz

which certainly looks easier to do. But what are our bounds of integration? As we said earlier, it’s easier
to work with the angles on the outside, so let’s swap the order of integration to dr dz dθ. The surfaces
given are now r = 1, z = 2 − r cos θ and z = 0. r = 1 takes all angles, so we go from 0 to 2π for our
outermost integral. Next, how does r vary? Well, r just goes from 0 (the z-axis) out to the curve r = 1,
so we go from 0 to 1 for the middle integral. Finally, we look at how z varies. We are given two surfaces
for z: z = 2 − r cos θ and z = 0. As r is at most 1 over this region, 2 − r cos θ > 0, so we know that z
goes from 0 to 2− r cos θ. Overall, we have,

� 2π

0

� 1

0

� 2−r cos θ

0

r3 dr dz dθ

Skipping over the actual integration, you find that this evaluates to π.

44.4.3.3 Spherical Coordinates

In R3, the Cartesian coordinates, (x,y,z), and spherical coordinates, (r,θ,ϕ) are related by,

x = r cos θ sinϕ

y = r sin θ sinϕ

z = r cosϕ

(You can think of it like applying a cylindrical coordinate transformation to x, y and z, then polar
coordinates to (x,y) and z)

Like in polar/cylindrical coordinates, θ is measured from the positive x-axis. ϕ is measured from the
positive z-axis. Notice that, unlike θ, ϕ only ever varies from 0 to π. If ϕ goes past that, then the same
point can be reached with a smaller angle, just by increasing θ by π radians.

We may convert the triple integral,
�

Ω

f(x,y,z) dV =

� � �
f(r cos θ sinϕ,r sin θ sinϕ,r cosϕ)r2 sinϕdr dθ dz

Remember the extra factor of r2 sinϕ.

Similarly, if you see many (x2 + y2 + z2)’s in f(x,y,z), converting to spherical coordinates might be a
good idea.
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Example. Find a triple integral expression for the volume of a sphere of radius R centred on the origin. △

Since we’re finding a volume, f(x,y,z) = 1, so f(r cos θ sinϕ,r sin θ sinϕ,r cosϕ) = 1. As before, it’s easier
to work with when angles are in the outermost integrals, let’s do dr dθ dϕ for our order of integration.
First, how does ϕ vary? Looking at the sphere, notice that it contains both the positive and negative
z-axis, so ϕ varies from 0 to π (the sphere contains points directly above and below the origin). next,
look straight down at the x − y plane from the positive z-axis. The sphere lies in all 4 quadrants, so θ
takes all values possible, varying from 0 to 2π. Finally, r goes from 0 up to the surface of the sphere
which lies at a constant distance R away from the origin. Overall, we have,

� π

0

� 2π

0

� R

0

dr dθ dϕ

Example. Find the value of �

Ω

z2 dV

where Ω is the region bounded by two spheres of radius 1 and 2 centred at the origin. △

Given that we have two spheres, doing this in Cartesian coordinates is a horrible idea. So we convert
our dV into r2 sinϕdr dθ dϕ and use spherical coordinates.

2�

Ω

dV =

�

Ω

(r cosϕ)2r2 sinϕdr dθ dϕ

We just worked out the bounds for a spherical region, so we can mostly just plug them in. However,
we’re looking for the volume between two spheres, so we look at how r varies in this situation. Thinking
about the graph from the perspective of r, the sphere of radius 1 is “below” (closer to the origin) than
the sphere of radius 2, so r varies from 1 to 2. So, overall, we have,

� π

0

� 2π

0

� 2

1

r4 cos2 ϕ sinϕdr dθ dϕ

Example. Find the value of �

Ω

√
exp(x2 + y2 + z2)3 dV

where Ω is the region bounded by x2 + y2 + z2 = 1. △

We use the same conversion again, noting that the volume being integrated over is a sphere. Also note
that x2 + y2 + z2 = r2, so we can write,

�

Ω

√
exp(x2 + y2 + z2)3 dV =

� π

0

� 2π

0

� 1

0

sqrtexp(r2)3 dr dθ dϕ

44.4.3.4 Arbitrary Change of Coordinates

The Jacobian matrix of a function, f : Rn → Rn, denoted Df , is the matrix of partial derivatives,
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∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

· · · ∂f2
∂xn

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

· · · ∂f3
∂xn

...
...

...
. . .

...

∂fn
∂x1

∂fn
∂x2

∂fn
∂x3

· · · ∂fn
∂xn


This can be more compactly written as, [

∂f

∂x1
· · · ∂f

∂xn

]
or, 

∇⊤f1
...

∇⊤fn


If F : R2 → R2 is a bijection defined by F(u,v) = (x = a(u,v),y = b(u,v)) for some functions, a and b,
then the integral of f : A ⊆ R2 → R can be given by,

�

A

f(x,y) dx dy =

�

B

f(u,v)|det(J(F(u,v)))| du dv

where J is the Jacobian of the function F(u,v), and B is the same region in the new coordinate system.

From this point onwards, when the function is obvious and there is little room for confusion, we will
write J to denote J(F(x)).

Omitting the function f(x,y), we can more compactly write dA = dx dy = |det(J)| du dv.

For a triple integral, we similarly have, dV = dx dy dz = |det(J)| du dv dw.

Example. Verify the area and volume element conversions previously found using the formula outlined
above. △

For Cartesian R2 to polar, we have F(r,θ) = (x = r cos θ,y = r sin θ).

J =

[
∇x
∇y

]

=


∂x

∂r

∂x

∂θ
∂y

∂r

∂y

∂θ


=

[
cos θ −r sin θ
sin θ r cos θ

]
det(J) = r(cos θ)2 + r(sin θ)2 = r((cos θ)2 + (sin θ)2) = r, so dA = r dr dθ, as we found before.
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For Cartesian R3 to cylindrical, we have F(r,θ,z) = (x = r cos θ,y = r sin θ,z = z).

J =

∇x∇y
∇z



=



∂x

∂r

∂x

∂θ

∂x

∂z
∂y

∂r

∂y

∂θ

∂y

∂z
∂z

∂r

∂z

∂θ

∂z

∂z


=

cos θ −r sin θ 0
sin θ r cos θ 0
0 0 1


By Sarrus’ rule, det(J) = r(cos θ)2 + r(sin θ)2 = r((cos θ)2 + (sin θ)2) = r, so dV = r dr dθ dz as before.

Spherical coordinates are similar, but algebraically involved and time consuming, so they will be omitted.

Example. Evaluate �

R

x− 2y

3x− y
dA

where R is the region enclosed by the lines y = x
2 , y = x

2 − 2, y = 3x− 1 and y = 3x− 8. △

2 4

−2

2

x

y

Let u = x− 2y and v = 3x− y. Rearranging for x and y, we have x = 2v
5 −

u
5 and y = v

5 −
3u
5 .

Let F(x,y) = (x = 2v
5 −

u
5 ,y = v

5 −
3u
5 ).

J =

−
1

5

2

5

−3

5

1

5


det(J) = 1

5 , so we have,

�

R

x− 2y

3x− y
dA =

�

S

u

v

1

5
du dv

Now to find the bounds. Rearrange the lines defining the region:

y =
x

2
⇔ x− 2y = 0⇔ u = 0

y =
x

2
− 2⇔ x− 2y = 4⇔ u = 4
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y = 3x− 1⇔ 3x− y = 1⇔ v = 1

y = 3x− 8⇔ 3x− y = 8⇔ v = 8

2 4

2

4

6

8

u

v

So we have u = 0, u = 4, v = 1, and v = 8 as our bounds.
� 8

1

� 4

0

u

5v
du dv

44.5 Vector Fields

Recall that a function f : Rn → R is a scalar-valued function, assigning a scalar to every point in Rn.
Such a function may also be called a scalar field. Also recall that a function F : Rn → Rm is vector-
valued, assigning a m-vector to every point in Rn. Such a function may be called a vector field. We now
consider the case for n = m = 2 and n = m = 3.

If a vector field, F(x,y) can be written as the gradient of some scalar valued function, f(x,y), then F is
a vector field whose flow is normal to the level sets of f . Such a field is called a conservative field.

For example, the vector field F(x,y) = (x,0) can also be written as the gradient of the function f(x,y) =
x2

2 , so F is conservative.

44.5.1 Divergence & Curl

In this section, we will mostly be considering functions from R3 to R3. Recall the del operator, ∇, which
we previously used to write the gradient function. We now use the same symbol to introduce some new
operators:

grad f = ∇f
divF = ∇ · F
curlF = ∇× F

These last two operators look rather strange, given that del is an operator and not a vector, but the
way we’ve written them is a useful mnemonic as to how we actually calculate them: pretend the del is
a vector full of partial differential operators, and perform the calculation as indicated. Whenever you
multiply a function by a differential operator, instead apply the operator to the function.

Let F(x,y,z) = (f(x),g(y),h(z)). Then,

divF = ∇ · F =



∂

∂x
∂

∂y
∂

∂z


“·”

fg
h

 =
∂f

∂x
+
∂g

∂y
+
∂h

∂z
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curlF = ∇× F =



∂

∂x
∂

∂y
∂

∂z


“×”

fg
h

 =


i j k

∂

∂x

∂

∂y

∂

∂z

f g h

 =



∂h

∂y
− ∂g

∂z
∂h

∂z
− ∂g

∂x
∂h

∂x
− ∂g

∂y


The grad operator takes a scalar and returns a vector. The div operator takes a vector and returns a
scalar. The curl operator takes a vector and returns a vector.

The curl of a conservative field is 0.

44.5.2 Parametric Surfaces

Recall that a curve in R2 or R3 can be parametrised with a one variable function. A surface in R3

can similarly be parametrised using a two variable function. You will likely have seen some of these
previously, such as in the double vector parametrisation of a plane.

Example. Parametrise the surface in R3 given by x2 + y2 + z2 = A2. △

This is clearly a sphere, so try spherical coordinates with r = A. Then, x = A cosu sin v, y = A sinu sin v,
z = A cos v, with u ∈ [0,2π),v ∈ [0,π]. Remember to give intervals for your parameters.

Example. Find the Cartesian equation of the surface parametrised by,

r(u,v) = (
√
1− u cos v,

√
1− u sin v,u), u ∈ (−∞, 1], v ∈ [0, 2π]

△

x =
√
1− u cos v, y =

√
1− u sin v and z = u. Now look for ways to eliminate things. For example,

x2 + y2 = (1 − u) cos2 v + (1 − u) sin2 v = 1 − u = 1 − z, so we have x2 + y2 + z = 1 for our Cartesian
equation.

44.5.3 Surface Integrals

dS =

∣∣∣∣ ∂r∂u × ∂r

∂v

∣∣∣∣ du dv
Note: you only need the length of the cross product and not the vector itself, so to save time, you can
check if ∂r

∂u ·
∂r
∂v = 0. If so, then you can instead use

∣∣ ∂r
∂u ×

∂r
∂v

∣∣ = ∣∣ ∂r∂u ∣∣ ∣∣ ∂r∂v ∣∣.
Example. Find the formula for the surface area element for an arbitrary function z = f(x,y). △

r(x,y) =

 x
y

f(x,y)


∂r

∂x
=

 1
0
∂f

∂x


∂r

∂y
=

 0
1
∂f

∂y
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∂r

∂u
× ∂r

∂v
=


i j k

1 0
∂f

∂x

0 1
∂f

∂y


=

−∂f∂x−∂f∂y
1


so
∣∣∣∂f∂y × ∂f

∂v

∣∣∣ =√∂f
∂x

2
+ ∂f

∂y

2
+ 1, and,

�
dS =

� � √
∂f

∂x

2

+
∂f

∂y

2

+ 1 dx dy

44.5.4 Divergence Theorem
Flux is a vector quantity that describes how a fluid would flow through a surface, S, of a volume, V .

The divergence theorem says, �

V

∇ · F dV =

�

S

F · n dS

where n is the outward-pointing unit normal to the surface S. Note, instead of S, sometimes, ∂V is
written for the surface area element. Also, for the flux integral, sometimes F · dS is written instead of
F ·n dS. dS is also equal to ±(ru× rv) dy dv. This form may be easier to caclulate, as you avoid finding
the normal vector.

Example. Let V be the volume bounded by the unit sphere, and let F(x,y,z) = (z,y,x). Calculate the
net flux over the surface of the sphere. △

First, write the equation for flux
�

S

F · n dS =

�

V

∇ · F dV

=

�

V



∂

∂x
∂

∂y
∂

∂z

 ·
zy
x

 dV

=

�

V

0 + 1 + 0 dV

=

�

V

dV

which is just the volume of the unit sphere, which is 4π
3 .

Without the divergence theorem, the original integral is still doable with spherical coordinates, but is a
lot more work to compute.
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44.5.5 Line Integrals
Given a function, F : Rn → Rn, and a curve, C = r(t),t ∈ [a,b], the integral of F · dr over C is called a
line integral. In practice, we can calculate it as follows:

�

C

F · dr =

� b

a

F · dr
dt
dt

The line integral of a curve across a force vector field represents the work done when moving an object
along the curve C from where t = a to t = b.

Example. Calculate the line integral of F(x,y) = (x2, − xy) along the unit circle from (1,0) to (0,1) in
the anticlockwise direction. △

First, parametrise the path being integrated along: r(t) = (cos t, sin t), t ∈ [0,π2 ]. r′(t) = (− sin t, cos t).
Now, write out the line integral, and replace the x and y with cos(t) and sin(t) in F.

�

C

F · dr =

� π
2

0

F · dr
dt
dt

=

� π
2

0

[
cos2 t

− cos t sin t

]
·
[
− sin t
cos t

]
dt

=

� π
2

0

− cos2 t sin t− cos2 t sin t dt

= −2
� π

2

0

cos2 t sin t dt

= −2

3

The line integral between two given points of a conservative vector field is independent of the path taken.

For example, gravity is a conservative field; it doesn’t matter how you climb up a mountain, you gain
the same amount of gravitational potential energy regardless of choice of path. This also means that the
line integral of a closed curve is zero. Going back to the gravitational example, if you end up back where
you started, you’ll have a net gain of 0 gravitational potential energy.

44.5.6 Circulation
We haven’t talked much about curl yet, but its name gives a hint as to what physical characteristic of a
field it may represent. Thinking of F(x,y,z) as the function that returns the velocity of a fluid, we can
quantify the pointwise rotation of the fluid at any given point with the curl of the vector field evaluated
at that point. The length of the curl is proportional to the speed of rotation, and its direction is normal
to the plane of rotation.

If the point at which curl is being evaluated lies on a surface, S, with unit normal n, we can define a
quantity called pointwise circulation as, ∇×F · n. Unlike curl, this is a scalar, whose sign indicates the
direction of rotation around the point, relative to n.

Similar to the corkscrew rule for the cross product, if you align your right hand thumb in the direction of
n, the direction of circulation flows along with your fingers if pointwise circulation is positive, and flows
against your fingers if pointwise circulation is negative.

By integrating the circulation over the entire surface, we can find the net circulation over the surface.
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44.5.6.1 Stokes’ Theorem

Let F(x,y,z) be a vector field, S be a surface with unit normal n and boundary curve C, oriented
according to the right-hand rule. Then, the net circulation of the surface S over the field F is equal to
the line integral of F evaluated over C.

�

S

∇× F · n dS =

�

C

F · dr

Example. Calculate the integral of ∇× F · dS over the surface S : z = 4− x2 − y2,z ∈ [0,4]. △

The rim of the surface is a circle of radius 2 centred on the origin, which can be parametrised as, r(t) =
(2 cos t,2 sin t,0),t ∈ [0,2π]. r′(t) = (−2 sin t,2 cos t). We then rewrite the vector field as (2 sin t,0,4 cos2 t).

�

C

F · dr
dt
dt =

�

C

 2 sin t
0

4 cos2 t

 ·
−2 sin t2 cos t

0

 dt
= −4

� 2π

0

sin2 t dt

= −4π
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Chapter 45

Multivariable Analysis

“Obvious is the most dangerous word in mathematics.”
— Eric Temple Bell, The Queen of the Sciences

We begin by extending our work from analysis into higher dimensions, starting with exploring the notions
of convergence and continuity for vector and matrix-valued functions before studying the Fréchet deriva-
tive. We then cover vector fields, line and surface integrals, and some fundamental integral theorems.

Some of the material here is repeated from previous chapters, but is reformulated more rigourously.

45.1 Notation

There is a wide variety of notation in this area, and many symbols are overloaded with several distinct
meanings, so a short list has been included to disambiguate some of these.

∥v∥ Euclidean norm of the vector v. Also written as ∥v∥2 when discussing other
ℓp norms. Written as |v| instead, when matrix-norms are also in use.

∥v∥∞ The infinity norm of the vector v.

∥v∥1 The taxicab or Manhattan norm of the vector v.

∥A∥F Frobenius norm of the matrix A. Treats the matrix like a vector, then com-
putes the ordinary Euclidean norm.

∥T∥ Operator norm of the linear map v. We will sometimes put a matrix into this
norm, as they are isomorphic to linear transformations. Also just written as
∥ · ∥op.

C(U,Rk) Space of continuous functions f : U → Rk. Also written as C0(U,Rk) (see next
entry), or as C(U) when k = 1.



Multivariable Analysis Notation

Cn(U,Rk) Space of functions f : U → Rk continuously differentiable n times.

Br(a) Open ball of radius r centred at a point a. That is, the set {x ∈ Rn : ∥x−a∥ <
r}. Also written as B(a,r) or B(a,r).

Br Open ball of radius r centred on the origin; Br(0).

B Unit open ball centred on the origin; B1(0)

Br(a) Closed ball of radius r centred at a point a. That is, the set {x ∈ Rn : ∥x−a∥ ≤
r}. Also written as B(a,r) or B(a,r).

Br Closed ball of radius r centred on the origin; Br(0)

B Unit closed ball centred on the origin; B1(0).

Sn(r) The n-sphere of radius r; the boundary of Br(0); the set {x ∈ Rn+1 : |x| = r}.

Sn The unit n-sphere; Sn(1).

L(Rn,Rk) The space of linear maps T : Rn → Rk.

L(Rn) The space of linear maps T : Rn → Rn; isomorphic to and hence interchangable
with the space of k × n matrices with real entries.

M(k × n,R) The space of k × n matrices with real entries. Also abbreviated as Rk×n.

M(n,R) The space of n× n matrices with real entries; M(n× n,R)

GL(n,R) The group of invertible linear maps T : Rn → Rk; the group of nonsingular
n× n matrices with real entries.

∆(A) The multilinear function that sends a matrix A to its determinant. Not to be
confused with the Laplacian.

M∗ The Lipschitz constant of a function; the upper bound on how quickly a func-
tion can vary.

∂f

∂xi

The partial derivative of a function f with respect to the variable xi. Also
written as ∂xi

f(x); just as ∂if(x); or if f has few variables, as fx, fy, etc.

∂vf(x) The directional derivative of f at x in the direction of v. Also written as
Dvf(x). If v is one of the basis vectors, then this is the partial derivative.
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∇ The del or nabla operator; can be thought of as a vector full of partial differ-

ential operators
[
∂
∂x1

, ∂∂x2
, . . . , ∂

∂xn

]⊤
.

∇f The gradient of f ; the vector
[
∂f
∂x1

, ∂f∂x2
, . . . , ∂f∂xn

]⊤
; also written as grad(f).

∇ · v The divergence of v; calculated by “dotting” the del operator with the vector
field v; also written as div(f).

∇× v The curl of v; calculated by “crossing” the del operator with the vector field v;
also written as curl(f).

Df(x) The Fréchet derivative of f at x.

∂f The Jacobian matrix of f . Also written as Df , because it’s the same thing as
the Fréchet derivative in finite dimensions.

Gf The graph of a function f ; if f takes two variables, then Gf is the surface
parametrised by r(x,y) = (x,y,f(x,y)).

v A vector field; a function v : (U ⊆ Rn)→ Rn.

v⊥ The rotation of the vector v ∈ R2 90◦ clockwise; if v = (x,y), then v⊥ =
(y,− x).

r(t) The parametrisation r : [a,b]→ R2 of a curve C ⊂ R2.

ρ(s) The arclength or unit speed parametrisation ρ : [0,L]→ R2 of a curve C.

ṙ(t) The tangent to r(t); given by differentiating r componentwise.

ρ̇(s) The unit tangent to ρ(s); given by differentiating ρ componentwise.

N(t) The normal to r(t); given by ṙ(t)⊥.

n(t) The unit normal to ρ(s); given by ρ̇(s)⊥.

� L

0

v
(
ρ(s)

)
· ρ̇(s)ds The tangential line integral of v along C. Calculated using

� b
a
v
(
r(t)

)
· drdt dt,

where r is a parametrisation of C.

�
C

v · dr Alternative notation for the tangential line integral of v along C.
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� L

0

v
(
ρ(s)

)
· n(s)ds The flux integral of v along C; the normal line integral of v along C (compare

with the tangential line integral above);. Calculated using
� b
a
v
(
r(t)

)
·N(t) dt.

r(u,v) The parametrisation of a surface S ⊂ R3.

�
S

v · n dA The flux integral of n across a surface S. Calculated using
�
U
v
(
r(u,v)

)
·(

∂r
∂u ×

∂r
∂v

)
du dv.

�
S

v · dS Alternative notation for the flux integral of v across S. Also written as
�
S
v ·

n dS, or
�
S
v · dA.

∆f The Laplacian of f ; calculated as∇·(∇f), or, the sum of the second derivatives
of f ; also written as ∇ · ∇ or ∇2.

D2f(x) The Hessian (transformation) of f .

∂2f(x) The Hessian matrix of f ; also written as Hess f(x).

Np An (open) neighbourhood of a point p.

Γc The level set of a function set equal to c; the set of inputs to a function such
that the output is c.
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45.2 Convergence and Continuity

45.2.1 Convergence in Rn

A sequence (xi)
∞
i=1 of vectors in Rn converges to x ∈ Rn if,

∀ε > 0,∃N ∈ N : i > N → ∥xi − x∥ < ε

where ∥ · ∥ is the euclidean norm.

Theorem 45.2.1 (Uniqueness of Limits). If (xi)ni=1 converges to both x and y, then x = y.

Theorem 45.2.2 (Componentwise Convergence). A sequence (xi)
n
i=1 ⊆ Rn converges to y if and only

if for each i ∈ [1,n],

lim
j→∞

xi,j = yi

That is, the real number sequences of components of (xi) all individually converge to their corresponding
component of y.

The uniform, max or infinity norm, denoted by, ∥ · ∥∞ is defined by,

∥x∥∞ := max
(
|x1|, . . . ,|xn|

)
, x = (x1, . . . ,xn)

The taxicab or Manhattan norm, denoted by ∥ · ∥1 is defined by,

∥x∥1 := |x1|+ · · ·+ |xn|, x = (x1, . . . ,xn)

Theorem 45.2.3. For all x ∈ Rn,

∥x∥∞ ≤ ∥x∥ ≤
√
n∥x∥∞

and

∥x∥ ≤ ∥x∥1 ≤
√
n∥x∥

Theorem 45.2.4 (Algebra of Limits). If (xi)→ x and (yi)→ y, then,

lim
i→∞

(αxi + βyi) = αx+ βy

for all α,β ∈ R;

lim
i→∞
⟨xi,yi⟩ = ⟨x,y⟩

where ⟨−,−⟩ is any inner product, such as the scalar product;

lim
i→∞

∥xi∥ = ∥x∥

where ∥ · ∥ is any norm.

A sequence (xi) is bounded if there exists M > 0 such that ∥xi∥ < M for all i ∈ N.

Theorem 45.2.5 (Boundedness of Convergent Sequences). If (xi) converges to some x, then (xi) is
bounded.

Theorem 45.2.6 (Bolzano-Weierstrass for Vectors). Any bounded sequence (xi)
∞
i=1 ⊆ Rn has a conver-

gent subsequence (xij ).
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45.2.2 Continuity

A function f : (U ⊆ Rn)→ Rk is continuous at a point p ∈ U if,

∀ε > 0,∃δ > 0 : ∥x− p∥ < δ → ∥f(x)− f(p)∥ < ε (ε− δ Continuity)

or if, for all sequences (xi)→ p, (
f(xi)

)
→ p (Sequential Continuity)

f is then said to be continuous at U if f is continuous at all points p ∈ U .

We write C(U,Rk) to denote the space of continuous functions f : U → Rk.

A function f : U → Rk has a (continuous) limit at p ∈ U if there exists a vector q ∈ Rk such that,

∀ε > 0,∃δ > 0 : (x ∈ U) ∧ (0 < ∥x− p∥ < δ)→ ∥f(x− q)∥ < ε

and we write limx→p f(x) = q.

Just as for limits of sequences, continuous limits are unique. We also have that f is continuous at p if
and only if limx→p f(x) = p.

Given a real-valued function f : R2 → R, we define two families of functions gy and hx by

gy(x) = f(x,y) = hx(y)

In computer science terminology, g and h are the partial applications of f in the first and second
arguments, respectively.

A function f : R2 → R is separately continuous at (a,b) if gb is continuous at a and ha is continuous at b.

Continuity implies separate continuity, but not the converse.

Example. Define f : R2 → R by

f(x,y) =

{
1 xy ̸= 0

0 xy = 0

Then, g0(x) = 0 for all x and h0(y) = 0 for all y, so f is separately continuous at (0,0). But,

lim
(x,y)→(0,0)

f(x,y) = lim
n→∞

f

(
0,
1

n

)
= 0 ̸= 1 = lim

n→∞
f

(
1

n
,
1

n

)
= lim

(x,y)→(0,0)
f(x,y)

so

lim
(x,y)→(0,0)

f(x,y)

does not have a unique value and hence does not exist. △

Theorem 45.2.7 (Continuity of Sums). If f ,g : (U ⊆ Rn) → Rk are both continuous at p ∈ U , then
αf + βg is continuous at p for all α,β ∈ R.

Theorem 45.2.8 (Continuity of Real-Valued Products). If f,g : (U ⊆ Rn)→ R are both continuous at
p ∈ U , then (fg)(x) := f(x)g(x) is continuous at p.

Theorem 45.2.9 (Continuity of Quotients). If f,g : (U ⊆ Rn)→ R are both continuous at p ∈ U , and
g(x) ̸= 0 for all x ∈ U, then (f/g)(x) := f(x)/g(x) is continuous at p.
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Theorem 45.2.10 (Continuity of Composition). If f : (U ⊆ Rn) → Rk is continuous at p ∈ U and
g : (V ⊆ Rk)→ Rm is continuous at f(p) ∈ V , and f(U) ⊆ V , then g ◦ f : U→ Rm is continuous at p.

Theorem 45.2.11 (Componentwise Continuity). A function f : (U ⊆ Rn)→ Rk defined by

(x1, . . . ,xn) 7→
(
f1(x1, . . . ,xn),f2(x1, . . . ,xn), . . . ,fk(x1, . . . ,xn)

)
where (fj)

k
j=1 are real-valued functions, is continuous at p ∈ U if and only if every fj is continuous at

p.

That is, f is continuous if and only if every component fj is individually continuous.

Theorem 45.2.12. If f : R→ R is continuous at p ∈ R, then any function Rn → R defined by

(xi)
n
i=1 7→ f(xj)

is continuous on {(xi)ni=1 : xj = p}

That is, any function that is continuous as a function R→ R is also continuous as a function Rn → R.

A function f : Rn → Rk is continuous along lines or linearly continuous at a point p ∈ Rk if the
restriction fL of f to the line L passing through p is continuous for every such line L.

Continuity implies linear continuity, but not the converse.

Example. Define f : R2 → R by

f(x,y) =

{
1 0 < y < x2

0 otherwise

f = 0 over any sufficiently short line segment that passes through the point (0,0), so limx→0 f(x,ax) = 0
along any straight line path and f is linearly continuous at (0,0). But,

lim
n→0

f

(
n,
1

2
n2
)

= 1 ̸= 0 = f(0,0)

so f is discontinuous at (0,0). △

Linear continuity implies separate continuity, but not the converse.

Example. Define f : R2 → R by

f(x,y) =

{
1 xy = 0

0 xy ̸= 0

g0(x) = 1 for all x, and h0(y) = 1 for all y, so f is separately continuous at (0,0). But,

lim
n→0

f(n,n) = 0 ̸= 1 = f(0,0)

so f is not linearly continuous at (0,0). △

Continuity→ Linear Continuity→ Separate Continuity
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45.3 Topology on Rn

We define the open ball of radius r > 0 centred at a point a ∈ Rn, denoted by Br(a) or B(a,r), to be the
set {x ∈ Rn : ∥x− a∥ < r}. We abbreviate Br(0) to B(r), and B1(0) (the unit open ball) to B.

Similarly, the closed ball of radius r > 0 centred at a point a ∈ Rn, denoted by Br(a) or B(a,r), to be
the set {x ∈ Rn : ∥x− a∥ ≤ r}. We abbreviate Br(0) to B(r), and B1(0) (the unit closed ball) to B.

A set X ⊆ Rn is closed, if for every sequence (xi)
∞
i=1 ⊆ X of points in X that converges to a limit point

x ∈ Rn, we also have x ∈ X. That is, X is closed (in the algebraic sense) under sequential limits.

A set U ⊆ Rn is open if for all x ∈ U , there exists ε > 0 such that Bε(x) ⊂ U .

The empty set and Rn are both open and closed, or clopen.

Theorem 45.3.1. A set is open if and only if its complement is closed.

Theorem 45.3.2. Open balls are open sets.

Theorem 45.3.3. Closed balls are closed sets.

Theorem 45.3.4 (Arbitrary Union of Open Sets). If (Ui)i∈I is a (possibly uncountable) collection of
open sets, then, ⋃

i∈I
Ui

is open.

Theorem 45.3.5 (Finite Intersection of Open Sets). If (Ui)ni=1 is a finite collection of open sets, then,

n⋂
i=1

Ui

is open.

Corollary 45.3.5.1. An arbitrary intersection or finite union of closed sets is closed.

Let E ⊆ Rn. Given ε > 0, the ε-neighbourhood N (E,ε) of E is defined by,

N (E,ε) :=
⋃
x∈E

B(x,ε)

The ε-neighbourhood of a set is always open.

45.3.1 Continuity and Topology

Rewriting the ε − δ definition of continuity in terms of open sets, a function f : (U ⊆ Rn) → Rk is
continuous at a point p ∈ U if,

∀ε > 0,∃δ > 0 : f
(
(B(p,δ) ∩ U)

)
⊂ B(f(p),ε)

Applying the inverse to both sides of the inclusion, we have,

∀ε > 0,∃δ > 0 : B(p,δ) ∩ U ⊂ f−1
(
B(f(p),ε)

)
This suggests the following alternative characterisations of continuity:

Theorem 45.3.6. For any function f : Rn → Rk, the following statements are equivalent:

• f is continuous at all points of Rn.
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• f−1(V ) is open whenever V ⊆ Rn is open.

• f−1(F) is closed whenever F ⊆ Rn is closed.

Note that this does not imply that the image of an open (closed) set under a continuous function is open
(resp. closed): only inverse images preserve the topology of a set.

45.3.2 Compactness
A set K ⊆ Rn is sequentially compact if every sequence (xi)

∞
i=1 ⊂ K has a convergent subsequence (xij )

whose limit is in K.

A set K ⊆ Rn is bounded if there exists some M > 0 such that ∥x∥ ≤M for all x ∈ K.

Theorem 45.3.7. A set K ⊆ Rn is sequentially compact if and only if it is closed and bounded.

Theorem 45.3.8 (Continuity Preserves Sequential Compactness). If f : K → Rk is continuous and K
is sequentially compact, then f(K) is also sequentially compact.

Theorem 45.3.9 (Extreme Value Theorem). Let K ⊂ Rn be sequentially compact, and let f : K → R
be continuous. Then, there exists x∗,x

∗ ∈ K in K such that

f(x∗) ≤ f(x) ≤ f(x∗)

for all x in K.

That is, a continuous real-valued function defined over a sequentially compact space attains its extreme
values within that space.

Proof. Because f is continuous and K is sequentially compact, f(K) is also sequentially compact, and
is hence closed and bounded. Then, the values

U := sup f(K), L := inf f(K)

are both finite and there exists sequences (ai),(bi) ⊂ K such that (ai) → L and (bi) → U . As f(K) is
closed, we have L,U ∈ f(K), so x∗ := f−1(L) and x∗ := f−1(U) exist, and satisfy,

f(x∗) = L ≤ f(x) ≤ U = f(x∗)

for all x in K, as required. ■

Corollary 45.3.9.1. Let K ⊂ Rn be sequentially compact and let f : K → Rk be continuous. Then,
there exists x∗,x

∗ ∈ K in K such that

∥f(x∗)∥ ≤ ∥f(x)∥ ≤ ∥f(x∗)∥

for all x in K.

Proof. The map ∥ · ∥ : Rk → R is continuous, so x 7→ ∥f(x)∥ is a continuous map K → R. ■

45.4 The Space L(Rn,Rk) of Linear Maps

We denote the space of linear maps T : Rn → Rk by L(Rn,Rk). If n = k, this is abbreviated to L(Rn).
We denote the space of k × n matrices with real entries by M(k × n,R), also abbreviated to Rk×n.

We associate every matrix A ∈ Rk×n with a linear map T ∈ L(Rn,Rk) defined by

T (x) = Ax
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and we can write this association as a map µ : Rk×n → L(Rn,Rk) that sends a matrix to the linear map
it represents under the standard bases of Rn and Rk. Moreover, µ is a linear isomorphism.

We also have thata1,1 · · · a1,n
...

...
ak,1 · · · ak,n

 ∼= [a1,1, . . . ,a1,n,a2,1, . . . ,a2,n,a3,1, . . . ,ak,1, . . . ,ak,n]
⊤

is a linear isomorphism, so,

dim(L(Rn,Rk)) = dim(Rk×n) = dim(Rnk) = nk

45.4.1 Matrix Norms
To discuss continuity of functions with matrix-valued inputs or outputs, we need to define a norm on
L(Rn,Rk), or equivalently, on Rk×n. In this section, we will write vector norms as | · |, while matrix/linear
map norms will be written as ∥ · ∥ for contrast.

The first such norm we might think of is to use the matrix-vector isomorphism above, and define the
Frobenius norm ∥ · ∥F : Rk×n → R by,

∥(ai,j)∥F :=

√√√√ k∑
i=1

n∑
j=1

a2i,j

That is, treat the matrix as a vector, then calculate the ordinary Euclidean norm.

The operator norm ∥ · ∥op : L(Rn,Rk)→ R, also denoted by just ∥ · ∥, is defined by,

∥T∥ := sup
x∈Rn\{0}

|T (x)|
|x|

Informally, the operator norm is the maximum factor by which the transformation lengthens vectors.
That is, the operator norm satisfies,

|T (x)| ≤ ∥T∥|x|

for all x ∈ Rn.

Writing T as a matrix multiplication, by linearity, we have,

|Ax|
|x|

=
1

|x|
Ax

=

∣∣∣∣ 1|x|Ax

∣∣∣∣
=

∣∣∣∣A( x

|x|

)∣∣∣∣
Because

∣∣∣ x
|x|

∣∣∣ = 1, this gives,

∥A∥ = sup
|x|=1

|Ax|

There are some more alternative characterisations of the operator norm for more general normed spaces.
For instance, note that the above definitions are not well-defined if the codomain of the linear operator
is the trivial space. Let T : V →W be a linear transformation with matrix A. Then,

∥T∥ = inf{M ≥ 0 : |Av| ≤M |v|,v ∈ V }
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= sup{|Av| : |v| ≤ 1,v ∈ V }
= sup{|Av| : |v| < 1,v ∈ V }
= sup{|Av| : |v| ∈ {0,1},v ∈ V }

Theorem 45.4.1. The operator norm is a norm. That is, it satisfies,

• ∥T∥ = 0↔ T = 0 (Point separating)

• ∥αT∥ = |α|∥T∥ (Absolute homogeneity)

• ∥T + U∥ ≤ ∥T∥+ ∥U∥ (Triangle inequality)

Theorem 45.4.2. For any linear transformation T with matrix A, we have,

1√
n
∥A∥F ≤ ∥T∥ ≤ ∥A∥F

Theorem 45.4.3 (Composition Bound). For any A ∈ L(Rn,Rk) and B ∈ L(Rk,Rm), the map B ◦A ∈
L(Rn,Rm) satisfies,

∥B ◦A∥ ≤ ∥A∥∥B∥

Proof.

|(B ◦A)(x)| = |B(A(x))|
≤ ∥B∥|A(x)|
≤ ∥B∥∥A∥|x|

for all x ∈ Rn, so,

|(B ◦A)(x)|
|x|

≤ sup
|(B ◦A)(x)|

|x|
≤ ∥B∥∥A∥|x|

■

45.4.2 Convergence and Continuity in L(Rn,Rk)

These are defined identically to sequences (xi)
∞
i=1 ⊂ Rn and functions f : (U ⊆ Rn)→ Rk.

That is, a sequence (Ti)
∞
i=1 ⊂ L(Rn,Rk) of linear transformations converges to T ∈ L(Rn,Rk) is,

∀ε > 0,∃N ∈ N : i > N → ∥Ti − T∥ < ε

We can also use the Frobenius norm in place of the operator norm here to similarly define convergence
of sequences of matrices, and because Rk×n ∼= Rkn, this implies that both Rk×n and L(Rn,Rk) are both
complete spaces, so every convergent sequence of linear transformations or matrices is also Cauchy.

45.4.3 Matrix-Valued Functions

A function f : U → Rk×n is continuous at x ∈ U if,

∀ε > 0∃δ > 0 : |y − x| < δ → ∥f(y)− f(x)∥F < ε

Because the Frobenius norm on matrices in Rk×n is equivalent to the Euclidean norm on vectors in Rnk,
we also have that a matrix-valued function is continuous if and only if it is componentwise continuous.

This also provides an easy way to check if a linear-transformation-valued function f : U → L(Rn,Rk) is
continuous: check if every entry of the matrix representing the linear transformation output is continuous.
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Theorem 45.4.4. The map ∆ : Rn×n → R that sends a matrix to its determinant is continuous with
respect to the Frobenius norm on Rn×n.

Proof. The determinant is a polynomial of degree n in its n2 variables, and polynomials are continuous
on (Rn2

,| · |) ∼= (Rn×n,∥ · ∥F ). ■

45.4.4 The Space GL(n,R) ⊂ L(Rn) of Invertible Linear Maps

It is clear that if a linear map T : Rn → Rk is a bijection, then n = k and ker(T ) = {0}. But by the
rank-nullity theorem, the converse also holds. That is, a linear map T : Rn → Rk is a bijection if and
only if k = n and ker(T ) = {0}.

The general linear group over the real numbers, denoted by GL(n,R), is defined by,

GL(n,R) := {T ∈ L(Rn) : T is invertible}

with the group operation given by composition. In terms of matrices, this is equivalent to,

GL(n,R) := {A ∈ Rn×n : det(A) ̸= 0}

Note that GL(1,R) ∼= (R∗,×).

Theorem 45.4.5. The space GL(n,R) is an open subset of Rn×n

Proof. GL(n,R) = ∆−1(R \ {0}), and R \ {0} is open, so GL(n,R) is open by the continuity of ∆. ■

GL(n,R) being open means that invertibility of a linear map in L(Rn) is a stable property: a linear map
can be perturbed somewhat, and remain invertible. The next theorem quantifies exactly how much a
linear map A can be perturbed, in terms of ∥A−1∥.

Theorem 45.4.6. Given A ∈ GL(n,R), let α := 1
∥A−1∥ . If B ∈ L(Rn) and ∥B − A∥ < α, then B is

invertible. That is, Bα(A) ⊂ GL(n,R). Furthermore,

∥B −A∥ < α→ ∥B−1∥ ≤ 1

α− ∥B −A∥

Theorem 45.4.7. The map ( · )−1 : GL(n,R)→ GL(n,R) defined by A 7→ A−1 is continuous.

45.4.5 Lipschitz Continuity

A map f : U → Rk is Lipschitz continuous on U if there exists an M > 0 such that,

|f(x)− f(y)| ≤M |x− y|

for all x,y ∈ U .

The Lipschitz constant or modulus of (uniform) continuity M∗ of f is then defined by,

M∗ := sup
x̸=y
x,y∈U

|f(x)− f(y)|
|x− y|

Intuitively, a Lipschitz continuous function is limited in how fast it can change: for any pair of distinct
points, the absolute value of the gradient of the line connecting them is bounded by this Lipschitz
constant.
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Note that Lipschitz continuity of a function is a very strong form of continuity, and it implies uniform
(and hence regular) continuity of the function:

∀ε > 0 : |x− y| < ε

M
→ |f(x)− f(y)| < ε

Theorem 45.4.8. Every linear map T is continuous.

Proof. By linearity, T (x)− T (y) = T (x− y), and so,

|T (x)− T (y)| = |T (x− y)| ≤ ∥T∥|x− y|

■

Theorem 45.4.9. The map | · | : Rn → R≥0 is Lipschitz continuous with Lipschitz constant M∗ = 1.

Proof. By the reverse triangle inequality, we have,∣∣|x| − |y|∣∣ ≤ |x− y|
■

The same holds for any norm, so the operator norm and Frobenius norm are both Lipschitz continuous
with Lipschitz constant M∗ = 1.

45.5 The Derivative

In this section, U ⊆ Rn will be an open subset of Rn. This means that if p ∈ U , then in any limit
limx→p, x may approach p from any direction.

45.5.1 Partial Derivatives
A partial derivative of a multivariate function is its derivative with respect to one of its variables, with
the other variables held constant.

Let {ei}ni=1 be the standard basis of Rn. For any function f : (U ⊆ Rn) → Rk with U open, a partial
derivative of f at the point x ∈ U with respect to the i-th variable xi is defined as,

∂f

∂xi
= lim
h→0

f(x1,x2, . . . ,xi−1,xi + h,xi+1, . . . ,xn)− f(x1,x2, . . . ,xi−1,xi,xi+1, . . . ,xn)

h

= lim
t→0

f(x+ hei)− f(x)
h

Other notations include ∂xi
f(x) or ∂if(x). If f is a function of only a few variables, then it is more

common to write, say f(x,y,z), rather than f(x1,x2,x3), and we write fx for the partial derivative of f
with respect to x.

Theorem 45.5.1 (Algebra of Partial Derivatives). If f,g : (U ⊆ Rn)→ Rk, then,

• ∂i(f + g) = ∂if + ∂ig;

• ∂i(fg) = (∂if)g + f∂ig.
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45.5.2 Directional Derivatives
The rate of change of a multivariable function depends on the direction in which the change is measured.

Given a direction vector −→v ∈ Rn and a point x ∈ Rn, the line Lx,−→v passing through x in the direction
of −→v is parametrised by r(t) = x + t−→v . Now, for any function f : (U ⊆ Rn) → Rk with U open,
there exists τ > 0 such that the line segment x + t−→v is contained in U for t ∈ (−τ,τ). The restricton
fx,−→v : (−τ,τ)→ Rk of f to this line segment is defined by,

fx,−→v (t) := f(x+ t−→v )

This is now a function of a single real variable, so we can differentiate it componentwise.

The directional derivative of f in the direction of v, denoted by Dvf(x) or ∂vf(x), is defined by,

∂vf(x) :=
d

dt
fx,v(t)

∣∣∣∣
t=0

=
d

dt
f(x+ tv)

∣∣∣∣
t=0

= lim
t→0

f(x+ t−→v )− f(x)
t

In practice, you can calculate the directional derivative by multiplying the components of the normalised
direction vector by the corresponding partial derivatives, or equivalently, by calculating the scalar product
of the gradient and the direction vector: ∂vf = ∇f · v (where v is a unit vector).

Example. Find the directional derivative of f(x,y) = x2 − y2 in the direction of v = (a,b).

Since we are not given values for a and b, we do not modify v, but in general, we would normalise v first.

We compute the directional derivative from the definition:

d

dt
f
(
(x,y) + t(a,b)

)∣∣∣∣
t=0

=
d

dt
f(x+ ta,y + tb)

∣∣∣∣
t=0

=
d

dt

[
(x+ ta)2 − (y + tb)2

]∣∣∣∣
t=0

= 2a(x+ ta)− 2b(y + tb)
∣∣∣
t=0

= 2ax− 2by

Alternatively, we can compute the partial derivatives (the components of ∇f);

∂

∂x
f(x,y) = 2x

∂

∂y
f(x,y) = −2y

then multiply by the components of v = (a,b),

∇f · v = 2ax− 2by

△

For a function f : Rn → R, the directional derivative existing for all v ∈ Rn at a point x does not imply
that f is continuous at x, similarly to how linear continuity does not imply continuity.
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45.5.3 The Fréchet Derivative
The derivative of a function f : (a,b)→ R at a point x ∈ (a,b) is given by

lim
h→0

f(x+ h)− f(x)
h

This definition cannot be easily extended to functions f : Rn → Rk, as there is no notion of division for
vectors, unlike for real (or complex) numbers.

Instead, we rearrange the above to,

lim
h→0

|f(x+ h)− (f(x) + f ′(x)h)|
|h|

= 0

That is, for a fixed x, the nonlinear mapping h 7→ f(x + h) is locally approximated by the affine linear
map h 7→ f(x) + f ′(x)h.

Extending this idea to multivariate functions, a function f : (U ⊆ Rn)→ Rk is differentiable at x ∈ U if
there exists a linear map T ∈ L(Rn,Rk) such that

lim
h→0

∣∣f(x+ h)−
(
f(x) + T (h)

)∣∣
|h|

= 0

and we say that the linear map T is the Fréchet derivative of f , also denoted by Df(x).

Expanding the ε − δ definition of the limit, we equivalently have: a function f : (U ⊆ Rn) → Rk is
differentiable at x ∈ U if there exists a linear map T ∈ L(Rn,Rk) such that,

∀ε > 0,∃δ > 0 : |h| < δ →
∣∣f(x+ h)−

(
f(x) + T (h)

)∣∣ < ε|h|

Another characterisation is: a function f : (U ⊆ Rn) → Rk is differentiable at x ∈ U if there exists a
linear map T ∈ L(Rn,Rk) such that,

f(x+ h) = f(x) + T (h) +E(h)

where the error E(h) ∈ o(h) grows asymptotically slower than linearly in h.

Theorem 45.5.2. If f : (U ⊆ Rn)→ Rk is differentiable at x ∈ U , then f is continuous at x.

Proof. As f is differentiable at x, for all ε > 0, there exists δ > 0 such that,

|h| < δ → |f(x+ h)− (f(x) +Df(x)h)| ≤ ε|h|
→ |f(x+ h)− f(x)| ≤ |Df(x)h|+ ε|h|
→ |f(x+ h)− f(x)| ≤ (∥Df(x)∥+ ε)|h|

Set δ∗ := min
(
δ,ε/(∥Df(x)∥+ ε)

)
. Then, if |h| < δ∗, we have |h| < δ, so,

|h| < δ∗ → |f(x+ h)− f(x)| < (∥Df(x)∥+ ε)δ∗ < ε

■

Theorem 45.5.3 (Componentwise Differentiability). A function f : (U ⊆ Rn)→ Rk defined by

(x1, . . . ,xn) 7→
(
f1(x1, . . . ,xn),f2(x1, . . . ,xn), . . . ,fk(x1, . . . ,xn)

)
where (fj)

k
j=1 are real-valued functions, is differentiable at p ∈ U if and only if every fj is differentiable

at p.
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That is, f is differentiable if and only if every component fj is individually differentiable.

Theorem 45.5.4. For a function f : (U ⊆ Rn)→ Rk, if Df(x) exists, then ∂vf(x) exists for all v ∈ Rn,
and ∂vf(x) = Df(x)v.

In particular, if f is differentiable at x, then ∂vf(x) is linear in v. That is,

∂αv+βwf(x) = α∂vf(x) + β∂wf(x)

for all α,β ∈ R and v,w ∈ Rn.

Note that the converse of this theorem does not hold – all directional derivatives existing does not
guarantee that f is differentiable.

45.5.4 Gradient
Let f : Rn → R. The gradient of f , denoted grad f or ∇f is the vector,

∇f =



∂f

∂x1
∂f

∂x2
...

∂f

∂xn


∇ : R→ Rn by itself is the grad operator, and is effectively a vector full of partial derivative operators.

The Jacobian matrix of a function, f : Rn → Rk, denoted J, Df , or ∂f , is the matrix of partial derivatives,

∂f =



∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

· · · ∂f2
∂xn

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

· · · ∂f3
∂xn

...
...

...
. . .

...

∂fk
∂x1

∂fk
∂x2

∂fk
∂x3

· · · ∂fk
∂xn


This can be more compactly written as,

∂f =

[
∂f

∂x1
· · · ∂f

∂xn

]
or,

∂f =

∇f1...
∇fk


Theorem 45.5.5. If f : (U ⊆ Rn)→ Rk is differentiable at x ∈ U , and h ∈ Rn, then,

Df(x)(h) = ∂f(x)h
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On the left side, we have the linear map Df given by the Fréchet derivative, and on the right side, we
have the Jacobian matrix, so this theorem just says that the Fréchet derivative is represented by the
Jacobian matrix if f is already known to be differentiable at x.

Theorem 45.5.6. When f is differentiable at x, Df(x)(h) = ∂hf(x) = ∂f(x)h.

That is, whenever f is differentiable at x, the Fréchet derivative Df(x) centred at x evaluated at h, the
directional derivative ∂hf(x) of f at x in the direction of h, and the Jacobian matrix evaluated at x
multiplied by h are all equal.

If f is not differentiable at x – that is, the Fréchet derivative Df(x) does not exist – then directional
derivative ∂hf(x) and the Jacobian ∂f(x) may both still exist, but may not necessarily be equal.

However, if all partial derivatives are continuous at x (and hence the Jacobian is also continuous at x),
then Df(x) is guaranteed to exist:

Theorem 45.5.7. Let f : (U ⊆ Rn) → Rk be a function and suppose there exists Br(x) ⊂ U such that
the Jacobian matrix ∂f(y) exists at all points y ∈ Br(x) and that ∂f is continuous at x. Then, f is
differentiable at x and the Fréchet derivative is equal to the Jacobian matrix

Df(x)(h) = ∂f(x)h

for all h ∈ Rn:

45.5.5 Geometric Approximation

Let r : [a,b] → Rk be a continuously differentiable parametrisation of a curve C = r([a,b]) ⊂ Rk.
Furthermore, suppose r is a regular parametrisation – that is, r′(t) ̸= 0 for all t. We can then interpret
r′(t) to be the vector tangent to C at r(t), or alternatively, we can view r(t) to be the position of a
particle tracing out C, and r′(t) is the velocity of the particle.

The line Lr(t) tangent to C at r(t) is then parametrised by,

ℓ(h) = r(t) + r′(t)h

But, r′(t) = ∂r(t), so the affine linear approximation of h 7→ r(t + h) by h 7→ r(t) +
(
∂r(t)

)
(h) = ℓ(h)

is a parametrisation of the tangent line Lr(t). That is, this approximation using Jacobian, for small h,
corresponds to geometrically approximating the curve C by Lr(t) near r(t). This also holds true for more
general parametrisations.

Let U ⊆ Rn be open, and let r : U → R3 be a continuously differentiable parametrisation of a surface
S = r(U) ⊂ R3. Furthermore, suppose r is a regular parametrisation – that is, ∂r(x) is of rank 2 for all
x ∈ U . If,

r(u,v) =

x(u,v)y(u,v)
z(u,v)


then,

ru =

xuyu
zu

 , rv =

xvyv
zv


(recall ru = ∂r

∂u , xu = ∂x
∂u , etc.) The Jacobian is given by,

∂r =

xu xv
yu yv
zu zv
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So, ∂ is of rank 2 if and only if ru and rv are linearly independent.

As in the 2-dimensional case, the affine linear approximation of (h,k) 7→ r(u+ h,v + k) by,

(h,k) 7→ r(u,v) +
(
∂r(u,v)

)
(h,k)

= r(u,v) + hru(u,v) + krv(u,v)

is then a parametrisation of the plane Πr(u,v) tangent to S at r(u,v).

45.5.5.1 Graphs

Given a function f : (U ⊆ R2)→ R, the graph, Gf of f is the surface parametrised by,

r(x,y) =
(
x,y,f(x,y)

)
That is, the height of the surface above the x-y plane is the value of f(x,y), analogous to the 2-dimensional
case where we plot the points given by

(
x,f(x)

)
.

Note that rx = (1,0,fx) and ry = (0,1,fy) are linearly independent for any function f .

A parametrisation of the plane tangent to the surface Gf at
(
x,y,f(x,y)

)
is given by,

(h,k) 7→ r(x,y) +
(
Dr(x,y)

)
(h,k)

=

 x
y

f(x,y)

+ h

 1
0
fx

+ k

 0
1
fy


=

 x+ h
y + k

f(x,y) + hfx + kfy


=

 x+ h
y + k

f(x,y) + (h,k) · ∇f(x,y)


so f is not differentiable at (x0,y0) ∈ U if and only if Gf does not have a tangent plane at

(
x0,y0,f(x0,y0)

)
.

45.5.6 Differentiation of Matrix-Valued Functions

L(Rn,Rk) ∼= Rk×n ∼= Rnk, so the Fréchet derivative applies similarly to functions with domains and
codomains in these spaces, the only difference being that the Euclidean norm | · | in the definition needs
to be replaced by the operator norm ∥ · ∥ or Frobenius norm ∥ · ∥F , respectively.

Example. Find the derivative of the map f : L(Rn)→ L(Rn) defined by f(T ) = T ◦ T = T 2.

We consider f(A+H)− f(A):

f(A+H)− f(A) = (A+H)(A+H)−A2

= A2 +AH +HA+H2 −A2

= AH +HA+H2

The terms linear in H are AH+HA, so we should think that
(
Df(A)

)
(H) = AH+HA is the derivative.

However, we need to verify that it satisfies the required limit. First, rearrange to obtain,

f(A+H)− f(A)− (AH +HA) = H2
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Now verify the limit:

lim
H→0

∥∥f(A+H)− f(A)−
(
Df(A)

)
(H)

∥∥
∥H∥

= lim
H→0

∥H2∥
∥H∥

≤ lim
H→0

∥H∥2

∥H∥
= lim
H→0

∥H∥

= 0

so
(
Df(A)

)
(H) = AH +HA.

If we interpret f to act on matrices, we could also note that the entries of f(A) are quadratic polynomials
in the entries of A, and are hence continuous. It then follows that f is differentiable, and

(
Df(A)

)
(H) =

∂Hf(A), so we could calculate the directional derivative instead:

∂Hf(A) =
d

dt
f(A+ tH)

∣∣∣∣
t=0

=
d

dt
(A+ tH)2

∣∣∣∣
t=0

=
d

dt
A2 + tAH+ tHA+ t2H2

∣∣∣∣
t=0

= AH+HA+ 2tH2
∣∣∣
t=0

= AH+HA

△

45.6 The Chain Rule

The following lemmata will be useful in the proof of the chain rule:

Lemma 45.6.1. Given f : (U ⊆ Rn)→ Rk, x ∈ U , and r > 0 such that Br(x) ⊂ U and T ∈ L(Rn,Rk),
we define ∆x,T f : Br(0)→ Rk by,

∆x,T f(h) =

{
f(x+h)−f(x)−T (h)

|h| h ̸= 0

0 h = 0

Then, f is differentiable at x with Df(x) = T if and only if ∆x,T f is continuous at 0.

Proof. If ∆x,T f is continuous at 0, then,

lim
h→0

∣∣∣∣ f(x+ h)− f(x)− T (h)
|h|

∣∣∣∣ = lim
h→0

∣∣∆x,T f(h)
∣∣

=
∣∣ lim
h→0

∆x,T f(h)
∣∣

=
∣∣∆x,T f(0)

∣∣
= 0

so f is differentiable at x with Df(x) = T .

Conversely, if f is differentiable at x, and we set T = Df(x), then we have limh→0 |∆x,T f(x)| = 0. But
then, limh→0 ∆x,T f(h) = 0 = ∆x,T f(0), so ∆x,T f is continuous at 0. ■
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If f is differentiable at x, we write ∆xf(h) to abbreviate ∆x,Df(x)f(h).

Lemma 45.6.2. Let τ > 0, and consider a function δ : (Bτ ⊂ Rn)→ Rk defined by

δ(h) :=

{
ξ(h)η(h) 0 < |h| < τ

0 h = 0

where ξ :
(
Bτ \ {0}

)
→ R is bounded and η : Bτ → Rk is continuous at 0 ∈ Bτ and η(0) = 0. Then, δ is

continuous at 0 ∈ Bτ .

Proof. By continuity of η at 0, given ε > 0, there exists σ ∈ (0,τ) such that |η(h)| < ε whenever |h| < σ.
By boundedness of ξ, there exists M > 0 such that |ξ(h)| < M for all h ∈ Bτ \ {0}.

Then, |δ(h)| < Mε whenever 0 < |h| < σ, which is to say, limh→0 δ(h) = 0 = δ(0), so δ is continuous at
0 ∈ Bτ . ■

Theorem 45.6.3 (Chain Rule). Let U ⊆ Rn and V ⊆ Rk both be open. Suppose f : U → Rk is
differentiable at x ∈ U , and that f(x) ∈ V . If g : V → Rk is differentiable at f(x), then the composition
g ◦ f : Rn → Rk is differentiable at x, and,

D(g ◦ f)(x) = Dg
(
f(x)

)
◦Df(x)

Proof. We have
f(x+ h) = f(x) +Df(x)h+∆xf(h)|h|

and
g
(
f(x) + k

)
= g

(
f(x)

)
+Dg

(
f(x)

)
k+∆f(x)g(k)|k|

where

∆xf(h) :=

{
f(x+h)−f(x)−Df(x)h

|h| h ̸= 0

0 h = 0

and

∆f(x)g(k) :=

{
g(f(x)+k)−g(f(x))−Dg(f(x))k

|k| h ̸= 0

0 h = 0

Set k(h) := Df(x)h+∆xf(h)|h| in the second equation. Then, by linearity of Dg
(
f(x)

)
,

g
(
f(x+ h)

)
= g

(
f(x)

)
+Dg

(
f(x)

)(
Df(x)h

)
+ |h|Dg

(
f(x)

)(
∆xf(h)

)
+ |k(h)|∆f(x)g

(
k(h)

)
Therefore,

g
(
f(x+ h)

)
− g

(
f(x)

)
−Dg

(
f(x)

)
◦Df(x)h = |h|(δ1

(
h) + δ2(h)

)
where

δ1(h) := Dg
(
f(x)

)(
∆xf(h)

)
and

δ2(h) :=

{
|k(h)|
|h| ∆f(x)g

(
k(h)

)
h ̸= 0

0 0

The proof will be complete once we show:

lim
h→0

∣∣δ1(h)∣∣ = 0 and lim
h→0

∣∣δ2(h)∣∣ = 0
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We begin with δ1. ∣∣δ1(h)∣∣ ≤ ∥∥Dg
(
f(x)

)∥∥∣∣∆xf(h)
∣∣

and by differentiability of f at x, we have

lim
h→0

∣∣∆xf(h)
∣∣ = 0

It follows immediately that limh→0

∣∣δ1(h)∣∣ = 0.

For δ2, set

ξ(η) :=

∣∣k(h)∣∣
|h|

≤
∣∣Df(x)

∣∣
|h|

+
∣∣∆xf(h)

∣∣ ≤ ∥∥Df(x)
∥∥+ ∣∣∆xf(h)

∣∣
for h ̸= 0. The continuity of ∆xf at 0 implies that ξ(h) is bounded on Bτ \ {0} for some τ > 0. Next,
set

η(h) := ∆f(x)g
(
k(h)

)
k(h) is a continuous function of h, and k(0) = 0, so by differentiability of g at f(x), η(h) is a continuous
function of h, and η(0) = 0. We may then apply the previous lemma to δ2(h) = ξ(h)η(h) to obtain
limh→0

∣∣δ2(h)∣∣ = 0. ■

Recall that the linear isomorphism µ : L(Rn,Rk)→ Rk×n maps linear transformations to their matrices.
Applying this to the chain rule above gives a form of the chain rule with Jacobian matrices:

Theorem 45.6.4 (Chain Rule). Let U ⊆ Rn and V ⊆ Rk both be open. Suppose f : U → Rk is
differentiable at x ∈ U , and that f(x) ∈ V . If g : V → Rk is differentiable at f(x), then the composition
g ◦ f : Rn → Rk is differentiable at x, and,

∂(g ◦ f)(x) = ∂g
(
f(x)

)
∂f(x)

Given functions f : Rm → R and g : R→ R, the ith partial derivative of g ◦ f can be computed with the
above chain rule as,

∂i(g ◦ f)(x) = g′(f(x))∂if(x)

so,

∇(g ◦ f)(x) = g′(f(x))∇f(x)

Example. Calculate ∇|x|, x ∈ Rn \ {0}.

|x| =
√
|x|2

so we can apply the chain rule with f(x) = |x|2 =
∑n
i=1 x

2
i and g(t) =

√
t. First calculate ∇f and g′:

∇f = ∇(x21 + x22 + · · ·+ x2n)

=


∂1(x

2
1 + x22 + · · ·+ x2n)

∂2(x
2
1 + x22 + · · ·+ x2n)

...
∂n(x

2
1 + x22 + · · ·+ x2n)
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=


2x1
2x2
...

2xn


= 2x

g′(t) =
1

2
√
t

∇|x| = ∇(g ◦ f)(x)
= g′(f(x))∇f(x)

=
1

2
√
|x|2

2x

=
x

|x|

with component form given by,

∂

∂xi
|x| = xi

|x|

△

45.6.1 The Space Cn(U,Rk) of Continuously Differentiable Functions

Suppose f : (U ⊆ Rn)→ Rk is differentiable on U . Then, f is continuously differentiable at p ∈ U if the
map Df : U → L(Rn,Rk) defined by x 7→ Df(x) is continuous at p. That is,

∀ε− 0∃δ > 0 : |x− p| < δ → ∥Df(x)−Df(p)∥ < ε

Theorem 45.6.5. A function f : U → Rk is continuously differentiable on U if and only if the Jacobian
matrix ∂f : U → Rk×n is continuous on U .

This means that we can check if a function is continuously differentiable by computing all first-order
partial derivatives ∂ifj of f = (f1, . . . ,fk) and verifying that they are all continuous.

45.6.2 Mean Value Inequality

For any vector-valued function of a single real variable, f : [a,b] → Rk, f(t) = (f1(t),f2(t), . . . ,fk(t)), we
define the integral of f as,

� b

a

f(t) dt =


� b
a
f1(t) dt� b

a
f2(t) dt
...� b

a
fk(t) dt


Lemma 45.6.6. For any function f : [a,b]→ Rk,∣∣∣∣∣

� b

a

f(t) dt

∣∣∣∣∣ ≤
� b

a

|f(t)| dt
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Proof. Let I :=
� b
a
f(t) dt ∈ Rk. If I = 0, then we have equality. Otherwise,

|I|

∣∣∣∣∣
� b

a

f(t) dt

∣∣∣∣∣ = |I|2
= I · I

= I ·
� b

a

f(t) dt

=

� b

a

I · f(t) dt

≤
� b

a

|I||f(t)| dt

= |I|
� b

a

|f(t)| dt

Dividing the first and last terms by |I| provides the result. ■

Theorem 45.6.7 (Generalised Mean Value Inequality). Suppose that x,y ∈ U ⊆ Rn can be joined by a
continuously differentiable path, r : [a,b]→ U , r(a) = x, r(b) = y. Suppose that f ∈ C1(U,Rk), and that
there exists M ≥ 0 such that the Jacobian satisfies ∥∂f(x)∥ ≤M for all x ∈ U . Then,

|f(y)− f(x)| ≤M length
(
r([a,b])

)
Proof.

f(y)− f(x) = f
(
r(b)

)
− f
(
r(a)

)
=

� b

a

d

dt
f
(
r(t)

)
dt [Fundamental Theorem of Calculus II]

=

� b

a

∂f
(
r(t)

)
r′(t) dt [Chain Rule]

so by the lemma above,

|f(y)− f(x)| =

∣∣∣∣∣
� b

a

∂f
(
r(t)

)
r′(t) dt

∣∣∣∣∣
≤
� b

a

|∂f
(
r(t)

)
r′(t)| dt

≤
� b

a

∥∂f
(
r(t)

)
∥|r′(t)| dt

≤
� b

a

M |r′(t)| dt

=M length
(
r([a,b])

)
■

Corollary 45.6.7.1 (Vanishing Derivative). Suppose that U ⊂ Rn is differentiably path-connected and
that f : U → Rk satisfies ∂f(x) = 0 for all x ∈ U . Then, f is constant on U .

Proof. Fix a point y ∈ U . Then, by differentiable path-connectedness, given x ∈ U , there exists a
continuously differentiable path r : [a,b]→ U joining x to y. So, by the generalised mean value inequality
with ∂f = 0, f(x) = f(y) for all x ∈ U . ■
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This corollary does not hold if U is not path-connected, but the converse is true even if U is not path-
connected.

For scalar valued functions f : U → R, this corollary can be stated as,

Corollary 45.6.7.2. If ∇f(x) = 0 at all points x of a path-connected open set, then f is constant.

A set U ⊆ Rn is convex if for all x,y ∈ U , the line,

Lx,y = {tx+ (1− t)y : 0 ≤ t ≤ 1}

is contained within U .

Corollary 45.6.7.3 (Mean Value Inequality). Let U ⊆ Rn be convex, and suppose that f ∈ C1(U,Rk)
satisfies ∥∂f(x)∥ ≤M for all x ∈ U for some M ≥ 0. Then,

|f(x)− f(y)| ≤M |x− y|

That is, f is Lipschitz continuous.

Proof. The result follows from the generalised mean value inequality with length(Lx,y) = |x− y|. ■

The converse of the mean value inequality does not hold. That is, a function f being Lipschitz continuous
does not imply that f is differentiable. For example, (x,y) 7→ x3

is Lipschitz continuous on all of Rn, but
is not differentiable at 0 because none of the partial derivatives ∂i|x| exist at 0. The function f : R2 → R
defined by,

(x,y) 7→ x3

x2 + y2

is also Lipschitz over all of R2, and, unlike x 7→ |x|, has partial derivatives that exist everywhere, but is
still not differentiable at (0,0).

45.7 Vector Fields

In this section, U will be a path-connected open subset of Rn.

A vector field v on U ⊆ Rn is a function v : U → Rn, so a vector field consists of n functions of n
variables:

v(x) =


v1(x1,x2, . . . ,xn)
v2(x1,x2, . . . ,xn)

...
vn(x1,x2, . . . ,xn)


We think of this function as associating a vector to every point in the input space.

Notes on Mathematics | 875



Multivariable Analysis Vector Fields

Example.
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△
A vector field will always be assumed to be at least continuous, and whenever it is differentiated, it will
be assumed to be continuously differentiable.

45.7.1 Paths and Curves
A path r : [a,b]→ Rn is said to be continuously differentiable on [a,b] if,

(i) r is continuous on [a,b];

(ii) f is continuously differentiable on (a,b);

(iii) The limits limt→a+ r′(t) and limt→b− r′(t) both exist so r′ is a continuous function [a,b]→ R.

We will always assume that a path r : [a,b]→ Rn is continuous and piecewise continuously differentiable
in the sense that there are a finite number of points a1, . . . ,aℓ ∈ (a,b) with a = a0 < a1 < a2 < · · · <
aℓ < aℓ+1 = b such that r is continously differentiable on [ai,ai+1] for all 0 ≤ i ≤ ℓ. If r′(t) ̸= 0 for all t,
then r is regular.

Given p,q ∈ Rn, a curve Cp,q which goes from p to q is the image of some path r : [a,b] → Rn such
that r(a) = p and r(b) = q. The path r is then called a parametrisation of Cp,q. If a curve C can be
parametrised by a regular path, then the curve is also said to be regular.

Note that the parametrisation of a curve is not unique: If φ : [α,β]→ [a,b] is continuously differentiable,
then r ◦ φ and r parametrise the same curve.

45.7.2 Tangential Line Integrals
The component of a vector x ∈ Rn in the direction of a unit vector v̂ is defined as x · v̂. We also say
that x · v̂ is the component of x along v̂.

If ρ : [0,L] → Rn is the arclength or unit speed parametrisation of a regular curve Cpq ⊆ Rn, then
ρ̇(s) := dρ

ds (s) is a unit vector called the unit tangent to Cpq at ρ(s).

If v is a vector field, then v(ρ(s)) · ρ̇(s) is the tangential component of v along Cpq.

The tangential line integral of v along Cpq is defined as the integral of the tangential component of v
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along Cpq:
� L

0

v
(
ρ(s)

)
· ρ̇(s) ds

Because it is generally almost impossible to parametrise a curve by its arclength, we use a change of
variable to actually compute these integrals in practice. Let r : [a,b]→ Rn be a parametrisation of Cpq.
Then, the mapping φ : [0,L]→ [a,b] relates ρ and r by ρ(s) = r

(
φ(s)

)
, so,

� L

0

v(ρ(s)) · ρ̇(s) ds =
� b

a

v
(
r(t)

)
· dr
dt
dt

This line integral is also denoted by, �
Cpq

v · dr

obtained by cancelling the dt terms in the integral above.

Note that in the formula,
� L

0

v
(
ρ(s)

)
· ρ̇(s) ds

we have v(ρ(s)) · ρ̇(s) > 0 whenever the angle between v and the unit tangent ρ̇ is acute. Then,

1

length(Cpq)

� L

0

v
(
ρ(s)

)
· ρ̇(s) ds

represents the average value of v · ρ̇ along Cpq, so the tangential line integral is a measure of the average
rate at which the quantity described by the vector field v flows along Cpq.

If v represents a force, then
�
C
v · dr represents the work done by v when moving an object along C.

If C is a closed curve, then we write
�
C
v · dr instead, and the resulting value is sometimes called the

circulation of v around C, as it measures the rate at which the quantity described by v circulates around
C.

The value of the integral
�
Cpq

v · dr depends on the orientation of the path:
�
Cpq

v · dr = −
�
Cqp

v · dr

When C is a closed curve, we write �
C

v · dr = −
�
C

v · dr

to indicate the orientation of the path.

45.7.3 Flux

45.7.3.1 Flux Across Curves in R2

Given a vector v = (x,y) ∈ Rn, we define v⊥ := (y,− x). That is, v⊥ is v rotated clockwise by 90◦. In
particular, v · v⊤ = 0, so v and v⊤ are orthogonal.

The tangent ṙ(t) of a regular curve C with regular parametrisation r(t) = (x(t),y(t)) is given by ṙ(t) =
(ẋ(t),ẏ(t)), so the normal to C is given by,

N(t) := ṙ(t)⊥ =
(
ẏ(t),− ẋ(t)

)
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If ρ : [0,L]→ Rn is the arclength parametrisation of C, then n(s) := ρ̇(s)⊥ is the unit normal to C.

The flux of a vector field v(x,y) =
(
v1(x,y),v2(x,y)

)
across a curve C is defined as the integral of the

normal component of v,
� L

0

v
(
ρ(s)

)
· n(s) ds

Again, due to difficulties with parametrising a curve by its arclength, we compute this integral with
another change of variable:

� L

0

v
(
ρ(s)

)
· n(s) ds =

� b

a

v
(
r(t)

)
·N(t) dt

45.7.3.2 Flux Across Surfaces in R3

A surface S ⊂ R3 is parametrised by the map r : (U ⊆ R2)→ R3 with U open, defined by,

r(u,v) =
(
x(u,v),y(u,v),z(u,v)

)
The tangent plane Tr(u,v)S of S at r(u,v) is spanned by ∂r

∂u (u,v) and ∂r
∂v (u,v). It follows that the dimension

of the tangent plane Tr(u,v)S is 2 if and only if the tangent vectors are linearly independent. If this is
the case for all (u,v) ∈ U , then r is a regular parametrisation of S.

The tangent vectors ∂r
∂u and ∂r

∂v are linearly independent if and only if ∂r
∂u ×

∂r
∂v ̸= 0, in which case,

N(u,v) :=
∂r

∂u
× ∂r

∂v

is a normal to S at r(u,v).

Similarly to the definition of flux across a curve, the flux of a vector field v across a surface S is defined
by,

�
S

v · n̂ dA

where n is a unit normal to S and dA is the area element on S. With respect to a parametrisation r of
S, we have,

n(u,v) :=
∂r
∂u ×

∂r
∂v∣∣ ∂r

∂u ×
∂r
∂v

∣∣ , dA :=

∣∣∣∣ ∂r∂u × ∂r

∂v

∣∣∣∣ du dv
or,

n(u,v) :=
N

|N|
, dA := |N | du dv

so the flux integral is given by,
�
S

v · n̂ dA =

�
U

v
(
r(u,v)

)
·
(
∂r

∂u
× ∂r

∂v

)
du dv

The flux of v across S is also denoted by,
�
S

v · dA,
�
S

v · n dS, and
�
S

v · dS
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45.8 The Integral Theorems of Vector Calculus

45.8.1 Green’s Theorem for a Rectangle

Let U ⊆ R2 be open. A vector field v : U → R2 is called a planar vector field. As usual, we will assume
v is continuously differentiable over U .

Let R denote the rectangle [α,β] × [ξ,η] that is contained entirely (including the boundary ∂R) within
U .

(α,ξ) (β,ξ)

(β,η)(α,η)

x

y

Consider the line integral of v around ∂R. If v(x,y) =
(
a(x,y),b(x,y)

)
for some scalar-valued functions

a,b : U → R, then,
�
∂R

v · dr =
� β

α

a(x,ξ) dx+

� η

ξ

b(β,y) dy −
� β

α

a(x,η) dx−
� η

ξ

b(α,y) dy

By the fundamental theorem of calculus, we have,
� β

α

a(x,ξ) dx−
� β

α

a(x,η) dx =

� β

α

� η

ξ

−∂a(x,y)
∂y

dy dx

� η

ξ

b(β,y) dy −
� η

ξ

b(α,y) dy =

� η

ξ

� β

α

∂b(x,y)

∂x
dx dy

So,
�
∂R

v · dr =
�
R

∂b(x,y)

∂x
− ∂a(x,y)

∂y
dx dy

obtaining the statement of Green’s theorem for a rectangle.

45.8.1.1 Regions and Unit Normals

A region in Rn is a bounded open subset Ω of Rn for which there exists a function f : Rn → R such that,

• All partial derivatives of f are continuous;

• Ω = {x ∈ Rn : f(x) < 0};

• ∇f(p) ̸= 0∀p ∈ f−1{0} = {p ∈ Rn : f(p) = 0}.

The function f is then the defining function of Ω. The set f−1{0} is also the boundary of Ω, also denoted
∂Ω. We also denote the closure Ω ∪ ∂Ω by Ω.
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Example. Let f(x,y,z) = x2 + y2 + z2 − 1. Then, the region defined by f is,

{(x,y,z) : f(x,y,z) < 0} = {(x,y,z) : x2 + y2 + z2 < 1}
= B1(0)

is the unit ball in R3, and its boundary is the unit 2-sphere S2(1) = {x ∈ R3 : |x| = 1}. Note that

∇f(x,y,z) = 2(x,y,z)

̸= 0

as required. △

The last requirement that ∇f(p) ̸= 0 for all p ∈ ∂Ω allows us to define the outward unit normal to Ω at
p:

n+(p) :=
∇f(p)
|∇f(p)|

Unfortunately, this requirement also excludes some well-behaved subsets like polygons and polyhedra
which do not have well defined normals at vertices and edges, so we also consider piecewise regions.

45.8.1.2 Boundary Orientation

We now focus on the 2-dimensional case. The boundary of a 2-dimensional, or planar, region Ω is a
curve, or, if Ω is not simply connected as in the case of an annulus, a system of curves.

Let n+(p) =
(
h(p),k(p)

)
be the outward unit normal to the region Ω at the point p ∈ ∂Ω. The positively

oriented unit tangent vector t+(p) at p is then the vector
(
−k(p),h(p)

)
. That is, the outward unit normal

rotated counterclockwise by 90◦, or,

t+(p) = −n+(p)
⊥

Informally, a tangent vector t to ∂Ω is positively oriented if, when facing in the direction of the vector,
the interior of the region is to our left, and is negatively oriented otherwise. For example, if Ω = B, then
a tangent vector that follows the unit circle in a counterclockwise manner is positively oriented.

However, take an annulus, for example. This region has two boundary curves; an exterior and interior
boundary. A tangent vector on the exterior boundary is positively oriented if it follows the boundary
counterclockwise, but a tangent vector on the interior boundary is positively oriented if it follows the
boundary clockwise.

45.8.2 Green’s Theorem for Planar Regions
In this section we will assume that all vector fields and functions considered are continuously differentiable
on an open set U ⊆ R2, and that (the closure of) any region Ω lies entirely within U .

The curl of a planar vector field v : U → R2 defined by,

v(x,y) =
(
a(x,y),b(x,y)

)
is defined to be the function,

curl v =
∂b

∂x
− ∂a

∂y
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Theorem 45.8.1 (Green’s Theorem for Planar Regions). Let Ω be a region in R2 and let v : U → R2

be a continuously differentiable planar vector field on U that contains Ω. Then,�
Ω

curl v(x,y) dAx,y =

�
∂Ω

v · t+ ds =
�
∂Ω

vli⋉ · dr

where s is the arclength parameter along ∂Ω, r is a positively oriented parametrisation of ∂Ω, and the
area element dAx,y is more often written as dx dy.

Recall that
�
∂Ω
v · dr is the circulation of v around ∂Ω.

45.8.3 Flux and Divergence in the Plane
The divergence of a vector field v(x1, . . . ,xn) = (v1(x1, . . . ,xn),v2(x1, . . . ,xn), . . . ,vn(x1, . . . ,xn)), denoted
by div v and ∇ · v, is defined by,

∇ · v :=

n∑
i=1

∂vi
∂xi

Let v,w ∈ R2. Then, v ·w = v⊥ ·w⊥ and (v⊥)⊥ = −v. So, if v is a planar vector field and Ω is a region
in R2 that satisfy the hypotheses of Green’s theorem, then,

v⊥ · t+ = (v⊥)⊥ · t⊥+
= −v · n+

The flux of v across ∂Ω is then given by,�
∂Ω

v · n+ ds = −
�
v⊥ · t+ ds

= −
�

Ω

curl v⊥ dx dy

= −
�

Ω

(
∂(−a)
∂x

− ∂b

∂x

)
dx dy

=

�
Ω

(
∂a

∂x
+
∂b

∂x

)
dx dy

=

�
Ω

∇ · v(x,y) dx dy

Theorem 45.8.2 (Divergence Theorem for a Planar Region). Let Ω be a region in R2 and let v : U →2

be a continuously differentiable planar vector field on U which contains Ω. Then,�
Ω

∇ · v(x,y) dAx,y =

�
∂Ω

v · n+ ds

where n+ is the outward unit normal to Ω.

Proof. Follows from Green’s theorem as shown above. ■

45.8.4 Flux and Divergence in R3

Theorem 45.8.3 (Divergence Theorem). Let Ω be a region in R3 and let v : U → R3 be a continuously
differentiable vector field on U which contains Ω. Then,�

Ω

∇ · v(x,y,z) dVx,y,z =
�
∂Ω

v · n+ dA

where n+ is the outward unit normal to Ω, dVx,y,z is the volume element of Ω, more often written as
dx dy dz.
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45.8.5 Gradient Fields
If a vector field v is the gradient of a function f : (U ⊆ Rn) → R, then v is called a gradient field, and
the function f is called a scalar potential of v.

How can we tell when a vector field v(x1, . . . ,xn) = (v1(x1, . . . ,xn),v2(x1, . . . ,xn), . . . ,vn(x1, . . . ,xn)) is a
gradient field? Or more generally, how can we recover the scalar potential of a gradient field?

This involves solving n simultaneous equations for one function f :

v1(x1, . . . ,xn) =
∂f

∂x1
,

...

vn(x1, . . . ,xn) =
∂f

∂xn
,

For n ≥ 2, we have more equations than unknowns, and so, we do not expect to be able to solve these
equations for an arbitrary vector field v.

We investigate under what conditions v has to satisfy in order for it to be a gradient field.

Theorem 45.8.4 (Fundamental Theorem of Calculus for Gradient Vector Fields). Given a continuously
differentiable function f : U → R and a curve Cpq ⊂ U from p to q parametrised by a continuously
differentiable path r : [a,b]→ U, we have,

�
Cpq

∇f · dr = f(q)− f(p)

Corollary 45.8.4.1. This means that the value of a tangential line integral of a gradient field depends
only on the orientation of C and the endpoints p and q, and not on the shape of C itself.

In particular, if the curve is closed, then the endpoints coincide, and we have:

Corollary 45.8.4.2. For all closed curves C,
�
C

∇f · dr = 0

These two corollaries are equivalent in that any vector field that satisfies one will satisfy the other. Such
a vector field is called a conservative vector field.

For example, gravity is a conservative field; it doesn’t matter how you climb up a mountain, you gain
the same amount of gravitational potential energy regardless of choice of path. Similarly, if you walk
around but end up back where you started, you will have zero net gain of gravitational potential energy.

Theorem 45.8.5. A continuous vector field v : U → Rn is a gradient field if and only if it is conservative.

Proof. The forward direction follows from the above corollaries. For the reverse direction, pick p ∈ U ,
and define f : U → R by:

f(x) =

�
Cpx

v · dr

where Cpx is any path in U from p to x. (This is assuming that U is differentiably path-connected. If
it is not, we pick a point and define this function for each path-connected component of U separately.)
This integral does not depend on the choice of path from p to x, so f is well-defined.
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Let (ei)
n
i=1 be the standard basis of Rn. Then,

∂f

∂xi
= lim
h→0

f(x+ hei)− f(x)
h

Since U is open, there exists a δ > 0 such that Bδ(x) ⊂ U . For 0 < h < δ, define r(t) = x + tei for
0 ≤ t ≤ h. Thus, r parametrises the straight line from x to x + hei, and this line segment lies in U .
Furthermore, we are free to choose the path in U from p to x+ hei, so we can choose to go from p via
x; that is, we first go along Cpx, then go from x to x+ hei by means of r. Thus,

f(x+ hei) =

�
Cpx

v · dr+
� h

0

v
(
r(t)

)
· dr
dt
dt

= f(x) +

� h

0

v
(
r(t)

)
· ei dt

It follows that

∂f

∂xi
= lim
h→0

f(x+ hei)− f(x)
h

= lim
h→0

(
1

h

� h

0

vi
(
r(t)

)
dt

)

=
d

dh

(� h

0

vi
(
r(t)

)
dt

)∣∣∣∣∣
h=0

= vi
(
r(0)

)
= vi(x)

■

Example. Given that

v(x,y,z) =
(
xyexy + exy + 1,x2exy,2z

)
is conservative, find a scalar potential f : R3 → R of v.

We need to solve the three partial differential equations

∂f

∂x
= xyexy + exy + 1,

∂f

∂y
= x2exy,

∂f

∂z
= 2z

for f .

Starting with the last equation, we have,

f(x,y,z) = f(x,y,0) +

� z

0

∂f

∂z
(x,y,t) dt

= h(x,y) +

� z

0

2t dt

= h(x,y) + z2

where h(x,y) = f(x,y,0). Substituting into the second equation, we have ∂h
∂y = x2exy, which we similarly

integrate into,

h(x,y) = h(x,0) +

� y

0

∂h

∂y
(x,t) dt
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= g(x) +

� y

0

x2ext dt

= g(x) + xexy − x

where g(x) = h(x,0). Again, we substitute into the first equation to obtain g′(x) = 2, so g(x) = 2x + c
for some constant c ∈ R. Overall, this gives:

f(x,y,z) = xexy + x+ z2 + c

An alternative to this procedure is to integrate the last equation with respect to z directly, and write
f(x,y,z) = z2+h(x,y) where h is the “constant” of integration for the integration with respect to z, then
repeating for the other variables. △

45.8.5.1 Incompressible and Irrotational Vector Fields

A vector field whose divergence is zero everywhere is called an incompressible, solenoidal, or divergence-
free vector field.

Theorem 45.8.6 (Zero Flux Property). If v ∈ C1(U ⊆ R3,R3) is incompressible, and Ω ⊂ U , then,
�
∂Ω

v · n+ dA = 0

Proof. v is incompressible, so ∇ · v = 0. By the divergence theorem,
�
∂Ω

v · n+ dA =

�
Ω

∇ · v dV

=

�
Ω

0 dV

= 0

■

A vector field whose curl is zero everywhere is called an irrotational vector field.

Theorem 45.8.7. Every conservative field is irrotational.

Proof.

curl(∇f) = ∂

∂x

(
∂f

∂y

)
− ∂

∂y

(
∂f

∂x

)
=

∂f

∂x∂y
− ∂f

∂y∂x

= 0

■

45.8.5.2 Laplacian and Harmonic Functions

Let v be a incompressible conservative vector field with scalar potential f . Then, f satisfies the second
order partial differential equation ∆f = 0, where,

∆f := ∇ · (∇f)

=

n∑
i=1

∂2f

∂x2i
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is the Laplacian of f .

For f ∈ C2(U), the equation ∆f = 0 is called Laplace’s equation, and its solutions are called harmonic
functions or harmonic scalar fields.

45.9 Second Order Derivatives

45.9.1 Bilinear Forms
A linear map from a vector space to its field of scalars is called a linear functional or covector. The space
L(Rn,R) of linear functionals on Rn is denoted by (Rn)∗.

With respect to the standard basis of Rn, (Rn)∗ is identified with R1×n. That is, every linear functional
can be represented by a row vector.

A linear map T : Rn → (Rn)∗ can be viewed as a bilinear form T̂ : Rn × Rn → R:

T̂ (a,b) := a⊤Tb

45.9.2 The Hessian Matrix
Recall that if f : (U ⊆ Rn) → R is differentiable at x, then there exists a linear transformation
Df ∈ L(Rn,R) = (Rn)∗ such that,

lim
h→0

∣∣f(x+ h)−
(
f(x) +Df(h)

)∣∣
|h|

= 0

(and further recall that Df(x) is given by the Jacobian matrix, ∂f(x)).

Now, consider the case where Df(x) itself is differentiable. Then, there exists some linear map T ∈
L(Rn,(Rn)∗) such that,

lim
h→0

∣∣Df(x+ h)−
(
Df(x) + T (h)

)∣∣
|h|

= 0

This map, if it exists, is called the Hessian of f , also denoted by D2f(x).

Suppose all second-order partial derivatives of f : Rn → R exist. Then, we define the Hessian matrix,
denoted by Hf or ∂2f(x), as,

Hf =



∂2f

∂x21

∂2f

∂x1∂x2
· · · ∂2f

∂x1∂xn
∂2f

∂x2∂x1

∂2f

∂x22
· · · ∂2f

∂x2∂xn
...

...
. . .

...

∂2f

∂xn∂x1

∂2f

∂xn∂x2
· · · ∂2f

∂x2n


That is, the (i,j)th entry is given by,

(Hf )i,j =
∂2f

∂xi∂xj

This is the matrix that represents the Hessian transformation, if it exists. Note that the converse does
not hold: even if all second order partial derivatives exist, and hence the Hessian matrix exists, Df may
not necessarily be differentiable.
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45.9.3 Non-Commutativity of Second Order Partial Derivatives
Second order partial derivatives do not, in general, commute. That is, for example,

∂f

∂x∂y
̸= ∂f

∂y∂x

However, these derivatives can commute under certain restrictions.

Theorem 45.9.1. If the Hessian transformation D2f(x) exists, then the second order partial derivatives
at x commute. That is,

∂f

∂x∂y
(x) =

∂f

∂y∂x
(x)

for all i,j; or, Hf is symmetric.

Corollary 45.9.1.1. If all second order partial derivatives are continuous at x, then the second order
partial derivatives commute at x.

45.10 Inverse Function Theorem

45.10.1 Change of Variables and Inverse Functions
Let U and V be open subsets of Rn. A change from variables (x1, . . . ,xn) ∈ U to variables (y1, . . . ,yn) ∈ V
is achieved using a function Ψ : U → V , with Ψ = (ψ1, . . . ,ψn)such that,

y1 = (ψ1(x1, . . . ,xn))

y2 = (ψ2(x1, . . . ,xn))

...

yn = (ψn(x1, . . . ,xn))

If Ψ is bijective, then we can change back from y-variables to x-variables with the inverse map Ψ−1.

Theorem 45.10.1. Suppose Ψ : U → V is a bijection differentiable at x ∈ U , and suppose further that
Ψ−1 is differentiable at y = Ψ(x) ∈ V . Then, DΨ(x) and DΨ−1(y) are both invertible and,

DΨ−1(y) =
(
DΨ(Ψ−1(y))

)−1

Proof. For all y ∈ V ,

Ψ
(
Ψ−1(y)

)
= y

Differentiating using the chain rule, we have,

DΨ
(
Ψ−1(y)

)
◦DΨ−1(y) = idRn

and the result follows. ■

In the 1-dimensional case, the Fréchet derivative is just the ordinary derivative, so this result is written
as,

(Ψ−1)′(y) =
1

Ψ′
(
Ψ−1(y)

)
or more memorably as,

dx

dy
=

1
dy
dx

Notes on Mathematics | 886



Multivariable Analysis Inverse Function Theorem

45.10.2 Local Inverses
Does the converse of the previous theorem hold? That is, if Ψ : U → V is differentiable at x ∈ U , and
DΨ(v) is invertible – does it then follow that Ψ−1 exists, and if it does, is it differentiable?

First, DΨ(x) depends only on the behaviour of Ψ near x, so if
(
DΨ(x)

)−1 exists, then Ψ−1 can exist at
most “near” Ψ(x), and not on all of Ψ(U). We formalise what it means to be “near” a certain point.

Let p ∈ U . If Np ⊆ U is an open set containing p, then we say that Np is an (open) neighbourhood of p.

Then, a function Ψ : U → V is a local bijection at p ∈ U if there is an open neighbourhood Np of p and
an open neighbourhood Nq of q = Ψ(p) such that the restriction Ψ : Np → Nq is a bijection. We also
say that Ψ is locally invertible at p, and that inverse of the restricted function, Ψ−1 : Nq → Np is the
local inverse of Ψ. This local inverse is also called a branch of the global or full inverse Ψ−1 (if it exists).

Example. Consider Ψ : R→ R≥0 defined by x 7→ x2. Ψ is not injective, since Ψ(x) = Ψ(−x).

But, take some p > 0, and the open neighbourhood Np = (0,∞). Then, q = Ψ(p) = p2 > 0, and we can
take the open neighbourhood Nq = (0,∞), and indeed Ψ restricted to these neighbourhoods is bijective,
with local inverse given by Ψ−1(y) =

√
y. We can use the previous theorem to calculate the derivative

of this inverse:

Ψ′(x) = 2x

(Ψ−1)′(y) =
1

Ψ′(Ψ−1(y))

=
1

Ψ′(
√
y)

=
1

2
√
y

If we instead take p < 0 with open neighbourhood Np = (−∞,0), and q = p2 > 0 with open neigh-
bourhood Nq = (0,∞), Ψ is again bijective, with local inverse given by Ψ−1(x) = −

√
x. This time, the

derivative is given by,

Ψ′(x) = 2x

(Ψ−1)′(y) =
1

Ψ′(Ψ−1(y))

=
1

Ψ′(−√y)

= − 1

2
√
y

However, with our definition of a local inverse, there is no open neighbourhood around p = 0 such that
Ψ is a bijection, so Ψ is not invertible on any open interval containing 0.
√
y and −√y then form the two branches of the multivalued full inverse Ψ−1(y) = ±√y. △

Theorem 45.10.2 (Inverse Function Theorem). Let U ⊆ Rn be open, and suppose Ψ : U → Rn is
continuously differentiable. Suppose that the Fréchet derivative DΨ(p) is invertible at a point p ∈ U
(that is, the Jacobian ∂Ψ(p) has non-zero determinant), and define q = Ψ(p). Then,

• There exist neighbourhoods Np ⊂ U and Nq ⊂ Ψ(U) of p and q respectively, such that the restric-
tion Ψ : Np → Nq is a bijection;

• The inverse of the restriction, Ψ−1 : Nq → Np, is continuously differentiable, and furthermore,

DΨ−1(y) =
(
DΨ(Ψ−1(y))

)−1
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for all y ∈ Nq.

A map Ψ : U → V between two open subsets of Rn is called a diffeomorphism if it is bijective, continously
differentiable on U , and its inverse is continuously differentiable on V .

Ψ is called a local diffeomorphism near p ∈ U if there exists a neighbourhood Np ⊂ U of p such that the
restriction Ψ : Np → Nq is a diffeomorphism, where q := Ψ(p) andNq := Ψ(Np) ⊂ V is a neighbourhood
of q.

45.11 Proof of the Implicit Function Theorem

Lemma 45.11.1. A transformation T ∈ L(Rn,Rk) is injective if and only if there exists α > 0 such that
|T (x)| ≥ α|x| for all x ∈ Rn.

Proof. If T (x) = 0 and |T (x)| ≥ α|x| for some α > 0, then x = 0, so T is injective.

Conversely, suppose there does not exist such an α > 0, so there is a sequence (xi)
∞
i=1 ⊆ Rn \ {0} such

that |T (xi)|/|xi| → 0 as i→∞.

Define ui := xi/|xi|. Then, |ui| = 1 for all i ∈ N, and T (uj)→ 0 as i→∞.

Since Sn−1 is sequentially compact, there exists a subsequence uij that converges to u ∈ Sn−1. However,
x 7→ |T (x)| is continuous, so

|T (x)| = lim
i→∞

|T (x)|

= 0

so u ∈ ker(T ), and T is not injective. ■

Lemma 45.11.2. Let U ⊆ Rn be open. Let f ∈ C1(U,Rk) and suppose that Df(p) is injective at some
point p ∈ U . Then, there exists δ > 0 such that Bδ(p) ⊆ U and f is injective on Bδ(p).

Proof. By the previous lemma, there exists α > 0 such that∣∣Df(p)h
∣∣ ≥ α|h| (1)

for all h ∈ Rn. By continuity of Df : U → L(Rn,Rk) at p, there exists δ > 0 such that Bδ(p) ⊆ U and∥∥Df(p)−Df(x)
∥∥ < 1

2
α (2)

for all x ∈ Bδ(p). Let A := Df(p) and define F : U → Rk by x 7→ f(x)−A(x). Then,

DF(x) = Df(x)−A
= Df(x)−Df(p)

so ∥∥DF(x)
∥∥ < 1

2
α

for all x ∈ Bδ(p). Then, the mean value inequality yields∣∣F(z)− F(x)
∣∣ ≤ 1

2
|z− x|
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for all x,z ∈ Bδ(p). So, ∣∣f(x)− f(z)
∣∣ = ∣∣A(x− z)−

(
F(z)− F(x)

)∣∣
≥ α|x− z| − 1

2
|x− z|

=
1

2
α|x− z|

In particular, f is injective on Bδ(p). ■

This lemma establishes the local injectivity of Φ in the statement of the inverse function theorem.

Note that this last inequality is a quantitative estimate of how strongly injective f is; the larger the
value of α, the “more injective” f is. Similarly, regarding F as the difference between f and its affine
linear approximation, the penultimate inequality gives a quantitative estimate of how close the linear
approximation of f is to f .

The next lemma helps prove that Φ is locally surjective; we have that there exists ρ > 0 such that all
points within ρ of Ψ(p) must lie in the image of Ψ.

The difficulty is in finding a preimage for each point y ∈ Bρ
(
Ψ(p)

)
. The strategy is to look for x∗ as a

point which minimises the distance between y and Ψ(x) as x moves around near p.

Lemma 45.11.3. Let U ⊆ Rn be open. Let Ψ ∈ C1(U,Rn), and suppose that DΨ(p) is surjective for
some point p ∈ U . Then, there exists ρ > 0 such that Bρ

(
Ψ(p)

)
⊆ Ψ(U).

Proof. By the rank-nullity theorem, DΨ(p) is injective, so Lemma 45.11.2 applies. So, there exists α > 0
such that ∣∣DΨ(p)h

∣∣ ≥ α|h| (1)

for all h ∈ Rn. As before, let A := Df(p) and define F : U → Rk by x 7→ Ψ(x) − A(x). Then, the
following analogues of the last two inequalities in Lemma 45.11.2 hold: there exists δ > 0 such that
Bδ(p) ⊆ U and for all x,z ∈ Bδ(p), ∣∣F(x)− F(z)

∣∣ ≤ 1

2
α|x− z| (2)∣∣Ψ(x)−Ψ(z)

∣∣ ≥ 1

2
α|x− z| (3)

Set

K := B 1
2 δ
(p)

=
{
x ∈ Rn : |x− p| ≤ 1

2δ
}

∂K =
{
x ∈ Rn : |x− p| = 1

2δ
}

Then, applying (3) with z = p and x ∈ ∂K yields∣∣Ψ(x)−Ψ(p)
∣∣ ≥ 1

4
αδ (4)

for all x ∈ ∂K. Set ρ := 1
8αδ and fix y ∈ Bρ

(
Ψ(p)

)
.

We claim that y ∈ Ψ
(
B 1

2 δ
(p)
)
. That is, if

∣∣y − ψ(p)∣∣ ≤ ρ, then the equation Ψ(x) = y has a solution
x ∈ B 1

2 δ
(p).

Define φ : K → R by x 7→
∣∣Ψ(x)− y

∣∣. Then, φ is continuous, and since K is sequentially compact, the
extreme value theorem yields the existence of some x∗ ∈ K such that

φ(x∗) ≤ φ(x)
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for all x ∈ K. We now establish that x∗ ∈ B 1
2
(p) by showing that φ(x) > φ(p) for all x ∈ ∂K, and

hence x∗ /∈ ∂K.

By (4), we have for all x ∈ ∂K,

φ(x) =
∣∣Ψ(x)− y

∣∣
≥
∣∣Ψ(x−Ψ(p)

∣∣− ∣∣y −Ψ(p)
∣∣

≥ 1

4
αδ − 1

8
αδ

= ρ

>
∣∣y −Ψ(p)

∣∣
= φ(p)

so
|x∗ − p| < 1

2
δ (5)

Since DΨ(p) is surjective, there exists h ∈ Rn such that

A(h) = DΨ(p)h

= y −Ψ(x∗)

The idea is that if y ̸= Ψ(x∗), then we should be able to move x∗ in a direction h such that Ψ(x∗ + th)
would move closer to y for sufficiently small t, contradicting the construction of x∗ as a point in K for
which Ψ(x∗) is closest to y. The affine linear approximation of Ψ(x∗ +h) then asserts that Ψ(x∗ +h)−
Ψ(x∗) ≈ DΨ(x∗)h ≈ DΨ(p)h = A(h). We wish to have Ψ(x∗ + h) = y, hence the requirement that
A(h) = y −Ψ(x∗).

By (5), there exists η > 0 such that
∣∣(x∗ + th) − p

∣∣ < 1
2δ whenever |t| < η. Invoking the affine linear

approximation of Ψ(x∗ + th), we have for all |t| < η,

Ψ(x∗ + th)− y = Ψ(x+ th)−Ψ(x∗)− tA(h) +
(
Ψ(x∗)− y + tA(h)

)
= F (x+ th)− F (x∗) + (1− t)

(
Ψ(x∗)− y

)
so applying (1) and (2), we have,

φ(x∗) ≤ φ(x∗ + th)

=
∣∣Φ(x+ th)− y

∣∣
≤ 1

2
t
∣∣A(h)∣∣+ (1− t)

∣∣Ψ(x∗)− y
∣∣

=

(
1− 1

2

)
φ(x∗)

Since this holds for all t ∈ (0,η), we conclude that φ(x∗) = 0, so y = Ψ(x∗), and hence Bρ
(
Ψ(p)

)
⊆

Ψ
(
B 1

2 δ
(p)
)
⊆ Ψ(U). ■

Corollary 45.11.3.1. Let U ⊆ Rn be open. Let Ψ ∈ C1(U,Rn), and suppose that DΨ(p) is invertible
for all points p ∈ U . Then Ψ is an open map. That is, the image of an open set in U under Ψ is open
in Rn, and in particular, if Ψ is injective on U , then Ψ−1 : Ψ(U)→ U is continuous.

Proof. Let V ⊆ U be open. Applying the previous lemma to Ψ
∣∣
V

, we have that for all p ∈ V , there
exists ρ > 0 such that Bρ

(
Ψ(p)

)
⊆ Ψ(V ), i.e., Ψ(V ) is open. ■
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Proof of Inverse Function Theorem. Ψ satisfies the hypotheses of Lemma 45.11.2 and Lemma 45.11.3.
By inequalities (1) and (2) from Lemma 45.11.2 and the rank-nullity theorem, we deduce that DΨ(x) is
invertible for all x ∈ Bδ(p). The previous corollary then implies that Φ

(
Bδ(p)

)
is open.

Set Np := Bδ(p) and Nq := Ψ
(
Bδ(p)

)
. Then, Ψ : Np → Nq is a bijection.

It remains to prove that Ψ−1 : Nq → Np is continuously differentiable.

Fix y ∈ Nq and choose ρ > 0 such that Bρ(y) ⊆ Nq, and let x = Ψ−1[y]. It will be convenient to set

Φ := Ψ−1, A := DΨ(x), B := A−1

For |k| < ρ, define h(k) := Φ(y + k)− Φ(y). Then, Φ(y + k) = x+ h(k), so, using inequality (3) from
Lemma 45.11.3, we have,

|k| =
∣∣(y + k)− y

∣∣
=
∣∣Ψ(x+ h(k)

)
−Ψ(x)

∣∣
≥ 1

2
α
∣∣h(k)∣∣

Since h(0) = 0, this implies that h(k) is continuous at k = 0. Then, from Lemma 45.6.1, we have

Ψ
(
x+ h(k)

)
= Φ(x) +DΨ(x)h(k) + ∆xΨ

(
h(k)

)∣∣h(k)∣∣ (1)

where

∆x,T f(h) =

{
f(x+h)−f(x)−T (h)

|h| h ̸= 0

0 h = 0

and ∆x abbreviates ∆x,Df(x).

Set R(k) := ∆xΨ
(
h(k)

)
. Then, the previous equation can be rewritten as

y + k = y +A
(
h(k)

)
+
∣∣h(k)∣∣R(k)

It follows that
B(k) = h(k) +

∣∣h(k)∣∣B(R(k))
and hence

Φ(y + k) = Φ(y) +B(k)−
∣∣h(k)∣∣B(R(l)) (2)

Now,
∣∣h(k)∣∣ ≤ 2

α |k| and by continuity of composition and linearity of B, we have that B
(
R(0)

)
= 0. So,

by Lemma 45.6.1, Ψ−1 = Φ is differentiable at y and

DΨ−1(y) = B

=
(
DΨ(Ψ−1(y))

)−1

Finally, the continuity if h(k) at k = 0 implies the continuity of Ψ−1 at y and therefore, since DΨ is
continuous at x = Ψ−1[y] and the inversion map (−)−1 : GL(n,R) → GL(n,R) is continuous, we have
that DΨ−1 is continuous at y. ■

45.12 Implicit Function Theorem

All functions in this section will be assumed to be continuously differentiable so we will write the Jacobian
for the derivative instead of the Fréchet derivative.
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Suppose we have a function F : R2 → R. If we set F (x,y) = c for some c ∈ R, then this equation defines
y implicitly in terms of x, or x implicitly in terms of y.

For instance, if F (x,y) = x2 + y2 and c > 0, then x2 + y2 = c describes a relation between x and y
implicitly. If c ̸= ±

√
c, then the equation has two solutions for y in terms of x; namely, y(x) =

√
c− x2

and y(x) = −
√
c− x2, −

√
c < x <

√
c. Each of these solutions is called an explict determination of y in

terms of x by the means of the functions
√
c− x2 and −

√
c− x2.

Let U be an open subset of Rn+ℓ = Rn ⊕ Rℓ. We will write (x,y) for points in Rn+ℓ, where x ∈ Rn and
y ∈ Rℓ.

Given a continuously differentiable function F : U → Rℓ, we will write the Jacobian ∂F(x,y) ∈ Rℓ×(n+ℓ)

as (∂xF(x,y) ∂yF(x,y)) where ∂xF ∈ Rℓ×n and ∂yF ∈ Rℓ×ℓ

So, a matrix Λ ∈ Rℓ×(n+ℓ) can be written as Λ = [A B], where A ∈ Rℓ×n and B ∈ Rℓ×ℓ. If we
then write a vector z ∈ Rn×ℓ as z = (x,y) where x ∈ Rn and y ∈ Rℓ, then we can write a linear map
F : Rn+ℓ → Rℓ defined by F(z) = Λz as,

F(x,y) = [A B]

[
x
y

]
= Ax+By

Given some c ∈ Rℓ, we can then rewrite the equation F(x,y) = c as,

By = c−Ax

This linear system of equations can be solved for the ℓ variables in y explicitly in terms of the n variables
in x if B is invertible:

y = B−1(c−Ax)

If B is not invertible, then the system either has infinitely many solutions y if it is consistent, or no
solutions if it is inconsistent. In either case, y cannot be written uniquely as a linear function of x if B
is not invertible.

The implicit function theorem for a general continuously differentiable function F : U → Rℓ asserts that,
if we have one solution (x0,y0) of the equation F(x,y) = c, and if ∂yF(x0,y0) ∈ Rℓ×ℓ is invertible, then
we can solve for y in terms of x for x sufficiently near x0. The implicit function theorem is therefore
concerned with converting an implicit relation F(x,y) = c to an explicit relation y = g(x) such that the
relation F(x,g(x)) = c holds for all x in some open neighbourhood Nx0

containing x.

Theorem 45.12.1 (Implicit Function Theorem). Let U ⊆ Rn+ℓ be open and let c ∈ Rℓ. Suppose that
F : U → Rℓ is continuously differentiable, and that the equation F(x,y) = c has a solution (x0,y0) ∈ U
such that det

(
∂yF(x0,y0)

)
̸= 0. Then, there exists an open neighbourhood Nx0

⊆ Rn of x0 and a
continuously differentiable function g : Nx0

→ Rℓ such that,

• g(x0) = y0,
{(

x,g(x)
)
: x ∈ Nx0

}
⊂ U , and F

(
x,g(x)

)
= c for all x ∈ Nx0 ;

• Furthermore, ∂yF(x,g(x)) is locally invertible over all x ∈ Nx0
, and the derivative of g is given by,

∂g(x) = −
(
∂yF

(
x,g(x)

))−1

· ∂xF
(
x,g(x)

)
for all x ∈ Nx0

.

Example. In the previous example, we had F (x,y) = x2 + y2. Given a point (x0,y0) on the circle
F (x,y) = c > 0 such that y0 > 0, we have seen that g(x) =

√
c− x2. The implicit function then gives

the derivative of g to be,

∂xF (x,y) = [2x]
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∂yF (x,y) = [2y]

g′(x) = −
(
∂yF (x,g(x))

)−1 · ∂xF (x,g(x))

= − 2x

2g(x)

= − x√
c− x2

△

Geometrically, the implicit function theorem asserts that if det
(
∂yF(x0,y0)

)
̸= 0, then near a point

(x0,y0), the level set Γc := {(x,y) : F(x,y) = c} is the graph Gg of a function y = g(x). That is, near
(x0,y0),

Γc = Gg :=
{(

x,g(x)
)
: x ∈ Nx0

}
=
{
(x,y) : y = g(x),x ∈ x0

}
For instance, for F (x,y) = x2 + y2 = c > 0, ∂yF (x0,y0) ̸= 0 whenever y0 ̸= 0. If y0 > 0, then (x0,y0)
is contained in the upper semicircle which is the graph of y =

√
c− x2, and if y0 < 0, then (x0,y0) is

contained in the lower semicircle which is the graph of y =
√
c− x2.

The graph of a continuously differentiable function of one variable is a special case of a regular parametri-
sation of a curve, and the graph of a continuously differentiable function of two variables is a special
case of a regular parametrisation of a surface. Regular parametrisations can be pieced together to form
spaces that are known as submanifolds of Euclidean spaces. The circle in this case is a 1-dimensional
submanifold of R2 that can be viewd as being pieced together along overlaps from the four semicircles
which are the graphs of,

y(x) =
√
c− x2,x ∈ (−

√
c,
√
c) x(y) =

√
c− y2,y ∈ (−

√
c,
√
c)

y(x) = −
√
c− x2,x ∈ (−

√
c,
√
c) x(y) = −

√
c− y2,y ∈ (−

√
c,
√
c)

A set M ⊂ Rn+ℓ is a submanifold (without boundary) of dimension n if, for each p ∈ M , there exists
an open neighbourhood Np ⊂ Rn+ℓ of p, an open set U ⊂ Rn and a continuously differentiable function
r : U → Rn+ℓ, such that r(xp) = p for some xp ∈ U , r : U →M ∩Np is a bijection, and rank(∂r(x)) = n
for all x ∈ U .

The function r is then called a (regular) parametrisation of M ∩Np. The tangent space Tr(x)M of M at
r(x) is the image of ∂r(x) shifted by r(x); that is, r(x) + span

(
∂1r(x), . . . ∂nr(x)

)
, or,

Tr(x)M =
{
r(x) +

(
∂r(x)

)
h : h ∈ Rn

}
Thus, the tangent space is identified with the image of the affine linear approximation of r.

Theorem 45.12.2. Given a continuously differentiable function F : U ⊆ Rn+ℓ → Rℓ with U open, and
some fixed c ∈ Rℓ, define the level set Γc := {z ∈ U : F(z) = c}.

Suppose that rank
(
∂F(z)

)
= ℓ for all z ∈ Γc. Then, Γc is a submanifold (without boundary) of dimension

n in Rn+ℓ. Furthermore, TzΓc = z+ ker
(
∂F(z)

)
=
{
z+ v : ∂F(z)v = 0

}
.

In the special case that ℓ = 1, then Γc is called a hypersurface and,

∂F(z) = (∂1F(z), . . . ∂n+1F(z)), ∇F(z) =

 ∂1F(z)
...

∂n+1F(z)
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so,

v ∈ ker
(
∂F(z)

)
←→

(
∇F(z)

)
· v = 0

←→ ∇F(z) ⊥ TzΓc

so ∇F is orthogonal to the level set Γc, so the gradient of a function is the normal to the hypersurface
it describes.

If we also have n = 1, then Γc is called a level curve in R2, and if n = 1, then Γc is called a level surface
in R3.
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Chapter 46

Differential Equations

“Since Newton, mankind has come to realise that the laws of physics are always
expressed in the language of differential equations.”

— Steven Strogatz

Differential equations are equations that relate functions with their derivatives. Here, we will mainly
work with functions of single variables, with vector calculus being the focus of separate chapters, §44
and §45. For a foundational overview of calculus, see §34.

Newton’s notation will not be used in this document. Lagrange’s notation will be preferred, with Leibniz’s
notation used wherever differentials are more helpful (i.e. separable equations).

46.1 Functions and Variables

46.1.1 Terminology & Notation

46.1.1.1 Variables

Variables measure things. We can classify them into independent and dependent variables.

If a variable, for example, x, is a function of another variable, say, t, then x would be the dependent
variable as its value is dependent on t, the independent variable. Usually, we see this written as x(t).

There doesn’t have to be a one-to-one correspondence between dependent and independent variables
either: for example, you could have temperature as a function of position in 3D, f(x,y,z), where f is the
dependent variable, and x,y, and z are independent variables.

Dependent variables can usually be differentiated with respect to the independent variable(s).

46.1.1.2 Derivative Notation

When there is only one independent variable, we may save space and use Lagrange’s (prime) notation
over Leibniz’s (quotient) notation:

dy

dx
= y′

d2y

dx2
= y′′

dny

dxn
= y(n)(x)
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For nth derivatives in Lagrange’s notation, do not omit the independent variable as to avoid confusion
with exponents.

If the independent variable is time, we may also use Newton’s (dot) notation:

dx

dt
= ẋ

d2x

dt2
= ẍ

Newton’s notation becomes rather unwieldy for derivatives of order higher than 2 or 3.

The partial derivative of a function f(x,y,z) with respect to x, is variously written as,

∂f

∂x
, fx, ∂xf

Other notations exist, but these are the main ones we will use.

The second-order partial derivative of f with respect to x is written as,

∂2f

∂x2
, fxx, ∂xxf, ∂

2
xf

and the second-order mixed derivative of f with respect to x, then y is given by,

∂2f

∂y∂x
, fxy, ∂yxf, ∂y∂xf

46.1.1.3 Properties of Differential Equations

If a differential equation only has one independent variable, it is referred to as an ordinary differential
equation, or an ODE. A differential equation involving several independent variables is referred to as a
partial differential equation or a PDE.

The order of a differential equation is the order of highest derivative present in the equation.

A differential equation is;

• autonomous if the independent variable does not appear in the ODE;

• linear if the ODE can be written in the form, a(t)x+ b(t)x′ + c(t)x′′ + · · · = f(t);

• homogeneous if f(t) = 0 in the expression above.

46.1.2 Existence and Uniqueness of Solutions
Consider the ODE,

x′(t) = f(x,t)

If both f(x,t) and ∂f
∂x exist and are continuous for x ∈ (a,b) and t ∈ (c,d), then, for any X ∈ (a,b) and

T ∈ (c,d), the ODE has a unique solution on some open interval containing T (the formal definition of
continuity is covered in §34).

Split up more finely, the theorem says that, if dx
dt = f(x,t) and x(a) = b, then, a solution exists if f(x,t)

is continuous near (a,b), and that the solution is unique if ∂f
∂x is continuous near (a,b).

Example.

x2 + t2
dx

dt
= 0; x(0) = c; c ̸= 0

△
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At t = 0, the equation reduces to x2 = 0, but we have x(0) ̸= 0, so this differential equation does not
have any solutions.

Example.
dx

dt
=
√
x; x(0) = 0

△

Clearly, the constant function x(t) = 0 is a solution, but we also have,

x(t) =

{
0 t ≤ c
(t−c)2

4 t > c,
c > 0

valid for any positive c. So, this differential equation does not have a unique solution.

But it might not be easy to find multiple solutions, so we can check using the theorem above. This
differential equation fails the requirements because x′(0) is not well defined, and is hence not continuous.

46.1.3 Fundamental Theorem of Calculus

Suppose f : [a,b] → R is continuous. Let G(x) =
� x
a
f(z) dz. Then, d

dxG(x) = f(x) (i.e., G is an
antiderivative of f) and furthermore,

� b
a
f(x) = F (a)− F (b) for any F such that F ′(x) = f(x).

46.2 First-Order Differential Equations

46.2.1 Linear
For brevity, we will not notate the independent variable from this point onwards (i.e. whenever we have
x or x′, we mean x(t) and dx

dt , etc.) unless relevant or helpful to the method (i.e., separable equations).

46.2.1.1 Homogeneous with Constant Coefficients

x′ + ax = 0

If you have a coefficient on x′, divide everything by that coefficient to get it into the form above before
proceeding.

The solution is given by,
x = Ae−at, A = x(0)

46.2.1.2 Separable

dx

dt
= f(x)g(t)

dx

dt
= f(x)g(t)

1

f(x)

dx

dt
= g(t)

�
1

f(x)

dx

dt
dt =

�
g(t) dt

�
1

f(x)
dx =

�
g(t) dt

After evaluating these integrals, simply rearrange for x.
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46.2.1.3 Homogeneous with Non-Constant Coefficients

x′ + f(t)x = 0

This is just a separable equation:

x′ = f(t)x

dx

dt
= f(t)x

1

x

dx

dt
= f(t)

lnx =

�
f(t) dt

lnx = F (t) + C

x = AeF (t)

46.2.1.4 Non-Homogeneous

x′ + f(t)x = g(t)

First, solve the homogeneous version, x′ + f(t)x = 0, to get the complementary function.

Next, we need to get the particular integral.

We need to multiply both sides by some function, I(t), such that we can apply the product rule in reverse
on the LHS;

i.e., we want,

I(t)x′ + I(t)f(t)x = (I(t)x)′ (1)

but,

(I(t)x)′ = I(t)x′ + I(t)x (2)

so by equating (1) and (2), we have I ′(t) = I(t)f(t), so I(t) = e
�
f(t) dt.

Now, we have,

I(t)x′ + I(t)f(t)x = I(t)g(t)

(I(t)x)′ = I(t)g(t)

I(t)x =

�
I(t)g(t) dt

x =
1

I(t)

�
I(t)g(t) dt

Adding this to the complementary function found earlier gives the general solution.

I(t) is an integrating factor of the differential equation.

46.2.2 Substitutions for Non-Linear ODEs

46.2.2.1 Type I

x′ = f
(x
t

)
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Let u = x
t . Then, x = tu

x = tu

x′ = (tu)′

We use the product rule (“ left dee-right plus right dee-left”) here, remembering that the derivative of t
with respect to t is 1.

x′ = tu′ + u

f(u) = tu′ + u

f(u)− u = tu′

which is a separable differential equation.

46.2.2.2 Type II

x′ + f(t)x = g(t)xn

Let u = x1−n, so,

u′ = (1− n)x−nx′

u′ = (1− n)x−n (g(t)xn − f(t)x)
u′ = (1− n)

(
g(t)− f(t)x1−n

)
u′ = (1− n) (g(t)− f(t)u)

u′ + (1− n)f(x)u = (1− n)g(t)

which allows the use of an integrating factor.

46.2.3 Phase Lines
A non-linear ODE will often not have an explicit solution, but we can still analyse them in a couple of
ways. We can identify and classify fixed points of an autonomous ODE with phase lines.

Given an ODE,
x′ = f(x)

draw a graph with x′ on the vertical axis, and x on the horizontal axis.

Wherever the graph lies above the line, a particle lying on the x-axis will have positive x′, and will
therefore move to the right. Similarly, wherever the graph lies below the line, the particle will have a
negative x′, and will move to the left.

You should indicate these directions with arrows on the x-axis.

If a point where the graph touches the x-axis has arrows pointing inwards, it is stable. If it has arrows
pointing outwards, it is unstable. If arrows point inwards from one direction and outwards from another,
it is structurally unstable.

The three prior cases are also known collectively as fixed points, stationary points or equilibria.

Example. △
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(1) (2) (3) (4)

x′=f(x)

x

x′

In the diagram above, (1) is structurally unstable, (2) is stable, (3) is structurally unstable (but in a
different manner than (1)), and (4) is stable.

We have not solved the ODE, but have still managed to determine some qualitative behaviours of the
solutions. Notice that a particle that starts past point (4) will move to the right indefinitely, while a
particle that starts anywhere to the left will eventually hit point (1). We call the behaviour of a solution
as t→∞ the asymptotic behaviour or sometimes the large time limit, if the limit is well defined.

The stability of a fixed point clearly depends on how the line interacts with the x-axis. If the line has
positive gradient when crossing the x-axis, the point is unstable, and if negative, stable. If the line
touches the x-axis, but does not cross it, then the point is structurally unstable.

Note: having a gradient of zero is not sufficient (although necessary) to determine if a fixed point is
structurally unstable. For example, the graph of x′ = x3 has zero gradient at x = 0, but still crosses the
x-axis, causing it to be unstable. You should always draw a diagram.

46.2.4 Euler’s Method
Consider the ODE,

x′ = f(x,t), x(0) = X

and suppose we cannot find an analytic solution.

In Euler’s Method, we find a numerical approximation to the solution.

First, we pick a small time step, h, and assume that x′ is approximately constant over the small time
step h. With that assumption, we use the Taylor expansion of x(t+ h),

x(t+ h) = x(t) + hx′(t)

= x(t) + hf(x(t),t)

so, the solution to the DE is approximated by the recurrence relation,

x(n+ 1) = x(n) + hf(x(n),nh)

Note that we only use the first two terms of the Taylor series, as any further derivatives are 0, since we
assume x′(t) is constant.
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46.3 Second Order

46.3.1 Homogeneous
For a differential equation of the form

ax′′ + bx′ + cx = 0

we form and solve the characteristic or auxiliary equation,

aλ2 + bλ+ c = 0

There are three cases:

• Two real roots: If λ = α,β, then x = Aeαt + Beβt, where A and B are constant coefficients to be
found.

• Repeated real root : If λ = α with multiplicity 2, then x = (A+Bt)eαt.

• Complex roots: If λ = p± iq, then x = ept(A cos(qt) +B sin(qt))

46.3.2 Damping
In the above equation, if,

b = 0, then the system is undamped ;
b2 − 4ac < 0, then the system is underdamped ;
b2 − 4ac = 0, then the system is critically damped ;
b2 − 4ac > 0, then the system is overdamped.

An undamped system represents a system without friction, and will oscillate regularly forever. Un-
derdamped systems still oscillate, but a little bit of friction is present, causing the amplitude to decay
over time. Critically damped systems generally do not oscillate, simply decaying to zero. Overdamped
systems behave similarly, but with a slower decay.

46.3.3 Non-Homogeneous
For an equation of the form

ax′′ + bx′ + cx = f(t)

we first solve the homogenous version, ax′′ + bx′ + cx = 0, to get the complementary function.

Now, we want a particular integral to deal with the non-homogeneous part. We make an ansatz depending
on the form of f(t). If f(t) is a polynomial, we set x equal to a general polynomial of the same degree. If
f(t) is exponential, we try the same. If f(t) contains a sine, a cosine or both, we try a linear combination
of both.

i.e., if f(t) = 3 cos(5t), then we try x = A cos(5t) +B sin(5t). Note that we keep the 5’s intact, and that
we use both sines and cosines, despite f(t) only containing cosine.

Common oversight: Furthermore, if the complementary function matches f(t) in any way, we must
multiply our ansatz by t to avoid getting a solution we already have.

Find the first and second derivatives of your ansatz, and substitute into the original equation to solve
for any unknown constants.

Remember to add the complementary function to your particular integral afterwards to get the general
solution.
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If you do not want to use the method above (Undetermined Coefficients), there is an alternative method:
Variation of Parameters.

The method of undetermined coefficients only works when f(t) is polynomial, exponential, (hyperbolic)
trigonometric, or a linear combination of the previous.

Variation of parameters is a more powerful technique that works on a wider range of functions, but
requires a little more work. See §46.6.2.

46.3.4 Resonance
We consider the ODE for a mass/spring system,

x′′ + cx′ + ω2x = F cos(Ωt)

Where F cos(Ωt) is some forcing term.

If the system is underdamped (§46.3.2), this ODE has the solution,

x(t) = A cos(Ωt− ϕ) +Be−
ct
2 cos(αt+ δ)

for very complicated and mostly irrelevant constants, α, A and ϕ.

But notice how as t→∞, the second term tends to 0 due to the negative exponential. This second term
is the transient behaviour term, while the first term is the steady state solution.

If there is no forcing and no friction, i.e., F = 0 and c = 0, α = ω, and the system oscillates as a whole
with natural frequency ω

2π .

If forcing is present, then, as Ω→ ω, A→∞. This effect is resonance.

46.4 Recurrence Relations

46.4.1 First-Order

46.4.1.1 Homogeneous

Consider the recurrence relation,

xn = axn−1

The solution can be found using back substitution:

xn = axn−1

= a2xn−2

= a3xn−3

...

= anx0

If initial conditions aren’t given, then xn = Aan will suffice.

46.4.1.2 Non-Homogeneous

xn = axn−1 + f(n)
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Solve the homogeneous version, xn = axn−1, to get the complementary solution. Then choose an ansatz
using the same procedure as outlined in §46.3.3 and substitute it into the non-homogeneous solution to
solve for any unknowns.

Note, if a = 1 and f(n) is a polynomial, you need to multiply your ansatz by n. But also, if a = 1, it
may be easier to do back substitution anyway, so keep that in mind.

46.4.2 Second Order

46.4.2.1 Homogeneous

For a recurrence relation of the form

axn+2 + bxn+1 + cxn = 0

we solve the characteristic equation,
aλ2 + bλ+ c = 0

Again, there are three cases:

• Two real roots: If λ = α,β, then x = Aαn +Bβn, where A and B are constant real coefficients to
be found.

• Repeated real root : If λ = α with multiplicity 2, then x = (A+Bt)αn, where A and B are constant
real coefficients to be found.

• Complex roots: If λ = p± iq, then convert λ to polar form, p± iq = reiθ, and x = rn(A cos(nθ) +
B sin(nθ)). Or, if you hate working with trigonometry, use the same form as for two real roots,
and solve for complex A and B.

46.4.2.2 Non-Homogeneous

See §46.4.1.2 and §46.3.3. These are done using the exact same procedure.

The only thing to note is, if you have an exponential in your ansatz, you have to be a little careful: if
the base of the exponential is equal to one of the roots of the auxiliary equation, multiply by n, like with
ODEs. But if the root is repeated, you need to multiply by n2.

46.4.3 Other
A fixed point of a recurrence relation, xn = f(xn−1) is a value of x = k such that f(k) = k. If |f ′(k)| < 1,
then k is a stable fixed point. If |f ′(k) > 1|, then k is an unstable fixed point.

46.5 Systems of Linear First-Order ODEs

Much of the theory in this section depends on knowledge from §33. If you have not completed much
linear algebra, many of the methods here may seem rather arbitrary and unexplained.
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46.5.1 The Jacobian
The Jacobian matrix of a function, f : Rn → Rn, denoted Df , is the matrix of partial derivatives,

∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

· · · ∂f2
∂xn

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

· · · ∂f3
∂xn

...
...

...
. . .

...

∂fn
∂x1

∂fn
∂x2

∂fn
∂x3

· · · ∂fn
∂xn


This can be more compactly written as, [

∂f

∂x1
· · · ∂f

∂xn

]
or, 

∇⊤f1
...

∇⊤fn


If you are unfamiliar with the ∇ operator, see §44. You should familiarise yourself well with the Jacobian,
as it appears everywhere in calculus. The Jacobian is effectively the higher dimensional version of the
derivative – it encodes information about how a many-variable function changes.

The Jacobian matrix, interpreted as a linear transformation, represents how the function transforms
locally around a point when evaluated at that point.

Using the Jacobian, we can now define:

46.5.2 Existence and Uniqueness 2: Electric Boogaloo
d

dt
(x(t)) = f(x,t)

If f(x,t) and Df(x,t) exist and are continuous (§34) for x ∈ U ⊆ Rn and t ∈ (a,b), then for any X ∈ U
and T ∈ (a,b), there exists a unique solution to the equation above on some open interval containing T .

Now, with all the preamble done, we can move onto solving systems of ODEs.

46.5.3 Homogeneous 2× 2 Systems with Constant Coefficients
The system of ODEs,

x′ = ax+ by

y′ = cx+ dy

can be written as a matrix equation, [
x
y

]′
=

[
a b
c d

] [
x
y

]
or somewhat less descriptively as,

x′ = Ax
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Now, we find the eigenvalues and eigenvectors of the matrix equation (§33.5.2).

There is a method to solve matrix differential equations that avoids finding the eigenvalues and eigenvec-
tors, but requires possibly more difficult calculations. This method, matrix exponentiation, is discussed
in §33.9.3.2.

While more computationally difficult for small matrices, matrix exponentation generalises to larger sys-
tems of differential equations more easily, and can be more efficient for a computer to perform.

46.5.3.1 Distinct Real Eigenvalues

If u,v, u, and v are distinct eigenvalues and their corresponding eigenvalues of A, then the general
solution is given by,

x = Aeutu+Bevtv

where A and B are constant coefficients to be determined.

46.5.3.2 Complex Eigenvalues

If u = p+ iq is a complex eigenvalue with corresponding eigenvector, u =

[
a+ ib
c+ id

]
, then we write,

x = Aeutu

= e(p+iq)t
[
a+ ib
c+ id

]
Using Euler’s formula, we can rewrite this as,

= ept(cos(qt) + i sin(qt))

[
a+ ib
c+ id

]
= ept

([
a cos(qt) + ib cos(qt)
c cos(qt) + id cos(qt)

]
+

[
ia sin(qt)− b sin(qt)
ic sin(qt)− d sin(qt)

])
= ept

([
a cos(qt)− b sin(qt)
c cos(qt)− d sin(qt)

]
︸ ︷︷ ︸

v1(t)

+i

[
a sin(qt) + b cos(qt)
c sin(qt) + d cos(qt)

]
︸ ︷︷ ︸

v2(t)

)

so we have found two linearly independent solutions, so we can write the general solution as,

x = ept (Av1(t) +Bv2(t))

where A and B are constant coefficients to be determined.

Note that you only have to do this process with one eigenvalue and eigenvector, as the other set will
differ only by a minus sign, which eventually gets absorbed into the constant coefficients.

46.5.3.3 Repeated Real Eigenvalues

If λ is a eigenvalue with multiplicity 2, then find a vector, v1 that satisfies,

(A− λI)v1 = 0

then, a second vector, v2 that satisfies,

(A− λI)v2 = v1

The general solution is then given by,

eλt(Av1 +B(v2 + tv1))
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46.5.4 Diagonalisation & Decoupling
If Ax = x′, and A has distinct eigenvalues, swapping to an eigenbasis will let you decouple a system of
ODEs by defining a new variable in the eigenbasis.

i.e., Let x′ = Ax, and suppose A has eigenvalues u and v and corresponding eigenvectors u and v. Let
P be the matrix with u and v as columns. P is a change of basis matrix from the eigenbasis, Y to the
canonical basis, X:

X X ′

Y Y ′B

A

P P

We see that B = P−1AP. Being in an eigenbasis, B will be a diagonal matrix with u and v along the
diagonals.

Let W = P−1x, so,

W′ = P−1x′

= P−1Ax

= P−1APW

= P−1BW[
w′

z′

]
=

[
u 0
0 v

] [
w
z

]
So w′ = uw and z′ = vz, so w = Ceut and z = Devt, where C and D are constant coefficients to be
found.

Decoupling can also be done without transforming into an eigenbasis by defining new variables in the
right way.

Example. Transform the third-order homogeneous differential equation,

d3x

dt3
− 3

dx

dt
− 2x = 0

into a system of three first-order differential equations. △

Let x = x, y = x′ and z = x′′. · · ·· · ·
· · ·

xy
z

 =

x′y′
z′

 =

 x′x′′
x′′′


dx

dt
= x′

= y

dy

dt
= x′′

= z

dx

dt
= x′′′

Notes on Mathematics | 906



Differential Equations Systems of Linear First-Order ODEs

0 1 0
0 0 1
· · ·

xy
z

 =

x′y′
z′


x′′′ − 3x′ − 2x = 0

x′′′ = 3x′ + 2x

x′′′ = 3y + 2x0 1 0
0 0 1
2 3 0

xy
z

 =

x′y′
z′


46.5.5 Phase Portraits
Find all eigenvalues and eigenvectors of the system.

The following sections may be easier to remember if you recall the geometric interpretation of eigenvalues
– the real part represents the local scaling, while the imaginary part represents the local rotation.

46.5.5.1 Distinct Real Eigenvalues

Draw the span of the eigenvectors, with arrows pointing outwards from the origin if the eigenvalue is
positive, and inwards if negative.

If your eigenvalues are,

• both positive,

– If you have eigenvalues, say, 3 and 2, then e3t ≫ e2t as t → ∞, so your trajectories should
tend towards being parallel to the eigenvector with eigenvalue 3.

– This is an unstable node.

• both negative,

– With similar reasoning, your trajectories should tend towards being parallel to the eigenvector
with the larger absolute value of eigenvalue.

– This is a stable node.

• one positive, one negative,

– One line should point inwards, and one points outwards.

– Draw hyperbolae-esque trajectories between the lines as expected.

– This is a saddle point.

0 < λ1 < λ2

Unstable Node
λ1 < λ2 < 0
Stable Node

λ1 < 0 < λ2

Saddle Point

All three figures have ı̂ and ȷ̂ as eigenvectors.
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46.5.5.2 Complex Eigenvalues

Say the system
Ax = x′

has matrix
A =

[
a b
c d

]
and you have eigenvalues p+ qi, with q ̸= 0. Then, if,

• p > 0, the trajectories will spiral outwards, an unstable spiral or spiral source ;

• p < 0, the trajectories will spiral inwards, a stable spiral or spiral sink ;

• p = 0, i.e., the eigenvalues are purely imaginary, the trajecctories will form circles or ellipses around
the origin, a centre.

In all three cases, the motion is clockwise if b− c > 0, and anticlockwise if b− c < 0.

ℜ(λ) > 0,ℑ(λ) ̸= 0
Unstable Spiral

ℜ(λ) < 0,ℑ(λ) ̸= 0
Stable Spiral

ℜ(λ) = 0,ℑ(λ) ̸= 0
Centre

All three figures have b− c < 0.

46.5.5.3 Repeated Real Eigenvalues

If the matrix is a multiple of the identity, then trajectories just point outwards/inwards evenly. This
is a star, pointing outwards/is stable if the eigenvector is positive and pointing inwards/is unstable if
negative. (Geometrically, if it’s a multiple of the identity, then it’s locally just a scaling transformation,
so everything just moves directing in or out from the fixed point).

If the matrix is not a multiple of the identity, then sample some random points to get an idea of what
the trajectories should look like. Easy points to sample are (1,0), (0,1), (−1,0) and (0,− 1). You can get
either an improper node, unstable if eigenvalue is positive, stable if negative, or a line of (un)stable fixed
points. An unstable improper node can also be called a degenerate sink, and a stable improper node a
degenerate source.

The trajectories in an improper node are parallel to the span of the eigenvector near the origin, then
completely reverse in direction. For lines of (un)stable fixed points, the parallel sets of trajectories flow
into or out from the line spanned by the eigenvector.
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ℜ(λ) > 0,ℑ(λ) ̸= 0
Unstable Star

ℜ(λ) < 0,ℑ(λ) ̸= 0
Stable Star

ℜ(λ) > 0,ℑ(λ) ̸= 0
Unstable Improper Node

ℜ(λ) > 0,ℑ(λ) ̸= 0
Line of Unstable Fixed Points

ℜ(λ) < 0,ℑ(λ) ̸= 0
Line of Stable Fixed Points

ℜ(λ) < 0,ℑ(λ) ̸= 0
Stable Improper Node

If you want a more general way to classify all these points, you can compute the trace and determinant
of the matrix A.

Let ∆ = (TrA)2 − 4 detA.

∆,TrA,detA = 0, then the matrix is the zero matrix and every point is locally a fixed point;

detA < 0 – saddle;

∆ > 0,TrA > 0,detA = 0 – line of unstable fixed points;

∆ > 0,TrA < 0,detA = 0 – line of stable fixed points;

∆ > 0,TrA > 0,detA > 0 – unstable node;

∆ > 0,TrA < 0,detA > 0 – stable node;

∆ = 0,TrA > 0,detA > 0 – unstable improper node;

∆ = 0,TrA < 0,detA > 0 – stable improper node;

∆ < 0,TrA > 0,detA > 0 – unstable spiral;

∆ < 0,TrA < 0,detA > 0 – stable spiral;

A = kI,k > 0 – unstable star;

A = kI,k < 0 – stable star;

∆ < 0,TrA = 0,detA > 0 – centre.

46.5.6 Local Linearisation near Fixed Points
If we have the system,

x′ = f(x,y)
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y′ = g(x,y)

where f and/or g are non-linear, and you are asked to draw a phase diagram of fixed points of this
system, evaluate the Jacobian (§46.5.1) at each fixed point and use it as your matrix for determining
eigenvalues/eigenvectors.

Example. Consider the system,

x′ = y

y′ = −x+ y − x2y

(This is the Van der Pol oscillator). Find and classify a fixed point of this system.

Clearly, (0,0) is a fixed point of this system. But what does the phase diagram look like?

First, compute the Jacobian:

DX =

[
0 1

−1− 2xy 1− x2
]

and evaluate it at our fixed point,

DX =

[
0 1
−1 1

]
which has eigenvalues 1

2 ±
√
3
2 , indicating that the phase portrait around the fixed point is locally an

unstable spiral. △

46.6 Additional Techniques

This section will cover further techniques for integration that you may find faster and/or easier to
perform. We recommend at least learning tabular integration by parts, as it streamlines the commonly
taught formula to an extreme degree, particularly for repeated applications of integration by parts.

46.6.1 Tabular Integration by Parts
Say we want to integrate this function, �

a(x)b(x) dx

Being a product of two functions, we use integration by parts.

Draw out a table, with D above the first column and I above the first, then put a column of alternating
plusses and minuses, besides the first, starting with a plus. You will get a feel for how many rows is
needed as you get more used to using this method, but for now, we will draw four.

D I

+

−

+

−

Now, look at the integral, and decide which function is easier to differentiate. Or more usually, which
function you don’t want to integrate. Suppose we don’t want to integrate a(x), so we differentiate a(x)
and integrate b(x).
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Put a(x) under D, and b(x) under I, and differentiate and integrate them repeatedly, putting the result
in the next row each time. For ease of reading, let b.(x) indicate the first integral of b(x), b..(x) the
second, and so on.

D I

+ a(x) b(x)

− a′(x) b.(x)

+ a′′(x) b..(x)

− a′′′(x) b...(x)

When we decide to stop (we have three additional rows here), multiply diagonal elements, keeping the
signs attached. Then, multiply the final row horizontally and throw it into an integral;

D I

+ a(x) b(x)

− a′(x) b.(x)

+ a′′(x) b..(x)

− a′′′(x) b...(x)

×

×

×

�
a(x)b(x) dx = [+a(x)b.(x)] + [−a′(x)b..(x)] + [a′′(x)b...(x)] +

�
[−a′′′(x)b...(x)] dx

But when do we know when to stop?

There are three main stops:

• There is a 0 in the D column.

• You can integrate a row.

• A row appears more than once.

In the first case, when you multiply the last row together, the final integral just disappears. In the second
case, if you can integrate a row, just stop the process and do the integral. In the third case, if a row
appears more than once, that means you can rewrite the original integral in terms of itself, plus some
extra stuff at the front, which you can rearrange for.

Example. Evaluate, �
x3 sin(4x) dx

△

It’s almost always ideal to differentiate the polynomial, as we know we can eventually get it to 0. The
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sine function is fine to integrate as well, so let’s do that.

D I

+ x3 sin(4x)

− 3x2 − 1
4 cos(4x)

+ 6x − 1
16 sin(4x)

− 6 1
64 cos(4x)

+ 0 1
256 sin(4x)

×

×

×

×

�
x3 sin(4x) dx = −1

4
x3 cos(4x) +

3

16
x2 sin(4x) +

3

32
x cos(4x)− 3

128
sin(4x)

Example. Evaluate, �
x3 lnx dx

△

We like to differentiate polynomials, but integrating lnx requires integration by parts in the first place,
which we would like to avoid, especially if we are repeatedly integrating it. So, we differentiate lnx and
integrate x3.

D I

+ lnx x3

− 1
x

1
4x

4

If we look at the final row, we can already integrate its product, so we stop.

D I

+ lnx x3

− 1
x

1
4x

4

×

�
x3 lnx dx =

1

4
x4 lnx− 1

4

�
x3 dx

=
1

4
x4 lnx− 1

16
x4

Example. Evaluate, �
ex sinx dx

△
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ex and sinx are both easy to integrate and differentiate, so it doesn’t really matter which way around
we put them. Let’s differentiate ex and integrate sinx.

D I

+ ex sin(x)

− ex − cos(x)

+ ex − sin(x)

×

×

We see that the final row is a copy of the first one (ignoring signs), so we can rewrite the integral as,
�
ex sinx dx = −ex cosx+ ex sinx−

�
ex sinx dx

2

�
ex sinx dx = −ex cosx+ ex sinx

�
ex sinx dx =

1

2
ex sinx− 1

2
ex cosx

46.6.2 Variation of Parameters
Variation of parameters is a general method to solve non-homogeneous linear ODEs, though it can also
be extended to solve PDEs as well.

Here, we will only consider second order ODEs,

x′′ + bx′ + cx = f(t)

(we divide through by the constant coefficient of x′′ to simplify this method).

Consider the solution to the homogeneous case, which depends on the solutions to the auxiliary equation,

x = Aeαt +Beβt

x = (A+Bt)eαt

x = ept(A cos(qt) +B sin(qt))

Notice how each solution can be split into two linearly independent parts (see §33.1.2 if you are unfamiliar
with linear independence), x1 and x2, where,

x1 = Aeαt, x2 = Beβt

x1 = Aeαt, x2 = Bteβt

x1 = Aept cos(qt), x2 = Bept sin(qt)

The functions x1 and x2 are the fundamental solutions of the equation.

We define the Wronskian matrix as, [
x1 x2
x′1 x′2

]
From linear algebra, we know that the Wronskian determinant, W , of this matrix cannot be 0. We use
the Wronskian determinant to find the particular integral of the equation.

x = −x1
�
x2f

W
dx+ x2

�
x1f

W
dx

Remember to add the complementary function to your particular integral afterwards to get the general
solution.
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46.6.3 Weierstrass Substitution
The Weierstrass substitution is a change of variable that transforms rational functions of trigonometric
functions into an ordinary rational function of a parameter, t.

Letting t = tan x
2 , we can transform the integral,

�
f(sinx, cosx) dx =

�
f

(
2t

1 + t2
,
1− t2

1 + t2

)
2

1 + t2
dt

Geometrically, as x varies, the point (cosx, sinx) travels across the unit circle at unit speed. In other
words, it is a unit speed parametrisation (see §44). The Weierstrass substitution is an alternative
parametrisation of the unit circle such that the point

(
1−t2
1+t2 ,

2t
1+t2

)
travels around the unit circle only once

as t varies from −∞ to ∞, starting and ending at (−1,0). If you are familiar with projective geometry,
this substitution can be viewed as the sterographic projection of the unit circle onto the y-axis from the
point (−1,0). This view can help you rederive various formulae on the fly, if required.

46.6.4 Reduction Formulae
A reduction formula allows you to write a recurrence relation for an integral in terms of related integrals
with hopefully smaller exponents.

We do this by splitting up the exponent, substituting if needed, then integrating by parts.

Example. �
sinn x dx

We wish to find a reduction formula for this integral. Start by setting,

In =

�
sinn x dx

=

�
sinn−1 x sinx dx

= − sinn−1 x cosx+

�
(n− 1) sinn−2 x cos2 x dx

= − sinn−1 x cosx+ (n− 1)

�
sinn−2 x(1− sin2 x) dx

= − sinn−1 x cosx+ (n− 1)

�
sinn−2 x dx− (n− 1)

�
sin2 x dx

= − sinn−1 x cosx+ (n− 1)In−2 − (n− 1)In

In + (n− 1)In = − sinn−1 x cosx+ (n− 1)In−2

In = − 1

n
sinn−1 x cosx+

n− 1

n
In−2

So now, if we’re given, for example,
�
sin100 x dx, we can repeatedly apply the reduction formula until

the power is low enough for us to evaluate the integral by hand. △

46.6.5 Euler Substitution
If f(a,b) is a rational function, then

�
f(x,

√
ax2 + bx+ c) dx
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can be changed into the integral of a rational function using Euler substitutions.

If a > 0, solve
√
ax2 + bx+ c = ±x

√
a + t for x (the positive or negative sign can be chosen at will,

depending on which is easier). The result will be a rational expression, that also allows us to write dx
as a rational expression of t when we perform the substitution.

If c > 0, solve
√
ax2 + bc+ c = xt±

√
c for x, and use the result as your substitution. Again, the positive

and negative sign can be chosen at will.

If ax2 + bx + c has real roots, α,β, then we solve
√
a(x− α)(x− β) = (x − α)t for x, which will again

result in a rational expression.

46.6.6 Laplace Transformations
The Laplace transform is an integral transform that converts a real-valued function (often, t) into a
complex-valued function (often of a complex variable, s). This transform is useful because linear differ-
ential equations transform into simple algebraic equations.

The Laplace transform of a function, f(t), is given by

L (f(t)) =

� ∞

0

e−stf(t) dt

While this might look complicated to calculate by hand, in practice, you just memorise the transforms
of common functions and combine them from there. A short table of such transforms is included below.
L (f(t)) is also often written as F (s).

f(t) L (f(t))

c c
s

t 1
s2

tn n!
sn+1

tne−αt n!
(s+α)n+1

e−αt 1
s+α

1− e−αt α
s(s+α)

sinωt ω
s2+ω2

cosωt s
s2+ω2

In general, multiplying a function by e−αt shifts the s along by α in the transform, i.e., L (e−αtf(t)) =
F (s+ α).

If you intend on using Laplace transforms, you should commit this table, and more, to memory, as you
will also need to be able to recognise them quickly in order to find the inverse Laplace transform of some
given F (s).

Example. Given,

F (s) =
s+ 3

s2 + 6s+ 13

what is L −1(F (s))?

Completing the square on the denominator, we have s+3
(s+3)2+4 , which matches the form for cosine. But

the s is shifted along by 3, so we have f(t) = e−3t cos 2t. △

An important property of the Laplace transform, is that it is a linear operator (see §33). We should also
look at the effect of taking the Laplace transform of a derivative:

L (f ′(t)) =

� ∞

0

e−stf ′(t) dt
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= e−stf(t)

∣∣∣∣∞
0

+

� ∞

0

se−stf(t) dt

= e−stf(t)

∣∣∣∣∞
0

+ s

� ∞

0

e−stf(t) dt

= e−stf(t)

∣∣∣∣∞
0

+ sL f(t)

= [0]− [f(0)] + sL f(t)

= sL (f(t))− f(0)

so we can rewrite the Laplace transform of a derivative as the Laplace transform of the original function,
plus an initial condition. Similarly, we have,

L (f ′′(t)) = sL (f ′(t))− f ′(0)
= s2L (f(t))− sf(0)− f ′(0)

and this pattern continues for higher derivatives.

Now, let’s use the Laplace transform to solve an initial value problem.

Example.
x′′ + 5x′ + 6x = 0, x(0) = 2, x′(0) = 3

x′′ + 5x′ + 6x = 0

L (x′′ + 5x′ + 6x) = L (0)

Recall that the Laplace transform is linear, and so,

L (x′′) + 5L (x′) + 6L (x) = L (0)

(s2L (x)− sx(0)− x′(0)) + 5(sL (x)− x(0)) + 6L (x) = 0

(s2 + 5s+ 6)L (x) = (s+ 5)x(0) + x′(0)

Use our initial conditions,

(s2 + 5s+ 6)L (x) = 2s+ 13

L (x) =
2s+ 13

s2 + 5s+ 6

L (x) =
2s+ 13

(s+ 2)(s+ 3)

Performing partial fraction decomposition,

L (x) = 9

(
1

s+ 2

)
− 7

(
1

s+ 3

)
L (x) = 9L (e−2t)− 7L (e−3t)

L (x) = L (9e−2t − 7e−3t)

x = 9e−2t − 7e−3t

△

It is important to note that you generally cannot find the Laplace transform of the product or composition
of two functions. However, due to linearity, as long as your function can be written as the sum of known
functions, you can work out its Laplace transform.
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If you take probability or any kind of electrical engineering or signal/image processing, you may be
familiar with convolution. You’ll be happy to know that the Laplace transform of a convolution is simply
the product of the Laplace transforms. That is, L ((f ∗ g)(t)) = L (f(t)) ·L (g(t)) = F (s) ·G(s).

For instance, in image processing, convolving an image with a kernel is required for a multitude of
operations, including blurring, sharpening and edge detection. But convolving the naïve way can be an
extremely slow process, especially for large kernels. Many modern convolution functions take an integral
transform (often Fourier, rather than Laplace), allowing convolution to be applied as a multiplication,
which is much faster to compute, before transforming back to the original image.

46.6.7 Leibniz Integration Rule

d

dx

(� b

a

f(x,t) dt

)
=

� b

a

∂

∂x
f(x,t) dt

There is a longer form for non-constant bounds of integration, but we will focus on the special case of
constant bounds.

This theorem allows us to integrate functions we otherwise wouldn’t be able to.

Example. Evaluate � ∞

0

sin t

t
dt

(The integrand is also known as the (unnormalised) sinc function, a function occuring often in signal
processing contexts. This particular definite integral is the Dirichlet integral, and cannot be evaluated
using standard methods.)

We begin by defining a function,

f(s) =

� ∞

0

e−st
sin t

t
dt

(The similarity with the earlier Laplace transform is not a coincidence. There is a much faster way
of doing this using the Laplace transform, combined with Abel’s theorem, but that method will not be
covered here, as it is beyond the scope of this document.)

We note that f(0) is equal to the desired integral.

df

ds
=

d

ds

� ∞

0

e−st
sin t

t
dt

=

� ∞

0

∂

∂s
e−st

sin t

t
dt

= −
� ∞

0

e−st sin t dt

You can alternatively use the complex definition of sine to perform this integral as an exercise.

= −e
−st(cos t+ s sin t)

s2 + 1

∣∣∣∣t=∞

t=0

= − 1

s2 + 1

Now, we integrate both sides with respect to s.

f(s) = −
�

1

s2 + 1
ds

= − arctan s+ C
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− arctan s+ C =

� ∞

0

e−st
sin t

t
dt

Here, we can try some values of s to get some information about C. s = 0 doesn’t work, because we just
get the original problem back. Let’s see what happens as s→∞.

lim
s→∞

− arctan s+ C = lim
s→∞

� ∞

0

e−st
sin t

t
dt

lim
s→∞

− arctan s+ C = lim
s→∞

� ∞

0

sin t

test
dt

−π
2
+ C =

� ∞

0

0 dt

−π
2
+ C = 0

C =
π

2

f(s) =
π

2
− arctan s

f(0) =
π

2
− 0

� ∞

0

e−0t sin t

t
dt =

π

2� ∞

0

sin t

t
dt =

π

2

△

46.6.8 Non-Elementary Integrals
If you somehow end up with one of these when constructing a differential equation for a question, you’ve
probably done something wrong earlier.

The following is a non-exhaustive list of integrals that you will not be able to evaluate.
� √

1 + xn dx, n ∈ N, n ≥ 3

� √
1− xn dx, n ∈ N, n ≥ 3

�
xx dx

�
x−x dx

�
1

lnx
dx

�
xn

ex − 1
dx n ∈ N

�
sin(sinx) dx

�
arcsin(arcsinx) dx

�
sin(x2) dx

�
cos(x2) dx

�
sinx

x
dx

�
ln(lnx) dx

�
ee

x

dx

�
ex

2

dx

�
e−x

2

dx

�
ex

x
dx

�
e−x

x
dx

�
xc−1e−x dx, c /∈ N

While you don’t have to memorise all of these, it’s good to be able to recognise when you have an integral
you can’t evaluate, so you can go back and check your previous working, rather than wasting time on
the integral.
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Chapter 47

Probability

“The essential feature of statistics is a prudent and systematic ignoring of details.”
— Erwin Schrödinger

It should be noted that there is a distinction between probability and statistics: probability is concerned
with describing how likely events are to occur, or how likely a proposition is to be true. Statistics, on
the other hand, is the branch of mathematics that concerns the analysis and interpretation of data.

This chapter is on probability. Here, we study the basics of probability, with a main focus on discrete
probability distributions.

But first, there are some prerequisites that make discrete probability easier to work with.

47.1 Sample Spaces & Probabilities

A probability space consists of three elements:

• A sample space, Ω, the set of all possible outcomes;

• An event space, a family of sets F ⊆ P(Ω), with each set representing an event ;

• A probability measure, P : F → [0,1], such that,

– P(Ω) = 1;

– P(∅) = 0;

– If {Ai}∞i=1 ⊆ F are countably many disjoint events, then P (
⋃∞
i=1Ai) =

∑∞
i=1 P(Ai).

and a probability space is discrete if Ω is at most countably infinite. An event is elementary if it is a set
of size 1. P(Ω) is also sometimes written as 2Ω.

A set of events are mutually exclusive if they are pairwise disjoint – every pair of events is disjoint. Given
the definition of a probability measure, this is equivalent to the intersection of any pair of events having
probability 0. The empty set is disjoint with every set, including itself.

The complement of an event A, Ω \A, is also written as A′ or Ac if the sample space is clear. Note that
an event and its complement are mutually exclusive and partition the sample space.

Example. A D6 dice is rolled and a coin is thrown in an experiment. The sample space, Ω, is then
{1,2,3,4,5,6} × {H,T} where × is the Cartesian product. |Ω| = 12.



Probability Sample Spaces & Probabilities

The event space is P(Ω), and contains 212 = 4096 possible events. For example, {(1,H),(2,H),(3,H)} =
{1,2,3} × {H} is the event of the die rolling a number less than or equal to 4 and the coin landing on
heads. △

47.1.1 Algebra of Sets
The algebra of sets and boolean/logic statements are isomorphic algebraic structures.

You can transform equations about sets into boolean equations or logic statements by swapping,

A ∩B ⇔ a ∧ b ⇔ A andB
A ∪B ⇔ a ∨ b ⇔ A orB
Ac ⇔ ¬a ⇔ notA
∅ ⇔ ⊥ ⇔ 0
U ⇔ ⊤ ⇔ 1

which might be helpful if you can still remember the first chapter on logic.

For those interested in abstract algebra, these are all complemented distributive lattice structures.

The binary operations of set union, ∪, and intersection, ∩ are in many ways analogous to the binary
operations of addition and multiplication.

• Commutativity;

– A ∪B = B ∪A

– A ∩B = B ∩A

• Associativity;

– (A ∪B) ∪ C = A ∪ (B ∪ C)

– (A ∩B) ∩ C = A ∩ (B ∩ C)

• Distributive property;

– A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

– A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

However, unlike addition and multiplication, union and intersection distribute in both directions.

Two additional properties involve the set containing nothing, the empty set, ∅; and the set containing
everything of interest, the universe set, U .

• Identity;

– A ∪∅ = A

– A ∩ U = A

• Complement;

– A ∪AC = U

– A ∩AC = ∅

so ∅ and U are the identity elements for union and intersection, respectively. In probability, the universe
set is often Ω.

• Idempotency;

– A ∪A = A
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– A ∩A = A

• Domination;

– A ∪ U = U

– A ∩∅ = ∅

• Absorption;

– A ∪ (A ∩B) = A

– A ∩ (A ∪B) = A

• De Morgan’s Laws;

– (A ∪B)C = AC ∩BC

– (A ∩B)C = AC ∪BC

• Involution and Complement Laws;

– ∅C = U

– UC = ∅

– (AC)C = A

You might notice that all the identities above are given in pairs that can be transformed into each other
by interchanging ∩ and ∪, and ∅ and U .

These are examples of an extremely powerful property of Boolean algebras – the principle of duality, which
asserts that the dual of a true statement obtained by interchanging unions/intersections, universes/empty
sets and reversing inclusions (for computer scientists, this is the same as reversing a Hasse diagram to
get another poset) is also true (note that the involution law is self-dual).

Duality is a concept with uses in a much broader range of applications, particularly in order and category
theory.

47.1.2 Inclusion-Exclusion Principle
Theorem (Binary Inclusion-Exclusion). Let A and B be sets. Then,

|A ∪B| = |A|+ |B| − |A ∩B|

Proof.

|A ∪B| = |A ∪ (B \A)|
= |A|+ |B \A| (1)

|B| = |(B \A) ∪ (A ∩B)|
= |B \A|+ |A ∩B| (2)

Combining (1) and (2) gives the result. ■

Theorem 47.1.1. Let A, B and C be sets. Then,

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |B ∩ C| − |C ∩A|+ |A ∩B ∩ C|
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In general, to find the cardinality of the union of n sets, we include the cardinality of the sets, exclude
the cardinalities of the pairwise intersections, include the cardinalities of the 3-wise intersections, exclude
4-wise, and continue up to n.

Symbolically,

Theorem (Inclusion-Exclusion). For any collection of sets (Ai)
n
i=1,∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ = ∑
∅̸=J⊆{1,...,n}

(−1)|J|+1

∣∣∣∣∣∣
⋂
j∈J

Aj

∣∣∣∣∣∣
Proof. Combinatorial proof given in §7.2.2. ■

If all sets are exchanged for events and cardinalities replaced with probability measures, all of the above
equations still hold, i.e., |A ∪B| = |A|+ |B| − |A ∩B| ⇔ P(A ∪B) = P(A) + P(B)− P(A ∩B).

Example. Each square in a 3× 3 grid is either shaded or unshaded with equal probability. What is the
probability that a 2× 2 square is shaded in?

Denote a square of dimensions n × n by Sn. There are 29 = 512 possible ways to colour the entire S3

square.

When one S2 square is shaded in, there are 25 = 32 ways to shade in the remaining 5 squares, and 4
possible positions to place S2 within S3, so there are 32× 4 = 128 possible ways to shade in S3 with one
S2 shaded.

If there are two S2 shaded, positioned in opposite corners, there are 22 = 4 ways to shade in the remaining
2 squares, and 2 possible ways to arrange the two S2 squares to be in opposite corners. If the S2 squares
are adjacent, there are 23 ways to shade in the remaining 3 squares, and 4 ways to arrange the S2 squares
such that they are adjacent. So, for two S2 squares, there are a total of 22 × 2 + 23 × 4 = 40 ways to
shade in the S3.

Three shaded S2 squares leaves only 1 square remaining, and there are 4 ways to place three S2 squares,
so there are 21 × 4 = 8 ways to shade three S2 squares.

There is of course only 1 way to shade four S2 squares at once.

To find the union of these sets, we use the inclusion-exclusion principle; the set of two S2 squares is
contained within certain shading patterns that include one S2 square, but we then need to add back in
any combinations that have three S2 squares, then remove the combination which gives four S2 squares
again, as it is again contained within the cases for three S2 squares. This gives 128 − 40 + 8 − 1 = 95
ways to have at least one S2 square shaded.

It follows that the probability of having at least one 2× 2 square shaded is 95
512 .

△

47.2 Conditional Probability

Let A be an event, and let B be an event with non-zero probability. The probability of A occurring,
given that B has occurred, is written as P(A|B), and can be calculated with,

P(A|B) =
P(A ∩B)

P(B)

It can be seen as the probability of A occurring within a new sample space over B.
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47.2.1 Independence
Two events, A and B, are independent if P(A ∩ B) = P(A)P(B). A finite set of events is pairwise
independent if every pair of events in the set is independent. A finite set of events is mutually independent
if every event is independent from every other set and every intersection of every other event.

47.2.2 Law of Total Probability

Let S be a set. If {Ai}∞i=1 are countably many disjoint non-empty sets such that
⋂∞
i=1Ai = S, then

{Ai}∞i=1 are said to partition S.

If A is an event that can be written as a countable partition, A = {Bi}∞i=1, then

P(A) =
∞∑
i=1

P(A ∩Bi)

or alternatively,

P(A) =
∞∑
i=1

P(A|Bi)P(Bi)

47.2.3 Bayes’ Theorem
For any events, A and B,

P(A|B) =
P(B|A)P(A)

P(B)

If A and B are independent, this reduces to P(A|B) = P(A).

Extended form: Let {Ai}ni=0 partition the sample space. Then,

P(Ai|B) =
P(B|Ai)P(Ai)∑n
i=0 P(B|Ai)P(Ai)

Proof. By the definition of conditional probabilities,

P(Ai|B) =
P(B ∩Ai)

P(B)

=
P(B ∩Ai)

P(B)
· P(Ai)
P(Ai)

=
P(B ∩Ai)
P(Ai)

· P(Ai)
P(B)

= P(B|Ai) ·
P(Ai)
P(B)

=
P(B|Ai)P(Ai)

P(B)

=
P(B|Ai)P(Ai)∑n
i=0 P(B|Ai)P(Ai)

■
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Example. Three Prisoners Problem

Three prisoners, A, B, and C are in separate cells, supervised by a warden. Two of them have been
sentenced to death and will be executed the following morning, but none of the prisoners know who is
to be spared.

Prisoner A asks the warden what will happen tomorrow. The warden tells A that they won’t say anything
about A, nor anything about who will live. However, they do say that C is one of the prisoners to be
executed.

Prisoner A is pleased as they believe that their own probability of surviving has gone up from 1 in 3, to
1 in 2, as it is now only between A and B who survives.

A secretly tells B the good news, who then reasons that A’s chance of surviving is unchanged, while
their own chances of survival has gone up to 2

3 .

Which prisoner is correct? △

In all cases, the warden will not tell A anything about A’s fate. In the case that B is to live, the warden
will also not say anything about who will live, so the warden can only say that C will be executed. In
the case that C is to live, the warden will not say anything about who will live, so the warden can only
say that B will be executed. However, if A is to live, then the warden has a choice. The warden can
either say that B or C will be executed.

A

C B

C

B

B

C

In the diagram above, the inner ring indicates who lives, with the outer ring indicating who the warden
says will be executed. So, the warden says that B will die 50% of the time, or that C will die both of
the time, corresponding to the right and left side of the circle, respectively. In both cases, A only lives
1
3 of the time.

We can also write this using Bayes’ theorem. Let A, B and C be the events that the corresponding
prisoner is not executed, and let X be the event that the warden tells A that C is to be executed.

We see then that the probability that A survives is,

P(A|X) =
P(X|A)P(A)

P(X)

=
P(X|A)P(A)

P(X|A)P(A) + P(X|B)P(B) + P(X|C)P(C)

=
1
2 ×

1
3

1
2 ×

1
3 + 1× 1

3 + 0× 1
3

=
1

3

and similarly,

P(B|X) =
P(X|A)P(A)

P(X)
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=
P(X|A)P(A)

P(X|A)P(A) + P(X|B)P(B) + P(X|C)P(C)

=
1× 1

3
1
2 ×

1
3 + 1× 1

3 + 0× 1
3

=
2

3

The denominators are the same in both cases, the difference stemming from the fact that the warden
will always state that C is to be executed if B is to live, so P (X|C) = 1, but will only do so 50% of the
time when A is to live, so P (X|A) = 1

2 .

47.2.4 Expected Value
The expected value of a random variable, X, is the weighted average of all possible values of X.

E(X) =

∞∑
i=1

xipi

where xi are the possible values of X, and pi are their corresponding probabilities of occurrence. The
expected value is also sometimes denoted µ, particularly when working with normal distributions.

Expectation is linear, so,

E

(
n∑
i=1

ciXi

)
=
∑
i=1

ciE(Xi)

47.2.5 Variance
Variance is a measure of dispersion, representing how far a set of numbers is from their mean. Variance
is the square of the standard deviation. It is often denoted as Var(X) or σ2, and can be calculated from
the expected value; Var(X) = E(X2)− E(X)2.

While you will not need to often calculate it by hand, the variance is an important summary statistic,
and is frequently used as a parameter in various probability distributions.

47.3 Probability Distributions

A random variable is a quantity whose value depends on the outcome of a random event. Random
variables are written in uppercase, with lowercase used to denote specific values the random variables
can take.

A probability mass function or discrete density function is a function that gives the probability that a
discrete random variable is equal to some given value. We write P(X = x) to denote the probability that
the random variable X takes the particular value x. Then, the probability mass function, pX : R→ [0,1]
would be pX(x) = P(X = x).

A probability mass function can be drawn on a plot,

Notes on Mathematics | 925



Probability Probability Distributions

1 2 3 4 5

0.2

0.4
0.4

0.1

0.3

0.2

x

Prob.

Note that all the heights sum to 1, and that the probability mass function is zero at all the real numbers
between valid outcomes.

A defining feature of continuous probability distributions is that the probability for a random variable
to take any specific value is 0, as there are infinitely many possible values the variable could take.

If every uncountably many particular values in some region all have non-zero probability, then the sum
of all those probabilities goes to infinity. If all the probabilities are zero, then the whole sum is again
zero, giving no meaningful information about the distribution.

To resolve this problem, we focus not on individual values, but ranges of values that the variable can
take instead. For example, for a random variable that takes real values over [0,1], we might divide the
interval into 10 parts and ask what the probability of falling into each region is.

When plotting this, rather than using the height of each bar to represent a probability, we use the areas.

As we make the intervals finer and finer, the smaller probability of falling into each interval is captured
by the thinner width of each bars, so the height of the bars stay roughly the same as the intervals get
smaller. Note that this wouldn’t be the case if we used the heights to represent probability – in that case,
every bar would shrink, and eventually reach 0 height in the limit. However, using areas, this process
approaches a smooth curve.

x

ρ

x

ρ

x

ρ

x

ρ

So although each individual probability goes to zero, the overall shape of the distribution is preserved.
With probability being proportional to the area of the bars, the vertical axis needs different units. Calling
the width ∆x, the height represents some kind of probability per unit in the x direction: Prob.

∆x , and we
call this a probability density.

The curve that this process approaches is the probability density function, and is the continuous analogue
to the probability mass function. To get the probability that a random variable lands within an interval,
[a,b], we integrate the probability density function between a and b to find the area under the curve.
That is, if X is a random variable distributed according to the probability density function, f , then
P(a ≤ X ≤ b) =

� b
a
f(x) dx. Note that if a = b, then the integral returns 0, and integrating the

probability density function over all of space returns 1.

47.3.1 Finite Discrete Uniform Probability Measures
A finite discrete probability measure is uniform if every pair of elementary events are equally likely.
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In a discrete uniform probability measure, the probability of an event, A, happening is,

P(A) =
|A|
|Ω|

The plot of the probability mass function of a discrete uniform probability measure is a line of points,
all with the same height.

Example. A fair D6 dice is rolled and a fair coin is thrown in an experiment. The event, A =

{(1,H),(2,H),(3,H)} has probability P(A) = |A|
|Ω| =

3
12 = 1

4 . △

Example. At a dinner party, 6 guests are seated around a table. Three pairs of hats are randomly
distributed to the guests. What is the probability that every guest is sitting next to another guest with
the same hat?

If we had a valid arrangement of hats, there are 6 ways to rotate it around the table, and since there are
3 sets of hats, there are 2 possible cycles (i.e., 1-2-3 and 1-3-2 are the two distinct cycles of 3 elements).
Each hat can also be swapped around within its own pair, so there are 6 × 2 × 23 valid arrangements,
and 6! total arrangements, so the probability is 6×2×23

6! = 2
15 . △

Most of the questions pertaining to these distributions will effectively reduce down to basic combinatorics
and trying to find the size of an event.

You’ll notice that we use the cardinality of Ω in the definition of probability for discrete uniform proba-
bility measures, and that this doesn’t really make sense for infinite discrete sample spaces.

For more general sample spaces, we use the measure of those sets. As will be shown later, the measure
of a countable set is zero, so this quotient is still not useful for us.

We could still attempt to define a distribution that assigns the same probability to each elementary event.
Let X be a discrete random variable that takes values in a countably infinite set Ω, and suppose such a
uniform distribution exists, so there exists some non-negative probability, p such that P(X = n) = p for
all n ∈ Ω. Since all the n are elementary and Ω is countably infinite, they are disjoint, so we can use the
additive property of probability measures.

1 = P(Ω)
= P(X ∈ Ω)

=
∑
n∈Ω

P (X = n)

=
∑
n∈Ω

p

If p = 0, then
∑
n∈Ω p = 0. If p > 0, then

∑
n∈Ω p =∞. In either case, we have a contradiction.

It turns out that there is no way to define a uniform distribution on a countably infinite set. So when
someone says “discrete uniform distribution”, they mean a finite discrete uniform distribution.

47.3.2 Continuous Uniform Probability Measures
If Ω is uncountably infinite, then the quotient using cardinalities is not well-defined. We instead use the
measure of the sets involved. For Ω ⊆ R, we use the lengths of the sets; for Ω ⊆ R2, the areas; and for
Ω ⊆ R3, the volumes.

Similar to countably infinite sets, not all subsets of Rn can be assigned a valid probability measure.
This generally isn’t a problem though, as all the sets we use in this module are measurable. For further
reading, search Vitali sets, Hausdorff paradox, and the Banach-Tarski theorem.
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Due to additivity, a lot of continuous probability problems reduce down to questions about geometry.

Example. Darts are thrown uniformly at a square with sides 2 units long. A unit circle dartboard is set
in the square. What is the probability that any given dart will hit the dartboard?

The area of the dartboard is π, and the area of the square is 4, so the probability that the dart hits is
π
4 . △

Example. A coin is thrown and lands uniformly on an infinitely large table covered with a regular square
grid.

1. If the coin has unit diameter, what is the probability that the coin does not land on any lines if
the squares have side lengths,

(a) 1?

(b) 2?

(c) n ≥ 1?

Suppose the coin now has radius r, and the squares have side lengths of L > 2r.

What is the probability that the coin intersects,

1. at most 1 line segment?

2. exactly 2 line segments?

3. exactly 3 line segments?

△

For all of these questions, we can just consider a single square, or a single intersection point, as the tiling
is regular.

If the squares have side lengths 1, and the coin has unit dimeter, then the coin must land on the exact
centre of the square, which is a point of zero area, so the probability that the coin does not land any any
lines is 0.

If the squares have side lengths 2, then the centre of the circle get to within radius of the outer square.
This traces out another smaller square as our allowable area,

As long as the centre of the circle lands within the smaller square, the circle will not intersect any sides.
The side length of the smaller square is the side length of the larger square, minus twice the radius (or
minus the diameter) of the circle, so in this case, we have 2−1 = 1, so the smaller square has unit length
sides, and therefore has unit area. The larger square has area 4, so the probability that the circle does
not intersect any lines is 1

4 .

Notes on Mathematics | 928



Probability Probability Distributions

Similarly, if the larger square has side lengths n ≥ 1, then the smaller square will have side lengths n−1,
so the probability is (n−1)2

n2 . Or more generally, for a circle of radius r and a square of side length L > 2r,
(L−2r)2

L2 .

For the probability that the coin intersects at most one line segment, we look at how close the coin can
get to the intersection points.

The smaller squares have side lengths equal to the radius of the coin, so the total area is 4r2 and the
probability of intersecting at most 1 line segment is 4r2

L2 .

For intersecting exactly 1 line segment, we just subtract the probability of intersecting zero lines away,
so we have 4r2−(L−2r)2

L2 = 4r
L − 1.

For intersecting exactly 2 line segments, the centre of the circle has to land in the complement of the
region found before, but the circle cannot enclose the corner itself, so the centre cannot be within a
radius distance from the corner. The required region is then,

which has area 4r2−πr2 = (4−π)r2, so the probability that the coin intersects exactly two line segments
is (4−π)r2

L2 .

Given the setup of the grid, it is impossible for the coin to intersect exactly 3 lines, as intersecting more
than 2 requires the circle to enclose a corner, which necessarily causes the coin to intersect 4 lines. It
follows that the probability of the coin intersecting exactly 3 line segments is 0.

47.3.3 Measure Theory
If a real number in (0,1) is picked uniformly at random, what is the probability that the real number is
rational?
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The real numbers are uncountably infinite, so this is a continuous probability question, so we need to
find the “length” of the rationals over (0,1).

The standard way to do this, is to cover the regions of interest with open intervals, then to add up the
lengths of the intervals. One obvious way to do this is to just use (0,1), but we want to do this with the
smallest total length possible. Can we do better than a length of 1?

We know that the rationals are a countable set, so there is a bijection between Q and N. Cantor famously
created one such bijection with his zig-zag argument, but we only need the rationals between 0 and 1.

There are many ways to do this, but one organised way is to start with 1
2 , then move onto 1

3 , 2
3 , then

1
4 and 3

4 , then continuing with the reduced fractions with denominator 5, then 6, and so on. Doing this
will list every rational in (0,1) exactly once, creating a bijection between the rationals and the naturals
(the indexing set of the sequence).

1

2
,
1

3
,
2

3
,
1

4
,
3

4
,
1

5
,
2

5
,
3

5
,
4

5
,
1

6
,
5

6
,
1

7
,
2

7
, · · ·

Now, we can assign an interval to each rational. Let ε > 0, and pick any convergent series, say
∑∞
i=1

1
2i =

1. Now,
∑∞
i=1

ε
2i = ε. Now, if we use the terms of this series as the lengths of intevals covering each

rational, we can cover all the rationals in (0,1) using a total length of ε, so the length can be arbitrarily
small.

We say that the rationals have a Lebesgue measure of 0. Doing the same process with the real numbers
in (0,1), we find that this interval has a Lebesgue measure of 1. How this works in detail is somewhat
involved, requiring more complicated topology techniques, and this question is just meant as a very brief
introduction to measure theory, so the proof is omitted.

So, using the measures of the sets instead of cardinalities, we find that the probability that a real number
randomly selected from (0,1) is rational is 0

1 = 0. This may be counterintuitive, given that the rationals
are dense (§37.4.3) in the reals, and that it is certainly possible to select a rational from (0,1), but this
kind of thing is very common in continuous probability.

We say that an event is said to happen almost surely if the set of possible exceptions has measure zero
(and almost never is defined similarly). Note that this does not preclude the set of exceptions from being
non-empty: rational numbers clearly exist between 0 and 1, but this set has measure 0, so we say that
a rational is selected almost never, or equivalently, that an irrational is selected almost surely.

47.3.4 Binomial Distributions
A Bernoulli trial is an experiment with exactly two possible outcomes, often labelled “success” and
“failure”, with the probabilities being the same every time the experiment is conducted.

If we define the random variable X to represent the number of successes in a fixed number of identical
Bernoulli trials, then X is distributed binomially, and we write X ∼ B(n,p), where n ∈ N is the number
of trials and p ∈ [0,1] is the probability of success. Then, the following are equivalent notation for the
probability mass function for the binomial distribution:

pX(k) = f(k,n,p) = P(k;n,p) = P(X = k) =

(
n

k

)
pk(1− p)n−k

A binomial distribution is a valid model for a random variable X if there are two possible outcomes, the
number of trials and probability of success is fixed, and the trials are all independent from each other.

The expected value and variance of a random variable distributed binomially with parameters n,p,
X ∼ B(n,p) is E(X) = np and Var(X) = np(1 − p) (it is helpful to memorise these values, as they are
used a lot, particularly in various approximations to the binomial distribution).
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Situations where the binomial distribution could be used:

• Number of tails obtained on a (possibly biased) coin over 10 throws;

• Number of votes obtained by a candidate in a plurality voting election;

• Number of side effects of new medication experienced by 100 patients.

Situations where the binomial distribution is not valid:

• The colour of cards randomly removed from a deck without replacement (not independent – this
is the hypergeometric distribution)

• The suit of cards randomly removed from a deck with replacement (not binary – this is the multi-
nomial distribution)

• Number of times a die is rolled until a 6 is obtained (number of trials is not fixed – this is the
negative binomial or geometric distribution);

47.3.5 Poisson Distribution
The series definition of the exponential function is,

ex =
x0

0!
+
x1

1!
+
x2

2!
+
x3

3!
+ · · ·

Multiplying both sides by e−x, we have,

1 =
x0e−x

0!
+
x1e−x

1!
+
x2e−x

2!
+
x3e−x

3!
+ · · ·

The right hand side sums to 1, so we can use these values as probabilities to define a probability
distribution.

Using the probability mass function, f(k;λ) = P(X = k) = λke−λ

k! , this distribution is the Poisson
distribution, taking a single parameter λ > 0.

A Poisson distribution is a valid model for a random variable X if events occur independently, singly in
space or time, and at a constant average rate such that the mean number of occurrences over an interval
is proportional to the length of the interval.

The expected value and variance of a random variable in a poisson distribution with parameter λ,
X ∼ Pois(λ) is E(X) = λ = Var(X).

Situations where the Poisson distribution could be used:

• Number of alpha particles emitted by a radioactive source over a given time period;

• Number of patients arriving at an emergency room at a given hour of the day;

• Number of faulty parts manufactured at a factory in a day.

Situations where the Poission distribution is not valid:

• Number of students arriving at a lecture hall (not constant rate, and not independent);

• Number of earthquakes in a country per year (not independent);

• Number of articles published by tenured professors (to be tenured, a professor must have published
at least once, so Poisson distribution is not a good fit due to the 0 output.)
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47.3.6 Normal Distribution

The normal or Gaussian distribution has two parameters: µ, the population mean, and σ2, the population
variance. The distribution is symmetric about the mean, with mean=median=mode.

The probability density function of the normal distribution is,

f(x) =
1

σ
√
2π
e−

1
2 (

x−µ
σ )

2

The expected value and variance of a random variable distributed normally with parameters µ,σ2, X ∼
N(µ,σ2) is E(X) = µ and Var(X) = σ2.

If some data is coded using the formula, y = x−a
b , then the mean and standard deviation of the coded

data is given given by µy = µx−a
b and σy = σx

b (this is true of all random variables, not just normally
distributed ones).

The standard normal distribution has mean 0 and standard devation 1. If X ∼ N(µ,σ2), then we
can standardise X with the coding Z = X−µ

σ . The resulting z-values are distributed according to the
standard normal distribution, Z ∼ N(0,1). This works because every normal distribution is a version of
the standard normal with the domain stretched by a factor of σ, and then translated by µ.

The probability density function of the standard normal distribution is often denoted ϕ(x), and is given
by,

ϕ(x) =
1√
2π
e−

x2

2

Instead of integrating the normal probability density function directly, we often standardise the given
data and write the integral in terms of the standard normal density function. If X ∼ N(µ,σ2), then,

P(a ≤ X ≤ b) =
� b

a

f(x) dx

=
1

σ

� b

a

ϕ

(
x− µ
σ

)
dx

47.4 Law of Large Numbers

Given a sequence of independent and identically distributed random variables {Xi}ni=1 with finite ex-
pected value E(X1) = E(X2) = · · · = E(Xn) = µ < ∞, define a new random variable Xn =

∑n
i=1

Xi

n .
This variable is the sample mean.

As expectation is linear, E(X̄n) = E
(
1
n

∑n
i=1Xi

)
= 1

n

∑n
i=1 E(Xi) =

nµ
n = µ, so the sample mean has

the same mean as each of the individual variables, as we would expect.

Within statistics, there are various notions of convergence of random variables. These concepts are also
called stochastic convergence in other areas of maths, and they formalise the idea that a sequence of
random events can sometimes settle into some kind of stable behaviour with sufficiently large sample
sizes.

We say that a sequence of random variables, {Xn}, converges in distribution or converges weakly towards
a random variable X, if limn→∞ Fn(x) = F (x) for all x ∈ R at which F is continuous, and where Fn and
F are the cumulative distribution functions of Xn and X, respectively. This means that we increasingly
expect that the next outcome in a sequence of random experiments is modelled better and better by the
distribution of X. We use the notation Xn

D→ X or Xn ⇝ X to represent this kind of convergence. This
kind of convergence is used in the weak law of large numbers.
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We say that a sequence of random variables, {Xn}, converges in probability , towards a random variable,
X, if for all ε > 0, limn→∞ P(|Xn−X| > ε) = 0. This means that the probability of an “unusual” outcome
becomes smaller and smaller as the sequence progress. We use the notation Xn

P→ X or plim(Xn) = X
to represent this kind of convergence. This kind of convergence is used in the central limit theorem.

We say that a sequence of random variables, {Xn} converges almost surely , almost everywhere or strongly ,
towards a random variable X, if P(limn→∞Xn = x) = 1. This type of convergence is very similar to
pointwise convergence from analysis. This form of convergence means that the events for which Xn do
not converge to X have probability 0 (the same as randomly selecting a rational from a reals interval;
possible, but probability 0 – it has Lebesgue measure 0). We use the notation Xn

a.s.→ X to represent
this kind of convergence. This kind of convergence is used in the strong law of large numbers.

There is another stronger form of convergence analogous to uniform convergence from analysis called
sure convergence or, but is rarely used in statistics as the only difference between sure and almost sure
convergence in probability is in sets with Lebesgue measure 0.

The forms of convergence above are given in order of strength, with convergence in distribution being
the weakest form. There are various other stronger forms of stochastic convergence not covered here.

There is a weak and a strong version of the law of large numbers. Both state that the sample average
converges to the expected value;

Xn → µ as n→∞

The difference between the weak and strong versions is in the mode of convergence.

47.4.1 Weak Law of Large Numbers
The weak law of large numbers states that the sample mean converges in probability towards the expected
value as the sample size increases;

Xn
P→ µ as n→∞

That is, for any given error, ε > 0, there exists a sufficiently large sample size that will ensure that the
average of the observations, Xn will almost always be within ε of the expected value, µ, which is the
definition of a limit.

lim
n→∞

P
(∣∣Xn − µ

∣∣ < ε
)
= 1

Equivalently, Xn will almost never be further than ε of the expected value, µ.

lim
n→∞

P
(∣∣Xn − µ

∣∣ > ε
)
= 0

47.4.1.1 Bernoulli’s Weak Law of Large Numbers

Suppose X ∼ B(n,p). Then, the expected value is µ = np, so the weak law of large numbers says

lim
n→∞

P
(∣∣Xn − np

∣∣ > ε
)
= 0

However, for binary random variables, such as in the binomial distribution, we can also look at the mean
of the proportion of successes, and not just the mean of the number of successes. Doing so, we have,

lim
n→∞

P
(∣∣∣∣Xn

n
− p
∣∣∣∣ > ε

)
= 0
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47.4.2 Strong Law of Large Numbers
The strong law of large numbers states that the sample mean converges almost surely to the expected
value;

Xn
a.s.→ µ as n→∞

That is, P(limn→∞ X̄n = µ) = 1.

The weak law simply states that for some large n, X̄n is likely to be close to µ, but does not preclude the
possibility that |X̄n−µ| > ε happens infinitely many times (though, likely only at increasingly infrequent
intervals for larger and larger n).

The strong law states that this almost surely does not occur (i.e., has Lebesgue measure 1). Note that
this does not imply that for any ε > 0, there exists N such that |X̄n − µ| < ε holds for all n > N , since
converging almost surely is not uniform convergence.

47.4.3 Central Limit Theorem
The classical central limit theorem states that if {Xi}ni=1 is an independent and identically distributed
sequence of random samples drawn from a population with mean µ and variance σ2, then the sample mean
X̄ =

∑n
i=1

Xi

n converges in distribution to N
(
µ,σ

2

n

)
, regardless of the distribution of the population.

47.5 Approximating the Binomial

With very large number of Bernoulli trials, it quickly becomes intractable to calculate factorials. For
large n, we often approximate the binomial distribution with other, computationally easier distributions.

47.5.1 Poisson Limit Theorem
Let pn be a sequence of real numbers in [0,1] such that the sequence npn converges to some limit λ <∞.
Then,

lim
n→∞

(
n

k

)
pkn(1− pn)n−k =

λke−λ

k!

That is, if X ∼ B(n,p), n is large, and p is small, then X is approximately ∼ Pois(np) (recall that np is
the expected value of X).

47.5.2 De Moivre–Laplace Theorem
The De Moivre–Laplace theorem is a special case of the central limit theorem. If X ∼ B(n,p), then, as
n → ∞, X converges in distribution to N(µ,σ2), where µ is the expected value of X, which is np, and
σ2 is the variance of X, which is np(1− p).

In other words, if X ∼ B(n,p), then for large n, X is approximately ∼ N
(
np,
√
np(1− p)

2
)
.

Because the normal distribution is continuous, while the binomial is discrete, you need to apply a
continuity correction when calculating probabilities. If X ∼ B(n,p) and Y ∼ N

(
np,
√
np(1− p)

2
)
,

then,

• P(X = a) ≈ P(a− 0.5 < Y < a+ 0.5);

• P(X > a) ≈ P(Y > a+ 0.5);

• P(X ≥ a) ≈ P(Y > a− 0.5);

• P(X < a) ≈ P(Y > a− 0.5);

• P(X ≤ a) ≈ P(Y < a+ 0.5);

Notes on Mathematics | 934



Chapter 48

Measure Theory



Chapter 49

Combinatorial Optimisation

“If you think it’s simple, then you have misunderstood the problem.”
— Bjarne Stroustrup

Combinatorial Optimisation is the study of finding optimal objects from finite sets, where the search
space is discrete or discretisable. For instance, given a weighted finite graph, what is the optimal route
to get from point A to point B? Combinatorial optimisation is closely related to complexity theory
and theoretical computer science, as well as more practical applications in logistics and distribution
optimisation problems.

Due to the nature of this chapter, we will unfortunately be mixing mathematical and programming
notation, a lot. obj.flag represents an instance attribute, flag, attached to an object, obj. In algorithm
blocks, single equality (=) or left arrow (←) represents variable assignment while double equality (==)
represents an equality check. Setting a variable to “[ ]” indicates a list or an array being instantiated.

49.1 Complexity Analysis

49.1.1 Asymptotic Notation
Big O notation, also known as the Landau symbols, describes the limiting or asymptotic behaviour of a
function as its argument tends towards some value, often infinity. Asymptotic descriptions like this allow
us to quantify how good or bad an algorithm is mathematically, instead of running and testing several
implementations of that algorithm on different machines, etc.

Let f be a real (or complex) valued function, and let g be a real valued function. Furthermore, let f
and g be defined on some unbounded above subset of the positive real numbers, and let g(x) > 0 for all
sufficiently large x.

Then, if there exists M > 0 and x0 such that |f(x)| ≤Mg(x) for all x ≥ x0, we write f(x) ∈ O(g(x)) as
x→∞. The assumption that x is tending to infinity is often implicit, and we just write f(x) ∈ O(g(x))
alone. Essentially, f(x) ∈ O(g(x)) if |f | is bounded above by g asymptotically, up to a constant factor.

f(x) ∈ O(g(x)) := ∃M > 0∃x0∀x > x0 : |f(x)| ≤Mg(x)

There is also an analogous definition for x tending to a finite value a involving deltas, but it will not be
discussed here. Instead, we can unify the two cases with the following alternative characterisation: if

f(x) ∈ O(g(x)) := lim sup
x→a

|f(x)|
g(x)

<∞
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then f(x) ∈ O(g(x)) as x→ a.

We sometimes use = instead of ∈, but this equality is not symmetric. O(f(n)) = O(g(n)) is not the
same as O(g(n)) = O(f(n)). For example, O(n) = O(n2), but O(n2) ̸= O(n). For this reason, ∈ will be
preferred in this document. You can also interpret O(g(n)) as a class of functions that don’t grow faster
than g, so the notation ∈ also makes sense there (though, in this interpretation, you may be tempted to
write O(n) ⊂ O(n2) when comparing these classes, which is not common notation).

Many of these classes have names, particularly in the context of analysing algorithm efficiency. Here are
a few classes and algorithms, ordered by growth rate.

Class Name Example
O(1) Constant Returning the first element of a list, calculating (−1)n
O(log log n) Double Implementing a van Emde Boas priority queue

Logarithmic
O(log n) Logarithmic Binary Search
O(n) Linear Searching through an unsorted list
O(n log n) Log-Linear Fast Fourier transform, merge sort, heapsort

or Linearithmic
O(n2) Quadratic Naïve multiplication of n-digit numbers, bubble sort
O(n3) Cubic Naïve matrix multiplication
O(nk), k ∈ N Polynomial Determinant with LU decomposition, finding maximum match-

ing in bipartite graph
O(kn) Exponential Travelling salesman with dynamic programming, solving 3-SAT

(linear exp)
O(kn

m

) Exponential Decide a winning strategy for a game with polynomial turns
and exponential moves, such as chess or go on arbitrary sized
boards.

O(n!) Factorial Travelling salesman with brute force, determinant with Lapla-
cian expansion

O(km
n

) Double Exp Deciding a FOL sentence over the naturals with the addition
operation and equality predicate

Another notation is Ω or big-Omega notation. There are two incompatible definitions for this notation,
but we will follow Knuth’s convention: f(x) ∈ Ω(g(x)) if and only if g(x) ∈ O(f(x)): f is bounded below
by g asymptotically, up to a constant factor.

f(x) ∈ Ω(g(x)) := ∃M > 0∃x0∀x > x0 : |f(x)| ≥Mg(x)

or equivalently,

f(x) ∈ Ω(g(x)) := lim inf
x→∞

f(x)

g(x)
> 0

This is just the dual of big-O notation.

The last important notation we will cover is Θ, or big-Theta notation. f(x) ∈ Θ(g(x)) if both f(x) ∈
O(g(x)) and f(x) ∈ Ω(g(x)): f is bounded both above and below by g, up to a constant factor.

∃M1∃M2∃x0∀x > x0 :M1g(x) ≤ f(x) ≤M2g(x)

As we only care about the shape of growth as n becomes very large, when analysing runtime complexity
of algorithms, we discard all coefficients, and keep only the term with the highest growth rate, as it will
eventually dominate everything else. For instance, 2x5 + 93x2 + 50x+ 12 ∈ O(x5).

We also don’t care about the base of logs in asymptotic notations:

loga (n) = loga (b) logb (n)
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=
1

logb (a)
· logb (n)

= k logb (n)

so the base only affects the constant in the front which is discarded by the asymptotic notation.

Next, we give a sufficient (but not necessary) condition to test the asymptotic behaviour of a function:

Consider two functions, f(n) and g(n).

Suppose

lim
n→∞

f(n)

g(n)
→ a

If,

• a = 0, then f(n) ∈ O(g(n))

• a =∞, then f(n) ∈ Ω(g(n))

• a ∈ (0,∞), then f(n) ∈ Θ(g(n))

Applying a concave function, such as log, to both f(n) and g(n) does not change the asymptotic rela-
tionship between them.

Example. Is 2log(log(n))
3 ∈ Ω (

√
n)?

f(n) = 2log(log(n))
3

g(n) =
√
n

f∗(n) = log(log(f(n)))

= log
(
log
(
2log(log(n))

3
))

= log
(
log(log(n))3 log(2)

)
= log

(
log(log(n))3

)
+ log(log(2))

= 3 log(log(log(n))) + log(log(2))

g∗(n) = log log(g(n))

= log
(
log
(√
n
))

= log

(
1

2
log(n)

)
= log(log(n)) + log

(
1

2

)
lim
n→∞

f∗(n)

g∗(n)
= lim
n→∞

3 log(log(log(n))) + log(log(2))

log(log(n)) + log
(
1
2

)
Let N = log(log(n)). As n→∞, N →∞.

= lim
N→∞

3 log(N) + log(log(2))

N + log
(
1
2

)
= lim
N→∞

3 log(N)

N + log
(
1
2

) + lim
N→∞

log(log(2))

N + log
(
1
2

)
= lim
N→∞

3 log(N)

N + log
(
1
2

)
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As N →∞, 3 log(N)→∞ and N + log
(
1
2

)
→∞, so apply L’Hôpital’s rule.

= lim
N→∞

3

N

= 0

So 2log(log(n))
3 ∈ O (

√
n), and 2log(log(n))

3

/∈ Ω (
√
n). △

Example. Bubble sort.

To sort a list using bubble sort, we check the first two elements of the list, and swap them, if they are out
of order. Then, we move along one, and check two elements again, then repeat until we reach the end of
the list, where we start another pass. Once we pass through the list without performing any swaps, we
know that the list is sorted.

Algorithm 13 Bubble Sort

1: procedure bubbleSort(A) ▷ Input array
2: n←len(A)
3: repeat
4: swapped = false
5: for i = 1 to n− 1 do
6: if A[i− 1] > A[i] then ▷ Check if the elements are out of order
7: (A[i− 1],A[i]) ← (A[i],A[i− 1]) ▷ Swap elements
8: swapped = True
9: end if

10: end for
11: until swapped = False
12: return A ▷ Return the sorted list
13: end procedure

The comparison and swapping takes Θ(1) time, but runs (n− 1) times due to the for loop. The repeat
statement will also run the for loop (n− 1) times, so overall, the algorithm takes Θ((n− 1)2) = Θ(n2).

One way to remember this result is to think about what happens if the smallest element is in the last
place. Every time it is swapped, it only moves one place back, so (n − 1) passes are required, each one
taking Θ(n) time, giving Θ(n2). △

49.1.2 Master Theorem
Master Theorem: For an algorithm that has complexity that obeys the equation,

T (n) = aT
(n
b

)
+Θ(nd), T (c) = Θ(1)

we have,

T (n) ∈


Θ(nd) a < bd

Θ(nd · log n) a = bd

Θ(nlogb a) a > bd

Example. Merge sort.

In merge sort, we divide the list into halves, then run the algorithm again on each half, returning the
list once the list is length 1. Then, we merge the sorted sublists together until only one list remains.
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Algorithm 14 Merge Sort

1: procedure mergeSort(A) ▷ Input array
2: n←len(A)
3: if n ≤ 1 then
4: return A ▷ If the list only contains one element, it is already sorted
5: end if
6: left← [ ]
7: right← [ ]
8: for i = 1 to n do
9: if i < n

2 then
10: append(left) ▷ Split the list into two sublists, left and right
11: else
12: append(right)
13: end if
14: end for
15: left←mergeSort(left) ▷ Sort the two sublists
16: right←mergeSort(right)
17: return merge(left,right) ▷ Merge the two sorted sublists together
18: end procedure

where the merge subroutine combines two sorted lists into one sorted list in linear time.

The algorithm takes

T (n) = T
(⌊n

2

⌋)
︸ ︷︷ ︸

Sort left

+T
(
n−

⌊n
2

⌋)
︸ ︷︷ ︸

Sort right

+Θ(n)︸ ︷︷ ︸
Merge

, n > 1

and we know T (1) = Θ(1), as the algorithm just returns the list for an array of length 1, taking constant
time.

∼ 2T
(⌊n

2

⌋)
+Θ(n)

So, using the Master theorem, we have a = 2, b = 2, d = 1, so,

= Θ(n log n)

△

49.2 Graph Theory

49.2.1 Minimal & Maximal Elements
We briefly revisit the concept of minimal and maximal elements.

If for some x, y ≤ x only if y = x, then x is minimal. Or equivalently, x is minimal if there does not
exist any y such that y < x. A partial order may have any number of minimal elements, including none.
For example, the integers have no minimal element, the naturals have one minimal element, 0, and a set
with k mutually incomparable elements has k minimal elements.

If an element x satisfies x ≤ y for all y, then x is a minimum. A partial order may have at most one
minimum, such as 0 in the naturals, but can also have none at all, either because it contains an infinite
descending chain like with the integers, or because it has more than one minimal element. Any minimum
element is also minimal.
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We define maximal and maximum elements similarly, as elements that are not less than any other element
and elements that are greater than all other elements, respectively. Again, maximum elements are also
maximal.

While these definitions seem similar, they are distinct, elements can be maximal, but not maximum. For
example, consider the family of all subsets of N with at most three elements, ordered by ⊆. Then, the
set {0,1,2} is a maximal element of this family, because it is not a subset of any larger set, but it is not
a maximum, because it is not a superset of {3} (and similarly for any other three-element set).

49.2.2 Basic Definitions & Theorems
A graph G is represented by V , a set of vertices or nodes, and E, a set of pairs of vertices, called edges
or arcs, and we write G = (V,E). If we are using multiple graphs at once, we can refer to the vertex
(edge) set of a graph G by writing V (G) (E(G)).

If the edge pairs are ordered, the graph is directed or oriented, and can also be referred to as a digraph.

A vertex and an edge are incident if the vertex is at either end of the edge. The degree, valency or order
of a vertex is the number of edges incident to it. The indegree and outdegree of a vertex of a digraph is
the number of edges pointing into and out from the vertex, respectively. A vertex of degree 1 is called a
leaf. If every vertex of a graph has the same degree k, then the graph is said to be k-regular.

The degree sequence of a graph is a list of its vertex degrees. Conversely, if a sequence of numbers is the
degree sequence of some graph, it is graphical. For example, 3, is not a graphical sequence, as there is
no graph with a single node of degree 3, while 2,2,2 is a graphical sequence, because the triangle graph
has 2,2,2 as a degree sequence.

For a vertex x ∈ V , we define N(x) = {y ∈ V : (x,y) ∈ E} to be the neighbourhood of x. The degree of
x can then also be written as deg(x) = |N(x)|.

An edge that starts and ends at the same vertex is called a loop. If multiple copies of the same edge pair
exists in the edge set, then the edges are called parallel edges.

A graph that does not contain loops nor parallel edges is called a simple graph. A graph that can contain
parallel edges is a multigraph. A graph that can contain both loops and parallel edges is a pseudograph.

If each edge also has a number associated with it (the weight of the edge), the graph is a weighted graph.
We write (G,w) for a weighted graph, where G is the underlying unweighted graph, and w is a function
that maps edges to weights. When we write w(S), where S ⊆ G (or S ⊆ E(G)), we mean the sum of
the weights of the edges of S,

∑
e∈V (S) w(e) (or

∑
e∈S w(e), respectively).

A walk is a route through a graph. A walk is closed if the first and last vertices are the same, and open
otherwise. A path is a walk in which no vertex is visited more than once. A trail is a walk in which no
edge is visited more than once. A cycle is a path in which the ending and starting vertex are the same.
A ray is an infinite path that starts at a vertex, then travels through infinitely many other vertices.

A Hamiltonian cycle is a cycle that visits every vertex. An Eulerian walk is a trail which traverses every
edge. An Eulerian circuit is both a trail and cycle which traverses every edge.

Theorem (Euler). An Eulerian circuit exists if and only if every vertex is of even degree.

Corollary 49.2.0.1. An Eulerian walk exists if and only if there are at most two vertices of odd degree.

A graph that admits an Eulerian walk is traversable or semi-Eulerian. A graph that admits an Eulerian
circuit is Eulerian.

Two vertices are connected if there is a path between them. Two vertices, u and v, are adjacent if they
are connected by an edge, so (u,v) ∈ E. u and v are also called neighbours. In a directed graph, the
in-neighbours of a vertex v, are all vertices u such that (u,v) ∈ E, and the out-neighbours are all vertices
u such that (v,u) ∈ E.
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N(v) represents the set of neighbours of v, but does not include v itself. This notation can also be used
on sets of vertices to represent the set of neighbours of that set of vertices.

A path graph, Pn, is a graph consisting of a sole path, without cycles. That is, a line of nodes, with a
single path/trail running through it. Symbolically, the path graph is a graph on n nodes, V = {v1, . . . ,vn}
with E = {(vi,vi+1) : i ∈ [1,n− 1]}.

A cycle graph, Cn, is a graph consisting of a sole cycle.

A complete graph, Kn, is a graph on n nodes with every possible edge included once.

A tournament is a directed complete graph. If an edge points from a vertex a to a vertex b, then a
dominates b. If D = (V,E) is a tournament, and S ⊂ V with |S| = k, then S is a k-strong set if for every
v ∈ V \ S, there exists a u ∈ S such that (u,v) ∈ E. In other words, every vertex not in S is dominated
by at least one vertex in S.

A bipartite graph is a graph that has a vertex set that can be partitioned into two subsets, commonly
denoted L and R, such that for, every edge, (u,v) ∈ E either u ∈ L and v ∈ R or u ∈ R and v ∈ L. If a
graph G = (V,E) has partites L and R, we also write G = (L ∪R,E) to represent this data.

The complete bipartite graph Kn,k is the graph with two vertex partites of cardinality n and k with all
possible edges between them. K2,2 = C4. We also call a graph K1,n a star graph, and in particular, K1,3

is the claw graph.

For all k ∈ N, there exists a tournament on n ∈ N vertices without a k-strong set.

A graph is connected if every pair of vertices is connected.

A graph is a tree if it does not contain a cycle. An disconnected tree graph may also be called a forest.
A directed forest is an arborescence. Every tree is bipartite.

A tree is rooted by distinguishing a vertex to be the root. From the root, a natural orientation of the
edges can be assigned (i.e. pointing away or towards the root), forming a directed rooted tree. The
maximum distance from the root to any leaves in the tree is called the height of the tree. If two nodes
u and v are adjacent in a rooted tree, with u closer to the root, then we say that u is the parent of v, or
that v is the child of u. If two vertices have the same parent node, then they are sibling nodes.

Given a graph G, we can delete a vertex by removing a vertex and removing all edges incident to it. We
can similarly delete an edge by removing it. More interestingly, we can contract an edge by removing that
edge, then combining the two incident vertices, such that every edge connecting to one of the original
vertices connects to the new joined vertex (note that if one of several parallel edges are contracted, all
the remaining parallel edges become loops on the joined vertex).

A subgraph of a graph G is a graph whose vertices and edges all belong to G. A subgraph is induced
if every edge that can be included is included. In other words, an induced subgraph can be obtained
by deleting vertices in G, but not edges. Given a graph G, and a subset U ⊆ V (G), the subgraph of G
induced by U is denoted G[U ].

A spanning tree is a subgraph that contains every vertex of the original graph, and is also a tree. A
connected component of G is a maximal (with respect to inclusion) connected subgraph of G.

A subset of vertices S ⊆ V is an independent set of the graph if there are no edges between any pair
of vertices in S (this allows us to alternatively characterise trees as graphs whose vertex sets can be
partitioned into two independent sets). Conversely, a clique is a subset of pairwise adjacent vertices.
More generally, a l-clique is a subgraph that is a complete graph on l vertices. The independence number
is the size of a maximum independent set, while the clique number is the size of a maximum clique.

Two graphs, G = (V,E) and H = (W,F ) are isomorphic if there exists a bijective function, ϕ : V → W
such that if (v1,v2) ∈ E, then ϕ(v1),ϕ(v2) ∈ F , and vice versa. If such a function exists, we write G ∼= H.
The best known algorithm to determine whether two given graphs are isomorphic is O(nlogn).
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A graph G is called H-free if no induced subgraph of G is isomorphic to H.

The complement of a graph G = (V,E), denoted Ḡ or Gc, is the graph (V,E′), where E′ is the set of
edges over V that are not in E. A graph is self-complementary if it is isomorphic to its complement.

A matching over a graph G = (V,E) is a set of edges M ⊆ E such that no vertex is incident to more
than one edge. The matching number is the size of a maximum matching. A matching in which every
vertex is incident to an edge is a perfect matching. A perfect matching is only possible on graphs with
an even number of vertices.

An alternating chain with respect to a matching, M , is a path whose edges alternate between matched
and unmatched edges. M admits an alternating chain if and only if M is not maximal.

A vertex cover is a subset, S ⊆ V such that every edge in E is incident to at least one vertex in S.

For a graph G = (V,E), if M ⊆ E is a matching and S ⊆ V is a vertex cover, then |M | ≤ |S|. This also
implies that the size of a maximal matching is at most the size of a minimal vertex cover.

Consider G = (V,E) and let S ⊆ V . S is a vertex cover of G if and only if V \ S is an independent set.

The distance between two vertices, u and v, written as d(u,v), is the length of the shortest path from u
to v. On an undirected graph,

• d(u,v) = 0↔ u = v (Point separating);

• d(u,v) = d(v,u) (Symmetry);

• d(u,v) + d(v,w) ≥ d(u,w) (Triangle inequality).

thus satisfying the requirements for a metric. A graph, along with this definition of a distance function,
is a metric space.

Theorem 49.2.1. A tree on n nodes has n− 1 edges.

Proof. Let P (n) be the statement that every tree on n nodes has n− 1 edges. P (1) holds, as the trivial
graph has 0 = 1− 1 edges. Assume that P (n) holds for some fixed arbitrary value of n ≥ 1.

Let T be a tree with n+1 nodes. As T is a tree, it cannot contain cycles, so at least one leaf node exists.
Remove the leaf, and the edge incident to it. The new graph is a tree with n nodes. By the inductive
hypothesis, this new graph has n − 1 edges, so it follows that T has n edges. Thus, P (n) → P (n + 1),
completing the induction. ■

Corollary 49.2.1.1. Every connected graph has a spanning tree. Every connected graph over n nodes
has at least (n− 1) edges, with exactly (n− 1) edges if and only if the graph is a tree.

A cut is a partition of the vertex set of a graph into two disjoint sets, L and R. An edge is in the cut
(L,R) if it connects a vertex in L with a vertex in R. The set of edges in the cut C is denoted δ(C). The
value of the cut C is the number of edges in the cut, |δ(C)|.

If G = (V,E) is a graph, then there exists a cut in G with value at least |E|
2 .

The deletion of any edge from a tree partitions it into two connected components.

Lemma (Euler’s Handshaking Lemma). In any undirected graph (V,E), the sum of the degrees of the
vertices is equal to twice the number of edges.∑

v∈V
deg(v) = 2|E|

Proof. Every edge connects two vertices, each contributing exactly 2 to the sum of the degrees. ■
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Corollary 49.2.1.2. The number of odd degree vertices is even.

Corollary 49.2.1.3. Every tree on n ≥ 2 vertices has at least two leaves.

Theorem 49.2.2. The following statements are equivalent for any connected graph G = (V,E):

1. G is a tree;

2. G has no cycles;

3. Any two vertices of G are connected by a unique path;

4. G′ = (V,E \ {e}) is disconnected for any e ∈ E;

5. |E| = |V | − 1

Proof. (1)↔ (2) by definition.

(2)↔ (3) because if the path is not unique, then the two paths together form a cycle.

(3)↔ (4) because if G′ were connected, then the endpoints of e would be connected in G by two different
paths.

(5)↔ (1) by Theorem 49.2.1. ■

49.2.3 Pigeonhole Principle
The pigeonhole principle states that if n elements are partitioned into m non-empty sets, with n > m,
then at least set must contain more than one element.

Example. Let nine points be placed inside a square of side length 1, with no three points lying on the
same line. Prove that it is always possible to select 3 points that form a triangle with an area of at most
1
8 .

Divide the unit square into 4 subregions of area 1
4 ; for simplicity, and without loss of generality, let these

regions be squares of side length 1
2 .

As there are 9 points, and 4 squares, there will always be at least one square containing at least 3 points
by the pigeonhole principle (note: a point that lies on the edge of the square can be considered to be
contained within that square). Selecting these three points within the square to be the vertices of a
triangle, the entire triangle must be fully contained within that square.

The largest area it can be is half the area of the square. As the square has area 1
4 , it follows that the

area of the triangle is at most 1
8 , as required. △

Example. Consider the complete graph on 6 vertices. Colour each edge either red, or blue. Prove that,
no matter how the edges are coloured, the graph will always contain a triangle with all three sides the
same colour.

Consider a particular vertex of the K6 graph. There are 5 vertices adjacent to the selected vertex, and
so, by the pigeonhole principle, at least three of the incident edges are of the same colour. Without loss
of generality, assume that this colour is red. If any of the edges connecting those three vertices are red, a
red monochromatic triangle including the original vertex is formed. If none are red, then all three must
necessarily be blue, forming a blue monochromatic triangle.

Exercise. Can you extend this proof to show that a monochromatic triangle must always exist when
colouring a complete graph on 17 vertices with 3 colours? △
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This last example can also be stated in terms of cliques, where, instead of colouring edges red or blue,
we include or exclude edges from a graph on 6 vertices, and want to prove that at least one 3-clique
or 3-independent set exists. (The exercise, however, cannot. Cliques and independent sets are only
equivalent for two-colour cases.)

49.2.4 Ramsey Numbers
For every k,l ∈ N, R(k,l) denotes the smallest positive integer such that every graph on R(k,l) vertices
contains a k-clique or an independent set of size l.

As shown in the last example of the previous section, we know that we always have a 3-clique or a
3-independent set on a graph with 6 vertices, so we have proved that R(3,3) ≤ 6 (we haven’t proved that
smaller graphs don’t have this property, so this is just an upper bound). However, we can easily prove
R(3,3) = 6 by producing counterexamples for smaller graphs.

Clearly, R(1,n) = R(n,1) = 1 for all n ∈ N, as the single vertex in the trivial graph simultaneously
satisfies the condition for a 1-clique and a 1-independent set.

By symmetry, R(k,l) = R(l,k) for any k,l ∈ N. If every graph on n vertices satisfies R(k,l), then every
such graph contains an k-clique or a l-independent set. It follows that the complement of every graph
then contains a l-clique or an k-independent set.

Theorem 49.2.3. R(k,l) ≤
(
k+l−2
k−1

)
≤ 2k+l for all k,l ∈ N.

Theorem 49.2.4. R(k,k) ≤
(
2k−2
k−1

)
≤ 4k for all k ∈ N.

Theorem 49.2.5. If n,k are natural numbers satisfying
(
n
m

)
21−(

k
2) < 1, then R(k,k) > n.

49.2.5 Graph Traversal
Given a finite simple graph G and a vertex v ∈ V , also called the root, we wish to find a set R ⊆ V of
vertices reachable from v (i.e. for every u ∈ R, there exists a path from v to u), and a set T ⊆ E of edges
such that (S,T ) is a tree.

The two classical algorithms for this are depth first search (DFS) and breadth first search (BFS).

DFS traverses the depth of any particular path as far as possible at each step. The algorithm starts
from the root, moving from the current vertex to an adjacent unvisited vertex, continuing until there are
no unvisited nodes left. Then, the algorithm backtracks along previously visited nodes in reverse order
until one of these visited nodes has unvisited neighbours, at which point it proceeds down the new path
as far as possible again. BFS starts at the root, and explores all nodes at a given depth, before moving
on to nodes at the next depth level.

These algorithms perform the same task, but are suited to different applications. For instance, if you
are building a chess AI, you might use a graph traversal algorithm to explore the possible graph of
future game states. In this case, BFS would look at all possible first moves, before exploring all possible
combinations of first and second moves. On the other hand, a naïve application of DFS would almost
immediately get stuck in an infinite branch and never backtrack.

DFS can be given recursively, but we give a stack based implementation here:
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Algorithm 15 Depth First Search

1: vertices = [ ]
2: edges = [ ]
3: procedure dfs(G,v)
4: v.visited = true
5: S = stack()
6: S.push(v)
7: while S is not empty do
8: parent = v
9: v = S.pop()

10: if v.visited == false then
11: v.visited = true
12: for u ∈ N(v) do
13: S.push(u)
14: end for
15: edges.append((parent,v))
16: end if
17: end while
18: for v ∈ V do
19: if v.visited == true then
20: vertices.append(v)
21: end if
22: end for
23: return (vertices,edges)
24: end procedure

Note that the checking of whether a vertex has been visited is deferred until after the vertex is popped
from the stack.

When giving a proof for an algorithm, we need to show termination, and correctness; that the algorithm
will terminate within a finite number of steps, and that the algorithm works as intended, respectively.

We give a proof of DFS.

Proof. There are finitely many vertices, so the algorithm will terminate. Next, we prove correctness. At
each pass of the while loop, the visited vertices form a tree by induction. Suppose there exists a vertex
t ∈ V \ {R} that is reachable from the root v, and let P be the path between v and t. Since v ∈ R and
t ̸∈ R, there must exist two vertices x and y such that x ∈ R, y ̸∈ R, and (x,y) ∈ E. Since x ∈ R, it must
have been visited by the algorithm and hence have been in the stack. But then, all the neighbours of x,
including y, would have been pushed onto the stack and hence marked visited (if not already visited),
contradicting that y ̸∈ R, and hence P and t do not exist. ■

BFS can similarly be given recursively, but we give a queue based implementation here:
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Algorithm 16 Breadth First Search

1: vertices = [ ]
2: edges = [ ]
3: procedure bfs(G,v)
4: v.visited = true
5: S = queue()
6: S.enqueue(v)
7: while S is not empty do
8: parent = v
9: v = S.dequeue()

10: v.visited = true
11: for u ∈ N(v) do
12: if u.visited == false then
13: S.enqueue(u)
14: end if
15: end for
16: edges.append((parent,v))
17: end while
18: for v ∈ V do
19: if v.visited == true then
20: vertices.append(v)
21: end if
22: end for
23: return (vertices,edges)
24: end procedure

The proof of correctness is similar to the proof for DFS.

Theorem 49.2.6. A BFS-tree contains a path from the root v to every vertex reachable from v, which
is shortest in G.

Proof. Let dG(u,v) denote the distance between u and v in a graph G. Suppose (S,T ) is the tree returned
by the BFS algorithm.

Suppose that, when the algorithm ends, there are vertices x ∈ S such that dG(v,x) < d(S,T )(v,w).
Without loss of generality, let w denote the vertex closest to v with this property.

Let P be a shortest path from v to w in G, and let (u,w) be the last edge in P . Then, by assumption,
dG(v,u) = d(S,T )(v,u), and hence (u,v) ̸∈ T .

d(S,T )(v,w) > dG(v,w)

= dG(v,u) + 1

= d(S,T )(v,u) + 1

This implies that u was enqueued earlier than w, since vertices are enqueued according to their distance
from the root in (S,T ). In particular, w was not enqueued until after u was dequeued, since vertices
are also dequeued in order with nondecreasing distance. But, w must have been enqueued via the edge
(u,w) when u was enqueued, contradicting that (u,w) ∈ T . It follows that the assumption that there
exists vertices x ∈ S such that dG(v,x) < d(S,T )(v,w) is false. ■

Theorem 49.2.7. Graph traversal algorithms can be implemented in a graph G with |V | = n vertices
and |E| = m edges to run in O(n+m) time. Furthermore, the connected components of G can be detected
in linear time.
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49.2.6 Minimum Cost Spanning Tree
Given a finite connected weighted simple graph G, we wish to find a spanning tree T of G such that the
total weights of the edges in T is minimal. This is the minimum cost spanning tree (MST) problem.

Let (G,w) be a weighted graph.

Theorem 49.2.8. The following statements are equivalent for any spanning tree T in G:

1. T is an optimum solution.

2. For every edge f = (x,y) ̸∈ E(T ), no edge on the path from x to y in T has higher cost than f .

3. For every edge e ∈ E(T ), e is a minimum cost edge of δ(V (C)), where C is a connected component
of T \ {e}

Proof. (1)→ (2): Suppose T is optimum, but there is an edge f = (x,y) ̸∈ E(T ), and an edge e on the
path connecting x to y in T such that w(f) < w(e). Then (T \ {e}) ∪ {f} is a spanning tree with lower
cost.

(2)→ (3): Suppose (3) does not hold, so there exists an edge f = (x,y) ∈ δ(V (C)) such that w(f) < w(e)
Observe that e is the only edge in δ(V (C)) in T , so f ̸∈ E(T ), contradicting (2).

(3) → (1): Suppose T satisfies (3), but is not optimum. Let T ′ be an optimum tree maximising
|E(T )∩E(T ′)|, and suppose there exists e ∈ E(T ) \E(T ′). Let C be a connected component of T \ {e},
so e ∈ δ(C). Clearly, T ′∪{e} contains a cycle. Let f ∈ δ(C) be any other edge of the cycle. (T ′\{f})∪{e}
is a spanning tree, and since T ′ is optimum, w(f) ≤ w(e). However, we have w(e) ≤ w(f) from (3), so
w(f) = w(e), and hence (T ′ \ {f}) ∪ {e} is an optimum spanning tree. But this tree has more edges in
common with T than T ′. This contradiction shows that E(T ) ⊆ E(T ′), and hence E(T ) = E(T ′), so T
is optimum. ■

The two classical algorithms here are Kruskal’s algorithm and Prim’s algorithm.

Algorithm 17 Kruskal’s Algorithm
1: Sort the edges into ascending order of weight.
2: Select an edge of least weight to start the tree.
3: Consider the next edge of least weight. If it would form a cycle with the edges already included,

move to the next edge. Otherwise, include the edge.
4: Repeat the previous step until all vertices are connected (or equivalently, if all edges remaining would

form a cycle).

Proof. The algorithm terminates as G is finite. Correctness is proven in two parts: that the graph T
produced is indeed a spanning tree, and that T is minimal.

T cannot have a cycle, as edges that would form a cycle are excluded by definition. T also cannot be
disconnected, since the first encountered edge that joins disconnected components of T would have been
added by the algorithm. Thus, T is a spanning tree of G.

Let P be the statement that if F is the set of edges chosen at any step of the algorithm, then there is
some minimal spanning tree T that contains F and none of the edges rejected by the algorithm.

Clearly, P holds at the beginning when F = ∅ as any minimal spanning tree will suffice. Assume that
P holds for some arbitrary non-final step of the algorithm.

If the next chosen edge e is in T , then P also holds for F ∪ {e}. Otherwise, if e ̸∈ E(T ), then T ∪ {e}
has a cycle by construction, C. This cycle contains edges which are not in F , since e does not form a
cycle when added to F , but does in T . Let f ∈ C \ F be such an edge. Note that f ∈ T , and by P ,
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has not been considered by the algorithm. f must therefore have a weight at least as large as e. Then,
(T \ {f}) ∪ {e} is a tree with the same (or less) weight as T that contains F ∪ {e}, so P also holds in
this case.

By induction, P holds when F is itself a spanning tree, which is possible only if F also minimum. ■

Theorem 49.2.9. For a graph G = (V,E), a standard implementation of Kruskal’s algorithm runs in
O(|E| log |E|), or equivalently, O(|E| log |V |) time.

Remark. These time classes are equivalent as |E| is at most |V |2, and log |V |2 = 2 log |V | ∈ O(log |V |).

Proof. Sorting the edges takes O(|E| log |E|) time.

Selecting an edge of least weight is just returning the first element of a sorted list, which takes constant
O(1) time.

Checking if this edge creates a cycle is equivalent to checking if the edge connects two vertices that lie in
different trees. We track which tree each vertex lies in using a union-find structure (similar to a disjoint
union in set theory), which takes O(|V |) operations to initialise. Then, during runtime, in the worst
case, every edge needs to be iterated over, and for each edge, we perform two tree lookups, and possibly
a union, which takes at most O(|E| log |V |) time.

Thus, the total time complexity is O(|E| log |E|) = O(|E| log |V |). ■

Algorithm 18 Prim’s Algorithm
1: Select any vertex to start the tree.
2: Select an edge of least weight that joins a vertex already in the tree to a vertex not yet in the tree.
3: Repeat the previous step until all vertices are connected (or equivalently, if all edges remaining would

form a cycle).

Proof. The proof that the produced tree T is spanning is almost identical to that of Kruskal’s algorithm.

Condition (3) of Theorem 49.2.8 guarantees that T is optimum. ■

Theorem 49.2.10. Given the adjacency matrix of a graph G = (V,E), a simple implementation of
Prim’s algorithm runs in O

(
|V |2

)
time.

Proof. We can find the minimum weight edge to add by linearly searching the adjacency matrix, which
has |V |2 entries, giving O

(
|V |2

)
time complexity. ■

Remark. Using binary or Fibonacci heaps and adjacency lists, Prim’s algorithm can be improved to run
in O((|V |+ |E|) log |V |) = O(|E| log |V |) and O(|E|+ |V | log |V |) time, respectively.

Kruskal’s algorithm will find a spanning forest if G is disconnected, but Prim’s algorithm will only find
the tree spanning the connected component containing the starting vertex. Prim’s algorithm can be
extended to find spanning forests by iterating over the vertices.
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49.2.6.1 Number of Spanning Trees

How many trees are there with n labeled vertices, up to isomorphism? Or equivalently, how many
spanning trees does the complete graph Kn have?

On 3 vertices, the spanning tree is unique. On 3 vertices, the spanning tree is a path P3 on the three
nodes, and there are 3 ways to permute the order in which the path passes through the nodes, giving 3
spanning trees. On 4 vertices, there are 4!/2 trees that are paths, for similar reasons, and 4 trees that
are stars, giving 16 total. On 5 vertices, there are 5!/2 copies of P4, 5 stars with 4 leaves, and 5 · 4 · 3
“stars” with 3 leaves, where one leaf is a chain of two vertices, giving 125 total.

Is there a pattern, or a general formula?

Theorem (Cayley). There are nn−2 trees on n labelled vertices.

Proof. (Prüfer, 1918). For a tree T , consider its vertex set V = {1,2, . . . ,n}. Note that the number
of sequences of length n − 2 from [n] is nn−2. We will construct a bijection from the set of trees on n
labelled vertices and the set of these sequences.

We convert a labelled tree into a sequence of length n− 2 by removing the lowest labelled leaf until two
vertices remained; each time a leaf is removed, its neighbour is added to the sequence.

To convert a sequence S = (t1,t2, . . . ,tn−2) into a labelled tree T , let s1 be the smaller vertex in V \ S,
and we join s1 to t1 with an edge. Then, let s2 be the smaller vertex in V \ {s1} \ S, and join s2 to
t2. Repeat this process until the elements of S have been exhausted, at which point n2 edges have been
added. Join the two vertices in V \ {s1,s2, . . . ,sn−2} to complete the tree. ■

49.2.7 Shortest Path Algorithm
Given a weighted digraph (G,w) and two vertices s,t ∈ V (G), how can we find the shortest path from s
to t (or decide that no such path exists).

If G is simple, unweighted and undirected, this can be solved using BFS by picking s to be the root node,
as shown in Theorem 49.2.6.

Note that if a negative cycle exists, then there is no solution to this problem, as the path can be made
arbitrarily negative by traversing the cycle arbitrarily many times.

If we have an instance of this problem where the weights are non-negative, then we can solve this problem
with Dijkstra’s algorithm.

1. Mark all nodes as unvisited.

2. Assign to every node a tentative distance; set this value to 0 for the starting node, and infinity to
all other nodes. As the algorithm progresses, this value represents the length of the shortest path
from the starting node to the given node discovered. Since no path is known initially, (apart from
the starting node, with path length 0), all other tentative distances are set to infinity.

3. Also assign each node a previous node, representing the vertex preceding it in the path. At the
beginning, this value is undefined for each vertex.

4. Set the starting node as the current node.

5. For the current node, consider all of its unvisited neighbours, and calculate their tentative distances
through the current node. That is, the add the tentative distance of the current node to the weight
of the edge connecting the current node to that neighbour. If this tentative distance is lower than
the one currently assigned to that neighbour, overwrite it, and also set the previous node of the
neighbour to be the current node.

6. Once all neighbours have been visited, mark the current node as visited.
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7. If the destination node has been marked visited or the smallest tentative distance among the
unvisited nodes is infinity (this happens if the graph is disconnected and no path exists from the
starting node to infinite tentative distance node), then terminate the algorithm.

8. Otherwise, select the unvisited node with the minimum tentative distance as the new current node,
and return to step (5).

This method of approximating and updating tentative distances is known as a relaxation method.

Note that Dijkstra’s algorithm does not work on digraphs with negative weights, as, once a vertex is
marked as visited, it is never searched again, as it assumes that the path developed to this vertex is most
efficient. However, this is not necessarily true with negative weights, as an overall more efficient longer
path with negative weights may exist that is locally less efficient.

a

b c

2 1

−3

For instance, in this graph, starting at a, the algorithm would search first search c, then declare it visited.
Then, it would search b, and discard the path to c, as it is already marked visited.

Algorithm 19 Dijkstra’s Algorithm

1: procedure bfs((G,w), start, end)
2: for v ∈ V (G) do
3: v.visited = false
4: v.distance =∞
5: v.previous = null
6: end for
7: start.distance = 0
8: current = start
9: while end.distance =∞ do

10: for v ∈ N(current) do
11: if v.unvisited = false then
12: newDist = current.distance + w(current,v)
13: if newDist < v.distance then
14: v.distance = newDist
15: v.previous = current
16: else
17: continue
18: end if
19: end if
20: end for
21: current.visited = true
22: if min

{v:v.visited=false}
(v.distance) =∞ then

23: break
24: end if
25: current = min

{v:v.visited=false}
(v.distance)

26: end while
27: end procedure
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We can also run Dijkstra’s algorithm without giving a destination node, in which case, we change the
termination condition to when all nodes have been visited, or if the smallest tentative distance among
the unvisited nodes is infinity. This alternative version would find the shortest path from a source vertex
to all other vertices.

Proof. G is finite, so the algorithm always terminates. Now, we show correctness.

To reduce the mixing of notation, for the purposes of this proof only, let D(v) = v.distance and p(v) =
v.previous. Also let R denote the set of visited vertices, and let P[a,b] denote the restriction of a path P
to between vertices a and b in that path.

We will show that at any step of the algorithm, if a node v is the current node and s is the starting node,
then,

1. D(v) = d(G,w)(s,v)

2. If D(v) <∞, then the path v,p(v),p(p(v)), . . . contains s and is furthermore the shortest path from
s to v.

(1): We induct on the number of while loop iterations. In the first iteration, the current node is s, and
D(d) = 0 = d(s,s).

Suppose a vertex v is selected, but the shortest path P from s to v has length w(P ) < D(v). If all
vertices of P (except for v) have been visited, then d(v) = w(P ) by induction. Otherwise, let y be the
first unvisited vertex of P , and let x = p(y) be its predecessor.

s x y v

D(y) ≤ D(x) + w
(
(x,y)

)
= d(G,w)(s,x) + w

(
(x,y)

)
= w(P[s,x]) + w

(
(x,y)

)
≤ w(P )
< D(v)

contradicting the choice of v to be the current vertex.

(2): If D(v) <∞, then D(v) was decreased at some point, where p(v) was also created.

The values of D(v) and p(v) can change several times before v is visited, but after the last change,
D(v) = d(G,w)(s,v) by (1). Also, the sequence p(v),p(p(v)), . . . contains s and defines a shortest path
from s to p(v) by induction, since p(x) is visited for all visited x (with p(v) being the base case). Thus,
the sequence v,p(v),p(p(v)), . . . contains s and defines a shortest path from s to v. ■

This implementation of Dijkstra’s algorithm runs in Θ(|V |2) time, where |V | is the number of vertices in
the graph. However, this can be optimised with the use of Fibonacci heap min-priority queues, running
in Θ(|E|+ |V | log |V |) time. This variant is asymptotically the fastest known single-source shortest-path
algorithm for arbitrary directed graphs with unbounded non-negative weights.

Another algorithm, is the Bellman-Ford algorithm. Bellman-Ford is slower than Dijkstra, but it works
on a larger class of problems. Notably, it can handle graphs that contain negative weights, and can also
detect negative cycles.

Like Dijkstra’s algorithm, Bellman-Ford proceeds by relaxation. In Dijkstra’s algorithm, this is done
greedily by selecting the closest vertex that hasn’t been searched yet in a priority queue. Bellman-Ford
just relaxes all edges, and does so |V | − 1 times.

Bellman-Ford also requires a cycle detection subroutine, of which O(|V |) solutions are known.
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Algorithm 20 Bellman-Ford

1: procedure bellmanFord((G,w), start)
2: for v ∈ V (G) do
3: v.visited = false
4: v.distance =∞
5: v.previous = null
6: end for
7: start.distance = 0
8: current = start
9: i = 0

10: while i ≤ |V | − 1 : do
11: for (u,v) ∈ E(V ) do
12: if u.distance + w((u,v)) < v.distance then
13: v.distance = u.distance + w((u,v))
14: v.previous = u
15: end if
16: end for
17: i = i+ 1
18: end while
19: for (u,v) ∈ E(G) do
20: if u.distance + w((u,v)) < v.distance then
21: negativeLoop = [v,u]
22: i = 0
23: while i ≤ |V | − 1 : do
24: u = negativeLoop[0]
25: for (u,v) ∈ E(G) do
26: if u.distance + w((u,v)) < v.distance then
27: negativeLoop = [v].append(negativeLoop)
28: end if
29: end for
30: i = i+ 1
31: end while
32: return cycleDetect(negativeLoop)
33: end if
34: end for
35: end procedure

Proof. G is finite, so the algorithm always terminates. Now, we show correctness.

To reduce the mixing of notation, for the purposes of this proof only, let D(v) = v.distance.

We induct on the number of iterations n of the for loop in line 11. In the zeroth iteration, the starting
vertex has distance 0, which is correct. For other other vertices u, D(u) = ∞, which is also correct
because there is no path from source to u with 0 edges.

For the base case, consider when a vertex’s distance is updated by D(v) = D(u) + w((u,v)). By the
induction hypothesis, D(u) is the length of a path from the starting vertex to u. Then, D(u) +w((u,v))
is the length of the path from the starting vertex to v that follows the path from the starting vertex to
u then to v.

Now, consider a shortest path P from the starting vertex to v with at most n edges. Let u be the last
vertex before v on this path. Then, the section of the path from the start to u is a shortest path from
the start to u with at most n− 1 edges, since if it were not, then there would be a path from the start to
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u to which we could append the edge (u,v) to construct a path from the start to v strictly shorter than
P , contradicting the choice of P . By the induction hypothesis, D(u) after n − 1 iterations is at most
the length of this path from the start to u. It follows that D(u) + w((u,v)) is at most the length of P .
In the nth iteration, D(v) is compared to D(u) + w((u,v)), and is set to that, if it is shorter. So, after
n iterations, D(v) is at most the length of P , which is the length of a shortest path from the start to v
with at most n edges, as required.

If there are no negative cycles, then every shortest path visits each vertex at most once, so in the for
loop on line 19, no further improvements can be made. Now, suppose no improvements can be made.
Then, for any cycle v1,v2, . . . ,vk−1, we have,

D(vi) ≤ D(vi−1 (mod k)) + w
(
(vi−1 (mod k),vi)

)
Summing over the cycle, the D(vi) and D(vi−1 (mod k)) terms cancel, leaving,

0 ≤
k∑
i=1

w
(
(vi−1 (mod k),vi)

)
so the cycle is non-negative. It follows that the algorithm returns a cycle if and only if it is negative. ■

Bellman-Ford runs in O(|V | · |E|) time.

A graph is locally finite if every vertex in the graph has finite degree.

Lemma (Kőnig). Suppose G is connected, infinite, and locally finite. Then, G contains a ray.

Proof. We give an inductive algorithm to generate such a ray.

Pick any vertex, v0 ∈ V (G). This vertex can be thought of a path of zero length, consisting of one vertex
and no edges. By the assumptions of the lemma, each of the infinitely many vertices of G can be reached
by a simple path that starts from v0.

Next, as long as the current path ends at some vertex vi, consider the infinitely many vertices that
can be reached by paths that extend the current path, and for each of these vertices, construct a path
to it that extends the current path. There are infinitely many of these extended paths, each of which
connects from vi to one of its neighbours, but vi only has finitely many neighbours. It follows from the
set-theoretic variant of the pigeonhole principle that at least one of these neighbours is used as the next
step of infinitely many of these extended paths. Let vi+1 be such a neighbour, and extend the current
path along the edge from vi to vi+1. By construction, this extension preserves the property that infinitely
many vertices can be reached by paths that extend the current path.

Repeating this process for extending the path produces an infinite sequence of finite paths, each extending
the previous path in the sequence by one edge. The union of these paths gives the required ray. ■

Corollary 49.2.10.1. Every infinite tree contains either a vertex of infinite degree, or an infinite path.

Proof. If the tree is locally finite, the lemma above applies, and thus contains a ray. Otherwise, it is not
locally finite and contains a vertex of infinite degree. ■

49.2.8 Network Flow
A network (G,u,s,t) is a directed graph G with two distinguished nodes called the source node, s, and
the sink node, t, along with a function u : E(G)→ R≥0 called the edge capacity function.

A flow in a network (G,u,s,t) is a function f : E(G) → R≥0 such that f(e) ≤ u(e) for all e ∈ E(G):
that is, the flow over an edge cannot be higher than its capacity. This is called the capacity constraint.
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A flow must also satisfy the skew symmetry constraint : f
(
(u,v)

)
= −f

(
(v,u)

)
. That is, the flow on an

edge from a vertex u to a vertex v is equivalent to the negation of the flow from v to u.

A flow is integral if every edge is assigned an integer – that is, an integral flow is instead a function
f : E(G)→ Z.

A network equipped with a flow function is called a flow network.

Recall that a cut is a partition of a vertex set of a graph into two partites. If X ⊆ V (G), then X and
V (G) \ X partition V (G), thus defining a cut. Because this cut is determined entirely by X, we also
denote it by X. Recall further that an edge is in the cut if it connects a vertex in one partite to a vertex
in the other, and the set of edges in the cut X is denoted δ(X).

However, because G is directed, we can divide this set further. We let δ+(X) ⊆ δ(X) denote the set of
edges leaving X, and δ−(X) ⊆ δ(X) denote the set of edges entering X.

If X is a singleton set containing the sole vertex v, we abbreviate δ({v}) as δ(v).

We define the excess function xf : V → R by,

xf (v) :=
∑

e∈δ−(v)

f(e)

︸ ︷︷ ︸
flow received by v

−
∑

e∈δ+(v)

f(e)

︸ ︷︷ ︸
flow sent by v

A node v is said to be active if xf (v) > 0 (the node consumes flow), deficient if xf (v) < 0 (the node
produces flow), or conserving if xf (v) = 0. A conserving node is said to satisfy the flow conservation
rule. In flow networks, the source s is deficient and the sink t is active.

If every node apart from the source and sink is conserving, the flow is said to be a feasible flow. We only
consider feasible flows, and shorten the name to just flow.

An s-t-flow in (G,u,s,t) is a flow f such that xf (s) < 0, and xf (v) = 0 for all v ̸= s,t. The value of such
a flow is the excess at the sink t:

value(f) := xf (t)

or equivalently, the negative of the excess at the source s:

value(f) := −xf (s)

Given a network (G,u,s,t), the maximum flow problem is to find an s-t-flow of maximum value.

An s-t-cut is a δ+(A) for some A ⊆ V (G) such that s ∈ A, t ̸∈ A. A minimum s-t-cut is an s-t-cut of
minimum total capacity.

49.2.8.1 Residual Networks

Let (G,u,s,t) be a network. For an edge e = (x,y) ∈ E(G), let ←−e = (y,x) denote the reverse edge.

Let
←→
G be the graph contained from G by adding the reverse edge for every edge of G. Note that

←→
G

may be a multigraph, as there may now be parallel edges.

Given a network (G,u,s,t), and a flow f in it, the residual network (Gf ,uf ,s,t) is defined by,

• V (Gf ) = V (G);

• E(Gf ) =
{
e ∈ E

(←→
G
)
: uf (e) > 0

}
;

• uf (e) := u(e)− f(e) for e ∈ E(G);
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• uf (
←−e ) := f(e), where ←−e is a reverse edge.

The residual network indicates the additional possible flow in the original network. If there is a path
from source to sink in the residual network, then it is possible to add flow. The value of an edge in the
residual graph is called the residual capacity, which is equal to the original capacity of the edge, minus
the current flow given by f . An f -augmenting path is a path from s to t in the residual network.

Let f be a flow, P be an f -augmenting path, and let 0 < γ ≤ min
e∈E(P )

(
uf (e)

)
.

We augment f along P by γ, by,

• Increasing f(e) by γ for each e ∈ E(P ) ∩ E(G);

• Decreasing f(e) by γ for each ←−e ∈ E(P ).

We now have enough machinery to tackle the maximum flow problem.

Algorithm 21 Ford-Fulkerson Algorithm

1: Set f(e) = 0 for all e ∈ E(G).
2: Find an f -augmenting path P . If none exist, then terminate the algorithm.
3: Compute γ := min

e∈E(P )

(
uf (e)

)
.

4: Augment f along P by γ, and return to line (2).

Lemma 49.2.11. For any A ⊂ V (G) such that s ∈ A and t ̸∈ A, and any s-t-flow f , we have,

1.
value(f) =

∑
e∈δ+(A)

f(e)−
∑

e∈δ−(A)

f(e)

2.
value(f) ≤

∑
e∈δ+(A)

u(e)

Note that (2) in the lemma above states that the value of a maximum s-t-flow cannot exceed the capacity
of a minimum s-t-cut.

Proof. (1):

value(f) = −xf (s)

=
∑

e∈δ+(s)

f(e)−
∑

e∈δ−(s)

f(e)

Because xf (v) = 0 for all v ̸= s,

=
∑
v∈A

 ∑
e∈δ+(v)

f(e)−
∑

e∈δ−(v)

f(e)


For each e = (x,y) with x,y ∈ A, f(e) appears once positively and once negatively, so,

=
∑

e∈δ+(A)

f(e)−
∑

e∈δ−(A)

f(e)

(2) follows from (1) by using 0 ≤ f(e) ≤ u(e) for all e ∈ E(G). ■
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Theorem 49.2.12. An s-t-flow is maximum if and only if there is no f -augmenting path.

Proof. If there is no f -augmenting path, then t is not reachable from s in Gf . Let R be the set of vertices
reachable from s in Gf . By the definition of Gf ,

∀e ∈ δ+G(R), f(e) = u(e)

else e ∈ Gf , in which case, there is a vertex not in R reachable from s. We also have,

∀e ∈ δ−G(R), f(e) = 0

else ←−e ∈ Gf , in which case, there is a vertex not in R reachable from s. Then, by (1) of the above
lemma, we have,

value(f) =
∑

e∈δ+(A)

u(e)

and hence by (2) of the above lemma, f is maximum. ■

Remark.

1. If we allow irrational capacities, the Ford-Fulkerson algorithm may not terminate at all.

2. Even in the case of integer capacities, the number of augmentations can be exponential.

3. The maximum flow problem admits a polynomial-time implementation.

Theorem (Max-Flow Min-Cut). In a network, the maximum value of an s-t-flow equals the minimum
capacity of an s-t-cut.

Theorem (Integral Flow). If each edge in a flow network has integer capacity, then there exists an
integral maximum flow.

Note that this theorem does not say that the value of the flow is an integer (which follows directly from
the max-flow min-cut theorem), but that the flow on every edge is an integer.

Theorem (Flow Decomposition). Let (G,u,s,t) be a network, and let f be an s-t-flow in G. Then, there
exists a family P ∗ of s-t-paths and a family C∗ of cycles in G, along with a function ω : P ∗∪C∗ → R≥0,
such that,

1.
f(e) =

∑
K∈P∗∪C∗

e∈K

ω(K)

2.
value(f) =

∑
k∈P∗

ω(K)

Moreover, if f is integral, then ω can be chosen to be integral.

Proof. We construct P ∗, C∗, and ω by induction on the number of edges with non-zero flow. Let
e0 = (v0,w0) be an edge with f(e0) > 0. If w0 = t, then we stop. Otherwise, there exists an edge
e1 = (w0,w1) with f(e1) > 0. If w1 = t r w1 = v0, then we stop. Otherwise, there exists an edge
e2 = (w1,w2) with f(e2) > 0. If w2 = t or w2 ∈ {v0,w0}, then we stop. Continuing this process, in at
most n steps, we either find a cycle, or reach vertex t. In the latter case, we repeat the procedure in the
other direction and either find a cycle, or reach vertex s. In either case, we find either a cycle L, or a
path L from s to t.

Set ω(L) = min
e∈L

(
f(e)

)
. For every e ∈ L, define f ′(e) := f(e)−ω(L), and for all e ̸∈ L, define f ′(e) := f(e).
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There are strictly fewer edges of G with non-zero flow f ′, so, by the induction hypothesis, (1) and (2)
holds for the flow f ′.

We show that (1) also holds for f . If e ̸∈ L, then (1) is valid for f , because in this case, f(e) = f ′(e). Let
e ∈ L, and denote the members of P ∗ ∪C∗ containing e by K1,K2, . . . ,Kt, where Kt = L. By induction,

f ′(e) =

t−1∑
i=1

ω(Ki)

and by definition, f ′(e) = f(e)− ω(L). Therefore,

f(e) = ω(L) + f ′(e)

= ω(Kt) +

t−1∑
i=1

ω(Ki)

=

t∑
i=1

ω(Ki)

so (1) holds for f .

Now, we show that (2) also holds for f . Suppose that L is a cycle. Then, G contains a cut δ(A) separating
s from t which does not cross L, and hence value(f) = value(f ′) by claim (1) of the above lemma. Since
(2) holds for f ′, we conclude it also holds for f in this case.

Now, suppose L is instead a path. Then,

value(f ′) =
∑

K∈P∗\{L}

ω(K)

=
∑

e∈δ+(A)

f ′(e)−
∑

e∈δ−(A)

f ′(e)

=
∑

e∈δ+(A)

f(e)−
∑

e∈δ−(A)

f(e)− ω(L)

= value(f)− ω(L)

and hence (2) holds for f . ■

Theorem (Menger (Edge Connectivity)). Let G be a graph (directed or undirected), and let s,t be two
distinct vertices of G. Let k ∈ N. Then, these two statements are equivalent:

1. There are k edge-disjoint s-t-paths in G.

2. After deleting any k − 1 edges from G, t is still reachable from s (e.g. G is connected).

If the latter property holds in a graph for all s,t, then the graph is said to be k-edge connected.

Proof. (1) → (2) is trivial, because to destroy k edge-disjoint paths, at least k edges must be deleted
(one per path).

(2)→ (1): First, let G be directed. By assigning capacity u(e) = 1 to every edge e ∈ E(G), we produce
the network G∗ = (G,u,s,t). The capcity of a cut in this network is just the number of edges in the cut.

Assuming (2), the minimum capacity of a directed s-t-cut is at least k. By the max-flow min-cut theorem,
G∗ has an (integral) flow f of value at least k. Then, by the flow decomposition theorem,

value(f) =
∑
L∈P∗

ω(L)
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where P ∗ is a family of s-t-paths, and ω(L) = 1 for all L ∈ P ∗. The members of P ∗ are edge disjoint,
because by the same theorem,

f(e) =
∑

L∈P∗∪C∗

ω(L)

It follows that G contains k edge-disjoint paths.

Now, let G be undirected. Transform G into a directed graph
−→
G by replacing every edge as follows:

•
u v u v

•

If (2) holds on G, then (2) also holds for
−→
G . So,

−→
G has k edge-disjoint s-t-paths, and hence G has k

edge-disjoint s-t-paths. ■

Corollary 49.2.12.1. An undirected graph G on at least two vertices is k-edge connected if and only if
for each pair of distinct vertices s and t, there are k edge-disjoint s-t-paths.

Proof. Follows directly from the theorem. ■

Theorem (Menger (Vertex Connectivity)). Let G be a graph (directed or undirected), and let s,t be two
non-adjacent vertices of G. Let k ∈ N. Then, these two statements are equivalent:

1. There are k vertex-disjoint s-t-paths in G.

2. After deleting any k− 1 vertices (distinct from s or t) from G, t is still reachable from s (e.g. G is
connected).

If the latter property holds in a graph for all non-adjacent s,t, then the graph is said to be k-vertex
connected.

Proof. (1)→ (2) is trivial, because to destroy k vertex-disjoint paths, at least k vertices must be deleted
(one per path).

(2) → (1): First, let G be directed. Transform G into a new graph G′ by replacing each vertex of G as
follows:

v v′ v′′

Supose G′ contains k− 1 edges whose deletion makes t′ unreachable from s′′. Then, G has at most k− 1
vertices whose deletion makes t unreachable from s. Because this contradicts (2), we conclude that after
deleting any k − 1 edges from G′, t′ is still reachable from s′′. From the edge connectivity statement of
Menger’s theorem, G′ has k edge-disjoint s′′-t′-paths. It should be clear that these paths must also be
vertex disjoint. It follows that G contains k vertex-disjoint s-t-paths.

The undirected version follows from the directed one in by the same construction as in the proof of the
edge connectivity statement. ■

Corollary 49.2.12.2. An undirected graph G on at least k vertices is k-vertex connected if and only if
for each pair of distinct vertices s and t, there are k vertex-disjoint s-t-paths.

Proof. Suppose G is k-vertex connected, but there exists vertices s and t in G such that there are not
k vertex-disjoint s-t-paths. If s is not adjacent to t, then we apply the vertex connectivity statement of
Menger’s theorem to conclude that there is a set U ⊂ V (G) of at most k − 1 vertices such that G \ U is
disconnected, giving a contradiction.
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Instead suppose that s and t are adjacent, and denote this edge e. By deleting e from G, we obtain a
graph G′ such that there are not k − 1 vertex-disjoint s-t-paths. We again apply Menger’s theorem to
G′, concluding there exists a set X ⊂ V (G′) of at most k − 2 vertices such that G′ \X is disconnected.
Denote by S the connected component of G′ \ X containing s, and by T the connected component of
G′ \X containing T . At least one of them contains a vertex v different from s and t because |V (G′)| > k.
Without loss of generality, suppose that v is unreachable from s in G′ \ X. Then, s and v are in
different components of G \ (X ∪ {t}), contradicting the assumption that G is k-vertex connected, as
|X ∪ {t}| ≤ k − 1. This completes the forward implication.

We prove the reverse implication by contraposition. Suppose G is not k-vertex connected, so there exists
a set U of at most k− 1 vertices such that G \U is disconnected. Take s from one connected component
of G \ U , and t from another. Then, G has no k-vertex-disjoint s-t-paths. ■

The vertex-connectivity of a graph G is the maximum k such that G is k-(vertex)-connected. The
edge-connectivity is similarly the maximum k such that G is k-edge connected.

49.2.9 Matchings
Let G be a simple graph. A matching in G is a subset M ⊆ V (E) such that no two edges in M are
incident to the same vertex. We say that a vertex v is covered by a matching M if v is incident to an
edge e ∈M . The matching number of a graph is the size of a maximum matching.

A matching is perfect if it covers all vertices of the graph. A perfect matching is only possible on graphs
with an even number of vertices.

Given a simple graph G, the maximum matching problem is to find a matching of maximum cardinality
in G.

Recall that a subset of vertices S ⊆ V is an independent set of the graph if there are no edges between
any pair of vertices in S, and that a graph is bipartite if its vertex set can be partitioned into two
independent sets.

• The path graph Pn is bipartite for any value of n.

• The cycle graph Cn is bipartite for even values of n

Theorem (Characterisation of Bipartite Graphs). A graph is bipartite if and only if every closed walk
in the graph is of even length.

Proof. Suppose G is a bipartite graph with partites L and R, and let C = (c1,c2, . . . ,ck) be a closed walk
in G. Without loss of generality, suppose we have c1 ∈ L. Then, because G is bipartite, we have c2 ∈ R,
c3 ∈ L, c2n ∈ R, C2n+1 ∈ L. Because the walk is closed, it must be the case that ck ∈ R, so k must be
even. This completes the forward implication.

Now, suppose G is a simple graph with no closed walks of odd length. Without loss of generality, G is
connected. Let v,x,y ∈ G.

Let Px be a shortest path connecting v to x, and let Py be a shortest path connecting v to y.

Let z be a vertex in both Px and Py closest to x and y. Then, d(z,x) and d(z,y) have the same
parity. It follows that x and y are not adjacent, or else an odd cycle is created. This suggests the
set V1 = {u ∈ V (G) : d(u,v) ≡ 1 (mod 2)} is an independent set. Through a similar argument,
V2 = {u ∈ V (G) : d(u,v) ≡ 0 (mod 2)} is also an independent set. These two sets are clearly disjoint and
together cover the vertex set of G, so they partition the vertex set of G and hence G is bipartite. ■

Corollary 49.2.12.3. A graph is bipartite if and only if every cycle in the graph is of even length.

Proof. The cycles in a graph are a strict subset of the closed walks. ■
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In a graph G, a vertex cover is a subset S ⊆ V (G) such that every edge in E(G) is incident to at least
one vertex in S. The vertex cover number is the size of a minimum vertex cover.

Lemma 49.2.13. For all simple graphs G, the following statements hold:

1. A set S ⊆ V (G) is a vertex cover if and only if V (G) \ S is an independent set.

2. The sum of the independence number and the vertex cover number is equal to the number of vertices
in G.

3. The vertex cover number is at most twice the matching number.

Proof. (1) and (2) follow from the definitions of a vertex cover and an independent set.

(3): Let M be a maximal matching. Let Vm be the set of vertices incident with edges of M . Since M
is maximal, every edge of the graph is incident to a vertex of Vm, and hence Vm is a vertex cover with
|Vm| = 2|M |. Some of these vertices may not be required to form a vertex cover, so this gives an upper
bound on the minimum vertex cover V , namely |V | ≤ 2|M |. ■

If G is bipartite we can tighten this bound to an equality.

Theorem (Kőnig). In any bipartite graph, |M | = |S| for a maximum matching M and minimum vertex
cover S.

Proof. Let G = (L∪R,E) be a bipartite graph. Denote by G′ the graph obtained from G by adding two
vertices s and t, connecting s to every vertex of L, and connecting t to every vertex of R.

Then, the maximum number of vertex-disjoint s-t-paths in G′ is equal to the matching number of G.
The minimum number of vertices whose deletion makes t unreachable from s is also equal to the vertex
cover number of G.

It follows from the vertex connectivity statement of Menger’s theorem that these two values are equal. ■

49.2.9.1 Hall’s Condition

Theorem (Hall). Let G = (L ∪ R,E) be a bipartite graph. Then, G admits a matching covering L (an
L-perfect matching) if and only if for all X ⊆ L, we have,

|N(X)| ≥ |X|

Proof. If G has an L-perfect matching, then |N(X)| ≥ |X| holds for all X ⊆ L trivially.

Now, suppose |N(X)| ≥ |X| holds for all X ⊆ L, but there does not exist an L-perfect matching. Then
by Kőnig’s theorem, the vertex cover number is less than |L|.

Let A ⊆ L and B ⊆ R such that A ∪ B is a vertex cover of size |A ∪ B| ≤ |L|. Because G is bipartite,
N(L \A) ⊆ B, so it follows that,

|N(L \A)| ≤ |B|
< |L| − |A|
= |L \A|

■

We can restate Hall’s theorem in set-theoretic terms.

Consider a family of sets, S, with A1, A2, · · ·An ⊆ S. A system of distinct representatives (an SDR) is
a set of distinct elements, {x1,x2, . . . ,xn} ⊆ S, such that for all i ∈ [1,n], xi ∈ Ai.
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A family of sets, S, satisfies Hall’s condition if, for each subfamily W ⊂ S, we have,

|W | ≤

∣∣∣∣∣ ⋃
A∈W

A

∣∣∣∣∣
A family of sets admits an SDR if and only if Hall’s condition is satisfied. That is, there exists an SDR
for a family of sets A1, A2, · · ·An if the union of any k of these sets contains at least k elements for all
k ∈ [1,n].

We now give necessary and sufficient conditions for the existence of a perfect matching.

Theorem 49.2.14. A bipartite graph G = (L∪R,E) admits a perfect matching if and only if |A| = |B|
and |N(X)| ≥ |X| for all X ⊆ L.

Remark. If G = (L ∪ R,E) is k-regular, then |E| = k|L| = k|R|, and hence |L| = |R|. This allows us to
rephrase the previous theorem.

Theorem 49.2.15. Every regular bipartite graph has a perfect matching.

Proof. Let G = (L ∪R,E) be a k-regular bipartite graph. Let X ⊆ L. Because G is k-regular, there are
k|X| edges connected to X ⊆ L, and k|N(X)| edges connected to N(X) ⊆ R. The former set of edges
is contained within the latter, so k|X| ≤ k|N(X)|, and hence |X| ≤ |N(X)|, satisfying Hall’s condition.
By Hall’s theorem, there exists a matching on L, so every vertex in L is paired with a vertex in R. But,
|L| = |R|, so the matching is perfect. ■

Theorem 49.2.16. The maximum matching problem can be solved for bipartite graphs with n vertices
and m edges in O(nm) time.

Proof. Let G = (L ∪R,E) be a bipartite graph. Construct a network G∗ by:

• Adding a source s and connecting it to every vertex of L;

• Adding a sink t and connecting it to every vertex of R;

• Orienting all edges to point from s to A, from A to B, and from B to t;

• Defining the capacity function u : E → R≥0 by u(e) = 1 for all edges e ∈ E.

Since all capacities are integers, there exists an integral maximum flow f . Because of flow conservation,
the edges of G with a non-zero flow form a matching. Since the flow is maximum, the matching is
maximum.

The maximum is attained after at most n augmentations in the Ford-Fulkerson algorithm. Since each
augmentation takes O(m) time, the total time complexity of finding a maximum matching in G is
O(nm). ■

49.2.9.2 Maximum Independent Set

Given a simple graph G, the maximum independent set problem is to find an independent set in G of
maximum cardinality.

Recall:

• For any bipartite graph, the matching number is equal to the vertex cover number (Kőnig’s theorem)

• For any graph, the sum of the independence number and the vertex cover number is equal to the
number of vertices in the graph.

Theorem 49.2.17. The maximum independent set problem can be solved for bipartite graphs with n
vertices and m edges in O(nm) time.
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49.2.9.3 Augmenting Paths

Let G be a graph, and M a matching in G. A path P is an M -alternating chain if E(P ) \ M is a
matching. An M -alternating chain is additionally M -augmenting if its endpoints are not covered by M .
That is, P is M -alternating if its edges alternate between being in and not in M . If both endpoints are
not in M , then P is additionally M -augmenting.

Theorem (Berge). A matching M is maximum if and only if there are no M -augmenting chains.

Proof. If an M -augmenting chain, P , exists, then (M \P )∪ (P \M) is a matching of cardinality strictly
greater than M , so M is not maximum. Intuitively, we simply flip the edges in the augmenting chain,
and take the result to be the new matching.

Conversely, if M is not maximum, and M ′ is a matching such that |M ′| > |M |, then (M \M ′)∪(M ′ \M)
consists of vertex-disjoint alternating cycles and alternating paths, where at least one path has more edges
in M ′ than in M . This path is M -augmenting. ■

49.2.9.4 Maximum Weight Matching

Given a simple weighted graph (G,w), the maximum weight matching problem is to find a matching in
G of maximum total weight. Conversely, the minimum weight perfect matching problem is to find a
matching in G of minimum total weight, or decide that G has no perfect matching.

Theorem 49.2.18. The maximum weight matching problem is equivalent to the minimum weight perfect
matching problem.

Proof. Let (G,w) be an instance of minimum weight perfect matching, and let K = 1+
∑
e∈E(G) |w(e)|.

If w′(e) = K − w(e) for each edge e ∈ E(G), then any maximum weight matching in (G,w′) gives a
solution to the minimum weight perfect matching in (G,w).

Let (G,w) be an instance of maximum weight matching. Then, add |V (G)| new vertices to G and all
possible edges to create a complete graph G′ on 2|V (G)| vertices. Define w′(e) = −w(e) for the original
edges of G and w′(e) = 0 for new edges. Then, a minimum weight perfect matching in (G′,w′) yields a
maximum weight matching in G by deleting the edges not in G. ■

49.2.9.5 Maximum Independent Set

Given a simple graph G, the conjugate, adjoint, or line graph of G is a graph L(G) that represents the
adjacencies between edges of G. We construct L(G) as follows:

• For each edge in G, we have a vertex in L(G);

• For every pair of edges in G that are incident to the same vertex, we include an edge between their
corresponding vertices in L(G).

Remark. The claw graph K1,3 is not a line graph, so any graph containing the claw as an induced
subgraph is not a line graph.

A graph that does not contain the claw as an induced subgraph is called a claw-free graph.

Given a simple graph G, the maximum independent set problem is to find an independent set in G of
maximum cardinality.

Theorem 49.2.19. The maximum independent set problem restricted to the class of line graphs is
equivalent to the maximum matching problem.

Proof. M ⊆ E(G) is a matching G if and only if M is an independent set in L(M). That is, finding a
maximum matching in G is equivalent to finding a maximum independent set in L(G). ■

Notes on Mathematics | 963



Combinatorial Optimisation Graph Theory

Let G = (V,E) be a graph, and let S ⊆ V be an independent set. Let H be a bipartite subgraph of G
with partites A and B such that,

• A ⊆ S;

• B ⊆ V \ S;

• ∀e ∈ B : N(e) ∩ (S \A) = ∅ – the vertices of B do not have neighbours in S \A;

• |A| < |B|.

Then, H is an augmenting graph for S.

Corollary (Characterisation of Maximum Independent Sets). An independent set S is maximum if and
only if there is no augmenting graphs for S.

Proof. If there is an augmenting graph for an independent set S, then S is not maximum, because
(S \A) ∪B is a larger independent set. This proves the forward implication by contraposition.

If S is not maximum, and R is a larger independent set, then the bipartite graph with partites S \ R
and R \ S is augmenting for S. This proves the reverse implication by contraposition. ■

The class of line graphs is a subclass of claw-free graphs.

Remark. Every bipartite claw-free graph has vertex degree at most 2. Every connected bipartite claw-
free graph is either a path or a cycle. Every connected augmenting graph in the class of claw-free graphs
is a path with odd number of vertices.

Theorem 49.2.20. An independent set S in a claw-free graph is maximum if and only if there is no
augmenting path for S.

Theorem 49.2.21. The problem of finding augmenting paths in claw-free graphs (and hence line graphs)
is solvable in polynomial-time.

49.2.10 Graph Transformations for Maximum Independent Sets
Lemma 49.2.22. Let G be a graph and x,y be two adjacent vertices of G. If every vertex z adjacent
to x is also adjacent to y, then the independence number of G is equal to the independence number of
G \ {y}.

Proof. Clearly, the independence number of G is at least the independence number of G \ {y}.

To prove the reverse inequality, let S ⊂ V (G) be an independent set in G. If it does not contain y,
then it is also an independent set in G \ {y}. Otherwise, if S contains y, then it contains neither x, nor
any neighbour of x. But then, (S \ {y}) ∪ {x} is an independent set on G \ {y} of size |S|. Then, the
independence number of G is at least the independence number of G \ {y}. ■

Given a vertex x, suppose N(x) = Y ∪ Z. We vertex split x by replacing it by three vertices, x′, y, and
z, such that N(x′) = {y,z}, N(y) = Y , and N(z) = Z.

Lemma 49.2.23. Let G′ be the graph obtained by vertex splitting a vertex x in G. Then, the independence
number of G′ is one greater than the independence number of G.

Proof. Let S be an independent set in G containing x. Then, (S \ {x}) ∪ {y,z} is an independent set in
G′ of size |S|+ 1. If S does not contain x, then S ∪ {x′} is an independent set in G′ of size |S|+ 1. So,
the independence number of G′ is at least one greater than the independence number of G.

Conversely, let S be an independent set in G′. If it contains at most one vertex in {x′,y,z}, then by
deleting this vertex, we obtain an independent set in G of size |S| − 1. If S contains two vertices in

Notes on Mathematics | 964



Combinatorial Optimisation Graph Theory

{x′,y,z}, then these vertices must be y and z, and hence (S \ {y,z} ∪ {x}) is an independent set on G of
size |S| − 1. So, the independence number of G′ is at most one greater than the independence number
of G. ■

49.2.11 Stable Matching
Given two sets A and B of equal cardinality n, a matching is a bijection from the elements of one set to
the other. Suppose further that each element x ∈ A has an ordered list of preferences of elements in B,
and similarly, each element in y ∈ B has an ordered list of preferences of elements in A. If an element a
prefers b to c, we write a : b > c.

A matching is stable if there does not exist elements x ∈ A and y ∈ B such that x prefers y over its
assigned element and y also prefers x over its assigned element.

The stable marriage problem or stable matching problem (SMP) is to find a stable matching arrangement
for two such sets A and B.

Example. A = {x,y}, B = {u,v},

x : u > v

y : v > u

u : x > y

v : x > y

The matching {x,v},{y,u} is unstable, because x prefers u over v, and u also prefers x over y.

The matching {x,u},{y,v} is stable, because no pair prefers each other over their assigned elements. △

One algorithm to solve this problem is the Gale-Shapley algorithm.

1. At each point of the algorithm, each element is either fixed or free, with every element initially
being free. Elements of A may alternate between being fixed and being free, but elements of B
cannot be free after being fixed.

2. In each round of the algorithm, each element x ∈ A interacts with its preferences in order, provided
the preferences haven’t been interacted with in previous rounds.

3. If the preference element y is free, the two are matched and both become fixed. Otherwise, y is
fixed and already has a match, z. y then compares x to z. Whichever is preferred by y becomes
the new match, becoming fixed, and the rejected element becomes free.

4. Repeat until every element is fixed.
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Algorithm 22 Gale-Shapley Algorithm

1: procedure SMP(A, B)
2: matches = [ ]
3: for n ∈ A ∪B do
4: n.free = true
5: end for
6: while ∃x ∈ A : x.free = true do
7: y = x.preferences.pop()
8: if y.free = true then
9: matches.append((x,y))

10: x.free = false
11: y.free = false
12: else if ∃z : (z,y) ∈ matches then
13: if y : x > z then
14: matches.remove((z,y))
15: matches.append((x,y))
16: z.free = true
17: end if
18: end if
19: end while
20: end procedure

Proof. Each element in A interact at most n times, so the algorithm terminates after at most n2 opera-
tions.

The algorithm stops when all elements are matched, and the two input sets are of equal cardinality, so
the produced matching is perfect.

Now, suppose an element x ∈ A prefers an element y ∈ B to its assigned element. Then, x interacted
with y and, either x was not preferred over the element assigned to y at that time, or, y preferred x over
its assigned element, but later changed for a more preferable element. In both cases, y prefers its current
assigned element over x, and hence the matching is stable. ■

A stable matching is optimal for an element x if there is no stable matching with an assignment x
would prefer. Conversely, a stable matching is pessimal for x if there is no stable matching with a worse
assignment for x. We say that x and y are a stable pair if there exists a stable matching where x and y
are matched.

Theorem 49.2.24. The stable matching produced by the Gale-Shapley algorithm is:

• Independent of the order of elements selected to interact;

• Optimal for elements of A;

• Pessimal for elements of B.

Proof. Order the elements of A arbitrarily, and let x and y be matched by the algorithm in a stable
matching M1.

Suppose there exists y′ such that x : y > y′, and suppose that (x,y′) is a stable pair, so there exists a
stable matching M2 where x is matched with y′.

Then, x was rejected by y′, and without loss of generality, suppose this was the first time a stable pair
was rejected by the algorithm.
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Now, suppose y′ rejected x in favour of x′, and let y′′ be the match of x′ in M2. Then (x′,y′′) is also a
stable pair. If x′ : y′′ > y′, then x′ interacted with y′′ before y′, which means the stable pair (x′,y′′) was
rejected before (x,y′), contradicting the assumption that (x,y′) was the first stable pair rejected by the
algorithm.

So, x′ : y′ > y′′. But then, the matching M2 is not stable, because x′ and y′ are not matched, and they
both prefer each other over their assigned elements.

This contradiction shows that every element x ∈ A is matched with its favourable stable partner; the
matching is optimal for elements of A. Because the ordering was arbitrary, any ordering produces the
same result.

Now, suppose y : x > x′, and suppose the algorithm matches y with x, but there is a stable matching M3

where y is matched with x′. Let y′ be the match of x in M3. Since the algorithm produces an matching
optimal for elements of A, it must be the case that x : y > y′. But then, x and y are not matched, and
they both prefer each other over their assigned elements, contradicting the stability of M3. ■

49.2.12 Eulerian Graphs
Recall that an Eulerian walk is a trail which traverses every edge. An Eulerian circuit is both a trail
and cycle which traverses every edge.

A graph that admits an Eulerian walk is traversable or semi-Eulerian. A graph that admits an Eulerian
circuit is Eulerian.

Theorem (Euler). A connected undirected graph admits an Eulerian circuit if and only if the degree of
each vertex is even.

A connected directed graph admits an Eulerian circuit if and only if the in-degree |δ−(v)| is equal to the
out-degree |δ+(v)| for each vertex v.

Proof. The necessity of the degree conditions is obvious. Sufficiency is proved by the following algorithm.
■

Given a connected undirected graph G with even degree vertices, or a digraph with in-degree equal to
out-degree for all vertices, Fleury’s algorithm returns an Eulerian circuit.

1. Start at an arbitrary vertex, v0.

2. At each step, choose an edge whose deletion would not disconnect the graph, unless no such edge
exist, in which case, pick the remaining edge left at the current vertex.

3. Move to the other endpoint of the edge and delete the edge.

4. Now repeat until no edges remain.

5. The sequence from which the edges were chosen forms an Eulerian cycle.
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Algorithm 23 Fleury’s Algorithm (Undirected)

1: Let v0 ∈ V (G) be arbitrary.
2: procedure fleury(G, v0)
3: W = [v0]
4: x = v0
5: while E(G) ̸= ∅ do
6: if δ(x) = ∅ then ▷ For digraph G, check δ+(x) = ∅
7: W = [v0,e0,v1,e1, . . . ,vk,ek,vk+1]
8: for i = 0 to k do Wi = fleury(()G, vi)
9: end for

10: W =W0,e0,W1,e1, . . . ,Wk,ek,vk+1

11: return W
12: else
13: e = (x,y),y ∈ δ(x) ▷ For digraph G, y ∈ δ+(x)
14: W =W,e,y
15: x = y
16: E(G) = E(G) \ {e}
17: end if
18: end while
19: end procedure

Theorem 49.2.25. Fleury’s algorithm runs in O(n+m) time for a graph with n vertices and m edges.

Proof. We prove correctness by induction on m. The case E(G) = ∅ is trivial.

When line 7 is run, vk+1 = v1 because of the degree conditions, so W is a closed walk at this stage. Let
G′ be the subgraph of G at this stage. Then, G′ also satisfies the degree conditions.

Since G is connected, every connected component of G′ contains at least one of vi. Then, by the induction
hypothesis, every edge of G′ belongs to one of Wi, and hence the closed walk W composed in the last
step is indeed Eulerian.

The runtime is linear because each edge is deleted immediately after being examined. ■

Corollary 49.2.25.1. An Eulerian walk exists if and only if there are at most two vertices of odd degree.

49.2.13 Chinese Postman
A postman must deliver mail along all streets of a town. How can he leave the post office, finish his job
and return to the post office having traversed a minimum distance?

That is, given an weighted connected graph, the Chinese postman problem is to find a closed walk of
minimum total weight visiting each edge at least once. More symbolically, the problem is, given a
weighted connected graph (G,w), the task is to find a function n : E(G)→ R≥0 such that the graph G′

constructed from G by taking n(e) copies of each edge e ∈ E(G) is Eulerian, and∑
e∈E(G)

n(e)w(e)

is minimum.

If the graph is Eulerian, then the Eulerian walk provides an optimal solution. Otherwise, some edges
must be visited more than once. It makes no sense to walk through an edge more than twice, so we we

Notes on Mathematics | 968



Combinatorial Optimisation Graph Theory

can restrict n : E(G)→ {1,2}. Therefore, the task simplifies to finding a subset S ⊆ E(G) of minimum
weight such that the graph obtained from G by doubling the edges in S is Eulerian.

As an aside, let us look at another problem.

Let G be an undirected graph, and let T ⊆ V (G) be a subset of even cardinality. A subgraph J is a
T -join if |J ∩ δ(x)| is odd if and only if x ∈ T . In other words, a T -join is a spanning subgraph of G with
the same vertex set as G, but only the edges that ensure that all the vertices in T have odd degree, and
all the vertices not in T have even degree.

The fact that there are no T -joins for |T | odd directly follows from the handshaking lemma.

Given an undirected weighted graph (G,w) and a set T ⊆ V (G) of even cardinality, the minimum weight
T -join problem is to find a minimum weight T -join in G, or decide that none exists.

Lemma 49.2.26. Let G be a graph and let T ⊆ V (G) be a subset of even cardinality. There exists a
T -join in G if and only if |V (C) ∩ T | is even for each connected component C in G.

Proof. If J is a T -join, then for each connected component C in G, we have,∑
v∈V (C)

|J ∩ δ(v)| = 2|J ∩ E(C)|

So, |J ∩ δ(v)| is odd for an even number of vertices in V (C). Since J is a T -join, this means that
|V (C) ∩ T | is even. This completes the forward implication.

Conversely, let |V (C) ∩ T | be even for each connected component C of G. Then T can be partitioned
into pairs {v1,w1}, . . . ,{vk,wk} with k = |T |/2 such that for each i, the pair {vi,wi} belongs to the same
connected component. Let Pi be an arbitrary vi-wi-path, and let,

J :=
k

△
i=1

E(Pi)

where △ is the symmetric difference operation (A△B := (A \B) ∪ (B \A) = {x : (x ∈ A)⊕ (x ∈ B)}).

The symmetric difference of more than two sets consists of the elements that belong to an odd number of
the sets. Observe that if the paths P1, . . . ,Pk are disjoint, then J is a T -join by definition, as it respects
the degrees of vertices in T and not in T . If the paths are not disjoint, then the degree of each vertex
has the same parity with respect to J as with respect to the disjoint union of the paths. In either case,
J is a T -join, completing the reverse implication. ■

Lemma 49.2.27. A T -join J in a weighted graph (G,w) has minimum weight if and only if for each
cycle C in G, we have,

w(J ∩ E(C)) ≤ w(E(C) \ J)

Proof. If w(J ∩ E(C)) > w(E(C) \ J), then J △ E(C) is a T -join of lower weight than J .

Conversely, if J ′ is a T -join with w(J) < w(J), then the subgraph of G formed by the edges of J △ J ′

is Eulerian, as the degree of each vertex in this subgraph is even, in which case, it is the union of cycles.
For at least one cycle C, we must have w(J ∩ E(C)) > w(J ′ ∩ E(C)) = w(E(C) \ J). ■

Lemma 49.2.28. Let (G,w) be a weighted graph, and let T ⊆ V (G) be a subset of even cardinality.
Every optimum T -join in G is the symmetric difference of |T |/2 paths whose endpoints are distinct and
belong to T , and possibly some zero-weight cycles.
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Proof. We induct on T . The case T = ∅ holds trivially.

Let J be any optimum T -join in G. Without loss of generality, J contains no zero-weight cycle. By
Lemma 49.2.27, J contains no cycle of positive weight. Since w is non-negative, J is a forest. Let x and
y be two leaf nodes in the same connected component of this forest, and let P be the unique x-y-path in
J . Then, by the definition of a T -join, x,y ∈ T . So, J \E(P ) is an optimum T ′-join, where T ′ = T \{x,y},
so a cheaper T ′-join would imply a cheaper T -join. The lemma follows by induction. ■

Theorem 49.2.29. The minimum weight T -join problem with non-negative weights can be solved in
polynomial time.

Proof. For each pair x,y ∈ T , we find a shortest x-y-path Px,y and construct an auxiliary complete
edge-weighted graph G∗ with vertex set T , in which the weight of the edge (x,y) equals the length of
the path Px,y. Finding these paths for all possible pairs of vertices x and y can be done in O(|V |3) time
using the Floyd-Warshall algorithm.

Then, we find in G∗ a perfect matching M of minimum weight, which takes polynomial time.

Let J be the symmetric difference of the paths Px,y taken over all edges (x,y). Then J is a T -join, and
is minimum because M has minimal weight. ■

Theorem 49.2.30. If the weights are non-negative, then the minimum weight T -join problem coincides
with the undirected Chinese postman problem.

Proof. Otherwise, let T be the set of vertices of odd degree, noting that |T | is even by the handshaking
lemma, and set w(e) = 1 for all edges e ∈ E(G). Now compute a minimum-cost T -join J with respect to
w, and form the multigraph G∗ by duplicating the edges in J . A Euerian cycle in G∗ is now the desired
Chinese postman tour in G. ■

49.2.14 Independence System

For a finite set S, we denote by P(S) or 2S the power set of S (the set of all subsets of S).

A set system (V,F) consists of a finite set V and a family F ⊆ P(V ) of subsets of V .

A set system S = (V,I) is furthermore an independence system if,

(M1) ∅ ∈ I

(M2) For each Y ⊆ X, Y ∈ F → X ∈ I.

This latter property is also called the hereditary property or downward-closedness.

Elements of I are called independent or feasible, while elements of I \ V are dependent or infeasible.

Minimal dependent sets are called circuits, and maximal independent sets are called bases. For X ⊆ V ,
the maximal independent subsets of X are called bases of X.

Let (V,I) be an independence system. For X ⊆ V , we define the rank rank(X) of X as the size of a
maximum subset of X that belongs to I.

Example. The following are all independence systems:

1. V = V (G) and I is the set of independent sets in a graph G.

2. V = E(G) and I is the set of forests in G.

3. V is the set of columns of a matrix over some field and I is the power set of linearly independent
columns.
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4. V is any finite set, k is an integer, and I the subsets of V of cardinality at most k.

△

Given an independence system (V,I) and a weight function w : V → R, a minimisation problem is to
find a basis of minimum total weight, while a maximisation problem is to find an independent set of
maximum total weight.

Many combinatorial optimisation problems can be formulated as minimisation and maximisation prob-
lems. For instance,

• MAXIMUM-WEIGHT-STABLE-SET

• TSP

• SHORTEST-PATH

• KNAPSACK

• MINIMUM-WEIGHT-SPANNING-TREE

• MAXIMUM-WEIGHT-FOREST

• STEINER-TREE

• MAXIMUM-WEIGHT-BRANCHING

• MINIMUM-WEIGHT-BRANCHING

• JSSP (JOB-SHOP-SCHEDULING-PROBLEM)

An independence system (V,I) is a matroid if,

M3 ∀X,Y ∈ I : |X| > |Y | →
(
∃x ∈ X \ Y :

(
Y ∪ {x}

)
∈ I

)
– if X,Y ∈ I and |X| > |Y |, then there

exists an x ∈ X \ Y such that Y ∪ {x} ∈ I.

Example.

• (Independent sets in a graph) is not a matroid.

• (Forests in a graph) is a matroid known as the cycle (graphic) matroid.

• (Linearly independent columns) is a matroid known as the vector matroid.

• (Subsets of size at most k) is a matroid known as the uniform matroid.

△

Theorem 49.2.31. Let (V,I) be an independence system. Then the following statements are equivalent:

(M3) ∀X,Y ∈ I : |X| > |Y | →
(
∃x ∈ X \ Y :

(
Y ∪ {x}

)
∈ I
)

(M3)′ For all Z ⊆ V , all bases of Z have the same cardinality.

Proof. Suppose (M3) is valid, but (M3)′ is not, and let X and Y be two bases if Z such that |X| > |Y |.
Then, by (M3), there is an x ∈ X \ Y such that Y ∪ {x} ∈ I. Since x ∈ X \ Y ⊆ X ⊆ Z, Y ∪ {x} ⊆ Z,
contradicting that Y is a basis of Z.

Conversely, suppose (M3)′ is valid. If |X| > |Y |, the set Y cannot be a basis ofX∪Y as Y is not maximal.
Therefore, there exists at least one element x ∈ (X ∪ Y ) \ Y = X \ Y such that Y ∪ {x} ∈ I. ■

Corollary 49.2.31.1. Let (V,I) be a matroid and let X,Y ∈ I. If |X| > |Y |, then there exists a subset
of X \ Y of cardinality |X| − |Y | such that Y ∪ Z ∈ I.
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Proof. By induction on k = |X| − |Y |. ■

(M3) and this corollary are known as the exchange, augmentation, or growth property of matroids.

Algorithm 24 Greedy Algorithm for Matroid Minimisation

1: procedure minimise((V,I),w)
2: sort(V , key = λt.w(t)) ▷ Sort elements by weight, so w(e1) ≤ w(e2) ≤ . . . ≤ w(e|V |)
3: B = ∅
4: for i = 1 to len(V) do
5: if B ∪ {ei} then ▷ Check the next cheapest edge is independent
6: B = B ∪ {ei}
7: end if
8: end for
9: return B

10: end procedure

Theorem 49.2.32. The greedy algorithm solves the matroid minimisation problem optimally.

Proof. Let B = {ej,1,ej,2, . . . ,ej,n} be the solution found by the algorithm. Suppose there is an element
e ∈ V \ B. If B ∪ {e} were independent, then this element would have been added to to B in line 6.
Since this element was rejected, B ∪ {e} is not independent, and hence B is a basis.

To prove optimality of B, let B∗ = {e∗j,1,e∗j,2, . . . ,e∗j,n} be any optimal solution whose elements are sorted
according by weight, as in the algorithm. Without loss of generality, B∗ has the longest “prefix” coinciding
with B.

Let jk be the smallest index such that ej,k ̸= e∗j,k. Since the set {ej,1,ej,2, . . . ,e∗j,k} is independent, ej,k
appears before e∗j,k in the order, and hence w(ej,k) ≤ w(e∗j,k).

If ej,k is the last element of B, then wB ≤ wB∗, so B is optimal. Otherwise, ej,k is not the last element
of B. Consider the set B′ = {ej,1,ej,2, . . . ,ej,k}. Since |B′| < |B∗|, there exists a set Z ⊆ B∗ \ B′

of cardinality |B∗| − |B′| such that the set B′′ = B′ ∪ Z is independent, and hence a basis. Then,
w(B′′) ≤ w(B∗), so B′′ is an optimal basis, and this has a longer prefix coinciding with B, contradicting
the choice of B∗. ■

Corollary 49.2.32.1. An almost identical algorithm solves the matroid maximisation problem optimi-
ally.

An independence oracle for an independence system (V,I) is a function D : P(E)→ {0,1} defined by

∀F ⊆ V,D(F ) =

{
1 F ⊆ I
0 otherwise

Remark. Because an independence system is determined entirely by V and I, the independence oracle
provides enough information to recover the independence system it describes, so we can flip the definition,
and say that every independence oracle defines an independence system.

A basis-superset oracle is a function D : P(E)→ {0,1} defined by

∀B ⊆ V,B(B) =

{
1 B ∈ I ∧ ¬∃x ∈ E : B ∪ {x} ∈ I
0 otherwise
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The greedy algorithm requires sorting the elements of V , which takes O(|V | log |V |) time. However, more
significantly, we need to consult with the basis-superset oracle at every step, so the complexity of the
algorithm depends on the complexity of the oracle, given by O(D).

Theorem 49.2.33. Let (V,I) be an independence system. The greedy algorithm solves the maximisation
problem optimally for any w : E → R if and only if (V,I) is a matroid.

This theorem allows us to bound how well greedy algorithms can solve certain problems. For instance,
the travelling salesman problem is an independence system, but not a matroid, so this theorem tells us
that a greedy algorithm cannot optimally solve the travelling salesman problem.

Proof. Suppose V,I is not a matroid. That is, there exists X,Y ∈ I with |X| < |Y | such that for all
e ∈ Y \X, X ∪ {e} ̸∈ I.

Let ε > 0. Define the weight function by,

w(e) :=

 1 + ε e ∈ X Choose first |X| steps
1 e ∈ Y \X Can’t choose
0 e ∈ E \ {X ∪ Y } Don’t change weight

So greedy outputs F with w(F ) = |x|(1 + ε) + 0. So, w(F ) = |X|(1 + ε) < w(Y ) = |Y | for ε <
|Y |/|X| − 1, a contradiction to w(F ) being maximum for all weight functions w. This completees the
forward implication.

Now, suppose (V,I) is a matroid. This portion of the proof is similar to the proof of correctness for
the greedy algorithm, so we give it more tersely. Let w be an arbitrary weight function, and let F =
{f1,f2, . . . ,fr} be the output of the greedy algorithm. Without loss of generality, suppose w(f1) ≥
w(f2) . . . ≥ w(fr). Suppose there exists G ∈ I such that |F | < |G|. By the augmentation property, there
exists g ∈ G\F such that F ∪{g} implies there exists t such that {f1, . . . ,ft,g,ft+1, . . . ,fs} = F ∪{g} ∈ I
with w(ft) ≥ w(g) ≥ w(ft+1). We also have {f1, . . . ,ft} ⊆ {f1, . . . ,ft,g} ∈ I, so g should have been
chosen in step t+ 1 of the greedy algorithm. So, F has maximum cardinality by contradiction.

Suppose there exists G = {g1,g2, . . . ,gr} ∈ I such that w(G) > w(F ), and w(gi) ≥ w(gi+1). So,∑
gi∈G

w(gi) >
∑
fi∈F

w(fi)

so, there exists k such that w(gk) > w(fk) since |G| ≤ |F |. Take X = {f1,f2, . . . ,fk−1} (= ∅if k = 1),
and Y = {g1,g2, . . . ,gk}. Clearly, |X| < |Y |, so by the augmentation property, there exists gt ∈ Y \X
with t ≤ k such that {f1,f2, . . . ,gt} = X ∪ {gt} ∈ I. Because w(gt) ≥ w(gk) > w(fk), gt should have
been chosen before step k of the greedy algorithm, contradicting correctness, and so G does not exist
and hence w(f) is maximum.

This completes the reverse implication. ■

Given two matroids, (V,I1) and (V,I2), the matroid intersection problem is to find a set X ∈ I1 ∩ I2
such that |X| is maximum.

Theorem 49.2.34. Edmonds’ algorithm solves the matroid intersection problem. If the matroids are
given by independence oracles with maximum complexity T , then the algorithm solves the problem in
O(|V |3T ) time.

The partition matroid is defined as follows. Let Bi be a collection of disjoint subsets of V , and let di be
integers with 0 ≤ di ≤ |Bi|. Define I ⊆ V to be independent if |I ∩Bi| ≤ di for each i.

In particular, if i = 1 and B1 = V , the partition matroid is the uniform matroid.

Given a bipartite graph G = (A, ∪B,E), define two partition matroids MA and MB on E as follows:
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MA: for each vertex i ∈ A, let Ai be the set of edges incident to i and di = 1.

MB : for each vertex i ∈ B, let Bi be the set of edges incident to i and di = 1.

Theorem 49.2.35. The maximum matching problem for G coincides with the matroid intersection
problem for MA and MB.

Theorem 49.2.36. The family of independent sets in a graph G forms a matroid if and only if every
connected component of G is a clique.

Proof. Let G be a graph, of which every connected component is a clique. For a subset U ⊆ V (G), every
basis in U contains exactly one vertex in each connected component in G[U ] (the subgraph induced by
U). Therefore, all bases in U have the same size, and hence the family of independent sets in G forms a
matroid, completing the forward implication.

If G contains a connected component with is not a clique, then it contains a subset U ⊆ V (G) inducing
a path on 3 nodes. But then U has two bases of size 1 and 2, so the family of independent sets in G do
not form a matroid, completing the reverse implication. ■

Theorem 49.2.37. Every independence system is the intersection of finitely many matroids.

Proof. Let C be a circuit of (V,I), and IC the family of subsets A ⊆ E such that C is not a subset of A.
Then, (V,FC) is a matroid because,

(M1) ∅ ∈ IC .

(M2) For each A ⊆ B, B ∈ F → A ∈ I.

(M3)′ All bases of (V,FC) have size |V | − 1.

and (V,I ) is the intersection
⋂
(V,IC) taken over all circuits C of (V,I ). ■

Theorem 49.2.38. The problem of finding a maximum independent set in the intersection of 3 matroids
is NP-hard.

49.3 Polynomial Time Solvability

For many combinatorial optimization problems, polynomial-time algorithms are known. However, there
are also many important problems for which no polynomial-time algorithms are known to exist. Although
we cannot prove that none exists, we can show that a polynomial-time algorithm for one “hard” problem
would imply a polynomial-time algorithm for other “hard” problems.

49.3.1 Decision Problems
An alphabet in the context of formal languages is any set of symbols, often denoted by Σ. A word over
an alphabet is any finite sequence of letters.

The Kleene star, also known as the free monoid constructor, is a unary operation, either on sets of strings,
or sets of symbols or characters. The application of the Kleene star to a set V is written as V ∗.

1. If V is a set of strings, then V ∗ is defined as the smallest superset of V that contains the empty
string, ε, and is closed under string concatenation.

2. If V is a set of symbols or characters, then V ∗ is the set of all strings over symbols in V , including
the empty string ε.
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More formally, given a set V , we define the sets,

V 0 = {ε}
V 1 = V

and recursively define the set,

V i+1 = {wv : w ∈ V i,v ∈ V } for each i > 0

If V is a formal language, then V i is a shorthand for the concatenation of V with itself i times. That is,
V i represents the set of all strings that can be represented as the concatenation of i strings in V . The
Kleene star on V is then defined as:

V ∗ =
⋃
i≥0

V i

The Kleene star is highly important in theoretical computer science, particularly in complexity and
computability theory.

Note that if V is countable, then V ∗ is the countable union of countable sets, and is hence countable.

The set of all words over an alphabet Σ is then Σ∗. A formal language L over an alphabet Σ is a subset
of Σ∗. See §2.3.4 for a more in-depth treatment on this topic.

Let {0,1}∗ be the set of all binary words, and let L ⊆ {0,1}∗ be a language. L can be interpreted as a
decision problem as follows: given any binary string, decide whether it belongs to L.

Conversely, assuming a fixed efficient encoding, we can encode the input to any problem that can be
answered positively or negatively as a binary string, in which case the set of all instances of the problem
defines a language X, and the set of “yes” instances defines a subset Y ⊆ X.

A decision problem is a pair P = (X,Y ) where X is a language decidable in polynomial time, and Y ⊆ X.
The elements of X are called instances, the elements of Y are yes-instances, and the elements of X \ Y
are no-instances. Decision problems in theoretical computer science are often written in (abbreviated)
full capital letters.

An algorithm for a decision problem P = (X,Y ) is an algorithm computing the function f : X → {0,1}
such that f(x) = 1 for x ∈ Y and f(x) = 0 for x ∈ X \ Y . For instance, given an undirected graph,
encoded as a binary string, we might ask, “Is there a Hamiltonian cycle in G?”

Theorem (Cantor’s Diagonal Argument). There are functions f : N → {0,1} that cannot be computed
by any algorithm.

Proof. Algorithms are finite sequences of a finite alphabet of possible instructions, so there are countably
many possible algorithms, while the set of functions f has size 2ℵ0 = P(N) = c which is uncountable, so
no bijection can exist between the sets.

More specifically, by Cantor’s Diagonal Argument, c is strictly larger than ℵ0, so there are more functions
than there are algorithms, as required. ■

An oracle is an abstract machine (a generalisation of a function) that is assumed to be able to solve a
specific problem (even non-decision problems) in a single operation. The problem is not assumed to even
be computable – an oracle is simply a black box that is able to produce a solution for any instance of a
given computation program.

A certificate or a witness is a string that certifies the membership of some string in a language. So, for
the Hamiltonian cycle question, a certificate for a graph G would simply be a Hamiltonian cycle: clearly,
if you have one, the graph G should be in X.
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The class of all decision problems which admit a polynomial time algorithm is called P or PTIME (for
Polynomial Time).

In contrast, NP (Non-Deterministic Polynomial time) is the class of decision problems that admit a
polynomial-time certificate-checking algorithm. P is a subclass of NP, as every problem that is solvable
in polynomial time can also be checked in polynomial time by just solving the problem. As shown
above, Hamiltonian Cycle is NP, and, currently, there does not exist a polynomial time algorithm for
Hamiltonial Cycle, so it is not P.

Many decision problems encountered in combinatorial optimisation belong to NP. For many of them,
such as Hamiltonian Cycle, it is not known whether they admit polynomial time algorithms. However,
we can say that certain problems are not easier than others. This can be formalised through the concept
of polynomial reduction.

Let P1 = (X1,Y1) and P2 = (X2,Y2) be decision problems. Let f : X2 → {0,1} with f(x) = 1 for x ∈ Y2
and f(x) = 0 for x ∈ X2\Y2. We say that P1 polynomially reduces to P2 if there exists a polynomial-time
algorithm for P1 using f as an oracle.

Theorem 49.3.1. If P1 polynomially reduces to P2, and there is a polynomial-time algorithm for P2,
then there is a polynomial-time algorithm for P1.

Proof. The oracle for P2 is queried at most polynomially many times in the polynomial-time algorithm
for P1. If there is a polynomial-time algorithm for P2, then it can be used as the oracle, so P1 is the
composition of two polynomial-time algorithms, and is hence polynomial-time. ■

Let P1 = (X1,Y1) and P2 = (X2,Y2) be decision problems. We say that P1 polynomially transforms to
P2 if there exists a function f : X1 → X2 computable in polynomial time such that f(x1) ∈ Y2 for all
x1 ∈ Y1 and f(x1) ∈ X2 \ Y2 for all x1 ∈ X1 \ Y1.

A decision problem Π ∈ NP is called NP-complete if all other problems in NP polynomially transform to
Π. So, to prove a problem is NP-complete, we need to show it is in NP, and to polynomially transform
a known NP-complete problem into it.

Conversely, a problem Π ∈ NP is NP-hard if all problems in NP polynomially-reduce to Π.

49.3.2 Boolean Satisfiability
Revisit §2 if you have forgotten about predicate logic.

A valuation on a Boolean expression is an assignment of truth values to the literals in the expression.

A compound proposition is in conjunctive normal form or CNF if it is a conjunction of one or more
clauses, where a clause is a disjunction of atoms; it is an AND of OR statements. A compound proposition
is similarly in disjunctive normal form or DNF if it is the disjunction of one or more clauses, where a
clause is a conjunction of atoms; it is an OR of AND statements.

Propositions in CNF:

• p

• (p ∨ ¬q) ∧ r

• (p ∨ q) ∧ (¬p ∨ r) ∧ q ∧ (¬q ∨ ¬r)

• p ∧ ¬q ∧ r ∧ t ∧ ¬u ∧ v

Propositions not in CNF:

• (p ∧ q) ∧ (q ∨ r)

• (p ∨ q) ∧ (q→¬r) ∧ (¬p ∨ r)
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• (p ∨ (q ∧ r)) ∧ (p ∨ ¬r)

Interchanging ∧ and ∨ above gives examples of clauses in and not in DNF.

Using the equivalence of material implication and disjunction, along with De Morgan’s laws and the
distributive laws, it is possible to rewrite any compound proposition in a normal form. However, applying
these laws blindly does not necessarily produce the simplest normal form for a compound proposition.

For example,

(P → Q) ∧ (¬P → Q) ≡ (¬P ∨Q) ∧ (P ∨Q)

≡ (¬P ∧ P ) ∨ (¬P ∧Q) ∨ (Q ∧ P ) ∨ (Q ∧Q)

≡ 0 ∨ (¬P ∧Q) ∨ (Q ∧ P ) ∨Q
≡ (¬P ∧Q) ∨ (Q ∧ P ) ∨Q

Inspecting the clauses closer, we see that Q controls the value of the entire expression, so a simpler CNF
for the proposition is just Q.

≡ Q

We should really draw out a truth table to prove this formally, but it should be clear enough that this
is true.

Theorem 49.3.2. There is a polynomial time algorithm to reduce any Boolean expression to a DNF
and CNF representation.

Given a CNF C, the satisfiability problem or SAT is to determine if there is a valuation such that C
evaluates to true.

Theorem (Cook–Levin). SAT is NP-complete.

The satisfiability problem restricted to instances where each clause contains at most three literals is
called 3-SAT.

Theorem 49.3.3. 3-SAT is NP-complete.

Proof. Clearly, 3-SAT belongs to NP. To prove completeness, we show that SAT polynomially transforms
to 3-SAT.

Let Z = (x1 ∨ x2 ∨ . . . ∨ xk) be a clause containing k > 3 literals. Transform Z as follows:

(x1 ∨ x2 ∨ . . . ∨ xk) 7→ (x1 ∨ x2 ∨ . . . ∨ xk−1 ∨ u) ∧ (¬u ∨ xk−1 ∨ xk)

where u is a new variable.

Suppose there is an assignment φ satisfying the original CNF. If Z is satisfied by one of the first k − 2
literals, then by defining, φ(u) = 0, we extend φ to an assignment satisfying the transformed CNF. If Z
is satisfied by xk−1 or xk, we define φ(u) = 1 and obtain an assignment satisfying the transformed CNF.

Conversely, suppose there is an assignment φ satisfying the transformed CNF. If φ(u) = 0, then Z is
satisfied by one of the first k − 2 literals. If φ(u) = 1, then Z is satisfied by xk−1 or xk.

So, an assignment φ satisfies Z if and only if it satisfies the transformed CNF.

Because a Boolean formula contains finitely many terms, this algorithm always terminates. Applying
this transformation repeatedly, the original CNF can be transformed into an instance of 3-SAT which is
satisfiable if and only if the original one is. ■

Theorem 49.3.4. 2-SAT is P.
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Proof. The implication a→ b is logically equivalent to ¬a∨b, so, in 2-SAT, the clause x1∨x2 is equivalent
to the pair of implications ¬x1 → x2 and ¬x2 → x1. If x1 is true, then x2 must be true, and if x2 is
false, then x1 must be false.

These implications are straightforward, so we just follow every possible implication chain and see if we
ever derive both ¬x from x or x from ¬x. If we do for some x, then the 2-SAT formula is unsatisfiable.
Otherwise, it is satisfiable. The number of possible implication chains is polynomially bounded in the
size of the input formula, so they are checkable in polynomial time. ■

Remark. With 3-SAT, we can express implications of the form a→ b ∨ c, where a,b,c are literals. Now,
if a is true, then one or both of b and c are true, but we don’t know which. In this case, we have to do
case analysis, and combinatorial explosion occurs.

Theorem 49.3.5. HAMILTONIAN-CYCLE is NP-complete.

Proof. Membership in NP is obvious. To prove completeness, we polynomially transform 3-SAT to
HAMILTONIAN-CYCLE.

Let C be a CNF with clauses Z1,Z2, . . . ,Zm over the set of variables X = {x1,x2, . . . ,xn}, with each
clause containing three variables. We note that there are 2n possible valuations on C. We model these
2n possible valuations using a digraph with 2n different Hamiltonian cycles.

Construct n paths P1,P2, . . . ,Pn corresponding to the n variables, each consisting of 2k nodes, Pi =
(vi,1,vi2 , . . . ,vi,2k). We add edges from vi,j−1 to vi,j on Pi corresponding to the assignment xi = true
(picturing the paths as lying left to right, these edges point left to right). We add edges from vi,j to
vi,j−1 on Pi corresponding to the assignment xi = false (right to left). Next, add the edges connecting
vi,k to vi+1,k for each k.

Next, add a source node s and target node node t, and connect s to v1,1 and vi,k, and connect t to vn,1,
vn,k, and s.

Next, add a node C1,C2, . . . ,Cm for each clause. If a clause Cj contains the variable xi, connect Cj to
xi,2j−1 and xi,2j , left to right (add edges (xi,2j−1,Cj), and (Cj ,xi,2j)) if Cj contains the positive literal
xi, and right to left (add edges (xi,2j ,Cj), and (Cj ,xi,2j−1)) if Cj contains the negative literal ¬xi.

Any Hamiltonian cycle in the graph traverses Pi either from right to left, or left to right, because any
path entering a node vi,j has to exit from vi,j+1 either immediately, or via one clause-node in between,
in order to maintain the Hamiltonian property. Similarly, all paths entering at vi,j−1 must exit from vi,j .

Note that this graph can be constructed in polynomial time.

Since each path P1 can be traversed in two possible ways, and we have n paths mapping to n variables,
there can be 2n Hamiltonian cycles in the graph G \ {C1,C2, . . . ,Ck}, each corresponding to a different
valuation of x1,x2, . . . ,xn.

If there exists a Hamiltonian cycle H in G

• If H traverses Pi from left to right, assign xi = true;

• If H traverses Pi from right to left, assign xi = false.

Since H visits each clause node Cj , at least one of the Pi was traversed in the correct direction relative
to the node Cj , so the assignment obtained here satisfies the given 3-CNF.

Conversely, if there exists a satisfying assignment for the 3-CNF, select the path that traverses Pi from
left to right if xi = true, or right to left if xi = false, including the clause nodes whenever possible.
Connect the source to P1, P2 to t, and Pi to Pi+1 appropriately so as to maintain the continuity of
the path, then connect t to s to complete the cycle. Since the assignment is such that every clause
is satisfied, the clause-nodes are included in the path. The Pi nodes, s and t are all included, and all
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the paths are traversed in one direction only so no node is repeated twice, so the path obtained is a
Hamiltonian Cycle. ■

Theorem 49.3.6. MAXIMUM-INDEPENDENT-SET is NP-complete.

Proof. Membership in NP is obvious. To prove completeness, we polynomially transform SAT to
MAXIMUM-INDEPENDENT-SET.

Let Z be a collection of clauses Z1,Z2, . . . ,Zm over the set of variables X = {x1,x2, . . . ,xn}, with each
Zi containing ki literals (βi,1∨βi,2∨ . . .∨βi,k). We construct a graph G such that G has an independent
set of size m if and only if there is a truth assignment satisfying all m clauses.

For each clause Zi, we introduce a clique of ki vertices, one vertex per literal. Two vertices in different
cliques (clauses) are connected by an edge if and only if they represent the same variable, but of different
polarity.

Suppose G has an independent set S of size m. Then each of these cliques contains exactly one vertex.
Setting each of these literals to be true, we obtain an assignment satisfying all m clauses since no two
literals in S are in conflict.

Conversely, if there is a truth assignment satisfying all m clauses, then we choose a true literal out of
each clause. The set of corresponding vertices defines an independent set in G of size m. ■

Theorem 49.3.7. MAXIMUM-INDEPENDENT-SET is NP-complete for graphs of degree at most 3.

Proof. If G has a vertex x of degree at least 4, we apply vertex splitting with |Y | = 2. In the trans-
formed graph, x′ has degree 2, y has degree 3, and z has degree deg(x) − 1. Repeated applications of
vertex splitting transforms G into a graph of vertex degree at most 3, and clearly this transformation is
polynomial. ■

Theorem 49.3.8. MINIMUM-VERTEX-COVER and MAXIMUM-CLIQUE are NP-complete.

The travelling salesman problem (TSP) asks the following question: Given a list of cities and the distances
between each pair of cities, what is the shortest possible route that visits each city exactly once and
returns to the origin city?

That is, given a weighted complete graph (Kn,w), find a Hamiltonian cycle of minimum weight.

Theorem 49.3.9. TSP is NP-hard.

Proof. We give a reduction from HAMILTONIAN-CYCLE.

Let G be an instance of HAMILTONIAN-CYCLE. Construct an instance G′ of TSP as follows: V (G′) =
V (G) with every two vertices of G′ being adjacent. Define w((u,v)) = 1 if (u,v) ∈ E(G) and w((u,v)) = 2
otherwise. Then G has a Hamiltonian cycle if and only if the optimum tour in G′ has length n. ■

49.3.3 Approximation Algorithms
An absolute approximation algorithm for an optimization problem P is a polynomial-time algorithm A
for P for which there exists a constant k such that |A(I) − Opt(I)| ≤ k for all instances I of P , where
A(I) is the size of the solution found by the algorithm A and Opt(I) is the size of an optimal solution.

Let P be an optimization problem with non-negative weights and k ≥ 1. A k-factor approximation
algorithm for P is a polynomial-time algorithm A for P such that 1/kOpt(I) ≤ A(I) ≤ kOpt(I) for all
instances I of P . We also say that A has performance ratio k.

The first inequality applies to maximization problems and the second one to minimization problems.
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A 1-factor algorithm is an exact polynomial-time algorithm.

Theorem 49.3.10. There is no k such that the greedy algorithm for VERTEX-COVER is a k-factor
approximation algorithm.

Proof. Let p ∈ N and Gp be a graph with vertex set V (G) = A ∪B ∪ C, where |A| = |B| = p. For each
i ∈ [2,3, . . . ,p− 1], split the vertices of B into ⌊p/i⌋ groups and for each group introduce the vertex of A
adjacent to the vertices of that group. The algorithm may first delete the vertices of A, in which case
the size of the solution is |A| + p. On the other hand B is an optimal solution of size p, and the ratio
|A|/p+ 1. ■

Theorem 49.3.11. There is a 2-factor approximation algorithm for VERTEX-COVER.

Proof. Let M be a maximum matching in G. Then the set of vertices covered by M is a vertex cover
containing 2|M | vertices. On the other hand, any vertex cover must contain at least |M | vertices, so
|M | ≤ τ(G) ≤ 2|M |, where τ(G) is the size of a minimum vertex cover in G. Therefore, 2|M |/τ(G) ≤ 2,
so this algorithm is a 2-factor approximation. ■

49.3.4 Chromatic Numbers
A vertex colouring of G is a mapping f : V (G)→ N with f(u) ̸= f(v) whenever (u,v) ∈ E(G).

In other words, in a vertex colouring, every colour class is a independent set, so vertex colouring is a
partition of V (G) into independent sets.

A edge colouring of G is a mapping f : E(G) → N with f(e) ̸= f(e′) for all edges e and e′ incident to
the same vertex.

Remark. An edge colouring of G is equivalent to a vertex colouring of the line graph of G.

Given an undirected graph G, the vertex colouring problem is to find a vertex colouring of G with
minimum colours. The optimum value of the vertex colouring problem for G is called the chromatic
number of G, denoted χ(G).

Given an undirected graph G, the edge colouring problem is to find an edge colouring with minimum
colours. The optimum value of the edge colouring problem for G is called the edge-chromatic number or
chromatic index of G, denoted χ′(G).

Theorem 49.3.12. The following decision problems are NP-complete for any fixed value k ≥ 3:

(i) Decide whether a given graph has a chromatic number at most k.

(ii) Decide whether a given graph has a chromatic index at most k.

Moreover, (i) is NP-complete even for planar graphs of vertex degree at most 4, and (ii) is NP-complete
for graphs of vertex degree at most 3.

Theorem 49.3.13. Both problems can be solved in polynomial time for k = 1,2.

Proof. χ(G) = 1 if and only G has no edges. χ(G) = 2 if and only if G is bipartite. In both caes, the
problem can be solved in polynomial time. The chromatic index of G is at most 2 if and only if the
chromatic number of L(G) is at most 2. ■

Theorem 49.3.14. For any graph G,

χ′(G) ≥ max
v∈V (G)

deg(v)
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Proof. To reduce clutter, define ∆(G) := maxv∈V (G) deg(v). We induct on |E(G)|.

Let ∆(G) = k, and let e = (u,v) ∈ E(G). By the induction hypothesis, G \ {e} has an edge colouring f
with k colours. Since the degree of u and v is strictly less than k in G\{e}, there is a colour i ∈ {1, . . . ,k}
which is missing at u, and a colour j ∈ {1, . . . ,k} which is missing at v. If i = j, we can assign this
colour to the edge e = (u,v) in G.

Otherwise, we consider the subgraph H of G\{e} formed by the edges of colour i and j. Every vertex of
H has degree at most 2, and hence every connected component of H is either a path or a cycle. Each of
u and v has degree 1 in H (degree 2 is not possible because each of them misses one of the two colours;
degree 0 would allow to use the same argument as when both of them miss the same colour). Therefore,
the connected component of H containing u is a path, and the connected component of H containing v
is a path, and these two paths are different, otherwise we would have i = j. But now we can exchange
the colours on the path containing u, and assign colour j to the edge e in G. ■

Theorem (Vizing). For any graph G,

∆(G) ≤ χ′(G) ≤ ∆(G) + 1

Corollary 49.3.14.1. The edge colouring problem admits an absolute approximation algorithm on simple
graphs.

Let ω(G) denote the size of a maximum clique in G.

Theorem 49.3.15. For any graph G,

ω(G) ≤ χ(G) ≤ ∆(G) + 1

Proof. Since the vertices of any clique must have pairwise different colours in any proper colouring of G,
we must have ω(G) ≤ χ(G).

For the second inequality, let V (G) = {v1, . . . ,vn}, and let S be a set of ∆(G) + 1 colours. Assign any
colour from S to v1, and then proceed by induction as follows: for each i, vertex vi has at most ∆(G)
neighbours among v1, . . . ,vi−1, and hence at least one colour from S is missing among the neighbours of
vi. Assign this colour to vi, and proceed to vi+1. ■

Corollary 49.3.15.1. A vertex colouring of G with ∆(G) + 1 colours can be found in linear time.

Theorem (Brooks). If G is a connected graph which is neither complete nor an odd cycle, then χ(G) ≤
∆(G). Otherwise, χ(G) = ∆(G) + 1.

Corollary 49.3.15.2. Every connected graph of vertex degree at most 3 is 3-colourable, except for K4.

A graph is planar if it can be drawn on the plane in such a way that no edges cross each other. A face
of a planar graph is a maximal section of the plane in which any two points can be joined by a curve
that does not intersect any part of G. The degree of a face is the number of edges in the boundary
surrounding the face.

Theorem (Euler). Let G be a connected planar graph with n vertices, m edges, and f faces. Then,

n−m+ f = 2

Proof. By induction on m. For m = 0, G = K1, a graph with 1 vertex and 1 face. Suppose the formula
is true for any connected planar graph with fewer than m edges, and let G have m edges. If G is a tree,
then m = n− 1 and f = 1 and the formula holds. Otherwise, if G is not a tree, consider a cycle C, and
an edge e ∈ C. The graph G \ {e} is connected, has the same number of vertices, one edge fewer, and
one face fewer. By the induction hypothesis, in G \ {e}, we have n − (m − 1) + (f − 1) = 2. Therefore
in G, we have n−m+ f = 2. ■
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Corollary 49.3.15.3. If G is a connected planar graph with n ≥ 3 vertices and m edges, then m ≤ 3n−6.
If G is additionally triangle-free, then m ≤ 2n− 4.

Proof. If we trace the boundary of all faces, we encounter each edge exactly twice. Denoting the number
of faces of degree k by fk, we conclude that, ∑

k

kfk = 2m

Since the degree of any face in a simple planar graph is at least 3, we have,

3f = 3
∑
k≥3

fk

=
∑
k≥3

kfk

= 2m

Together with Euler’s formula, this proves m ≤ 3n− 6.

If G is additionally triangle-free, then,

4f = 4
∑
k≥4

fk

=
∑
k≥4

kfk

= 2m

and therefore m ≤ 2n− 4. ■

Corollary 49.3.15.4. K5 and K3,3 are not planar.

Proof. For K5, we have m > 3n− 6, since n = 5 and m = 10, so K5 is not planar. K3,3 is triangle-free,
and we have m > 2n− 4, since n = 6 and m = 9, so K3,3 is not planar. ■

Corollary 49.3.15.5. Every planar graph has a vertex of degree at most 5.

Proof. Let G be a connected planar graph with n vertices and m edges. Then,∑
v∈V (G)

deg(v) = 2m

≤ 2(3n− 6)

= 6n− 12

and hence G has a vertex of degree at most 5. ■

A graph H is a minor of G if H can be obtained from G by vertex deletions, edge deletions, and edge
contractions.

Theorem (Kuratowski–Wagner). A graph G is planar if and only if G does not contain K5 nor K3,3

as minors.

Theorem (Six Colour). Every planar graph G can be vertex coloured with at most 6 colours.
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Proof. We induct on the number of vertices. Obviously, every graph with at most 6 vertices is 6-
colourable.

If a planar graph has more than 6 vertices, then by Corollary 49.3.15.5, there exists a vertex v of degree
at most 5. By the induction hypothesis, G \ {v} is 6-colourable. Then, then neighbours of v use at most
5 different colours, so the unused colour can be used to colour v, and G is 6-colourable. ■

Theorem (Five Colour). Every planar graph G can be vertex coloured with at most 5 colours.

Proof. We induct on the number of vertices. Obviously, every graph with at most 5 vertices is 5-
colourable.

If a planar graph has more than 5 vertices, then by Corollary 49.3.15.5, there exists a vertex v of degree at
most 5. Delete this vertex from G to form G′ = G\{v}. By the induction hypothesis, G′ is 5-colourable.
If the neighbours of v do not use all 5 different colours, the unused colour can be used to colour v, and
G is 5-colourable. Otherwise, consider the vertices v1,v2,v3,v4,v5 adjacent to v in cyclic order (which will
depend on how we draw G), coloured with colours 1,2,3,4, and 5, respectively.

Consider the subgraph G1,3 of G′ consisting of the vertices coloured with colours 1 and 3 only, and the
edges connecting them (this is called a Kempe chain). If v1 and v3 lie in different connected components
of G1,3, we can swap the 1 and 3 colours on the connected component containing v1 without affecting
the colouring of the rest of G′. This frees colour 1 for v, completing the task. If v1 and v3 lie in the same
connected component of G1,3, then we can find a path in G1,3 consisting of only colour 1 and 3 vertices.

Now consider the subgraph G2,4 of G′ consisting of the vertices coloured with colours 2 and 4 only, and
the edges connecting them, and appply the same arguments as before. We are then either able to reverse
the 2-4 colouration on the subgraph of G2,4 containing v2 and colour v colour 2, or we can connect v2
and v4 with a path that consists of only colour 2 and 4 vertices. Such a path would necessarily intersect
the 1-3 coloured path constructed before, since the vertices were given in cyclic order, contradicting the
planarity of G. ■

Theorem (Four Colour). Every planar graph G can be vertex coloured with at most 4 colours.

Remark. The Four Colour Theorem was one of the first major theorems to be proved with significant
computer assistance.

If the Four Colour Theorem were false, then there would exist a minimal counterexample. After reducing
the possibilities with various mathematical techniques, the remaining configurations were checked using
a computer, taking over a thousand computer core hours to finish.

49.3.5 Bin Packing
The knapsack problem (KNAPSACK) is as follows: given a set of items, each with a weight and a value,
determine which items to include in the collection so that the total weight is less than or equal to a given
limit and the total value is as large as possible.

Theorem 49.3.16. Deciding the knapsack problem (“Can a value of at least V be achieved without
exceeding weight W?”) is NP-complete.

The subset sum problem (SSP) is as follows: given integers C = (c1,c2, . . . ,cn) and a target number T ,
decide if there is a subset S ⊆ {1, . . . ,n} such that∑

i∈S
cj = T

SSP is a special case of KNAPSACK.
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Theorem 49.3.17. SSP is NP-hard. If T = 0, the problem is NP-complete. If the integers in C are all
positive, then the problem is NP-complete.

The partition problem is a variant of SSP where all inputs are positive, and the target sum is exactly
half the inputs. Or equivalently, ∑

i∈S
cj =

∑
i∈{1,...,n}\S

cj

Theorem 49.3.18. PARTITION is NP-complete.

Suppose we have n objects, each of a given size, and some bins of equal capacity. We want to assign the
objects to the bins, using as few bins as possible. Of course, the total size of the objects assigned to one
bin should not exceed its capacity. Without loss of generality, we assume that the capacity of each bin
is 1.

Given a list of non-negative numbers a1,a2, . . . ,an ≤ 1, the bin packing problem is to find a natural k
and an assignment f : {1, . . . ,n} → {1, . . . ,k} with,∑

{i:f(i)=j}

ai ≤ 1

for all j ∈ {1, . . . ,k}, such that k is minimum.

Theorem 49.3.19. The following problem is NP-complete: given an instance I of Bin Packing, decide
whether I has a solution with two bins.

Proof. Membership in NP is obvious. To prove completeness, we transform PARTITION by choosing

ai =
2ci∑n
i=1 ci

■

Corollary 49.3.19.1. It is NP-complete to distinguish whether the optimal solution is 2 or 3, and hence
for any ε > 0, there is no (3/2− ε)-factor approximation algorithm for Bin Packing.

In the online variant of the problem, items arrive one after another, and the irreversible decision of where
to place an item has to be made before knowing the next item, or even if there will be another one.

Most algorithms follow the same general pattern: if the next item fits in one of the currently open bins,
put it in one of the bins. Otherwise, open a new bin and put the new item in it. These algorithms differ
in the criterion by which they choose the open bin for the new item in the first step.

One algorithm for the online variant of BIN-PACKING is the next fit algorithm. In next fit, we always
keep a single open bin. When the new item doesn’t fit into it, it closes the current bin, and opens a new
bin. Its advantage is that it is a bounded-space algorithm, since it only needs to keep a single open bin
in memory.
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Algorithm 25 Next Fit

1: procedure NF(C)
2: k = 1
3: S = 0
4: for i = 1 to n do
5: if S + ci > 1 then
6: k = k + 1
7: S = 0
8: end if
9: f(i) = k

10: S = S + ci
11: end for
12: return k,f
13: end procedure

Let NF(I) denote the number of bins found by the next fit algorithm, OPT(I) be the minimum number
of bins, and Σ(I) =

∑
i ci

Theorem 49.3.20.
NF(I) ≤ 2⌈Σ(I)⌉ − 1 ≤ 2OPT(I)− 1

Proof. Let k = NF(I), and let f be the assignment found by the next fit algorithm. For j ∈ {1, . . . ,⌊k/2⌋},
we have, ∑{

i:f(i)∈{2j−1,2j}
} ci > 1

Adding these inequalities, we obtain ⌊k/2⌋ < Σ(I). Since the left side is an integer, we conclude that
(k−1)/2 ≤ ⌊k/2⌋ ≤ ⌈Σ(I)⌉−1, proving k ≤ 2⌈Σ(I)⌉−1. The second inequality follows from the obvious
fact that ⌈Σ(I)⌉ ≤ OPT(I). ■

Corollary 49.3.20.1. Next fit is a 2-factor approximation algorithm for BIN-PACKING.

The next-k-fit algorithm (NkF) keeps the last k bins open, and chooses the first bin in which the item
fits. It is therefore a k-bounded-space algorithm. For k ≥ 2, NkF gives better results than NF, but
increasing k to constant values large than 2 improves the alorithm no further in its worst-case behaviour.

The first fit algorithm keeps all bins open, in the order they were opened, attempting to place new items
into the first bin in which it fits.

Algorithm 26 First Fit

1: procedure FF(C)
2: for i = 1 to n do

3: f(i) = min

j ∈ N :
∑

{k<i:f(k)=j}

ak + ai ≤ 1


4: k = max

i∈{1,...,n}
f(i)

5: end for
6: return k,f
7: end procedure

Theorem 49.3.21. FF(I) ≤ 7/4OPT(I).
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The first fit decreasing algorithm (FFD) sorts the items by descending size, then calls first fit. FFD
requires being able to see the entire list first and thus solves the offline variant of Bin Packing.

Algorithm 27 First Fit Decreasing

1: procedure FFD(C)
2: sort(C)
3: return NF(C)
4: end procedure

Theorem 49.3.22. FFD is a 3/2-factor approximation algorithm for Bin Packing.

Proof. Let I be an instance of the problem and let k = FFD(I). Consider the jth bin for j = ⌈2k/3⌉.
If it contains an item of size greater than 1/2, then each bin with smaller index did not have space for
this item. Therefore, each of these bins has been assigned an item before. As the items are considered
in non-increasing order, there are at least j items of size greater than 1/2. Thus, OPT(I) ≥ j ≥ 2k/3.

Otherwise, the jth bin and hence each bin with greater index contains no item of size greater than 1/2.
Therefore, the bins j,j+1, . . . ,k contain at least 2(k−j)+1 items, none of which fit into bins 1, . . . ,j−1.
Thus,

Σ(I) > min{j − 1,2(k − j) + 1}

≥ min

{⌈
2k

3

⌉
− 1,2

(
k −

(
2k

3
+

2

3

))
+ 1

}
=

⌈
2k

3

⌉
− 1

since OPT(I) ≥ Σ(I) > ⌈2k/3⌉ − 1, OPT(I) ≥ ⌈2k/3⌉ ≥ 2k/3. ■

49.3.6 Steiner Trees
Let G be an undirected graph, and let T ⊆ V (G). A Steiner tree for T is a set S such that T ⊆ V (S) ⊆
V (G) and E(S) ⊆ E(G). The elements of T are called terminals, and the elements of V (G) \ T are the
Steiner points of S.

Given an undirected weighted graph (G,w) and a set T ⊆ V (G), the Steiner tree problem is to find a
Steiner tree S for T of minimum weight.

MST (T = V (G)) and SHORTEST-PATH (|T | = 2) are special cases of STEINER-TREE solvable in
polynomial-time.

Theorem 49.3.23. STEINER-TREE is NP-hard, even for unit weights.

Proof. We give a transformation from MINIMUM-VERTEX-COVER, which is known to be NP-complete.

Given a graph G, we transform it to a graph H by adding, for each edge (u,v) ∈ E(G) a new vertex xu,v
which is adjacent to both u and v, and by adding edges which are missing in G.

We set w(e) = 1 for all edges e ∈ E(H), and set T = {xu,v : u,v ∈ E(G)}. We will show that G has a
vertex cover of size k if and only if H has a Steiner tree for T with k + |E(G)| − 1 edges.

Let T ∪ X be the set of vertices of a Steiner tree S in H, where X ⊆ V (G) ⊆ V (H). The set T is
independent in H as these vertices have neighbours only among the vertices of G. We also have that S
is a connected graph, so every vertex of T has a neighbour in X. This means that X is a vertex cover
in G, and E(S) = |T |+ |X| − 1 = |E(G)|+ |X| − 1, completing the forward implication.
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Conversely, let X be a vertex cover in G. We can connect the vertices of X in the graph H by |X| − 1
edges. Since every edge of G is covered by a vertex of X, every vertex of T is connected by an edge to
a vertex of X in H. The |X| − 1 edges connecting X and the |T | edges incident to the vertices of T
create a Steiner tree with |T |+ |X|−1 = |E(G)|+ |X|−1 edges, as required, thus completing the reverse
implication. ■

Let (G,w) be a weighted graph with all weights positive. The metric closure of (G,w) is the pair (G∗,c∗),
where G∗ is the graph with V (G∗) = V (G) in which two vertices x and y are adjacent if and only if they
are connected in G by a path and w∗(xy) equals the length of a shortest path between x and y in G.

Remark. w∗ is symmetric, point separating, and satisfies the triangle inequality, thus defining a metric
on G∗.

Theorem 49.3.24. Let (G,w) be a weighted graph with all weights positive, let (G∗,w∗) be its metric
closure, and let T ⊆ V (G). If S is an optimum Steiner tree for T in G, and M is a minimum spanning
tree in G∗[T ], then w∗(E(M)) ≤ 2w(E(S)).

Proof. Consider the graph H containing two copies of each edge of S. Then, H is Eulerian and hence
contains an Eulerian walk W in H. This walk defines a Hamiltonian cycle W ′ in G∗[T ]. Since w∗ satisfies
the triangle inequality,

w∗(W ′) ≤ w(W )

= w(E(H))

= 2w(E(S))

However, we also have w∗(E(M)) ≤ w∗(W ′) since by deleting one edge of W ′ we obtain a spanning tree
in G∗[T ]. ■

This suggests the following 2-factor approximation algorithm for STEINER-TREE.

Algorithm 28 Steiner Tree

1: Compute the metric closure (G∗,w∗)
2: Compute the shortest path Ps,t for all s,t ∈ T
3: Find a minimum spanning tree M in G∗[T ]

4: E(S) =
⋃

(u,v)∈E(M)

Pu,v

5: V (S) = {R ⊆ V (G) : (∀v ∈ R : (∃(u,v) ∈ E(S)) ∨ (∃(v,u) ∈ E(S)))}
6: return A minimal connected subgraph of S

Theorem 49.3.25. This algorithm is a 2-factor approximation for STEINER-TREE and can be imple-
mented in O(|V (G)|3) time.

Recall that TSP is NP-hard.

Theorem 49.3.26. Unless P = NP, there is no k-factor approximation algorithm for TSP for any
k ≥ 1.

Proof. We will show that a k-factor approximation algorithm A for TSP implies that HAMILTONIAN-
CYCLE (which is NP-complete) can be solved in polynomial time.

Given an instance G of HAMILTONIAN-CYCLE, we construct an instance G∗ of TSP with n = |V (G)|
nodes and distances w((i,j)) as follows: if i is adjacent to j, then w((i,j)) = 1; otherwise, w((i,j)) =
2 + (k − 1)n.
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Now, we apply A to the constructed instance of TSP. If the returned tour has length n, then this tour
is a Hamiltonian cycle in G. Otherwise the returned tour has length at least (n − 1) + 2 + (k − 1)n =
kn+1. Assuming that A is a k-factor approximation algorithm, we conclude that (kn+1)/OPT(G∗) ≥
A(G∗)/OPT(G∗) ≥ k, where OPT(G∗) is the length of the optimum tour. Hence, OPT(G∗) ≥ n+1/k >
n, showing that G has no Hamiltonian cycle. ■

Metric TSP, also known as ∆-TSP, is TSP such that the underlying graph is its own metric closure.
That is, given a positive weighted complete graph (Kn,w) with w : (E(Kn))→ R≥0 satisfying w(x,z) ≤
w((x,y)) + w(y,z) for all x,y,z ∈ V (Kn), find a Hamiltonian cycle of minimum weight.

Theorem 49.3.27. METRIC-TSP is NP-hard.

The greedy algorithm works badly in this problem and is not a k-factor approximation algorithm. How-
ever, the double tree algorithm has better performance on this problem.

Algorithm 29 Double Tree
1: Find a minimum weight spanning tree T in Kn with respect to w.
2: Walk around the tree, doubling each edge to create a Eulerian walk (circuit).
3: In the Eulerian walk, ignore all but the first occurence of each vertex.
4: return the tour constructed in line 3.

Theorem 49.3.28. The double tree algorithm is a 2-factor approximation algorithm for METRIC-TSP.

Proof. Clearly the algorithm is polynomial. Also, we have w(E(T )) ≤ OPT(Kn,c), since by deleting an
edge from any tour we obtain a spanning tree. Finally, the solution found by the algorithm is of weight
at most 2w(E(T )) ≤ 2OPT(Kn,c). ■

49.4 Discrete Probability

A probability space consists of three elements:

• A sample space, Ω, which is the set of all possible outcomes;

• An event space, a family of sets F ⊆ P(Ω), with each set representing an event ;

• A probability function, P : F → [0,1], such that

– P(Ω) = 1

– P(∅) = 0

– If {Ai}∞i=1 ⊆ F are countably many disjoint events, then P (
⋃∞
i=1Ai) =

∑∞
i=1 P(Ai).

and a probability space is discrete if Ω is at most countably infinite. An event is elementary if it is a set
of size 1.

49.4.1 Boole’s Inequality
If {Ai}∞i=1 ⊆ F are countably many events, then

P

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

P(Ai)
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Two events, A and B, are independent if P(A ∩ B) = P(A)P(B). A finite set of events is pairwise
independent if every pair of events in the set is independent. A finite set of events is mutually independent
if every event is independent from every other set and every intersection of every other event.

49.4.2 Bayes’ Theorem

P(A|B) =
P(B|A)P(A)

P(B)

for any events, A and B. If A and B are independent, then this reduces to P(A|B) = P(A).

49.4.3 Law of Total Probability
If A is an event that can be written as a countable partition, A = {Bi}∞i=1, then

P(A) =
∞∑
i=1

P(A ∩Bi)

or equivalently,

P(A) =
∞∑
i=1

P(A|Bi)P(Bn)

49.4.4 Expected Value
The expected value of a random variable, X, is the weighted average of all possible values of X.

E(X) =

∞∑
i=1

xipi

where xi are the possible values of X, and pi are their corresponding probabilities of occurrence.

Expectation is linear, so,

E

(
n∑
i=1

ciXi

)
=
∑
i=1

ciE(Xi)

Markov’s Inequality : If X is a random variable, and a > 0, then,

P(x ≥ a) ≤ E(X)

a

49.4.5 The Probabilistic Method

49.4.5.1 First Moment Method

If X is a non-negative integer-valued random variable, we can find a lower bound for P(X = 0) using
Markov’s inequality. Since X takes integer values, P(X > 0) = P(X ≥ 1), so P(X ≥ 1) ≤ E(X).

49.4.5.2 Second Moment Method

Similarly,

P(X > 0) ≥ (E(X))2

E(X2)
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49.4.5.3 Lovász Local Lemma

We can (non-constructively) prove the existence of a structure with some desired property by proving
that the probability of that property occuring in a random structure is greater than zero, or, equivalently,
by proving that the probability of that property not occuring in a random structure is less than one.

Example. Let n,m,d ∈ N. Suppose a town with n people contains m clubs, each of which contains exactly
d members. Any person can be a member of multiple clubs, and there may also be people who are not
members of any club.

Prove that, if m < 2d−1, then there is always a way to partition the town into two sets in such a way
that no club has all its members completely contained in either set.

Let Ω be the set of clubs, and suppose that m < 2d−1.

Randomly assign each person to one of the two sets of the partition with equal probability 1
2 of each.

For each club, C ∈ Ω, let XC be the event that C is contained entirely within one set of the partition.
P(XC) is the probability that every person c ∈ C is assigned to the same set, multiplied by two, as there
are two possible sets to be contained within. So,

P(XC) =
1

2d
× 2

=
1

2d−1

The probability that at least one club is a subset of one of the partition sets is therefore given by,
P
(⋃

C∈ΩXc

)
which can be bounded above by Boole’s inequality.

P

( ⋃
C∈Ω

Xc

)
≤
∑
C∈Ω

P(Xc)

≤ m

2d−1

As m is less than 2d−1, m
2d−1 < 1→ P

(⋃
C∈ΩXc

)
< 1, so the probability that a club is entirely contained

within one set of the partition is less than 1 when m < 2d−1. It follows that, if m < 2d−1, there exists
at least one partition such that no club has all its members completely contained within one set of the
partition. △

49.5 Linear Programming

A linear program is a problem of the form,

“Minimise c · x for x ∈ Rn, subject to the constraint Ax ≤ b,
where A ∈ Rn×n, b ∈ Rn, and the inequality is considered componentwise.”

The vector c is then called the cost vector or the objective function.

The set,

{x ∈ Rn : Ax ≤ b}

is called the feasible region of the linear program, as it contains every value of x that satisfies the
constraint. The objective is then to find a value of x in the feasible region that yields a minimum value
for c · x.
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Example. Minimise
[
1
2

]
· x for x ∈ R2 satisfiying,−1 0

0 −1
2 3

x ≤

00
6


Writing x = [x,y], we can expand out the constraint into the system of equations,

−x ≤ 0

−y ≤ 0

2x+ 3y ≤ 6

which define the feasible region R,

−1 1 2 3 4

−1

1

2

3

4

R

x

y

It may be helpful to shade the unwanted region for each inequality so the feasible region is the only
unshaded area left. Otherwise, you might have difficulty deciding which part is shaded by every inequality,
especially for larger constraint matrices.

The objective function to minimise is then x+ 2y, and we can picture various values of this function by
looking at the lines x+ 2y = k for various values of k:
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−1 1 2 3 4

−1

1

2

3

4

R

x

y

with k decreasing further down. Clearly, the objective function is minimised at the point x = (0,0), with
value 0. △

Example. Minimise,
[
−1
2

]
· x for x ∈ R2 satisfiying,

−1 −1
−1 1
1 0
0 1

x ≤


−1
1
2
2


Again, writing x = [x,y], we can expand out the constraint into the system,

−x− y ≤ −1
−x+ y ≤ 1

x ≤ 2

y ≤ 2

with the objective function −x+ 2y = k.
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−2 −1 1 2 3 4

−2

−1

1

2

3

4

R

x

y

Again, the value of k decreases lower down, so the minimum is achieved at (2,− 1) with value −4. △

Now, suppose the objective function was instead x+ y:

−2 −1 1 2 3 4

−2

−1

1

2

3

4

R

x

y

Now, we have a whole line of minimal solutions, and any point on the line x+ y = 1 between x = 0 and
x = 2 is a minimal solution.
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49.5.1 Polyhedra
A hyperplane is a subset of Rn of the form,

{x ∈ Rn : n · x = b}

where n is the normal vector of the plane, while a halfspace is a subset of the form,

{x ∈ Rn : n · x ≤ b}

so the hyperplane given by the equality is the boundary of this set. Notice that we can write a dot
product as,

H = {x ∈ Rn : n⊤x = b}

and we can then consider n as a 1× n matrix.

A polyhedron is the intersection of finitely many halfspaces, and a polytope is a bounded polyhedron, or
equivalently, a polytope is the convex hull of a finite set.

The face of a polyhedron P = {x ∈ Rn : Ax ≤ b} that minimises some vector c ∈ Rn is defined by,

facec(P ) = {x ∈ P : ∀y ∈ P, c · x ≤ c · y}

Example. Consider the polyhedron given by,

P =
{
(x,y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

}
What is the face minimising:

1. c = [1,1];

2. c = [−1,2];

3. c = [0,1]?

P is given by,

1

1

x

y

face[1,1](P ) =
{
(x,y) ∈ P : ∀(x′,y′) ∈ P, [1,1] · [x,y] ≤ [1,1] · [x′,y′]

}
=
{
(x,y) ∈ P : ∀(x′,y′) ∈ P, x+ y ≤ x′ + y′

}
So, face[1,1](P ) is the set of points where the line x+ y = k intersects P for a minimal value of k:
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1

1

x

y

the minimal valued line intersects the polygon at (0,0), giving face[1,1](P ) =
{
(0,0)

}
.

Next, take c = [−1,2].

face[−1,2](P ) =
{
(x,y) ∈ P : ∀(x′,y′) ∈ P, [−1,2] · [x,y] ≤ [−1,2] · [x′,y′]

}
=
{
(x,y) ∈ P : ∀(x′,y′) ∈ P, − x+ 2y ≤ −x′ + 2y′

}
This time, we look at the line −x+ 2y = k,

1

1

x

y

and now the minimal intersection point is at (1,0), so face[−1,2](P ) =
{
(1,0)

}
Next, take c = [0,1].

face[0,1](P ) =
{
(x,y) ∈ P : ∀(x′,y′) ∈ P, [0,1] · [x,y] ≤ [0,1] · [x′,y′]

}
=
{
(x,y) ∈ P : ∀(x′,y′) ∈ P, y ≤ y′

}
So the line is now y = k,

Notes on Mathematics | 995



Combinatorial Optimisation Linear Programming

1

1

x

y

Now, the minimal intersection points form an entire line segment, so face[−1,2](P ) =
{
(x,0) : 0 ≤ x ≤

1
}
. △

Example. Consider the polyhedron given by,

Q =
{
(x,y) ∈ R2 : x ≤ 0, y ≤ 0

}
What is the face minimising c = [1,1]?

face[1,1](Q) =
{
(x,y) ∈ Q : ∀(x′,y′) ∈ Q, [1,1] · [x,y] ≤ [1,1] · [x′,y′]

}
=
{
(x,y) ∈ Q : ∀(x′,y′) ∈ Q, x+ y ≤ x′ + y′

}
We look at the line x+ y = k:

−1

−1

x

y

so the minimum does not exist, and face[1,1](Q) = ∅. △

We have been solving these problems by finding minimal points, so we can also characterise faces as,

facec(P ) = {x ∈ P : ∀y ∈ P, c · x ≤ c · y}
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=

{
Ax ≤ b : c · x = min

y∈p
c · y

}
and we can see that facec(P ) is a polyhedron if the minimum exists, and is otherwise empty.

The linear program,

“Minimise c · x for x ∈ Rn such that Ax = b.”

is equivalent to,

“Find y ∈ facec(P ) where P = {x ∈ Rn : Ax ≤ b} and compute c · y.”

The linear span of a polyhedron P is the subspace,

span({x− y : x,y ∈ P})

of Rn. The dimension of P is the dimension of its linear span.

Faces of dimension 0 are called vertices, and faces of dimension 1 are called edges.

49.5.2 Standard Form
Recall that a linear program is a problem of the form,

“Minimise c · x for x ∈ Rn such that Ax ≤ b.”

where A ∈ Rn×n and b ∈ Rn.

A linear program is in standard form if it can be written as,

“Minimise c · x for x ∈ Rn such that Ax = b, and x ≥ 0.”

where A ∈ Rd×n and b ∈ Rd.

We can convert any linear program into standard form:

Algorithm 30 Linear Program Standard Form

1: Split each component xi of x into xi = x+i − x
−
i .

2: Add new variables to the inequality constraints to give Ax+ s = b.
3: Change the components ci of the cost vector c into ci = (c+i , − c−i ), and set any components

corresponding to slack variables to cs = 0.

Example. Transform the following problem into standard form:

Minimise
[
1
0

]
· x for x ∈ R2 such that, 

1 1
1 −1
−1 1
−1 −1

x ≤


1
1
1
1


The constraint matrix gives,

x1 + x2 ≤ 1

x1 − x2 ≤ 1

−x1 + x2 ≤ 1

−x1 − x2 ≤ 1
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Perform the replacements on the components, and add slack variables to remove the inequalities to
obtain,

x+1 − x
−
1 + x+2 − x

−
2 + s1 = 1

x+1 − x
−
1 − x

+
2 + x−2 + s2 = 1

−x+1 + x−1 + x+2 − x
−
2 + s3 = 1

−x+1 + x−1 − x
+
2 + x−2 + s5 = 1

which can be written in matrix form as,


1 −1 1 −1 1 0 0 0
1 −1 −1 1 0 1 0 0
−1 1 1 −1 0 0 1 0
−1 1 −1 1 0 0 0 1





x+1
x−1
x+2
x−2
s1
s2
s3
s4


≤


1
1
1
1



Then, the original cost vector gives the constraint
[
1
0

]
x = x1, so our new cost vector is,

c =



1
−1
0
0
0
0
0
0


△

Example. Transform the following problem into standard form:

Minimise
[
2
3

]
· x for x ∈ R2 such that,  1 0

0 1
−1 −1

x ≤

 1
1
−1


The constraint matrix gives,

x1 ≤ 1

x2 ≤ 1

−x1 − x2 ≤ −1

so,

 1 −1 0 0 1 0 0
0 0 1 −1 0 1 0
−1 1 −1 1 0 0 1




x+1
x−1
x+2
x−2
s1
s2
s3


=

 1
1
−1
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with cost vector given by,

c =



2
−2
3
−3
0
0
0


△

To solve linear programs, we often look for faces of the feasible region. The standard form makes it easier
to find vertices as solutions.

A vector y ∈ Rn is a basic solution of a linear program if Ay = b and the columns of A corresponding to
non-zero entries of y are linearly independent. That is, if A = [A1|A2| · · · |An] and y = [y1,y2, . . . ,yn],
then {Ai : yi ̸= 0} is a linearly independent set.

A basic feasible solution is a basic solution y ∈ Rn such that y ≥ 0.

We will write Ai for the ith column of a matrix A, and ai for the ith row of A. That is,

A = [A1|A2| · · · |An] =


a1
a2
...
ad



Example. Minimise


1
2
0
−1

 · x for x ∈ R4 such that x ≥ 0, and,

[
1 0 1 −2
0 1 1 −2

]
︸ ︷︷ ︸

A

x =

[
3
−2

]
︸ ︷︷ ︸

b

y = [5,0,−2,0] is a basic solution since Ay = b and the first and third columns of A are linearly
independent, but it is not a basic feasible solution since y contains a negative component.

y = [5,0,0,1] is a basic feasible solution since Ay = b and the first and last columns of A are linearly
independent, and y ≥ 0. △

To construct a basic solution, we choose d linearly independent columns (Ai)i∈I with I ⊆ [n] and |I| = d,
and set yi = 0 for each i ̸∈ I. Augment these columns together into a d×d matrix B = [Ai1 |Ai2 | · · · |Aid ].

Because the (Ai) are linearly independent, B is invertible, so By = b has a unique solution given by

yB = B−1b ∈ Rd

where the coordinates in Rd are indexed by I. Then, we set,

y =

{
(yB)i i ∈ I
0 i ̸∈ I

That is, we invert a matrix made of linearly independent columns of A, then add in a 0 entry to the
solution vector wherever we skipped a column from A.
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Example. Consider the polygon defined by,

P =
{
(x,y) ∈ Rn : −x+ y ≤ 1, x+ y ≤ 3, x ≥ 0, y ≥ 0

}
This can be written in matrix form as,

[
−1 1 1 0
1 1 0 1

]
x
y
s1
s2

 =

[
1
3

]

noting that we did not have to split x and y as we are already given x ≥ 0 and y ≥ 0.

One linearly independent set is given by A3 and A4, so,

B =

[
1 0
0 1

]
and,

yB = B−1b

=

[
1 0
0 1

]−1 [
1
3

]
=

[
1
3

]
Since we skipped the first two columns, we have,

y =


0
0
1
3


Because all the components are positive, this is a basic feasible solution.

Another linearly independent set is given by A1 and A4, so,

B =

[
−1 0
1 1

]
and,

yB = B−1b

=

[
−1 0
1 1

]−1 [
1
3

]
=

[
−1
4

]
Columns 2 and 3 were omitted from B, so we have,

y =


−1
0
0
4


This time, we have a negative component, so this basic solution is not feasible. △

Theorem 49.5.1. A vector v ∈ Rn is a basic feasible solution of a linear program if and only if it is a
vertex of the corresponding polyhedron defined by P = {x ∈ Rn : Ax = b,x ≥ 0}.

Theorem 49.5.2. Either minx∈P c · x = −∞, or there is a basic feasible solution y with c · y ≤ c · x
for all x ∈ P .
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49.6 The Simplex Algorithm

49.6.1 Geometric Simplex
Recall that an edge of a polyhedron is a one dimensional face. If a vector y ∈ P lies on an edge E,
but does not lie on a vertex, then, up to scaling, there is a unique vector d such that y + λd ∈ E for
sufficiently small λ. That is, d is the direction vector pointing along the edge.

Walking along an edge like this, we can eventually reach a vertex (assuming the edge is not a half-line
that goes infinity in some direction). Because basic feasible solutions are vertices of polyhedra, this
suggests an algorithm to find optimal basic feasible solutions:

1. Find a vertex of P .

2. Walk along edges of P , moving to vertices that reduce c · x.

3. Stop when this isn’t possible anymore.

Let y ∈ Rn be a basic feasible solution obtained from the d × d matrix BI = [Ai1 |Ai2 | · · · |Aid ]i∈I
consisting of columns of A, indexed by I ⊆ [n] with |I| = d. Recall that yi = 0 for all i ̸∈ I by
construction.

Denote by yI the vector obtained by restricting y to coordinates in I. Then, BIyI = b.

Let k /∈ I. We will look for a vector d with dj = 0 for all j ∈ I ∪ {k}, dk = 1, and y+ λd is feasible for
some λ > 0.

Then,

A(y + λd) = b

Ay + λAd = b

b+ λAd = b

λAd = 0

So Ad = 0, and we can rewrite this as,

0 =

n∑
j=1

Ajdj

Recall that dj = 0 for all j ̸∈ I ∪ {k}, and dk = 1, so,

=
∑
j∈I

Ajdj +Ak

= BIdI +Ak

so dI = −B−1
I Ak, giving,

dj =


−
(
B−1Ak

)
j

j ∈ I
1 j = k

0 j ̸∈ I ∪ {1}

This vector d is called the kth basic direction at y, and it depends on the choice of I and k.

Note that it is not always possible to find λ > 0 such that y + λd is feasible. That is, that y + λd ≥ 0.

A basic feasible solution y is degenerate if |{i : yi ̸= 0}| < d, and is nondegenerate otherwise.

Notes on Mathematics | 1001



Combinatorial Optimisation The Simplex Algorithm

Theorem 49.6.1. If y is a nondegenerate basic feasible solution, then the kth basic direction is feasible.

If this is the case, then d points along an edge, and we can move along it. Furthermore,

c · (y + λd) = c · y + λc · d

so the cost decreases if and only if c · d < 0. We also have,

c · d =

n∑
j=1

cjdj

=
∑
j∈I

cjdj + ck

= cI · dI + ck

= cI · (−B−1
I Ak) + ck

= ck − c⊤I B
−1
I Ak

The reduced cost in direction k with respect to a basic feasible direction corresponding to I is given by
ci = ci − c⊤I B

−1
I Ak, and the reduced cost vector is given by c = (ci)

n
i=1

Note that if y is degenerate, then λ• may be zero, and y′ = y.

Theorem 49.6.2. Let y be a basic feasible solution corresponding to I ⊆ [n], and let c be the reduced
cost vector. Then,

• If c ≥ 0, then y is optimal.

• If y is optimal and nondegenerate, then c ≥ 0.

Algorithm 31 Geometric Simplex

1: Find a basic feasible solution y corresponding to I ⊆ [n].
2: Compute the reduced cost vector given by cj = cj − c⊤I B

−1
I Aj , where cj is the jth component of the

cost vector c. If c ≥ 0, then y is optimal, and we may stop.
3: Choose k ̸∈ I with ci < 0, and compute the kth basic direction d, given by

dj =


−
(
B−1Ak

)
j

j ∈ I
1 j = k

0 j ̸∈ I ∪ {1}

If d ≥ 0, then the optimal cost is −∞, and we may stop.
4: If dj < 0 for some j, then let λ• = mindj<0

−yj
dj

, and let ℓ be the value of j that achieves this
minimum. That is, λ• = −yℓ

dℓ
.

5: Set y = y + λ•d and I = (I \ {ℓ}) ∪ {k}. Go to step 2.

Example. TO DO △

49.6.2 Graph Optimisation Problems
The following problems on graphs can all be expressed as linear programs:

1. MST (Minimum Spanning Tree);

2. SHORTEST-PATH;
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3. MAX-FLOW;

4. MAXIMUM-MATCHING;

TO DO.

Example. MST △

Example. SHORTEST-PATH △

Example. MAX-FLOW △

Example. MAXIMUM-MATCHING △

49.6.3 Simplex Tableau
This algorithm is rather involved, so we begin with an annotated worked example to give an overview of
the method.

Example. Minimise P =

[
3
−1

]
x for x ∈ R2 subject to,

[
2 1 1 0
1 4 0 1

]
x
y
r
s

 =

[
12
8

]

and x,y,r,s ≥ 0. (Here, r and s are slack variables.)

The initial tableau is written as follows:

Basic
variable x y r s Value

r 2 1 1 0 12

s 1 4 0 1 8

P 3 −1 0 0 0

The first row of the table shows the first constraint, the second row shows the second constraint, and
the final objective row shows the objective function.

The “Basic variable” column indicates the variables that are not currently at zero. We start at the vertex
(0,0), so x = y = 0.

Any variables in a simplex variable that are not basic variables have the value 0.

If x = y = 0, then r = 12 from the first row of the constraint matrix, and similarly, s = 8. We currently
therefore have,

x =


0
0
12
8


as our basic feasible solution with total value P = 0.

We scan the objective row of the tableau for the most negative number. This gives the pivot column. In
this case, the pivot column is the y column.

For each other row, we then calculate a θ value, each given by dividing the value entry by the pivot entry.
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Basic
variable x y r s Value θ value

r 2 1 1 0 12 12/1 = 12

s 1 4 0 1 8 8/4 = 2

P 3 −1 0 0 0

Next, we select the row containing the smallest positive θ value to be the pivot row.

Basic
variable x y r s Value θ value

r 2 1 1 0 12 12

s 1 4 0 1 8 2

P 3 −1 0 0 0

The entry at the intersection is then the pivot. We divide the values in the pivot row by the pivot,
and replace the basic variable in the pivot row with the variable in the pivot column. In this case, s is
replaced with y:

Basic
variable x y r s Value Row

operation
r 2 1 1 0 12

y 1
4 1 0 1

4 2 R2÷ 4

P 3 −1 0 0 0

Now use the pivot row to eliminate the pivot term from every other row:

Basic
variable x y r s Value Row

operation
r 7

4 0 1 − 1
4 10 R2−R1

y 1
4 1 0 1

4 2

P 13
4 0 0 1

4 2 R3 +R2

There are no negative values in the objective row, so the solution is optimal. We read the entries in the
value column for each variable, to obtain x = 0, y = 2, r = 10, and s = 0, recalling that any variable not
listed in the first column is 0. This gives the vector,

x =

[
0
2

]
We also have P = −2 (the simplex tableau is a maximisation method, so we’ve actually maximised the
negative of P , so we need to negate the final value). △
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Algorithm 32 Simplex Tableau

1: Draw the tableau(x) with a basic variable column on the left, one column for each variable (including
slack variables), and a value column. Add a row for each constraint, and the bottom row for the
objective function.

2: Enter the coefficients of the variables in the appropriate cells to form the initial tableau.
3: Find the most negative entry in the objective row to obtain the pivot column.
4: Calculate the θ values for each of the constraint rows, where θ is the value term divided by the pivot

term.
5: Select the row with the smallest positive θ value to be the pivot row.
6: The element in the pivot row and pivot column is the pivot.
7: Divide the pivot row by the pivot, and change the basic variable in the first column to the variable

at the top of the pivot column.
8: Use the pivot row to eliminate the pivot variable from other rows.
9: Repeat steps 3 to 8 until there are no negative values in the objective row.

10: The tableau is now optimal, and the non-zero values can be read off using the basic variable and
value columns. If the objective function is to be minimised, take the negative of the objective value.
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Chapter 50

Lambda Calculus

“The whole idea of Lambda Calculus really grew out of logic, and there’s very
beautiful dualities between programming on the one hand, and logic on the other.
It’s called the Curry-Howard Isomorphism, in which you can view a, let’s say I have
a function whose type is... it takes 2 integers and it produces an integer. Well, that
type tells you something about the program. So, in a sense, it’s a weak theorem
about the program. It tells you something about the program, but not everything.
And indeed, you could regard the program as a proof of that theorem.”

— Simon Peyton Jones, Functional Programming Languages and the Pursuit of
Laziness

50.1 Prefix Notation

For this section, it is helpful to be familiar with prefix notation (also known as Polish notation).

Many operators in mathematics, particularly arithmetic operations, relations, and orderings, are often
written in infix notation, in which the operator is placed between the operands. For example, in the
expression, 1 + 2, the operator, +, is placed between its arguments, 1 and 2. In prefix notation, this
would instead be written as + 12, more similarly to how we often write functions.

If the arity of operators are known, then, unlike in infix notation, brackets are unnecessary. That is,
in an infix expression, brackets are required to override standard precedence rules, whereas in prefix
expressions, ordering is sufficient.

For instance, the infix expression
(5− 4)× 3

is written as
×(− 5 4) 3

in prefix notation. But, since we know the subtraction operator takes two arguments, the brackets have
no effect, so we may write,

×− 5 4 3

instead.
5− (4× 3)

is similarly written as
−5× 4 3



Lambda Calculus Motivation

Prefix notation is useful in that it can unambiguously express the order of operations like this without
using brackets or other assumed precedence rules.

Prefix notation is also extremely easy to parse for computers: in a prefix string, push each symbol onto
a stack. If a symbol is an operator of arity n, evaluate the operation from bottom up when there are
exactly n non-operator symbols directly above it.

For example,
×− 5 4 3

would be parsed as,

4
5 5 3

− − − 1 1
× → × → × → × → × → × → 3

50.2 Motivation

A computable function is a formalisation of the intuitive notion of an algorithm. A function is computable
if there exists an algorithm that can return the same outputs as that function, given the same inputs. We
will be considering Turing-computable functions here. The lambda calculus provides a simple semantic
system for handling these functions.

One simplification is the use of anonymous functions (§4.4.4), where we don’t bind names to functions.

For example, the function,
square_sum(x,y) = x2 + y2

can be written in anonymous form as,
(x,y) 7→ x2 + y2

which we can read as, the tuple (x,y) is mapped to x2 + y2.

We can similarly write the identity map,
id(x) = x

as
x 7→ x

In the lambda calculus, all functions are treated anonymously.

We also only use functions of a single input. Any ordinary function which takes multiple inputs, such as
the square_sum function above, can be reformulated into an equivalent function that accepts a single
input, and returns another function that takes a single input, and so on. For example,

(x,y) 7→ x2 + y2

can be rewritten as
x 7→ (y 7→ x2 + y2)

This method is known as currying, and can be to convert any n-ary function into a chain of n unary
functions.

We apply functions to arguments as usual, with the argument in brackets on the right of the function.
So,

((x,y) 7→ x2 + y2)(1,2) = 12 + 22

= 5
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and ((
x 7→ (y 7→ x2 + y2)

)
(1)
)
(2) = (y 7→ 12 + y2)(2)

= 12 + 22

= 5

and we see that the curried function does indeed return the same output.

50.3 Lambda Terms

The lambda calculus consists of a formal language (§2.3.4) of sentences called lambda terms or lambda
expressions defined by a formal syntax, and a set of transformation rules that allow us to manipulate
these lambda terms.

The alphabet of the formal language underlying the lambda calculus consists of,

• variables, x,y,z, . . .;

• the abstraction symbols, λ (lambda) and . (dot);

• the scoping symbols, brackets ().

All syntactically valid lambda terms are then defined recursively (§5.1.2) as follows:

• Any variable, x, is a valid lambda term.

• If t is a lambda term, and x is a variable, then λx.t is a lamba term called an abstraction.

• If t and s are lambda terms, then (ts) is a lambda term called an application.

• No other string is a lambda term, unless implied by the previous rules.

Brackets can be used to disambiguate terms, but to reduce the number of necessary brackets and lambdas,
we adopt the following conventions:

• Outermost brackets are dropped, so we write AB instead of (AB).

• Applications are left associative, so we write ABC for ((AB)C).

• The body of an abstraction extends as far right as possible, so λx.AB is read as λx.(AB) and not
(λx.A)B.

• Sequences of abstractions can be contracted, so λxyz.N is the same as λx.λy.λz.N .

An abstraction λx.t defines∗ an anonymous function that binds a variable x as an input, and substitutes
it into the expression, t. For example, λx.x+1 is an abstraction for the successor function, f(x) = x+1,
where the expression x+ 1 is t.†

For the square_sum function, we would write λx.λy.x2+y2, which can also be abbreviated as λxy.x2+y2
but it is important to remember that this latter notation represents a chain of unary functions, and is

∗ This is really just a model (see the addendum on formal languages and models) that is particularly human-friendly.
The lambda calculus by itself is not a system for handling functions – the lambda calculus is a system for handling lambda
expressions, which themselves are just lambda expressions, and don’t inherently represent anything else. This is similar in
flavour to groups in group theory. We may like to interpret the elements of the group Sn as permutations, but that’s just
one model of the group – the elements of the group aren’t inherently permutations, just as lambda terms aren’t inherently
functions.

† Note that this first requires an implementation of “+” in the lambda calculus. Remember that the lambda calculus is
a formal language, and any symbols not included in the definition above must first be defined in terms of more primitive
objects.

Later on we will actually do this definition of addition in reverse order; defining the successor function first, then addition
in terms of it.
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not a single binary function. Also note that writing an abstraction merely defines the function, and does
not invoke it.

An application ts is the application of an abstraction t, to an input term s. That is, it represents calling
a function t on an input s to obtain t(s).

There is no concept of variable declaration, however. In the lambda term λx.x + y, y is treated as a
variable, which just happens to be not yet defined. The expression is syntactically valid, and represents
a function which adds its input to the unknown value y.

50.4 Function Functions

Unlike in most other situations, functions are first class values in the lambda calculus, meaning they
can be the input or output of other functions. Note that this somewhat distinct from most other usages
of functions – in common algebra, when we pass a function, f(x), as the argument of another function,
g(x), as g(f(x)), we usually mean the composition of the two functions, (g ◦ f)(x). Here, the outer
function can directly modify the inner function.

For example, λx.x represents the identity function, x 7→ x, and (λx.x)y is an application representing
the identity function being applied to y. The lambda term λx.y represents the constant function, x 7→ y.
We can apply these functions to each other: (λx.x)(λx.y) is the identity function being applied to λx.y,
which just returns the abstraction λx.y, which is the constant function, but note that this application
does not return the constant, y, itself.

50.5 Free & Bound Variables

The free variables of a term are the variables not bound by an abstraction. They are similar to free and
bound variables in predicate logic.

We define the set of free variables, FV, of a lambda expression recursively:

• FV(x) = {x} – the set of free variables of a variable x contains just x alone.

• FV(λx.M) = FV(M) \ {x} – the set of free variables of the abstraction λx.M is the relative
complement of the set of free variables of x relative to the set of free variables of M .

• FV(MN) = FV(M)∪ FV(N) – the set of free variables of the application MN is the union of the
set of free variables of M and the set of free variables of N .

For instance, in the lambda term λx.x+ y, x is bound by the abstraction, while y is free.

50.6 Reduction

The meaning of lambda expressions is defined by how the expressions can be reduced. There are three
standard types of reduction:

• α-conversion: changing bound variables;

• β-reduction: applying functions to arguments;

• η-reduction: analogue for set extensionality.

We say two expressions are α-equivalent if they can be α-converted into the same expression, and similarly
for β- and η-equivalence.

A term that is β-reducible is called a β-redex, short for reducible expression. η-redexes are defined
similarly. The expression to which a redex reduces is called its reduct.
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50.6.1 α-conversion
One basic form of equivalence on lambda terms is alpha-equivalence or α-equivalence. This form of
equivalence captures the idea that the particular choice of bound variable in an abstraction does not
matter. For instance, λx.x and λy.y both represent the identity function, and are therefore α-equivalent.
The terms, x and y, however, are not α-equivalent, because they are not bound in an abstraction. We
usually implicitly take α-equivalent terms to be identical.

Changing the bound variable of a lambda term is known as α-conversion, and transforms α-equivalent
terms into each other.

During α-conversion, only variables bound by the same abstraction can be renamed – if the same variable
is bound in several terms, this should be done with care. For example, a valid α-conversion of λx.λx.x
could be λy.λx.x, but not λy.λx.y. The original expression and the valid α-conversion both represent
a function which returns the identity function, regardless of input. The invalid α-conversion instead
represents a function which returns a constant function which returns the original input, which is clearly
not equivalent.

Alpha-conversion is also not possible if the variable being changed to is already bound within the same
expression. For example, in the lambda term, λx.λy.x, we cannot replace y with x.

50.6.2 Substitution
A substitution, E[V := R] is a replacement of all free occurences of a variable V in the expression E with
an expression R.

We define substitions on lambda expressions recursively. If x and y are variables, and M and N are any
lambda expressions, then,

• x[x := N ] ≡ N

• y[x := N ] ≡ y, if x ̸= y

• (M1M2)[x := N ] ≡ (M1[x := N ])(M2[x := N ])

• (λx.M)[x := N ] ≡ λx.M

• (λy.M)[x := N ] ≡ λy.(M [x := N ]), if x ̸= y, provided y ̸∈ FV(N)

Substituting into an abstraction may first require α-conversion. For instance, naïvely substituting
(λx.y)[y := x] incorrectly gives λx.x because the substituted free variable, x, was bound into the ab-
straction. The correct substitution, up to α-equivalence, is instead λz.x.

50.6.3 β-reduction
β-equivalence captures the idea that a function with a fixed argument is equivalent to that function being
evaluated at that argument. That is, if f(x) = x2, then we would like the expressions, “f(3)”, and “32”,
to be equivalent.

β-reduction is defined in terms of substitution – the β-reduction of (λV.E)F is E[V := F ].

For example, suppose we have an encoding of squaring and of natural numbers in lambda calculus. Then,
((λn.n2) 3) β-reduces to 32. In this case, we say that ((λn.n2) 3) is a β-redex, and 32 is its reduct.

50.6.4 η-reduction
η-equivalence is similar to extensionality in set theory, where two sets are equal if and only if they contain
the same elements, or more importantly, that a set is defined entirely by its contents. In the lambda
calculus, two functions are equal if and only if they give the same outputs for the same inputs, for all
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possible inputs, or, a function is defined entirely by its output process. For instance, the functions,
f(x) = 2 · x and g(x) = x+ x, should intuitively be equivalent.

η-reduction converts between λx.(fx) and f whenever x is not free in f .

50.6.5 Normalisation
β-reduction allows us to calculate values from lambda terms. However, while values in set theory are
sets, values in the lambda calculus are functions, which are represented by abstractions, so, to evaluate
a lambda expression, we continue β-reducing the term until it looks like a function abstraction.

A lambda expression is in,

• normal form if no β- or η-reductions are possible. That is, it contains no β- or η-redex

• head normal form if it is in the form of a lambda abstraction whose body is not β-reducible.

• weak head normal form if it is in the form of a lambda abstraction.

50.7 Data Types

50.7.1 Variable Assignment
So far, we have a bunch of functions, and... well, just functions, really. Just as in set theory, to use
other structures and data types, we need to encode them somehow. In set theory, we recursively encoded
the naturals as a list of sets. In the lambda calculus, we pull a similar trick with functions, though in a
different way than you’d might expect.

In the following section, whenever we write A = B, we do so in the programming sense, where the equality
symbol is used for variable assignment. While the lambda calculus doesn’t have variable assignment, we
can wrap whatever we wanted to do with that variable into the body of an abstraction with the variable
name as the bound variable, then apply that abstraction to the contents of the variable. That is, the
code,

myvar = object
function(myvar),

is encoded in the lambda calculus as,

λmyvar.(function(myvar))(object)

50.7.2 Boolean Variables & Logic Gates
With the Boolean values, true and false, they don’t really mean anything by themselves, and are only
useful in relation to other functions.∗ A function that returns a Boolean is called a predicate.

We can encode Boolean values using functions as follows:

true = λx.λy.x

false = λx.λy.y

So, given two values, true returns the first, while false returns the second. How do we actually use them?

If we know a variable b is a Boolean – that is, it is one of the above lambda expressions – we can test
what value it is by passing it to this function:

IsTrue = λb.b true false

∗ If you’re thinking that we’ve had this exact discussion before, that’s because we have: §11.5, §12.1.2, §33.6.
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Intuitively, this works because if b is true, it returns the first value, true, and if b is false, it returns the
second, false, but we can walk through this more formally by examining what happens when we evaluate
this function on an input. Let’s apply the function IsTrue to false, and we should expect the output to
be false.

IsTrue(false) = (λb.b true false) false

Begin by expanding the function definitions. We’re left with an application, so we perform β-reduction:

= false true false

Expand the definition of false:

= (λx.λy.y) true false

A few more β-reductions:

= (λy.y) false

= false

The working for true as an argument is almost identical. So, we can now check the contents of a Boolean
variable. What about logic gates? Once we have those, we can basically go back to §2 and rebuild logic
from there.

We first consider the simplest non-trivial Boolean function – the unary operator, NOT. We can make
this one just by swapping the order of the inputs to the previous function:

NOT = λb.b false true

Now, if b is true, it returns the first input, false, and if b is false, it returns the second, true.

Next, we can find the OR of two Booleans, a and b, by calling a with true and b.

OR = λa.λb.a true b

If a is true, it immediately returns true. Otherwise, it returns whatever value b is.

We similarly find the AND of a and b by calling a with b and false:

AND = λa.λb.a b false

If a is false, it immediately returns false. Otherwise, it returns whatever value b is.

NOT, OR and AND is a functionally complete set (§2.2.1), so we can now build up all of propositional
logic by chaining these gates together.

Boolean also lends itself well to encoding binary. We first create a structure called a pair, which is, well,
an ordered pair of objects. We only have Boolean objects so far, but that’s enough for encoding binary.

This structure does exactly what we want:

λx.λy.λb.b x y

We call it on two values, which are stored in x and y, say, X and Y , giving,

λb.bX Y

Then, when we want to extract the data, we provide a third Boolean argument which selects x if true,
and y if false.

If Y is another pair, we can create a linked list structure, where we can repeatedly enter false into the
function to move to the next node, and a true to extract data from the current node.

If the data, X, is a Boolean, we can use this to encode binary numbers.
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50.8 Church Numerals

We can represent natural numbers more efficiently, however.

We encode the natural number n as a function that maps any function, f , to its composition with itself
n times. Writing f◦n = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

n

to denote this repeated composition, we have,

• 0 = λf.λx.x;

• 1 = λf.λx.f x;

• 2 = λf.λx.f(f x);

• 3 = λf.λx.f(f(f x));

• 4 = λf.λx.f(f(f(f x)));

• n = λf.λx.f◦n x;

Starting with 0 not applying the function at all, 1 applying the function once, 2 twice, 3 thrice, and so
on, we construct the Church numerals.

It is important to note that it is this lambda term that composes functions itself, that is the value,
and not the composite function for a particular choice of f , nor the end result of applying this function
to some value. A Church numeral, n, really just represents the action of doing anything n times, and
doesn’t concern what the action itself is, nor what the action is acting on.

50.9 The Successor Function & Arithmetic

Many operations follow naturally from the definition of Church numerals, perhaps more so than they do
from the von Neumann construction of the naturals in set theory.

We begin as usual with some version of the successor function, succ(n) = n + 1. With the above
definition of natural numbers, we would intuitively think that succ would just take the input numeral,
n, the function, f , and return f(n),

λn.λf.f n

The problem is, when we actually perform an application and substitute in the lambda term for n, we
get,

λf.f(λf.λx.f x)

(for n = 1), leaving a floating lambda we don’t want.

Instead, we also take x, then call n on f and x,

λn.λf.λx.n f x = λf.λx.f x = n

which gives the actual value of n (again, the case n = 1 is shown above). Then, we wrap the entire body
of the abstraction with another f to increase the value of n by 1:

succ = λn.λf.λx.f (n f x)

Because a natural, n, is represented by the action of applying a function n times, we can take two
naturals, a and b, and call b with succ and a. This will apply the successor function to a, b times,
allowing us to perform addition.

add = λa.λb.b succ a

This entire definition of addition hinges on the fact that numerals are really just functions that repeatedly
apply their first argument to the second.
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If we call add with a, then apply it to 0, b times, we can perform multiplication.

mult = λa.λb.b (add a) 0

We can also write these using identities to do with function composition. For example, the addition
function, add(a,b) = a+ b uses the identity f◦(a+b)(x) = f◦a(f◦b(x)), and can also be written as,

add = λa.λb.λf.λx.a f (b f x)

which is somewhat less readable, but is still β-equivalent to the previous definition. We can also see that
the successor function, succn is β-equivalent to addn 1 when using this definition of add.

Multiplication, mult(a,b) = a · b uses the identity f◦(a·b)(x) = (f◦b)◦a(x).

mult = λa.λb.λf.λx.a (b f)x

Exponentiation is even easier. We can use the number of compositions in the definition of Church
numerals, n f x = f◦n x, to encode exponents. Substituting a few variables, we have a b f = a◦bf and,

exp a b = a◦b

= b a

= λa.λb.b a

50.10 Predecessor

Subtraction and division are also definable, with a few caveats, but we first need a predecessor function,
pred, which is the inverse of succ and returns the previous numeral. Because Church numerals only
encode the naturals, we define the predecessor function to be,

pred(n) =

{
0 n = 0

n− 1 n > 0

To construct this function in the lambda calculus, we need to find a way to apply the function f in n
one fewer time. That is, we need to construct λf.λx.f◦(n−1) x from λf.λx.f◦n x.

To do this, we need to wrap the value of n in a container function such that f and x can be accessed
from inside and outside the container. Call the container box, and define a new function, init to initialise
an instance of box containing the value x.

init = boxx

and a corresponding inverse operation to open a box to extract the value inside:

unpack (box v) = v

We now interface with the internals of the box by defining a new function, inc, that, when applied to
the outside of a box, applies f to the contents of the box.

inc init = box(f x)

We can use these functions to redefine the identity function, id by calling inc on an instance of init n
times, then unpacking the resulting box container.

id = λn.λf.λx. unpack (n (inc) (init))
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= λn.λf.λx. unpack (box (n f x))

= λn.λf.λx.n f x

= λn.n

Because inc defers the calling of f to the inside of a container, we can pass it a special container, const,
that ignores the first application of f and just returns a box containing x.

inc const = boxx

Then, packing the resulting lambda expression inside the unpack clause of the identity function as defined
above, we can extract this value with the ignored first application of f .

pred = λn.λf.λx. unpack (n (inc) (const))

= λn.λf.λx. unpack (box ((n− 1) f x))

= λn.λf.λx.(n− 1) f x

= λn.(n− 1)

While this works well enough, we still need to encode box, unpack, inc, init, and const as lambda
expressions.

We want the box container to take two arguments, storing the first, v (the “contents” of the container),
and, given a second argument, h, call h with v, so box v h = h v, which is encoded as,

box = λv.(λh.h v)

Once box is loaded with a value, k, we can easily extract by calling box k with the identity function as
the input. As defined above, the box will then call the identity function with k as the argument, which
just returns k, as desired.

unpack(box k) = box k (λu.u)

= (λv.(λh.h v) k)(λu.u)

= (λh.h k)(λu.u)

= (λu.u) k

= k

So box and unpack work as expected.

The term “container” is just syntactic sugar, helpful for thinking about how box separates f and x from
the effect of inc, but this is more difficult to see in the lambda expressions. In this implementation, a
boxed variable is really just a variable loaded into a function (the box) that takes another function and
passes the variable into the received function. So, to actually pack a variable into a box, we just prime
it to receive a function in this way.

init = λh.h x

Next, inc should take a loaded box containing a value, v, and return another instance of a box that
contains (f v).

So, we should begin by taking an input, g = box v and pack it into an application, (g f) so that the box
returns (f v). Then, we finally pack this back into a box with a modified init, where, instead of returning
x, we use the previous expression in its place.

inc = λg. init’ (g f)

= λg.λh.h (g f)
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Finally, we need a implementation of const to satisfy,

inc const = boxx

Rewriting this as a lambda expression, we have,

λh.h(const f) = λh.h x

and we can easily see that const f = x, which we can encode as,

const = λu.x

Packing these together, we find that the lambda expression for pred is,

pred = λn.λf.λx.n (λg.λh.h (g f)) (λu.x) (λu.u)

50.11 Subtraction

To define subtraction, we can just replace the succ function in addition with our new pred function.

add = λa.λb.b succ a

sub = λa.λb.bpred a

Because Church numerals only encode natural numbers, if a ≤ b, then a− b returns 0 in this implemen-
tation.

Next, we will attempt to implement division. To handle the lack of negative numbers, we define division
over Church numerals as,

b/a = if (a ≥ b) then 1 + (a− b)/a, else 0

This definition of dividing through repeated subtractions is almost identical to our previous implemen-
tation in number theory (§10.1.1).

50.11.1 Comparison
The first problem is, how do we compare numbers in the lambda calculus? The simplest predicate
for testing numbers is IsZero, which returns true if the argument is the Church numeral 0, and false
otherwise.

We can implement this as follows:

IsZero = λn.n (λx. false) true

Because 0 represents not applying a function at all, when it gets passed to IsZero, the constant false
function, (λx. false), is never applied, instead returning true. For any other Church numeral, the function
is applied at least once, and hence returns false.

We can then compare numbers by using subtract, taking advantage of the fact that sub evaluates to 0
whenever the minuend is smaller than the subtrahend.

LEQ = λa.λb. IsZero (sub a b)

Additionally, because x = y ≡ (x ≤ y ∧ y ≤ x), we also get an implementation of the equality predicate
for free:

EQL = λa.λb.AND(LEQ a b) (LEQ b a)

So, we can compare numbers, but the second problem is that this definition of division includes division
within the definition itself. To handle this, we need to implement some recursion.
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50.12 Recursion

Recursion is the idea of defining things in terms of themselves. One common example is the factorial
function, where we have, n! = if (n ≤ 1) then 1, else n · (n− 1)!, or,

def fac(n)
if n <= 1:

return 1
else:

return n*fac(n-1)

So, to find 3!, we expand the definition and see that 3 ̸≤ 1, so we have 3! = 3 · 2!. We again expand the
definition, with 2 ̸≤ 1 now giving 3! = 3 · 2 · 1!, and we find that 1 ≤ 1, so we return 1 to the call stack,
finally giving 3! = 3 · 2 · 1 which we can finally compute to be 6.

In the lambda calculus, there isn’t a native way of performing recursion or looping, so we have to encode
these things. Recursion in set theory is encoded fairly simply by using set comprehensions and including
the set itself in the predicate clause, but how do we encode recursion in the lambda calculus, where we
effectively just have functions?

In the lambda calculus, all functions are anonymous, so there is no way to refer to a value which has not
yet been defined inside the lambda term defining the said value. We deal with this by arranging for a
lambda expression to receive itself as its argument value.

To implement the factorial as a lambda expression, we need to create a function, f , that will receive the
whole lambda expression representing the factorial itself as its value, so that calling the function as an
application will instantiate another copy of the function itself, ready for the next invocation. So, the
function, f , must always be passed to itself as an application within the body of the abstraction. We
also pass everything into another function, F , to handle the self-application of the entire function. So,
we want,

F = λf.λn.(IsZero n) 1 (mult n (f f (pred n)))

such that f f x = factx holds, which is needed for the self-application of f at the end. Because the body
of the abstraction on the right is really the definition of a factorial, we also require F f x = factx. It
follows that f = F , so,

fact = F F = (λx.x x)F

This self-application replicates F , passing the lambda expression representing the factorial into the
next invocation. While this implementation works, it requires re-writing each recursive call as a self-
application.

To avoid this, more sophisticated techniques are required. The factorial function is a bit complicated for
this, so let’s go back to a simpler recursion.

The simplest recursive definition is the loop function, which is defined as

loop = loop.

To find the value of loop, we expand its definition, which is loop, and we expand the definition again,
and so on, giving a very simple loop which does nothing else. The way we encode this in the lambda
calculus is by using self application – by applying something to itself. In this case, by calling a function∗

on itself.
loop = (λx.x x)(λx.x x)

We see a nested structure here, where we have two identical functions written next to each other, with
the first being applied to the second – this is a self application. Within each function too, we have
two x terms next to each other, with the first being applied to the second. Examining one of the two

∗ This function is more properly known as the Ω-Combinator.
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main functions, we see that it takes an input, x, then applies it to itself, giving another instance of self
application.

Let’s see what happens when we actually “run” loop. That is, we will β-reduce the application. We call
the first function by replacing all instances of x in the body of the abstraction with the second function.
The first function just calls x on itself, written as a lambda application, so we get,

loop = (λx.x x)(λx.x x)

= (λx.x x)(λx.x x)

and we see that this function β-reduces into itself. Or put another way, this function is its own β-redex.
So, this definition just calls itself, as desired.

50.13 The Y Combinator

We can define a more general form of recursion as,

fix f = f(fix f)

so this function takes a function, then applies that function to itself. Expanding this definition, we find,

fix f = f(f(f(· · · f(fix f) · · · )))

so fix f is a fixed point of f . In the lambda calculus, every function has a fixed point, and this function
returns that fixed point.∗ More generally, any implementation of fix is called a fixed-point combinator,
and these higher-order functions return the fixed point of any function passed to it.

In computer science, this type of function is also a form of general recursion, and it turns out that any
arbitrary recursion can be defined in terms of these general ones. For instance, if f = λx.x, that is, the
identity function, then

fix f = f(fix f)

= fix f

and we’ve just encoded loop in terms of fix.

The most common implementation of fix in the lambda calculus is the Y combinator.

Y = λf.(λx.f (xx))(λx.f (xx))

This is very similar to our implementation of loop, just with extra functions wrapped around everything.

We can verify that this implementation works:

Y g = (λf.(λx.f (xx))(λx.f (xx))) g

≡ ((λx.g (xx))(λx.f (xx))

≡ g((λx.f (xx))(λx.f (xx)))
≡ g(Y g)

When applied to a unary function, the Y combinator usually doesn’t terminate. But with functions of
two or more variables, the Y combinator becomes much more useful. The second variable can be used
as a counter, so the resulting function is effectively an implementation of a while or for loop.

∗ The identity function trivially fixes every input, but the remarkable property of fixed-point combinators is that they
construct a single value that is a fixed point of its input.
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Now, back to the factorial, if we instead write,

F = λf.λn.(IsZero n) 1 (mult n (f (pred n)))

then we would instead require that f x = factx = F f x holds, so F f = f , and we deduce that
fact = fixF , so,

fact = λf.(λx.f (xx))(λx.f (xx))λf.λn.(IsZero n) 1 (mult n (f (pred n)))

50.14 The Z Combinator

50.15 Division

50.16 Logical Consistency

50.16.1 Kleene-Rosser Paradox

50.16.2 Curry’s Paradox

50.16.3 Simply Typed Lambda Calculus

50.16.4 Combinatory Logic
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Chapter 51

Category Theory I

“The difference between a regular mathematician and a category theorist is that,
upon encountering a new theorem, the regular mathematician will ask ‘What is an
example of this theorem?’, while the category theorist will ask ‘What is this theorem
an example of?’.”

— Unattributed

The following chapters are taken from various essays of mine. There is some overlap in their content,
since both define basic categorical terminology, but the first covers the very basics in far more detail
than the second; it is recommended that you read them in order.

The first covers the basic definitions and categorical notions up to and including the celebrated Yoneda
lemma, which details how we might examine an arbitrary object by looking at the maps into or out of it.
The second covers structural axiomatisations of the foundations of mathematics, in particular, Lawvere’s
Elementary Theory of the Category of Sets (etcs), before exploring more general logics internal to topoi.



Category Theory I Introduction

51.1 Introduction

Many structures in mathematics come alongside some notion of maps, which are used to relate different
objects with those structures. For instance, groups come alongside group homomorphisms, vector spaces
with linear transformations, probability spaces with measurable functions, and topological spaces with
continuous maps, to name a few.

A category is any collection of objects with maps between those objects that compose associatively. All
of the previous examples are thus specific types of categories, and many common constructions in those
areas do not actually rely on anything specific to that area and can be carried out and unified together
when performed at the level of a category. For instance, the Cartesian product, direct product of groups
(rings, monoids...), product topology, disjoint union, and graph tensor product are all instances of a
categorical product. If we can prove something about the categorical product, we’ll have proved a result
about all of these different types of objects.

Just as many properties in metric spaces are actually topological in nature, many mathematical objects
can be reduced to purely categorical constructions: direct sums, kernels, quotient objects, compactifica-
tions and completions are all also categorical in nature.

A common theme in category theory is that maps between objects are more important than the objects
themselves, and it will often be the case that it is easier to describe an object by the properties it satisfies
or what relations the object has, rather than what the object itself actually is. Even in abstract algebra,
this is often the case – we care that the elements of a group have group structure, not what the elements
themselves actually are or how we label them.

In mathematics, we often come across statements of the form, ∃!x : P (x), or, “There exists a unique x
such that P (x) holds.” The property P is called a universal property, and it uniquely characterises the
object x up to an isomorphism. For example,

Theorem 51.1.1. Let 1 be a set with one element. Then, for all sets X, there exists a unique function
from X to 1.

Proof. For existence, we define a function that maps every element of X to the unique element of 1.
Because every element of X only has one choice of destination, this function is unique. ■

So, the property “For all sets X, there exists a unique function from X to 1” uniquely characterises 1,
up to relabelling of the element. Rather than describing an object itself, universal properties allow us to
describe objects by how they relate to other objects in whatever universe we’re working in.

The Yoneda lemma expands on this concept, suggesting that we may study a category C by examining
the maps from C to the category of sets.

51.2 Categories

[Lei14] A category C consists of:

• A class ob(C ) of objects in C .

• For all (ordered) pairs of objects A,B ∈ ob(C ), a class hom(A,B) of maps or arrows called mor-
phisms from A to B, called the hom-set or hom-class of morphisms from A to B, also some-
times written C (A,B) or homC (A,B) (particularly useful if multiple categories are in use). If
f ∈ hom(A,B), we write f : A → B or A f−→ B. The collection of all of these classes is the
hom-set of C , and is written hom(C ).

• For any three objects A,B,C ∈ ob(C ), a binary operation, ◦ : hom(A,B)×hom(B,C)→ hom(A,C),
(g,f) 7→ g ◦ f , called composition, such that,
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– (associativity) if f : A→ B, g : B → C, and h : C → D, then h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

– (identity) for every object X ∈ ob(C ), there exists a morphism idX : X → X called the
identity morphism on X, such that every morphism f : A → X satisfies idX ◦ f = f , and
every morphism g : X → B satisfies g ◦ idX = g.

In the above definitions, we use the term class. This is because these collections of data generally do not
count as sets under ZFC or equivalent set theory axiomatisations (§51.6.2). For instance, the collection
of all sets does not qualify as a set under ZFC, but such a collection of objects is highly useful in category
theory, so we use classes instead. The notion of a class is informal in ZFC, since ZFC exclusively concerns
things which are sets, but here, we will define∗ a class as a collection of sets that is unambiguously defined
by a property all its members share, such as “being a set”. Any class which is never a set is a proper
class, while a class that is sometimes a set is a small class.

Throughout this document, we will largely ignore the distinction between the two, as the categories
we will construct will generally be locally small – the class of morphisms between any pair of objects
happens to be a set. That is, hom(A,B) is a set (in the sense that they can be constructed in ZFC) for
all A,B ∈ ob(C ). If we also have that ob(C ) is a set, then C is furthermore a small category.

Let’s go through these classes one by one.

An object can really be anything we want, but many of the simplest and most familiar examples will
begin with sets, often with additional structure, such as groups or rings. For any two objects, A and B,
the category has a set of morphisms from A to B, hom(A,B) = {f,g, . . .}. This doesn’t really explain
what a morphism actually is, but morphisms are so general that any more specificity is not particularly
useful. Defining a morphism is somewhat like defining a vector – is a vector fundamentally an arrow in
space which can be described with coordinates, or are they fundamentally ordered list of numbers? –
the answer being, neither; a vector is anything that obeys the vector space axioms. It’s more helpful to
define them by the properties they satisfy, rather than what they themselves are, and as we will soon
see, this viewpoint will become a recurring pattern. In fact, we should note that objects are in bijection
with identity morphisms, so it is possible to define categories entirely in terms of morphisms, and ignore
the objects entirely. We will not do so here, but it is yet another reminder that we will often care more
about how an object interacts with other objects than about the object itself.

It might be helpful to view a morphism a type of (directional) relation, rather than a function. There is
a morphism, f , from A to B if A is related to B, but B does not have to be related to A, and we write
f : A→ B, or draw an arrow from A to B on a diagram to represent this.

A B
f

It could be the case that A and B are not related at all, so the set of morphisms from A to B is empty.
We can also have multiple morphisms from A to B if A is related to B in several ways.

A B
f

g

An object can also be related to itself, and in multiple ways at once.

Morphisms must also have a binary operation defined on them, called composition that obey the com-
position law. If there are morphisms A f−→ B

g−→ C, then the category must also contain a morphism
A

h=g◦f−−−−→ C. Furthermore, any three morphisms must compose associatively: that is, (h◦g)◦f = h◦(g◦f)
for all morphisms f , g and h (with the appropriate domains and codomains). Categories also require
identity morphisms – for every object A, there must exist a morphism idA : A → A such that all
morphisms f : A→ B and g : B → A satisfy idA ◦ g = g and f ◦ idA = f .

∗ A more formal way to handle these classes is through the introduction of Grothendieck universes. This is not of high
importance to the main body of this document, and its discussion is relegated to §51.6.3 in the addendum.
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Let ob(C ) = {A}, and hom(A,A) = {idA}. That is, C is a category containing only one object, and a
single morphism from that object to itself. This morphism trivially satisfies the assocativity and identity
requirements, so C is a category, called the trivial category, depicted below.

A idA

Apart from the trivial category, we usually omit the identity morphism from such diagrams. Conversely,
a category which contains no morphisms apart from identity morphisms is called a discrete category.

Let ob(C ) = {A,B}, and the non-identity morphisms be hom(A,B) = {f} and hom(B,A) = ∅. That
is, C is a category containing two objects, and a single non-identity morphism connecting them in one
direction only. This is the arrow category.

A B
f

Now, let (G, · ) be a group, ob(C ) = {∗}, and hom(∗,∗) = G. For any two morphisms, f and g, we
define the composition f ◦ g to be f · g, so the morphisms have group structure. Because groups require
associativity and identities, the morphism axioms are satisfied, and we see that a group is really a one-
object category. In fact, there’s nothing specific to groups here – we could just have easily started with
a monoid or any other algebraic structure with associativity and identities.

These categories are pretty simple, but they give us an idea of how basic categories can be. We will build
a more complicated category next: Set. Unsurprisingly, the objects of Set are sets, while morphisms
are ordinary set functions. Composition of morphisms is just regular function composition, and identity
morphisms just identity functions which map elements of sets to themselves. The associativity and
identity laws follow from elementary properties of function composition. So, Set is a category.

Many other commonly used categories follow this formula – that is, their objects are sets with additional
structure, and their morphisms are functions that respect that structure. For example, in the category
Grp, objects are groups, and morphisms are group homomorphisms. Composition and identities are
inherited from Set, because everything in Grp is just a specialised version of something in Set. Similarly,
Ring is the category of rings and ring homomorphisms; Top, topological spaces and continuous maps;
VectK , vector spaces over a field K and linear maps; etc.

However, this doesn’t have to be the case, and in general, categories need not have sets as objects and
structure-preserving maps as morphisms. We construct a basic example of such a category as follows:
the objects in our category will be the real numbers, and for any real numbers, x and y, we define a
unique morphism from x to y, if and only if x ≤ y. The problem here, as opposed to in Set or Grp, is
that we can’t really say what a morphism really is. Here, it’s not something that acts on any elements
like a function in Set or a group homomorphism in Grp. In fact, it doesn’t really seem to do anything
at all, other than existing whenever x is less than or equal to y.

If we have morphisms f : x→ y and g : y → z, then we know x ≤ y and y ≤ z. By transitivity of ≤, we
have x ≤ z, giving a unique morphism h : x → z by definition, which we can assign to the composition
g ◦ f . Because this morphism is unique, this assignment is well-defined and determines the composition
of any pair of morphisms. Because x ≤ x holds for all x by reflexivity, there is a unique morphism from
any element to themselves, which we can use as the identity morphism and the associativity and identity
laws follow easily. So, (R, ≤) is a category. It may be noted that we used nothing specific to the real
numbers, so any set equipped with a non-strict preorder is in fact a (small) category.

We can also construct a new category from a pair of existing categories. Given categories C and D ,
the product category C ×D is defined by ob(C ×D) = ob(C )× ob(D), and homC×D((A,B),(A′,B′)) =

homC (A,A′)×homD(B,B′), with compositions defined componentwise [Mac13]. That is, if A f−→ A′ and
B

g−→ B′ are objects and morphisms in categories C and D respectively, then we have the objects and
morphism (A,B)

(f,g)−−−→ (A′,B′) in the product category C × D. We just take pairs of objects in the
constituent categories and pairs of corresponding morphisms between them.
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The principle of duality states that every categorical definition and theorem has a dual definition and
theorem, obtained by reversing the direction of all morphisms in the categories involved. We often prefix
a dual notion with co-, such as in products and coproducts, or domains and codomains.

For instance, every category C has a dual or opposite category with the same class of objects, but with
the domains and codomains of all morphisms interchanged, denoted C op. That is, ob(C ) = ob(C op), and
homC (A,B) = homC op(B,A) for all objects A and B. We note that this notion of duality for categories
is involutive, so (C op)op = C for all categories C .

Theorem 51.2.1 (Conceptual Duality). Let Σ be a statement that holds in all categories. Then the
dual statement Σ∗ holds for all categories.

Proof. [Bor+94, adapted] If Σ holds in a category C , then Σ∗ holds in C op. Every category is the dual
of its dual, so Σ∗ holds in all categories. ■

51.2.1 Commutative Diagrams
It is often helpful to depict categories visually. We have already been using arrows to show morphisms
between objects, but we can do a lot more with these representations. If we take a selection of objects in
a category and draw morphisms between them, we can compose morphisms by following a path through
the diagram, and because of associativity, each path corresponds to a unique composition.

This is useful enough by itself, but certain diagrams have an additional helpful property. A diagram is
commutative if, for every pair of objects in the diagram, all routes between them are equivalent. For
example, this diagram is commutative if and only if h = g ◦ f .

X Y

Z

h

f

g

Suppose we have objects A and B in a category, and morphisms f from A to B and g from B to A such
that the following diagram is commutative.

A BidA idB

f

g

That is, f ◦ g = idB and g ◦ f = idA. f and g are then isomorphisms – morphisms with inverses – and
we alternatively label g as f−1. If an isomorphism between A and B exists, we say that A and B are
isomorphic, and we denote this relation as A ∼= B.

In the context of Set, isomorphisms are exactly the bijections, which is equivalent to the statement
that a function has a two-sided inverse if and only if it is bijective. With this, we see that two sets are
isomorphic if and only if they contain the same number of elements, possibly labelled in different ways
– that is, if their cardinalities are equal. The actual contents of the set, and any extra structure the set
has, aren’t important in Set.

The isomorphisms in Grp are group isomorphisms, as you’d might expect, but this is non-trivial to
prove, especially if the definition of a group isomorphism you use is a “bijective homomorphism”.∗ To
show that group isomorphisms are isomorphisms in Grp, we need to prove that the inverse of a bijective
homomorphism is also a homomorphism. Similarly, the isomorphisms in Ring are exactly the ring
isomorphisms.

An isomorphism is the mathematical way of saying that we only care about some specific property
of an object. If we’re working with the natural numbers, it doesn’t matter if we’re using the Peano

∗ Which is not true for say, topological spaces, or the category Top, where homomorphisms are continuous functions.
However, the inverse of a bijective continuous function is not necessarily continuous, so bijective homomorphisms in Top
are not necessarily isomorphisms. The isomorphisms in Top are instead bicontinuous maps, also called homeomorphisms.
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construction or the von Neumann construction, because there are isomorphisms between them that
preserve the behaviour of 0, 1, + and ·, which are the only things that matter for natural numbers (when
considered as a semiring). If we’re studying groups, then we don’t really care about what elements are
in each group, only that these elements have group structure. From the point of view of the category,
isomorphic elements look the same because they share the only properties that the category cares about.
You’ve probably heard that a topologist cannot tell the difference between a coffee mug and a doughnut.
This is because in Top, these two objects have the same number of holes (a topological invariant that
does matter in Top), and they can be bicontinuously and bijectively deformed into each other.

51.2.2 Functors
One central theme of category theory is the idea of mappings between objects. Whenever we encounter
a new type of mathematical object, we should always ask if there is a sensible notion of a map between
these objects. Of course, categories themselves are mathematical objects we can ask this question on.

Let C and D be categories. A functor, F : C → D , consists of two parts: a mapping on objects, and a
mapping on morphisms, that follow two constraints. F : ob(C )→ ob(D) associates each object X in C
to an object, F (X), in D .

X 7→ F (X)

Similarly, the map F : hom(C ) → hom(D) associates each morphism f : X → Y in C to a morphism
F (f) : F (X)→ F (Y ) in D such that:

• F (idX) = idF (X) for every object X in C ;

• F (g ◦ f) = F (g) ◦ F (f) for all morphisms f : X → Y and g : Y → Z in hom(C ).

That is, the functor preserves identity morphisms and composition of morphisms.

A more concise way to phrase this is, for every pair of objects A,B ∈ ob(C ), the functor F induces a
mapping FA,B : homC (A,B)→ homD(F (A),F (B)) that respects the structure of the categories.

A B

F (A) F (B)

f

F (f)

Theorem 51.2.2. Functors preserve commutativity of diagrams.

Proof. Because functors preserve composition of morphisms, for any two paths a1 ◦ a2 ◦ . . . ◦ an and
b1 ◦ b2 ◦ · · · ◦ bm connecting two objects in a commutative diagram of C , we have,

F (a1) ◦ F (a2) ◦ · · · ◦ F (an) = F (a1 ◦ a2 ◦ · · · ◦ an)
= F (b1 ◦ b2 ◦ · · · ◦ bm)

= F (b1) ◦ F (b2) ◦ · · · ◦ F (bm)

so the corresponding paths in D are also equal, and hence the diagram of D commutes. ■

Corollary 51.2.2.1. In particular, functors preserve isomorphism diagrams, so if f is an isomorphism
in C , then F (f) is an isomorphism in D .

One of the most basic examples of a functor is the constant functor ∆X which associates every object in
C to a single objectX ∈ ob(D), and every morphism to idX . Because every morphism is transformed into
the identity morphism on X, composition and identities are trivially preserved, satisfying functoriality.

For a possibly more familiar example, let (G, · ) and (H, ∗ ) be groups, interpreted as categories G and
H . Any functor F : G → H must associate the only object in G to the only object in H , and is
thus determined only by its action on the morphisms. The functor must satisfy F (idG ) = idH , and
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F (g · h) = F (g) ∗ F (h) for all morphisms g,h ∈ hom(G ). So, any functor G → H is just a group
homomorphism G→ H (and again, we haven’t mentioned inverses, so this holds similarly for monoids).

One very important type of functor is the so-called forgetful functor. Forgetful functors do nothing to
the objects and morphisms of a category apart from “forgetting” some additional structure that mattered
in the original category. For instance, the forgetful functor U : Grp→ Set.

Every object in Grp is a group – a set G with some extra structure in the form of a binary operation and
a set of axioms. The forgetful functor U “forgets” this extra structure on objects, and gives (G, · ) 7→ G,
which is just a set – or rather, an object in Set. Similarly, morphisms in Grp are group homomorphisms,
which are just set functions that happen to respect this extra structure. Forgetting that additional
structure still leaves a normal set function – that is, a morphism in Set. Since morphisms are effectively
unchanged, identity and composition morphisms still exist, so U is a well-defined functor.

Let C and D be categories. A contravariant functor from C to D is a functor C op → D (or equivalently,
a functor C → Dop). In contrast, a covariant functor from C to D is an ordinary functor C → D .
Informally, a contravariant functor from C to D is just an ordinary functor C to D that “reverses all
morphisms and compositions”. This terminology is often used when a named category is involved – it is
more convenient to say that a functor is contravariant, than to start writing Setop everywhere. However,
contravariance can also arise naturally in some constructions:

For instance, the function that sends a set X to its power set P(X) defines the object mapping of a
functor from Set to Set. We can define its action on morphisms f : X → Y by mapping f to the
direct image function P(f) : P(X)→ P(Y ) defined by A 7→ f(A), thus defining the covariant power set
functor P(−) : Set → Set. However, we could alternatively define the morphism mapping by mapping
f to the inverse image function P(f) : P(Y ) → P(X) defined by A 7→ f−1(A). The inverse image
function naturally reverses the direction of morphisms, thus defining the contravariant power set functor
P(−) : Setop → Set.

51.2.3 Full and Faithful Functors
For set functions, it is often helpful to consider properties the function may satisfy on the codomain,
such as surjectivity and injectivity. There exists a similar notion for functors: let C and D be locally
small∗ categories, and let F : C → D be a functor. If for every pair of objects, A,B ∈ ob(C ), the induced
function FA,B : homC (A,B)→ homD(F (A),F (B)) is:

• surjective, then F is full ;

• injective, then F is faithful ;

• bijective, then F is fully faithful.

Note that faithfulness is distinct from injectivity, in that faithful functors are not necessarily injective
on objects or morphisms. For instance, let C be the discrete category on two objects, A and B, and let
D be the trivial category on an object X. Any functor F : C → D will map the two objects in C to the
unique object of D , and similarly, the identity morphisms on A and B are both mapped to the identity
morphism of X, so F is not injective on objects or morphisms. However, the functions FA,A and FB,B
each map one morphism to one morphism, and are hence injective (in fact, bijective), while FA,B and
FB,A are empty functions, and are hence vacuously injective (but not surjective, as F (A) = F (B) = X,
and homD(X,X) is non-empty). It follows that F is a faithful functor, but is injective on neither objects
nor morphisms. Similarly, full functors are also not necessarily surjective on objects or morphisms, which
can be shown by constructing a functor G : D → C in the previous example.

∗ Because the following definitions are in terms of properties of functions on hom-sets, we require that the hom-sets are
indeed sets as these notions are set-theoretic in nature and do not extend readily to proper classes. For large categories,
we extend the definition of full and faithful functors to left and right cancellative, respectively, instead.
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A fully faithful functor that is injective on isomorphism classes of objects is additionally said to be an
embedding. If there exists an embedding F from C to D , then F is said to embed C into D .

51.3 Natural Transformations

We have morphisms between categories in the form of functors, but the next obvious question to ask is,
is there a notion of mappings between functors?

Fix categories C and D , and let C D
F

G
be functors. A mapping C D

F

G

η or η : F ⇒ G

is then called a natural transformation.

F and G map objects and morphisms in C to objects and morphisms in D , respectively. To define
a mapping from F to G, we would like to associate objects and morphisms in D mapped by F to
corresponding objects and morphisms in D mapped by G. For objects, this just means that if X is an
object in C , then we wish to associate F (X) with G(X). However, F (X) and G(X) are objects in D ,
so a relation between them is just a morphism in homD(F (X),G(X)). So, η just maps each X in C to
a morphism F (X)

ηX−−→ G(X) called a component of η.

C D

F (X)

X

G(X)

F

G

ηXη

However, homD(F (X),G(X)) possibly contains many morphisms we could assign to ηX . To help us decide
which one to use, consider a morphism f : A → B in C . Under F and G, f gives the two morphisms
F (f) : F (A) → F (B) and G(f) : G(A) → G(B). It would seem sensible for F (f) to be related to G(f)
under η. From the mapping on objects, we also have ηA : F (A)→ G(A) and ηB : F (B)→ G(B), giving
a square diagram of morphisms.

C D

A F (A) G(A)

B F (B) G(B)

ηA

ηB

F (f) G(f)f

F

G

F

G

η

η

(∃!)?

In this diagram, there are two paths from F (A) to G(B): ηB ◦ F (f), and G(f) ◦ ηA. Because categories
require compositions, these morphisms always exist, but if ηA and ηB were assigned without any other
constraints, these compositions are not necessarily equal and there could be multiple distinct morphisms
from F (A) to G(B). However, we can use this to relate F (f) with G(f) by enforcing that these com-
positions are equal, or equivalently, that the diagram commutes. This requirement is the naturality
condition.
So, for categories C and D , and functors C D ,

F

G
a natural transformation C D

F

G

η is a
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collection of morphisms
(
F (X)

ηX−−→ G(X)
)
X∈ob(C )

such that the following diagram commutes:

A F (A) G(A)

B F (B) G(B)

ηA

ηB

F (f) G(f)f

That is, ηB ◦ F (f) = G(f) ◦ ηA for all f : A→ B in hom(C ).

We next need to verify that these natural transformations actually function as categorical morphisms.
That is, that there always exists an identity, and that natural transformations compose associatively.

Following the component definition, the identity natural transformation on a functor F : C → D is a
natural transformation idF : F ⇒ F that maps eachX ∈ ob(C ) to a morphism F (X)

(idF )X−−−−→ F (X). This
is just the identity morphism on F (X), which always exists, so every component of idF also always exists.
The diagram, consisting of a single morphism and two identities, then trivially commutes, satisfying
naturality, and hence idF always exists. Identities, however, need to compose with other morphisms,
and leave them unchanged. How do natural transformations compose?

51.3.1 Vertical Composition
Fix categories C and D , and let F,G,H : C → D be functors. Consider the natural transformations
α : F ⇒ G and β : G⇒ H.

C DG

F

H

α

β

From the diagram, it would seem sensible to define the composition β ◦ α to be a map from F to H.
Such a composition of natural transformations is called a vertical composition.

Consider an object X in C . The two components of α and β at X are then αX : F (X) → G(X) and
βX : G(X)→ H(X). Because these are just morphisms in D , they can be composed according to regular
morphisms composition rules, and so, we can define the component (β ◦ α)X to be βX ◦ αX : F (X) →
H(X). Because identity natural transformations map objects to identity morphisms, this also verifies
that they do in fact function as identities with respect to vertical composition.

However, it remains to show that these components satisfy the naturality requirement.

A F (A) G(A) H(A)

B F (B) G(B) H(B)

αA

αB

F (f) G(f)f

βB

βA

H(f)

Because α and β are natural transformations, they individually satisfy the naturality requirement, so
each square commutes individually, and hence the diagram as a whole also commutes.

For any two categories, we can now define functors between them, and natural transformations between
those functors that obey the morphism axioms. This suggests the construction of a new category, where
the objects are functors, and the morphisms are natural transformations.
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Let C and D be categories. We construct the functor category [C ,D ] by taking objects to be functors from
C to D , morphisms to be natural transformations, composition of morphisms to be vertical composition
of natural transformations, and identity morphisms to be identity natural transformations.

Given the name of vertical composition, it is unsurprising that we have a notion of horizontal composition,
but its discussion is relegated to §51.6.4 in the addendum.

51.3.2 Natural Isomorphisms
Fix categories C and D . A natural isomorphism between functors from C to D is an isomorphism in
the functor category [C ,D ].

That is, η : F ⇒ G is an natural isomorphism if η is a natural transformation and there exists a natural
transformation ϑ : G⇒ F such that ϑ ◦ η = idF and η ◦ ϑ = idG, and we write η−1 for ϑ.

A BidA idB

f

f−1
← cf. →

C

D

idF idGF G

η

η−1

In this case, we say F and G are naturally isomorphic, and because natural isomorphisms are just
isomorphisms in a specific type of category, we reuse notation and write F ∼= G, or we say that F (X) ∼=
G(X) naturally in X whenever we need to bind a variable.

The next theorem gives an alternative characterisation of natural isomorphisms.

Theorem 51.3.1. Let C D

F

G

η be a natural transformation. Then, η is a natural isomorphism

if and only if ηX : F (X)→ G(X) is an isomorphism for all X ∈ ob(C ).

Proof. Suppose η is a natural isomorphism, so there exists ϑ such that ϑ ◦ η = idF . Then, (ϑ ◦ η)X =
ϑX ◦ ηX = (idF )X for all X ∈ ob(C ), so every component is an isomorphism, completing the forward
implication.

Now, suppose that ηX : F (X) → G(X) is an isomorphism for all X ∈ ob(C ). Define ϑ : G ⇒ F by
ϑX = (ηX)−1. Because η is a natural transformation, we have ηB ◦ F (f) = G(f) ◦ ηA. Left and right
multiplying by ϑB and ϑA respectively, we have, F (f) ◦ ϑA = ϑB ◦G(f) which is exactly the naturality
condition, and hence ϑ is a natural transformation. Then, ϑ ◦ η =

(
F (X)

ϑX◦ηX−−−−−→ F (X)
)
X∈ob(C )

= idF ,

and η ◦ ϑ =
(
G(X)

ηX◦ϑX−−−−−→ G(X)
)
X∈ob(C )

= idG, and hence η is a natural isomorphism, completing the

backward implication. ■

In the reverse direction, we used that η is a natural transformation to obtain naturality for ϑ. Without
this, it could still be the case that F (X) ∼= G(X) for all X, but there does not exist a natural transfor-
mation from F to G at all, so “F (X) ∼= G(X) naturally in X” is a much stronger condition than just
“F (X) ∼= G(X) for all X”.

51.4 Hom-Functors

Suppose we wish to study the properties of an object A in a locally small category C . One way to do so is
to look at A from a different object, X. Then, look at A from another object, Y , and repeat. By looking
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at how A is seen by other objects, we can obtain a lot of information about A. The relationships an object
X has with A are exactly the hom-sets hom(A,X) and hom(X,A), but these sets are different for each
X. In fact, in locally small categories, this assignment of hom-sets with respect to a fixed A is functorial
in X. That is, given a fixed A, every morphism X → Y induces a function homC (A,X)→ homC (A,Y ).

Let C be a locally small category, and fix an object A ∈ ob(C ). We define the (covariant) hom-functor,
hom(A,−) : C → Set, also denoted hA, as follows.

For each object X ∈ ob(C ), we define hom(A,−)(X) = homC (A,X), so each object is mapped to the set
of maps from A to that object. A

X

X

homC (A,X)

We can interpret this as hA mapping objects to how they are “seen” by A.

For each morphism f : X → Y , we define hom(A,−)(f) to be the function hom(A,f) : homC (A,X) →
homC (A,Y ), also denoted hA(f), defined by the postcomposition g 7→ f ◦ g.

A X YfhomC (A,X) [nLa23, adapted]

That is, we map each morphism X
f−→ Y in hom(C ) to the function hA(f) that maps each morphism

A
g−→ X to the composite morphism A

g−→ X
f−→ Y . In the above diagram, the morphisms on the left are

“combed” through to Y through f , and we can interpret this as hA mapping morphisms X f−→ Y to how
A “sees” the object Y through f .

The contravariant hom-functor hom(−,B), also denoted∗ hB , is defined dually, with hB mapping objects
and morphisms to how they see B, rather than how they are seen from B.

C Set C op Set

X homC (A,X) X homC (X,B)

Y homC (A,Y ) Y homC (Y,B)

hA hB

ff hA(f) hB(f)

[Rie17, adapted]

Theorem 51.4.1. hA is a functor.

Proof. We verify the functor axioms.

• Let A f−→ X be a morphism. Then, [
hA(idX)

]
(f) = idX ◦f

= idhA(X)(f)

so hA preserves identities.

∗ The usage of hX for the covariant hom-functor and hX for the contravariant hom-functor is not standardised. Some
texts – notably [Lei14] – reverse the labelling, or use different notation entirely.
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• Let A h−→ X
g−→ Y

f−→ Z be morphisms. Then,[
hA(g ◦ f)

]
(h) = (g ◦ f) ◦ h

= g ◦ (f ◦ h)
=
[
hA(g)

]
(f ◦ h)

=
[
hA(g)

]([
hA(f)

]
(h)
)

=
[
hA(g) ◦ hA(f)

]
(h)

and hA preserves compositions. ■

Corollary 51.4.1.1. By duality, hB is also a functor.

For each object A, we have assigned a functor hA, encapsulating how the category is seen from A, and
as A varies, this view varies. However, it is the same category being seen from all objects, so it wouldn’t
be unusual for us to expect that this assignment has some internal consistency.

As it turns out, any morphism f : A → B induces a natural transformation hf : hB ⇒ hA. Note
the change in direction here! A collection of covariant functors come together to define a contravariant
natural transformation. And, if we started with the contravariant hom-functors, they would all come
together to define a covariant natural transformation.

Consider the component hB(X) → hA(X) of hf at an object X. Recall that a map hB(X) → hA(X)
just sends morphisms B → X to A→ X. We can interpret these hom-sets as contravariant hom-functors
at a fixed X, so we’re really just looking for a morphism hX(B) → hX(A), which is given exactly by
precomposition by f . That is, each morphism g : B → X is mapped to the morphism g ◦ f : A→ X.

In fact, there’s no reason why we should have to fix one argument at a time. The notation hom(A,−)
and hom(−,B) suggests that we may take both inputs to the hom-functor to be variable. Let f : X → Y
and h : B → A be morphisms, and consider the following diagram:

hom(A,X) hom(B,X)

hom(A,Y ) hom(B,Y )

hom(A,f)

hom(h,X)

hom(B,f)

hom(h,Y )

Consider a morphism g ∈ hom(A,X). We will follow how it is mapped under this square along the two
different paths, in a technique called diagram chasing.

Along the upper path, we have g 7→ hom(h,X)(g) = g ◦ h 7→ hom(B,f)(g ◦ h) = f ◦ (g ◦ h). Along the
lower path, we have g 7→ hom(A,f)(g) = f ◦ g 7→ hom(h,Y )(f ◦ g) = (f ◦ g) ◦ h. But, by associativity of
morphism composition, these paths are equal, and we see that this diagram commutes for any choice of
f , g, and h, implying that hom(−,−) is a functor C op × C → Set.

A functor F : C → Set is representable if F ∼= hX (or hX) for at least one choice of X ∈ ob(C ). The
object X along with the natural transformation F ⇒ hX are then a representation of F . As it turns
out, the object X is determined uniquely up to isomorphism in C . We often call representable functors
just representables.

As an example of a representable, the identity functor idSet : Set→ Set is represented by the singleton
set 1. Any function 1 → X just picks elements from the set X, so there are exactly as many functions
1 → X as there are elements of X, giving homSet(1,X) ∼= X = idSet(X), as required. Naturality also
follows trivially as half of the functions to be considered are identities.

For a more interesting example, the forgetful functor U : Grp → Set is represented by the group Z.
Let G be a group. Because group homomorphisms send identities to identities, 0 ∈ Z is always sent to
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the identity in G, so any homomorphism ϕ : Z → G is determined entirely by the image of 1 with the
rest of the map following from the cyclic nature of Z. This suggests that we send each homomorphism
ϕ : Z → G to its determining value ϕ(1), giving us the components of a map α : homGrp(Z,−) ⇒ U .
The inverse map is then given by sending each g ∈ U(G) to the homomorphism z 7→ gz. But, we still
need naturality of this isomorphism.

Let f : G→ H be a group homomorphism.

G homGrp(Z,G) U(G)

H homGrp(Z,H) U(H)

U(f)hZ(f)

αG

αH

f

We will chase a homomorphism ϕ : Z → G through the diagram. Along the upper path, we have(
U(f) ◦ αG

)
(ϕ) = (f ◦ αG)(ϕ) = f(αG(ϕ)) = f(ϕ(1)) = (f ◦ ϕ)(1), and along the lower, we have,

(
αH ◦

hZ(f)
)
(ϕ) = αH

(
hZ(f)(ϕ)

)
=
(
hZ(f)(ϕ)

)
(1) = (f ◦ϕ)(1), so the diagram commutes, and homGrp(Z,G) ∼=

U(G) naturally in G, as required. Through similar arguments, the forgetful functor U : Ring→ Set is
represented by the polynomial ring Z[x], and U : Mon→ Set by the monoid N0 (you might notice that
these are all free algebras on single generators – this is not a coincidence, §51.6.5).

As another example, the contravariant power set functor P : Setop → Set sending sets to their power
sets and functions to their inverse image is represented by the two element set 2, often depicted as {⊤,⊥}
or {0,1} with morphisms interpreted as an indicator functions of elements [Rie17].

For an example of a non-representable functor [Dot23], consider the functor F : Set → Set defined on
objects by X 7→ X

∐
X. Suppose there exists a set Y such that homSet(Y,X) ∼= X

∐
X. If X = 1, then

homSet(Y,1) ∼= {1} ∼= 1 is a singleton set, while 1
∐

1 = {{0,1},{1,1}} ∼= 2 is a set with two elements,
so they are not isomorphic and hence no such Y exists.

51.5 The Yoneda Lemma

It is an almost universal meta-problem in all of mathematics to describe and classify collections of math-
ematical objects [Hal20]. While a mathematical axiomatic definition of an object certainly distinguishes
that object away from any others, this doesn’t tell us much about the collection of all those objects as a
whole. For example, while we can define a group in four short axioms, classifying all groups is a much
harder problem. For a simpler example, imagine we are tasked with classifying the real numbers. The
real number line is a classification of all real numbers by embedding them in some space that has more
properties than the real numbers had alone. For instance, the number line is a metric space, a topological
space, etc.

While we can define real number with Dedekind cuts, or with completeness axioms, this kind of embed-
ding gives a lot of additional useful information that isn’t visible from the axioms alone. Importantly,
there is a bijection between the points on the number line and real numbers, but we also have the new
information in that real numbers near each other on the number line are similar in magnitude. We
can try extend this idea of a classifying space to other kinds of objects, where “nearby” objects have
more similar properties than “distant” objects, and more generally, these spaces are called moduli spaces
[Hal20]. Unfortunately, the moduli space for any kind of useful object is often completely unrecognisable,
and has very few properties we can leverage to our advantage.

However, we can attempt to examine these spaces by looking at the maps from other spaces to them.
Let 1 be the set with one element. Any map from 1 to R effectively amounts to picking an element from
R, so there is a bijection between the functions 1 → R and the points in R. In fact, there’s nothing
specific about R here. More generally, the maps from the one-point space 1 to any space X amount to
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picking points from X. If X is, for example, a metric or topological space, then it is a set equipped with
some extra structure in the form of a metric or a topology. By examining the maps from 1 to X, we can
recover half of that information: just by looking at X from the simplest possible (non-empty) space, we
recover all the points of X.

What if we look at the maps from a more complicated space? A map from the interval [0,1] to X is
just some parametrisation of a curve in X, so the maps [0,1]→ X recover the paths in X, while a map
from the circle S1 to X is just a topological loop, so the maps S1 → X recover the homotopy classes
of loops on X. The point is, we get more and more information about X by examining how it appears
from different choices of domains.

But exactly how much information can we recover? Is it always possible to obtain as much data from
looking at maps as we would from just analysing the space itself? After all, we have no reason to expect
that the entire structure of the space is always captured by these maps.

Except, it always is – and that, is the Yoneda lemma.∗

The remarkable thing is that the Yoneda lemma is a proof at the level of categories, so it holds for any
category of spaces.

We begin the lemma by asking what information representables recover. More precisely, let C be a
locally small category, and fix an object A ∈ ob(C ), which induces the representable covariant functor
hA. For each covariant functor F , what are the natural transformations hA ⇒ F in the functor category
[C ,Set]?

Lemma 51.5.1 (Yoneda). Let C be a locally small category. Then,

hom[C ,Set](hA,F ) ∼= F (A)

naturally in F ∈ ob([C ,Set]) and A ∈ ob(C ).

Before we proceed with the proof, we should unwrap what this is saying, in exact terms. Firstly, there is
an isomorphism of sets, so there is a bijective function between hom[C ,Set](hA,F ) and F (A) – there are
as many natural transformations from hA to F as there are elements of F (A). Moreover, the collection
of natural transformations between two functors isn’t guaranteed to be a set, even if the two associated
categories are (locally) small, so the lemma also shows that hom-sets of this form can be put into bijection
with proper sets.

Next, the isomorphism is said to be natural in F and A, suggesting that both sides are functorial in both
F and A – any morphisms F ⇒ G and A→ B must induce maps

hom[C ,Set](hA,F )→ hom[C ,Set](hB ,G) and F (A)→ G(B)

and not only does the isomorphism hold for every F and A, there exist isomorphisms hom[C ,Set](hA,F )→
F (A) and hom[C ,Set](hB ,G)→ G(B) such that the induced square commutes for any choice of F and A.

More precisely, we can regard the left and right sides of the expression as bifunctors [C ,Set]×C → Set,
mapping (F,A) to hom[C ,Set](hA,F ) and F (A), respectively (in particular, this latter functor is known
as the evaluation functor), and the Yoneda lemma states that these functors are naturally isomorphic.

Proof. Let η : hA ⇒ F be a natural transformation. Consider the following diagram:

A hA(A) F (A)

B hA(B) F (B)

hA(f)

ηB

F (f)

ηA

f

∗ Or at least, part of it – it says a lot of things. The Yoneda lemma is very powerful in more advanced category theory,
but this is one elementary application of it.
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We chase the identity idA ∈ hom(A,A) = hA(A) through the diagram. Along the upper path, we have
idA 7→ ηA(idA) 7→ F (f)(ηA(idA)). Along the lower path, we have idA 7→ hA(f)(idA) = f ◦ idA = f ,
followed by f 7→ ηB(f). From naturality of η, this diagram is commutative, so these two paths must be
equal, giving ηB(f) = F (f)(ηA(idA)).

Remarkably, the input to the function on the right side is always ηA(idA). This implies that any natural
transformation hA ⇒ F is completely determined by its value at idA. This naturally induces a function
hom[C ,Set](hA,F ) → F (A) defined by η 7→ ηA(idA), and moreover, this function is a bijection, as every
value in F (A) conversely extends to a unique natural transformation.

This establishes the required isomorphism, but we still need to show naturality.

First, we write both sides as functors ϑ, ev : [C ,Set]×C → Set. As mentioned before, the action of the
two functors on objects is given by,

ϑ(F,A) = hom[C ,Set](hA,F ) and ev(F,A) = F (A)

respectively. Now, we need to define their action on morphisms.

Being a product category, every morphism (F,A) → (G,B) in [C ,Set] × C is of the form (α,f), where
α : F ⇒ G is a morphism in [C ,Set], and f : A → B is a morphism in C . Fix two such morphisms,
α : F ⇒ G and f : A→ B.

The first functor, ϑ, sends (α,f) to a function ϑ(α,f) : hom[C ,Set](hA,F )→ hom[C ,Set](hB ,G) defined by

mapping each φ : hA ⇒ F to the composition hB
hf−−→ hA

φ−→ F
α−→ G. That is, [ϑ(α,f)](φ) = α ◦ φ ◦ hf .

The second functor, ev, sends the morphism (α,f) to a function ev(α,f) : F (A)→ G(B). At this point,
we should recall that α is a natural transformation, so the following diagram commutes:

A F (A) G(A)

B F (B) G(B)

αA

αB

F (f) G(f)f

From this, we see that there are two paths from F (A) to G(B), namely, F (A) αA−−→ G(A)
G(f)−−−→ G(B),

and F (A)
F (f)−−−→ F (A)

αB−−→ G(B). But, from naturality, these compositions are equal, so either choice
yields the desired map. Next, we verify the functor axioms for ϑ and ev. First, the identity law:

ϑ(idF , idA)(φ) = idF ◦ φ ◦ hidA

= φ

= id[hom(HA,F )](φ)

ev(idF , idA) = F (idA) ◦ (idA)A
= idF (A) ◦ idF (A)

= idF (A)

where the first term on the right follows from the functoriality of F . So, ϑ and ev preserve identities.

Now, let (F,A)
(α,f)−−−→ (G,B)

(β,g)−−−→ (H,C) be morphisms.

ϑ
(
(β,g) ◦ (α,f)

)
(φ) = ϑ(β ◦ α,g ◦ f)(φ)

= (β ◦ α) ◦ φ ◦ hg◦f
= (β ◦ α) ◦ φ ◦ (hf ◦ hg)
= β ◦ (α ◦ φ ◦ hf ) ◦ hg
= β ◦

(
ϑ(α,f)(φ)

)
◦ hg

=
[
ϑ(β,g) ◦ ϑ(α,f)

]
(φ)

ev
(
(f,g) ◦ (α,f)

)
= ev(β ◦ α,g ◦ f)
= H(g ◦ f) ◦ (β ◦ α)A
= H(g) ◦H(f) ◦ βA ◦ αA
= H(g) ◦ βB ◦G(f) ◦ αA
=
(
H(g) ◦ βB

)
◦
(
G(f) ◦ αA

)
= ev(β,g) ◦ ev(α,f)
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On the left, the expansion of hg◦f follows from functoriality, with the reversal of the components resulting
from contravariance. On the right, the expansion of (β ◦ α)A follows from the definition of vertical
composition, and the replacement of H(f) ◦ βA with βB ◦ G(f) follows from the naturality of β. This
last point is perhaps clearer as a diagram chase:

F (A) H(A) F (A) G(A) H(A)

F (B) G(B) H(B)

F (C) H(C) F (C) G(C) H(C)

αA βA

βBαB

αC βC

F (f)

F (g)

G(f)

G(g) H(g)

H(f)

ev(α,f)

ev(β,g)

H(g◦f)

(β◦α)A

F (g◦f)

(β◦α)A

ev (
(β ◦

α),(g ◦
f) )

The first two lines of the equation correspond to taking the upper path along the left diagram. The
expansion in the third corresponds the uppermost path through the right diagram that passes through
H(A). But the upper right square commutes by the naturality of β, so we may route through G(B)
instead of H(A). But then, this is just the route created by taking ev(α,f) followed by ev(β,g), as
required. If we take the other definition of the evaluation functor, we similarly use the functoriality of α
along the lower path.

So, ϑ and ev preserve composition, finally verifying functoriality.

Now, we define a natural transformation Φ : ϑ ⇒ ev. As stated earlier, we will map a natural transfor-
mation η ∈ ϑ(F,A) to its determining value ηA(idA) ∈ ev(F,A), giving us our definition of the component
Φ(F,A). All that remains is to show naturality:

(F,A) ϑ(F,A) ev(F,A)

(G,B) ϑ(G,B) ev(G,B)

Φ(F,A)

Φ(G,B)

ϑ(α,f) ev(α,f)(α,f)

(
ev(α,f) ◦ Φ(F,A)

)
(η) = ev(α,f)

(
ηA(idA)

)
=
(
αB ◦ F (f)

)(
ηA(idA)

)
= (αB ◦ ηB ◦ hA(f))(idA)
= (αB ◦ ηB)

(
hA(f)(idA)

)
= (αB ◦ ηB)(f ◦ idA)
= (αB ◦ ηB)(f)
= (αB ◦ ηB)(idB ◦ f)
= (αB ◦ ηB)

(
(hf )B(idB)

)
= (αB ◦ ηB ◦ (hf )B)(idB)
= (α ◦ η ◦ hf )B(idB)
= Φ(G,B)(α ◦ η ◦ hf )
=
(
Φ(G,B) ◦ ϑ(α,f)

)
(η)

so the diagram commutes, as required. ■

Notes on Mathematics | 1035



Category Theory I The Yoneda Lemma

51.5.1 The Yoneda Embedding
An important case of the Yoneda lemma is when the functor F is another hom-functor, hB :

hom[C ,Set](hA,hB) ∼= hom(B,A)

That is, the natural transformations between the two covariant hom-functors induced by A and B are
in bijection with the morphisms between A and B in reverse direction: this is a contravariant(!) functor
C op → [C ,Set]. This functor is denoted h•, defined on objects A by h•(A) = hA, and on morphisms
f by h•(f) = hf . Similarly, applying the contravariant version of the Yoneda lemma to a contravariant
hom-functor naturally gives rise to the covariant functor h• : C → [C op,Set].

In this context, the Yoneda lemma simply says that the functor h• gives an embedding of C op into
[C ,Set]. These functors are called the Yoneda embeddings, and are often denoted H (hiragana yo) for
Yoneda (from this point onwards, we will use H wherever a proof applies to either functor).

Theorem 51.5.2 (Yoneda Embedding). Let C be a locally small category. Then, the Yoneda embeddings
H : C ↪→ [C op,Set] and H : C op ↪→ [C ,Set] are embeddings – that is, H is fully faithful, and injective
on objects up to isomorphism.

Proof. H is fully faithful if the induced mapping HA,B : hom(A,B)→ hom(H(A),H(B)) is a bijection
for all objects A,B ∈ ob(C ). But this is just the statement of the Yoneda lemma applied to hom-functors.
Injectivity on objects up to isomorphism is proved in the corollary. ■

Corollary 51.5.2.1. If hom(X,−) ∼= hom(Y,−) or hom(−,X) ∼= hom(−,Y ), then X ∼= Y .

Proof. By the Yoneda lemma, any natural transformation η : h•(X)→ h•(Y ) (dually, h•) is induced by
a morphism Y → X (resp. X → Y ). If η is an isomorphism, it follows that η and η−1 are both induced
by inverse morphisms between X and Y , so X ∼= Y . ■

At the beginning of this section, we asked how much information we get when we examine how an
object looks from all other possible viewpoints. This corollary states that we recover the object, up to
isomorphism – that is, the maps into or maps out of an object contain exactly as much information as
that object itself.

Now, for one quick application of the Yoneda embedding, let (G, · ) be a group of order n, interpreted as
a category G with unique object ∗. We will write G to represent the set underlying the group (G, · ).

Consider the action of the hom functor h∗ : G → Set on the unique object of G :

h∗(∗) = homG (∗,∗)

and by construction, this hom-set is just the set G. Now, by the Yoneda lemma, we also have,

hom[G ,Set](h∗,h∗) ∼= homG (∗,∗) = G

First, note that this is exactly the statement that h∗ is bijective on hom-sets, so h∗ is fully faithful.
Then, the left side is the set of natural transformations h∗ ⇒ h∗, but since there is only one object, each
of these natural transformations consists of a single component G→ G, and so,

hom[G ,Set](h∗,h∗) ⊆ homSet(G,G) = Sn

Together, these equations give,

G ⊆ Sn

and moreover, because h∗ is faithful, it provides an injection of homG (∗,∗) ∼= (G, · ) into homSet(G,G) ∼=
Sn, which is exactly the statement of Cayley’s theorem.
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51.6 Addendum

51.6.1 Group-Like Algebraic Structures
In category theory and abstract algebra, we often speak of sets with additional structure, usually in the
form of a binary operation on that set. The simplest structure we begin with is a magma: a set that
is closed under a binary operation. Adding in additional requirements produces a variety of group-like
structures.

Magma

Quasigroup Semigroup

Unital
Magma

Inverse
Semigroup

Loop Monoid

Group

Identity

IdentityIdentity

Identity

Associativity

Associativity

Associativity

Associativity

Divisibility

Invertibility

Invertibility

Divisibility

Of particular interest is the group and the monoid. The former is important to mathematics for obvious
reason, and the latter is important in computer science – both theoretical and applied – as, for instance,
the set of strings that can be constructed from a given set of characters forms a free monoid under the
operation of concatenation.

51.6.2 Universal Set
We quickly recall three of the axioms of ZF(C).

• The axiom of extensionality states that two sets are contained by the same sets if they contain the
same elements. (Informally, sets are determined entirely by their elements – two sets are equal if
and only if they contain exactly the same elements.)

• The axiom of pairing states that if x and y are sets, then there exists a set that contains x and y
as elements.

• The axiom of regularity states that every non-empty set x contains a member y such that x and y
are disjoint.

Theorem 51.6.1. Under the ZF(C) axiomatisation of set theory, there does not exist a universal set:

¬∃S∀x : x ∈ S

or, a set containing all sets.

Proof. Suppose S is a universal set. We can construct the set {S} by applying the axiom of pairing to
S with itself and removing the extra copy of S with the axiom of extensionality. Then, as {S} contains
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only one element, regularity implies that S is disjoint from {S}, and hence S does not contain itself,
contradicting the construction of S. It follows that S is not a set. ■

51.6.3 Set-Theoretic Problems
As mentioned before, the collections of objects and morphisms in a category do not generally form a set.
The four main solutions [Bor21] to this are as follows:

• Ignore the problem;

• Use classes;

• Bounding the size of objects by some cardinal number, κ;

• Use Grothendieck universes (or other axiomatic solutions).

In this document, we mainly use a combination of the first two options: while we have recognised that
these collections do not necessarily form sets, we also do not address the problem any further.

In our usage, this is acceptable as the categories we encounter are generally (locally) small and the classes
we use are, for all intents and purposes, always sets wherever the distinction could matter. It is only in
more advanced categorical constructions that the difference between sets and classes is of importance, but
it is notable that many theorems in category theory are deeply intertwined with set-theoretic questions
of size [Shu08] unlike in many other areas of mathematics. For instance, the Yoneda lemma demands
that the categories used are locally small, while Freyd’s celebrated adjoint functor theorem explicitly
depends on a set of morphisms actually being a set and not a class.

One problem with our formulation of classes is that classes cannot contain other classes, or else we
encounter problems when attempting to form the class of all classes. This causes some issues with
constructing certain large categories which require collections of classes of objects or morphisms. The
solution to this to use conglomerates, as in [Mac13] and [AHS90], which are to classes what classes are
to sets. Since we mainly work with categories that have at most classes of objects and morphisms,
conglomerates are generally a satisfactory solution to this problem, but we still run into issues when
forming things like the category of all categories with this approach.

The third option, which we have opted not to use, turns the object and hom-classes of a category into
sets by bounding the sizes of objects available. The hom-class is then bounded by the size of the power
set of the object class, which is a set by the axiom of the power set. For instance, instead of considering
the class of all sets to be the object class of Set, we pick a cardinal number κ, and only consider the set
of sets of cardinality at most κ.

However, this is somewhat clumsy and artificial, as we need to keep track of extra data for every category
we work with, and moreover, it involves making an arbitrary choice, with runs counter to the working
principles of naturality.

The fourth option is to use a Grothendieck universe (or to resolve these problems in other axiomatic
ways). Before we discuss Grothendieck universes, we must discuss model theory.

In order to mathematically encapsulate some concept, we begin with a list of axioms, which we take
to be true by definition, and a list of inference rules that let us derive new statements from existing
statements. Together, axioms and inference rules generate a theory consisting of all the statements that
can be constructed from the axioms by applying inference rules to them. All the statements within a
theory that are not axioms are called theorems.

For instance, we could have,

• All men are mortal (axiom);

• Socrates is a man (axiom);
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• If “all A are B” and “X is A”, then “X is B” (inference rule);

• Therefore, Socrates is mortal (theorem).

We can’t do anything further with these axioms using our inference rule, so these three statements form
our entire theory about Socrates, men, and mortality.

A model is any collection of objects that is consistent with a given theory. For instance, while our theory
requires for us to have a mortal Socrates, it does not preclude the possibility of our model containing an
immortal Cerberus, because the theory does not say anything about Cerberus, or about things that are
not men.

For a more practical mathematical example, suppose we are trying to axiomatise the natural numbers.
We begin by asserting that 0 is a number, then by saying that every number x has a successor, S(x). The
natural numbers are clearly a model of these two axioms, but they aren’t the only model. For instance,
a model consisting of a single number, 0, such that S(0) = 0, is consistent with our theory. The real
numbers, or complex numbers are also consistent with our theory. So, the goal is to add just enough
axioms to sufficiently constrain the possible models for our theory to be useful.

In much the same way, the axioms of ZFC are not assertions about “the real” universe of sets, because
they are satisfied by many possible “universes of sets” [Shu08]. In fact, the Löwenheim-Skolem theorem
states that any countable theory of first-order logic that admits an infinite model cannot have a unique
model (up to isomorphism).

A Grothendieck universe U is a set that is transitive, closed under pairing, power sets, and indexed
unions. That is,

• (transitive) x ∈ U ∧ y ∈ x→ y ∈ U ;

• (pairing) x ∈ U ∧ y ∈ U → {x,y} ∈ U ;

• (power set) x ∈ U → (x) ∈ U ;

• (indexed unions) I ∈ U ∧ {xi}i∈I ⊆ U →
(⋃

i∈I xi
)
∈ U .

You may notice that several of these properties closely mirror axioms of ZFC, and as such, U will behave
much like a “universal set” with respect to any element it contains. That is, for any element x ∈ U , U
will contain all subsets of x, P(x), P(P(x)), etc., and it turns out that any uncountable Grothendieck
universe is a model of ZFC itself.

Furthermore, the existence of non-trivial Grothendieck universes is not provable from within ZFC, as it
would imply the existence of certain infinite cardinal numbers called strongly inaccessible cardinals that
are not provable from ZFC, and in fact, it is possible to formulate Grothendieck universes as a type
of inaccessible cardinal, as is done in [Shu08]. We can then add an axiom stating the existence of a
Grothendieck universe.

Another popular extension of ZFC is Tarski-Grothendieck set theory, which is ZFC with an additional
axiom that roughly says “for every set x, there exists a Grothendieck universe it belongs to”, which states
the existence of not just one Grothendieck universe, but an entire infinite hierarchy of Grothendieck
universes.

In any case, once a Grothendieck universe is established, we may speak of small and large sets, which
are sets that are and are not elements of the Grothendieck universe, respectively, instead of sets and
(proper) classes.

Yet another approach is to abandon classical axiomatisations of set theory altogether, and formulate
the foundations of mathematics in terms of category theory. There are several such systems with very
different approaches, the most popular of which include Elementary Theory of the Category of Sets
(ETCS), First-Order Logic with Dependent Sorts (FOLDS), and, most famously, homotopy type theory.
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These topics are far beyond the scope of this essay, but they make for very compelling motivations for the
study of category theory. For the interested reader, the following may make for useful further reading:

[Awo11] General background reading;

[LR03] Undergraduate textbook based in categorical foundations;

[Mak95] FOLDS;

[Uni13] Homotopy type theory.

51.6.4 Horizontal Composition
Given the name of vertical composition, it is unsurprising that we have a notion of horizontal composition,
denoted by ⋄.

Fix categories C , D and E , and let F,G : C → D and F ′,G′ : D → E be functors. Consider the natural
transformations α : F ⇒ G and β : F ′ ⇒ G′.

C D E

F F ′

G G′

βα

Because functors compose, we also have functors F ′ ◦ F : C → E and G′ ◦G : C → D . The horizontal
composition β ⋄ α then maps F ′ ◦ F to G′ ◦G.

We again consider an object X in C . F and G map X to a pair of objects in D , and α gives the morphism
between them. F ′, G′ and β then map these objects and morphism to a square in E .

C

D

E

F (X) F ′(F (X)) G′(F (X))

X

G(X) F ′(G(X)) G′(G(X))

αX

F

G′(αX)F ′(αX)

βF (X)

βG(X)

G

G′

F ′

F ′

G′

α

β

β

(β⋄α)X

The square of morphisms in E commutes as β is a natural transformation, so we can define (β ⋄ α)X =
βG(X) ◦ F ′(αX) = G′(αX) ◦ βF (X).

Next, we show naturality of this assignment.

First, consider the naturality diagram of α.

A F (A) G(A)

B F (B) G(B)

αA

αB

F (f) G(f)f
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Then,
A F ′(F (A)) F ′(G(A))

B F ′(F (B)) F ′(G(B))

αA

αB

F ′(F (f)) F ′(G(f))f (1)

also commutes for any choice of A f−→ B in C as F ′ is a functor (Theorem 51.2.2).

Next, we observe the naturality diagram of β.

X F ′(X) G′(X)

Y F ′(Y ) G′(Y )

βX

βY

F ′(g) G′(g)g

This diagram commutes for choice of objects and morphism X
g−→ Y in D , so, picking X = G(A),

Y = G(B), and g = G(f), we have that

G(A) F ′(G(A)) G′(G(A))

G(B) F ′(G(B)) G′(G(B))

βG(A)

βG(B)

F ′(G(f)) G′(G(f))G(f) (2)

commutes (again, for any choice of A f−→ B in C ).

Pasting diagrams (1) and (2) together, we have,

A F ′(F (A)) F ′(G(A)) G′(G(A))

B F ′(F (B)) F ′(G(B)) G′(G(B))

f G′(G(f))F ′(G(f))F ′(F (f))

F ′(αB)

F ′(αA)

βG(B)

βG(A)

We have just shown that the left and right squares commute, and hence the outer square also commutes.

This gives,

(G′ ◦G)(f) ◦ (β ◦ α)A = G′(G(f)) ◦ βG(A) ◦ F ′(αA)

= BG(B) ◦ F ′(αB) ◦ F ′(F (f))

= (β ◦ α)A ◦ (F ′ ◦ F )(f)

which is exactly the naturality condition.

Vertical and horizontal composition are related by the interchange law : given categories, functors, and
natural transformations,

C D E

F

G

H

α

β

F ′

G′

H′

α

β
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we have,

(β′ ◦ α′) ⋄ (β ◦ α) = (β′ ⋄ β) ◦ (α′ ⋄ α)

In these situations, not only do we have objects and morphisms in the form of categories and functors,
but we also have morphisms between morphisms in the form of natural transformations between those
functors.

What we have really been examining is an example of a 2-category, which is a generalisation of a category
to include morphisms between morphisms. But of course, there are 3-categories, and now we’ve started
counting. This line of inquiry quickly leads to ∞-categories, which are some of the objects of study in a
generalisation of category theory called higher category theory.

51.6.5 Adjoint Functors

Fix categories C and D , and let C D
F

G
be functors. F is left adjoint to G, and G is right adjoint

to F , if,

homC (F (A),B) ∼= homD(A,G(B))

naturally in A ∈ ob(C ) and B ∈ ob(D), and we write F ⊣ G to denote this relationship.

Often, forgetful functors from a category C of algebraic objects to Set admit a left adjoint which is often
given by the free functor that constructs the associated free algebraic object on any set.

Recall that a free group FS on a set S consists of all words whose letters are either elements s ∈ S, or
their formal inverses s−1, modulo the equivalence relation that identifies xx−1 and x−1x with the empty
string, ε. The group operation is then given by concatenation of words, and the identity element is
given by ε. Note that the free group on a single generator is isomorphic to (Z,+), with the isomorphism
ϕ : F (1)→ Z given by mapping each word to its length.

As you’d might expect, this assignment is a functorial: there is a functor F : Set→ Grp called the free
group functor that sends every set S to the free group FS .

Let X be a set, Y a group, and U : Grp → Set the forgetful functor. Every group homomorphism
ϕ : F(X) → Y is determined uniquely by the image of the generators of F(X), which are exactly the
elements of the set underlying Y , or, U(Y ). That is, every group homomorphism ϕ ∈ homGrp(F(X),Y )
corresponds uniquely to a function X → U(Y ), which is exactly the statement,

homGrp(F(X),Y ) ∼= homSet(X,U(Y ))

Through some tedious algebra, naturality can also be verified, and the free group functor F : Set→ Grp
is left adjoint to the forgetful functor U : Grp→ Set. Again, similar arguments show that the forgetful
and free functors for other algebraic structures like rings and monoids are all adjoint pairs.

Now, suppose a functor F : Set→ C is left adjoint to a functor G : C → Set, so we have,

homC (F (A),X) ∼= homSet(A,G(X))

Note that the hom-set on the right is in Set, and we know that the set functions 1→ X are in bijection
with elements of X for any set X, so we have,

homSet(1,G(X)) ∼= G(X)

so G is representable! Moreover, we have,

homC (F (1),X) ∼= G(X)

so G is specifically represented by F (1). Because F and G were arbitrary, this shows that any such right
adjoint is representable. In the case where F and G are a free and forgetful adjoint functor pair, this
also shows that forgetful functors are always represented by free objects on single generators.
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Chapter 52

Category Theory II

52.1 Introduction

Suppose you were asked, “is 3 ∈ N?” Being a natural number, 3 is indeed a member of N, so the answer
is “yes”. A little tricker is the question, “is 0 ∈ N?”, but there is at least a meaningful and unambiguous
answer as long as we are clear about the meaning of the symbol N.† On the other hand, the question,
“is π ∈ Q?”, would quickly receive an answer of “no”.

Now, suppose you were then asked, “is π ∈ log?”

You’d might pause for a moment, before again answering in the negative, but for a different reason than
before. After all, π is a number, and log is a function, so π being a member of log – whatever that means
– would be ridiculous! A better answer might be to declare the question as meaningless.

This illustrates the intuitive notion of type, which may be particularly familiar to programmers. Many
programming languages (called strongly typed languages) require you to declare the type of a variable
before using it, with the idea being that strictly enforcing the type of every variable stops the programmer
from performing nonsensical operations like adding an int to a bool, or trying to divide by a string.

However, in the standard foundational framework of zfc, Zermelo–Fraenkel set theory with Choice –
the “assembly language” of mathematics, if you will – everything is a set, so the question “is π ∈ log?”
should have a yes-or-no answer.

For instance, in zfc, membership is a global relation, so it is always a valid question to ask whether any
two arbitrary objects are members of each other, even if the answer is entirely meaningless. Because of
this, the way zfc uses the word “set” is very different from what mathematicians usually mean when
they say “set”. In zfc, π is a set, as is log – but ask any mathematician to list the elements of π or log,
and you will likely have difficulties in receiving an answer.

The benefit of this style of axiomatisation is simplicity – everything is a set, so we don’t have to have
extra rules to deal with every possible different kind of object. On the other hand, we lose this basic
notion of type, because everything is of type set. (We say that zfc is a single-sorted theory.)

As we saw above, this isn’t always sensible. The axioms of zfc allow even more nonsensical questions
beyond asking whether any two random objects contain each other or are equal, and many of the axioms
of zfc themselves are similarly incomprehensible in ordinary mathematical usage. For instance, the
axiom of regularity states that every non-empty set X contains a member x ∈ X such that x ∩X = ∅.
But, pick any ordinary set, say, R, and the resulting statement is difficult to interpret. What does an
expression like 3 ∩ R even mean?

† We will take the answer to be “yes” in this paper.
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One response to this problem might be to say that set theory offers not only a set of axioms, but also a
collection of standard encodings of different mathematical objects. We can again compare this situation
with computers: down in a hard drive, every file – text, image, audio, video, etc. – is ultimately encoded
as bits: as pure combinations of 0s and 1s. So, one could argue that it doesn’t matter that these questions
don’t have meaningful answers, because nobody is claiming that they should; just as how opening a text
file with the wrong encoding results in garbled nonsense doesn’t stop it from being useful when opened
correctly.

But, even if we accept that the encodings are arbitrary, this problem of being able to create meaningless
statements goes deeper than just posing questions about set memberships. One enlightening exercise, as
posed by Benacerraf [Ben65], is to consider the question, “is 3 ∈ 17?”

52.1.1 Is 3 ∈ 17?
Benacerraf describes two children, Johnny and Ernie,∗ who have learnt mathematics from axiomatic set-
theoretic foundations (as opposed to the more commonly preferred method of starting from “counting”,
which he calls the “vulgar way”), say for instance, zfc. To introduce the notion of “counting”, and other
common uses of natural numbers to these children is simple, as their teachers merely need to point out
the common “vulgar” names of set-theoretic constructions they already know. However, there is some
choice in the matter here.

Johnny is taught that there is a set, N , which ordinary people call the “(natural) numbers”, that is
equipped with a well-ordering called the less-than relation. Furthermore, this set contains an element
that ordinary people refer to as the natural number 0; the empty set, and the successor s(n) for any set
n is the set s(n) = n ∪ {n} – so every number n is simply the collection of numbers less than it.†

The normal properties of natural numbers assumed by ordinary people can then be exhibited as concrete
theorems for Johnny. While the common “vulgar” explanation of addition, multiplication, exponentiation,
etc., are informal recursive definitions, Johnny can concretely define these procedures in terms of the
successor operation, so these operations are derivable from this theory. Restricting our focus to finite
sets, Johnny can also encode the common notion of counting with cardinality – a set has n elements if
it can be put in bijective correspondence with the set of natural numbers less than n, and this definition
is well-defined as Johnny’s first order theory is sufficiently powerful to construct such a correspondence
for any finite n.

At this point, Johnny can now communicate with the vulgar, with all the common constructions and
usages of numbers fully encoded within his first order theory of sets. Note that all we have done is
specify the set N and explain the notions of 0 and successor to Johnny. The laws of arithmetic can be
derived from there, as can any other “extramathematical” uses of numbers. For instance, the notion of
counting can be similarly encoded with the additional provision of a definition of cardinality. It can be
reasonably agreed that this information is both necessary and sufficient to completely characterise the
natural numbers for common usage.

52.1.2 The Isomorphism Problem
Now, Ernie is also provided with a set to be labelled N , a designated element 0 ∈ N , and a definition of
a successor function, so all the previous statements apply similarly to Ernie. The two are thus equally
knowledgeable about the natural numbers and can both prove numerous theorems about them; and in
discussion with ordinary people, they are in agreement.

The problems first arise when they consider the statement, “is 3 ∈ 17?”

∗ Named in reference to John von Neumann and Ernst Zermelo.
† This is the standard von Neumann construction of the naturals.
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Johnny argues that the statement is true, while Ernie disagrees. Attempts to resolve this by consulting
ordinary people are met with nothing but confusion – after all, to ordinary people, numbers are just that
– numbers – and not sets.

Examining their given information reveals the origin of this discrepancy: by Johnny’s definition of a suc-
cessor function s(n) = n∪{n}, every number is the set of numbers less than it, so 17 = {0,1,2,3, . . . ,15,16};
clearly, 3 ∈ 17. However, Ernie’s successor function is instead defined by s(n) = {n},∗ so 17 = {16} and
3 is nowhere to be found; clearly, 3 ̸∈ 17. This isn’t the only disagreement between the two systems
either.

Johnny claims that a set has n elements if and only if it can be placed in bijection with the set of numbers
less than n – and here, Ernie agrees; then, Johnny claims further that a set has n elements if and only
if it can be placed in bijection with the number n itself – but for Ernie, every number contains only a
single element (apart from zero, which is empty), so their notions of cardinality also disagree.

The source of the disagreements between Johnny and Ernie is obvious – the difference between their
successor functions, and by extension, the set N . But what is not obvious, is how these disagreements
should be reconciled.

Each account of the naturals is equally valid and correct when considered in isolation, with neither one
to be preferred over the other. In more modern language, both constructions yield valid models of the
Peano axioms – that is, the resulting semirings are isomorphic. So, if we accept Johnny’s construction,
there is no good reason why we shouldn’t also accept Ernie’s. Moreover, Johnny’s and Ernie’s accounts
really are arbitrary, and there are infinitely many ways to assign sets to numbers – infinitely many choices
of N , 0 ∈ N , and s : N → N – that satisfy the Peano axioms.

Of course, we could choose to accept both accounts, and agree that
{
∅,{∅},

{
{∅,{∅}}

}}
= 3 =

{
{{∅}}

}
,

but this is clearly absurd, so we explore the alternative: at least one of the two accounts is false. We can
actually make a stronger statement – at most one of the accounts (out of the infinite possibilities) can
be “correct”.

The belief that there is a true account is called set-theoretic Platonism – this is the idea that there is a
particular set of sets somewhere in the universe which is the “real” set of natural numbers, regardless of
whether there exists an argument to prove this or not, or even if we can ever find it.

Benacerraf rejects the possibility that there is no such argument, saying, “...if the number 3 is really one
set rather than another, it must be possible to give some cogent reason for thinking so; for the position
that this is an unknowable truth is hardly tenable. But there seems to be little to choose among the
accounts. Relative to our purposes in giving an account of these matters, one will do as well as another,
stylistic preferences aside.”

This last sentence is at the heart of structuralism.

52.1.3 Structuralism
Mathematics, as mathematicians actually use it, does not demand of the natural numbers that they
exist as some specific object, but only that they have the structure we require – when we work with
the natural numbers, we don’t care about the specific construction used; only that they have semiring
structure; that they support recursive definitions and induction; that have a canonical embedding into
the integers, etc.

In fact, this is how we usually describe and use objects in mathematics. Some basic examples of this
are vectors and groups: a vector space is anything that satisfies the vector space axioms; and similarly,
a group is anything that satisfies the group axioms. In neither definitions we do we prescribe what
the vector space or group itself actually consists of, only requiring that whatever object or objects it is
behaves in a certain way.

∗ This is the historical Zermelo construction of the naturals.
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To the structuralist, mathematics is the study of structures independent of the things they are composed
of. As seen above, this is the approach taken in many other mathematical contexts, so it is strange that
the foundations of mathematics itself are commonly formulated in a way that is distinctly not structural
in nature. But this does not have to be the case.

In a structural set theory, sets are objects that are characterised by their connections to other sets as
prescribed by functions or relations – and this is essentially how sets are used in common practice of
mathematics. Elements of sets themselves have no identity or internal structure beyond that which is
given by functions and relations. In particular, this means that elements are not sets,∗ and cannot be
members of other sets (not in the sense that it is false that they are, but in the sense that it is meaningless
to ask whether they are [nLa23a]), so elements of different arbitrary sets are not comparable.

It is meaningless to ask whether 3 = {{{∅}}} or not, because it is not asked in the context of the rest
of the natural numbers – for instance, we know 2 ̸= 3, because, for example, 2 is strictly less than 3,
which is a property of natural numbers; but it seems wrong to argue that 3 ̸= {{{∅}}} because, say,
we know that 3 has three elements (or none, or seventeen, or infinitely many), while {{{∅}}} only has
one, because we don’t know this. The number of elements of 3 isn’t a part of the structure of the natural
numbers, so we cannot meaningfully deny that 3 = {{{∅}}} on the grounds that 3 contains a different
number of elements than {{{∅}}}.

What makes the number 3 the number 3 is exactly its relations to other natural numbers, so structuralism
tells us that a more sensible question than “what is 3?” would be “what are all the natural numbers?” –
or more precisely, “what structure is the natural numbers?”

We just saw that the question “is 3 ∈ 17?” has a different answer depending on which construction is
chosen – Johnny says “yes”; and Ernie, “no” – despite the resulting collections being isomorphic. We say
that zfc is not isomorphism invariant.

In contrast, structural definitions are always isomorphism invariant (with respect to the relevant struc-
ture). For instance, we structurally characterise a natural numbers object as a triple (N,0,s) consisting
of a set N , a distinguished element 0 ∈ N , and a successor function s : N → N . The natural numbers
object then expresses natural arithmetic in terms of these components. Importantly, in this characterisa-
tion, it doesn’t actually matter what the elements of N actually are, only that they carry this structure
– the elements themselves are meaningless in isolation.

The structuralist then says that the number “3” is “the third place in a natural numbers object”, rather
than any particular set like in zfc. We don’t have to argue what set 3 is, because 3 isn’t a set – it is a
relation or structure that some particular objects may exhibit. The statement “is 3 ∈ 17?” is then not
a well-formed statement, because the ∈ relation isn’t compatible with members of this structure in this
way.

In this way, structural set theories are not only isomorphism invariant, but are also free from much
of the arbitrary constructions and additional baggage of zfc that are never actually used in common
mathematics.

Mathematicians generally do not appeal to any kind of axioms when doing mathematics – even when
working with sets – without any loss of accuracy to their work. In practice, we never actually think of
functions or numbers as sets, and that doesn’t ever seem to pose a problem. So, it appears that we all
subconsciously have a set of operating principles we use for manipulating mathematical constructions
that are good enough for almost all purposes. The idea is that the axioms of structural foundations are
much closer to these intuitions because we formulate our axioms in terms of how we want objects to
behave, rather than as a list of rules about which objects exist.

∗ Such an element is called a urelement. In classical material set theories, we usually have no urelements, as it is possible
to embed material set theories with urelements into a version without urelements, simplifying the theory. In structural set
theories, however, every element is a urelement.
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52.1.4 Primitive Notions
In zfc, and many other traditional material axiomatisations of set theory, the basic primitive notions
are of sets, elements, and membership, and everything else is derived from there.

For instance, consider the notion of a function. Informally, a function is a special kind of correspondence
between pairs of objects, where every given object is assigned exactly one corresponding object by the
function. It is also helpful to view a function as an operation or as some kind of input-output process
that is applied to an object to obtain its associated object (its image).

We can represent a function f : A → B as a relation – a subset of A × B – given by f̂ =
{
(x,y) :

y is the f -image of x
}
, where (a,b) is an ordered pair. Conversely, to distinguish which relations R ⊆

A×B represent functions, we use the property that functions assign exactly one image to each input: if a
relation f̂ satisfies the property that (x,y) ∈ f̂ and (x,z) ∈ f̂ imply that y = z, then f̂ is a representation
of some function.

This construction encodes our informal notion of a function as a set of ordered pairs satisfying a certain
property. The next step is a trick commonly used in mathematics; we drop the distinction between the
notion of a function and its abstraction as a set, and we say that this formal representation is itself the
definition of a function [Gol84].

This definition works well on a technical level, and much theory can be developed with it, but there are
several conceptual hurdles that come alongside it. One point of difficulty is with the codomain of the
function: we can easily define the sets dom(f) =

{
x : ∃y : (x,y) ∈ f

}
and im(f) =

{
y : ∃x : (x,y) ∈ f

}
,

but there is no way to recover the codomain of a function from this definition.

This is not a problem in some branches of mathematics, such as analysis, or even much of set theory.
However, in more algebraic or topological areas, this poses some difficulties.

Let A ⊂ B, and consider the functions idA : A→ A and ι : A ↪→ B both defined by x 7→ x. The former
is the identity function on A, while the latter is the inclusion of A into B, with the usage of the term
“inclusion” indicating that we should view the function as including the elements of A into B. These
functions are conceptually very distinct, but they are both the set

{
(x,x) : x ∈ A

}
.

This is not only a conceptual problem, but a practical one in some cases: if, for instance, we take A = S1

and B = C, then the identity and inclusion maps yield very different induced homomorphisms in first
homology.

Even if we patch this definition to specify the information of the codomain separately, this definition still
fails to faithfully capture the dynamic quality of a function; we often speak of a function acting on or
being applied to an input, and the symbol between the domain and codomain of a function is even an
arrow ! Even further, more specialised functions like some transformations in linear algebra, geometry,
group theory, etc. are explicitly described as motions of space. In contrast, the characterisation of a
function as a set is inherently static.

Because functions are exactly how sets relate to one another, they are very important in a structural
context. In fact, in our structural axiomatisation of set theory, we will instead take sets and functions
to be our primitive notions, with elements and the membership relation now being derived. This choice
of primitive notions lends itself well to be described with the language of category theory.

52.2 Categories

We briefly state some standard categorical definitions, generally adapting those from [Lei14] (though
with some notable differences). For a more introductory and motivated treatment of these definitions,
see [Kit22].
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Loosely speaking, a category consists of a collection of objects, with morphisms or arrows pointing
between objects, subject to a couple of axioms pertaining to how morphisms compose. These axioms
derive from the properties of function composition, so in many ways, a category is a vast generalisation
of sets and set functions.

One of the basic precepts of category theory is that objects have no internal identity; in an arbitrary
category, objects are not (necessarily) sets, so it makes no sense to try “look inside” an object. Even
if they do happen to be sets, it turns out that looking at the morphisms connecting to that object is
sufficient to determine it (almost) uniquely – in this way, category theory is inherently structural, making
it well-suited for discussing structural foundations.

Formally, a category C consists of:

• A class ob(C ) of objects in C . We often write A ∈ C to abbreviate A ∈ ob(C ).

• For all (ordered) pairs of objects A,B ∈ ob(C ), a class homC (A,B) of maps or arrows called
morphisms from A to B, called the hom-set or hom-class of morphisms from A to B, also sometimes
written C (A,B) or hom(A,B) if the ambient category is clear. If f ∈ hom(A,B), we write f : A→ B

or A f−→ B. The union of all of these classes is the hom-set of C , and is written hom(C ).

• For any three objects A,B,C ∈ ob(C ), a binary operation, ◦ : hom(A,B)×hom(B,C)→ hom(A,C),
(f,g) 7→ g ◦ f , called composition, such that,

– (associativity) if f : A→ B, g : B → C, and h : C → D, then h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

– (identity) for every object X ∈ ob(C ), there exists a morphism idX : X → X called the
identity morphism on X, such that every morphism f : A → X satisfies idX ◦ f = f , and
every morphism g : X → B satisfies g ◦ idX = g.

Note that, despite the name, a hom-set is not necessarily a set (under zfc), and may in fact be a proper
class.∗ If the class of morphisms between any pair of objects does happen to be a set, then C is locally
small ; and if ob(C ) is also a set, then C is additionally small.

We list a few illustrative examples of categories:

(i) The prototypical example of a category is the category of sets and set functions, Set. Identity
morphisms are identity functions, and associativity follows from basic properties of set functions.

(ii) The category of groups and group homomorphisms, Grp. Every group is a set with extra structure,
and every group homomorphism is a set function that happens to preserve this structure, so
associativity and identity are inherited from Set.

(iii) Similarly, collections of sets with extra structure and maps that preserve that structure generally
form categories called concrete† categories. For example, the category of:

• Monoids and monoid homomorphisms, Mon;

• Rings and ring homomorphisms, Ring;

• Metric spaces and non-expansive maps, Met;

• Topological spaces and continuous maps, Top;

• Cp-manifolds and p-times differentiable maps Manp;

• Measurable spaces and measurable functions, Mea;

∗ Given that we are attempting to axiomatise sets themselves, this statement may be somewhat confusing, but for now
we will take the word “set” as a declaration of intent to form a collection that does not invoke paradoxes or contradictions
– no universal or Russell sets. We can get surprisingly far with the intuitive idea of a set as a “bag of featureless dots”.

† More properly, a concrete category is a category equipped with a faithful functor to Set, but informally, they are
categories that “look like Set with extra structure”.
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• Vector spaces and linear maps over a fixed field K, VectK ; etc.

(iv) Let (M, ∗ ) be a monoid, ob(C ) = {•}, and hom(•,•) = G. For any two morphisms f and g, define
the composition f ◦ g to be f ∗ g. Identity and associativity follow from the monoid axioms, so C
is a category. In this way, any monoid can be regarded as a category on a single object.

In particular, we see that the structure of this category is captured entirely within the morphisms,
and the object itself is unimportant, so much so that we don’t even assign it any characteristics
beyond being a featureless point, •. Note that this also means this category is not concrete, as the
object • is not a set.

(v) Let X be any set equipped with a preorder (a reflexive and transitive relation), ≤. Let ob(C ) = X,
and for any two elements x,y ∈ X, define a unique morphism f : x → y if and only if x ≤ y.
Reflexivity gives identity morphisms, and transitivity guarantees that compositions exist, so any
preordered set can be regarded as a category. More generally, a thin or posetal category is a
category with at most one morphism in every hom-set, so up to isomorphism, every preordered set
is a thin category.

(vi) For any topological space X, its fundamental groupoid Π1(X) is a category. Its objects are points
in X, and morphisms are homotopy classes of paths, with composition given by path concatenation.

(vii) Any ordinal constructed in the von Neumann style, n = {m : m < n}, defines a category n on n
objects with morphisms given by set inclusions. (This defines a poset, so this is a specific example
of the above preordering categories.)

For instance, 0 is the category with zero objects and morphisms (the empty category); 1 is the
category with one object (the trivial or terminal category); 2 is the category with two objects and
a single non-identity morphism between them (the arrow category), often depicted as 0→ 1; etc.

More generally, n is the category freely generated by the graph

0 −→ 1 −→ 2 −→ 3 −→ · · · −→ n− 1 −→ n

in the sense that every non-identity morphism can be uniquely factored as a composite of morphisms
in the displayed graph [Rie17]. For instance, 0 ⊂ 3, so there should be a morphism 0 → 3 in this
category, but this is just the composition of 0 → 1, 1 → 2, and 2 → 3, which are all displayed in
the graph.

(viii) For any cardinal n, we can define a category with n objects and no morphisms aside from the
required identities. Such a category is called a discrete category.

Note that an indiscrete or codiscrete category is not simply a category that is not discrete, but is
instead a category where every hom-set is a singleton (i.e. the category forms a complete digraph).

A category can be interpreted as a context or a universe in which we perform some kind of mathematics.
For instance, group theory is performed within Grp, topology within Top, differential geometry within
Man∞, etc. Category theory thus provides a unified language for dealing with all of these different
contexts in a uniform manner, and for translating statements and methods between these different
disciplines.

Category theory itself was developed from within algebraic topology, where it was used to apply the tools
of abstract algebra to topological contexts [Gol84], but has since become a branch of pure mathematics
in its own right. In particular, category theory has imparted the lesson of conceptually reframing existing
theories in structural, arrow-theoretic terms, which has often proven to be a valuable way to obtain new
insights and underlying connections.

The most general context for performing mathematics is the category of sets, Set: all mathematical
objects can all be translated down into structures on sets (or in the case of material foundations, into
sets themselves), so axiomatising the category of sets is one method of formalising alternative foundations
of mathematics.
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52.2.1 Diagrams
The structure of a collection of objects and morphisms in a category is often visually represented as a
directed graph, called a diagram. We have already used A→ B to denote a morphism from A to B, but
we can also draw larger diagrams to represent more objects and morphisms. For instance, this diagram
depicts 3 objects with morphisms between them:

X Y

Z

h

f

g

Note that it is standard to omit identity morphisms from these diagrams to reduce clutter.

Because categories require compositions to exist, following a path through a diagram always gives a valid
morphism between the endpoint objects. For instance, there is a path from X to Z that passes through
morphisms f and g, so there is a morphism g ◦ f : X → Z in this category. Furthermore, a diagram is
commutative if for every pair of objects in the diagram, all routes between them are equal. For instance,
the diagram above is commutative if and only if h = g ◦ f . This also justifies the omission of identity
morphisms in general diagrams; they don’t meaningfully add any additional paths to the diagram.

52.2.2 Constructing Categories
Given two categories, C and D , the product category C × D is the category with objects ob(C ×
D) = ob(C ) × ob(D) and morphisms homC×D((A,B),(A′,B′)) = homC (A,A′) × homD(B,B′), with
compositions defined componentwise [Mac13]. That is, if A f−→ A′ and B g−→ B′ are objects and morphisms

in categories C and D respectively, then we have the objects and morphism (A,B)
(f,g)−−−→ (A′,B′) in the

product category C ×D.

Example. Take the arrow category, 2, with objects and single non-identity morphism 0
f−→ 1. The product

category 2× 2 can then be represented as the diagram,

(0,0) (0,1)

(1,0) (1,1)

(id0, f)

(f, id0)

(id1, f)

(f, id1)(f, f)

The diagonal morphism is often omitted from diagrams of this category, replaced by the requirement
that the square commutes. △

Another way to construct new categories from an existing category is to dualise the category. The dual
or opposite category C op of a category C is the category with the same class of objects, but with the
domains and codomains of all morphisms interchanged. That is, ob(C ) = ob(C op), and homC (A,B) =
homC op(B,A) for all objects A and B.

More generally, the principle of duality states that every categorical definition and theorem has a dual
definition and theorem, obtained by reversing the direction of all morphisms in the categories involved.
Dual notions are often prefixed with co-, as in domains and codomains.

Theorem 52.2.1 (Conceptual Duality). Let Σ be a statement that holds in all categories. Then the
dual statement Σ∗ holds for all categories.
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Proof. [Bor+94, adapted][Kit22] If Σ holds in a category C , then Σ∗ holds in C op. Every category is
the dual of its dual, so Σ∗ holds in all categories. ■

There is also a notion of a subcategory ; given a category C , a category D is a subcategory of C if ob(D)
is a subcollection of ob(C ) and homD(A,B) is a subcollection of homC (A,B) for any objects A and B
in D . A subcategory is furthermore said to be full if for every pair of objects A and B, every morphism
A→ B in C is also in D . That is, a full subcategory D is a subcollection of objects of C with all possible
morphisms included.

52.2.3 Morphisms

52.2.3.1 Isomorphisms

Suppose we have objects A and B and morphisms f : A → B and g : B → A such that the following
diagram is commutative:

A BidA idB

f

g

That is, f ◦ g = idB and g ◦ f = idA, so f and g are mutually inverse. Then, we say that f and g are
isomorphisms, and we alternatively label g by f−1. If an isomorphism between a pair of objects A and
B exists, we say that A and B are isomorphic and we write A ∼= B.

Isomorphic objects are, as far as the ambient category is concerned, effectively identical – anything you
can say about one object will apply just as well to any other isomorphic object.

In algebra, we often see phrases such as “the group S3”, or “the (semiring of) naturals”, despite the fact
that there exists many ostensibly distinct objects to which these names could refer – for instance, the set
of isometries that preserve an equilateral triangle and the set of automorphisms on a set of cardinality 3
could both reasonably be labelled “S3”.

This reflects the idea that we often do not know or care about whether two objects are literally equal,
but only that they are isomorphic with respect to whatever property we care about. In contrast, in set
theory, we sometimes do care about whether two elements of a set are exactly equal or not, since, for
example, sets are entirely determined by their elements.

This indicates that for different contexts and types of data, we care about different degrees of likeness.
For elements of sets, this notion of likeness is equality. For objects in a category (such as, say, groups in
Grp), this notion is isomorphism. In general, equality is too strong of a requirement in category theory
in the sense that effectively all categorical results still hold if we weaken any requirements of equality to
isomorphism – and further still, depending on the foundations used, arbitrary categories may not even
admit a notion of equality between objects. Conversely, any purely categorical notion should also not
refer to strict equality at all.

52.2.3.2 Monics and Epics

Consider a morphism f : A→ B in some category C . Suppose that for every pair of parallel morphisms
into A

X A B
g2

g1

f

we have that f◦g1 = f◦g2 implies g1 = g2 (f is left-cancellative). Then, we say that f is a monomorphism
(or is monic), and we write f : A↣ B.

Monomorphisms generalise injective set functions, and in many categories where objects are structured
sets and morphisms are structure preserving set functions, the two notions coincide.

Theorem 52.2.2. The monomorphisms in Set are precisely the injections.
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Proof. Suppose f : X → A is injective, and let g1,g2 : A → B be functions such that f ◦ g1 = f ◦ g2.
Then, for any x ∈ X, f

(
g1(x)

)
= f

(
g2(x)

)
, and by injectivity, g1(x) = g2(x), so g1 = g2 and f is monic.

Now, suppose instead that f : X → Y is monic. Consider two elements a,b ∈ X such that f(a) = f(b)
and define g1,g2 : {•} → X by g1(•) = a and g2(•) = b. Then, f ◦ g1 = f ◦ g2, and since f is monic,
g1 = g2, giving a = g1(•) = g2(•) = b, and hence f is injective. ■

Note that we have now characterised injectivity in terms of functions into and out of sets, making no
mention of the elements within the set; thus describing injectivity in Set structurally.

(Non-empty) injective functions in Set are also always left-invertible, hinting at another connection
between monics and invertibility.

If f : A→ B is a morphism such that there exists a morphism s : B → A such that the composite s ◦ f
is the identity on A, then f is a split monomorphism, and we say that s is the section of f , and that f
is the retraction of s.

Note that being a split monomorphism is distinct from being a monomorphism; the former requires
having a left-inverse, while the latter requires being left-cancellative, which, in general, are not the same
thing. However, we do have:

Theorem 52.2.3. Split monomorphisms are monomorphisms.

Proof. Let f : A → B be a split monomorphism with left inverse ℓ : B → A, so ℓ ◦ f = idA, and let
g1,g2 : X → A be morphisms such that f ◦ g1 = f ◦ g2. Then,

f ◦ g1 = f ◦ g2
ℓ ◦ f ◦ g1 = ℓ ◦ f ◦ g2

g1 = g2

so f is monic. ■

Note, however, that the converse does not hold in general; not all monomorphisms split, as demonstrated
by the empty function in Set. For another example, let H be a subgroup of a group G in Grp, and
consider the inclusion map ι : H ↪→ G. The inclusion map is injective as a set function, so it is monic in
Set, which is inherited into Grp. But, ι has a left inverse if and only if G \H is normal in G, so this
monomorphism does not split in general.

Dually, a morphism f : A→ B is then an epimorphism (or is epic) if it is monic in C op. That is, if for
every pair of parallel morphisms from B

A B X
g2

g1

f

we have g1 ◦ f = g2 ◦ f implies g1 = g2 (f is right-cancellative), and we write f : A↠ B.

Epimorphisms, like monomorphisms and injections, generalise surjective set functions, and in Set, the
two notions coincide.

Theorem 52.2.4. The epimorphisms in Set are precisely the surjections.

Proof. Suppose f : X → Y is surjective, and let g1,g2 : Y → A be functions such that g1 ◦ f = g2 ◦ f .
By surjectivity, for every y ∈ Y there is an x ∈ X such that y = f(x), so g1(y) = g1

(
f(x)

)
= g2

(
f(x)

)
=

g2(y), so g1 = g2 and hence f is epic.

Suppose otherwise that f : X → Y is epic, and define g1,g2 : Y → 2 = {⊤,⊥} by g1(y) = ⊤ and

g2(y) =

{
⊤ ∃x ∈ X : f(x) = y

⊥ otherwise
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That is, g2 maps the elements in the image of f to ⊤ and those outside to ⊥. Then, g1 ◦ f = g2 ◦ f by
construction, and as f is epic, we have g1 = g2 so g2 is the constant map at ⊤. So, the image of f is
equal to Y , and f is surjective. ■

However, in categories of structured sets, epimorphisms are generally not surjective (unlike monomor-
phisms, which generally are injective), so the analogy with surjectivity should be taken less literally with
epimorphisms. However, we again have a notion of splitting for epimorphisms:

If f : A→ B is a morphism such that there exists a morphism s : B → A such that the composite f ◦ s
is the identity on B, then f is a split epimorphism, and we say that s is the section of f , and that f is
the retraction of s.

Corollary 52.2.4.1. Split epimorphisms are epimorphisms.

Proof. Dual of previous theorem. ■

Again, the converse does not hold in general; not all epimorphisms will split in an arbitrary category.

The previous two results together imply the following:

Theorem 52.2.5. Isomorphisms are monic and epic.

In certain categories, such as Set, every morphism that is simultaneously monic and epic (a bimorphism)
is an isomorphism, and such a category is called balanced, but in general, the converse of this result does
not hold. For instance, consider the inclusion ι : Z ↪→ Q in Ring.

The inclusion map is injective, so it is monic in Set, which is inherited into Ring. Now, consider two
maps f and g from Q to some ring R:

Z Q Rι
f

g

Because every rational a
b ∈ Q can be written as the product a · b−1 of an integer and a multiplicative

inverse of an integer, the ring homomorphism f must map the rational ab to,

f
(a
b

)
= f(a) · f(b)−1

and similarly for g, so if f and g agree over the integers – that is, if f ◦ ι = g ◦ ι – then they are equal
everywhere, and hence ι is epic. So, ι is a bimorphism, but is clearly not an isomorphism, so Ring is
not a balanced category.

52.2.4 Functors
A functor, F : C → D between categories C and D , consists of a mapping on objects and a mapping on
morphisms, such that,

• F (idX) = idF (X) for every object X in C ;

• F (g ◦ f) = F (g) ◦ F (f) for all morphisms f : X → Y and g : Y → Z in hom(C ).

That is, the functor preserves identity morphisms and composition of morphisms. Equivalently, for every
pair of objects A,B ∈ ob(C ), the functor F induces a mapping FA,B : homC (A,B)→ homD(F (A),F (B))
that respects the structure of the categories. If this induced function is surjective, then F is full ; if it
is injective, then F is faithful ; and if it is bijective, then F is fully faithful. If a fully faithful functor
F : C → D is additionally injective on isomorphism classes, it is called an embedding, and F is said to
embed C into D .

Functors encapsulate the idea that categorical constructions should also tell you what to do with map-
pings.
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Example (Hom-Functor). Let C be locally small, and fix any object A ∈ ob(C ). For any object X ∈
ob(C ), we can form the set of morphisms X → A, which is exactly homC (X,A). Note that because C is
locally small, this hom-set is a set and not a proper class, so it can be viewed as some element of Set.

This assignment of hom-sets to objects is functorial; there is a functor hom(A,−), also denoted hA,
that sends every object X to the hom-set hA(X) = homC (A,X). This functor sends every morphism
f : X → Y to the function hom(A,f) : homC (A,X) → homC (A,Y ), also denoted hA(f), defined by
mapping every g ∈ homC (A,X) to its postcomposition by f to obtain f ◦ g ∈ homC (A,Y ), thus defining
the covariant hom-functor. △

A covariant functor from C to D is simply a functor C → D . In contrast, a contravariant functor from
C to D is a functor C → Dop (or equivalently, C op → D). That is, a contravariant functor reverses the
direction of morphisms. This happens naturally in some constructions (particularly in many topological
constructions involving preimages), and in those cases, it is easier to say that a functor is contravariant
than to start appending “op” to half the categories involved.

Contravariant functors with codomain Set are common enough that they have their own name: a presheaf
on a category C is a functor C op → Set, the name deriving from the notion of presheaves on topological
spaces.

Example (Hom-Functor). Again, let C be locally small, and fix any object A ∈ ob(C ). For any other
object X, we can similarly form the set of morphisms A→ X, which is exactly homC (A,X) ∈ ob(Set).

This assignment of hom-sets to objects is again functorial; the functor hom(−,A), also denoted hA, sends
every object X to the hom-set hA(X) = homC (X,A). Let f : X → Y be a morphism in C . Unlike
in the covariant case, there is no natural way to construct an induced function hA(f) = hom(f,A) :
homC (X,A) → homC (Y,A), but we can easily construct one in the opposite direction by mapping
every morphism g ∈ homC (Y,A) to its precomposition by f to obtain g ◦ f ∈ homC (X,A). Thus,
this construction sends objects in C to Set while reversing all morphisms, defining the contravariant
hom-functor hA : C op → Set.

△

Example (Hom-Bifunctor). The notation hom(A,−) and hom(−,B) in the previous examples suggests
that there might be a functor hom(−,−) that sends (ordered) pairs of objects to the hom-set between
them. In order for this construction to be functorial, we also need to map the pairs of morphisms between
these pairs of objects to some function between the hom-sets. That is, if f : X → Y and h : B → A
are morphisms, then there should be an induced function hom(h,f) : hom(A,X) → hom(B,Y ), noting
that the first argument is reversed due to contravariance. By alternatively fixing each component of the
functor, we can construct the following square:

hom(A,X) hom(B,X)

hom(A,Y ) hom(B,Y )

hom(A,f)

hom(h,X)

hom(B,f)

hom(h,Y )

We will follow how a morphism g ∈ hom(A,X) is mapped under this square along the two different paths,
in a technique called diagram chasing. The vertical arrows are the covariant hom-functors that precom-
pose their inputs by f , and the horizontal arrows are the contravariant hom-functors that postcompose
their inputs by h.

So, along the upper path, we have g 7→ g ◦h 7→ f ◦ (g ◦h), and along the lower path, we have g 7→ f ◦g 7→
(f ◦ g) ◦ h. But by the associativity of composition, these paths are equal, so the diagram commutes for
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all f , g, and h; there is a unique morphism from hom(A,X) to hom(B,Y ) induced by h and f :

hom(A,X) hom(B,X)

hom(A,Y ) hom(B,Y )

hom(A,f)

hom(h,X)

hom(B,f)

hom(h,Y )

hom(h,f)

which is exactly the statement that the function hom(h,f) is well-defined. So, hom(−,−) is indeed a valid
functor C op × C → Set. Because this functor takes objects and morphisms from a product category,
it is also called a bifunctor. The ordinary covariant and contravariant hom-functors are then just the
partial applications of this bifunctor in the first and second arguments, respectively. △

Theorem 52.2.6. Functors preserve commutative diagrams.

Proof. [Kit22] Because functors preserve compositions, for any paths a1 ◦a2 ◦ · · · ◦an and b1 ◦ b2 ◦ · · · ◦ bm
connecting a pair of objects in a commutative diagram, we have,

F (a1) ◦ F (a2) ◦ · · · ◦ F (an) = F (a1 ◦ a2 ◦ · · · ◦ an)
= F (b1 ◦ b2 ◦ · · · ◦ bm)

= F (b1) ◦ F (b2) ◦ · · · ◦ F (bm)

so the image of the two paths are also equal, so the image of the diagram remains commutative. ■

In particular, this implies that isomorphism diagrams are also preserved, so

• If f is an isomorphism, then F (f) is also an isomorphism;

• If A ∼= B are isomorphic objects, then F (A) ∼= F (B).

A functor that satisfies the converse of the first statement is said to reflect isomorphisms, and a functor
that satisfies the converse of the second is said to create isomorphisms [Rie17].

Theorem 52.2.7. Fully faithful functors (i) reflect and (ii) create isomorphisms.

That is, for a fully faithful functor F : C → D ,

(i) If a morphism f in C is such that F (f) is an isomorphism in D , then f is an isomorphism;

(ii) If a pair of objects X and Y in C are such that F (X) ∼= F (Y ), then X ∼= Y .

Proof. Suppose f : A → B is a morphism such that F (f) : F (A) → F (B) is an isomorphism with
inverse g̃ : F (B) → F (A). As F is full, there exists a morphism g : B → A such that F (g) = g̃, so
F (g ◦ f) = F (g) ◦F (f) = g̃ ◦F (f) = idF (A) = F (idA), so by faithfulness, g ◦ f = idA. Exchanging f and
g in the previous yields f ◦ g = idB , so f is an isomorphism.

Suppose F (A) ∼= F (B), so there is an isomorphism f̃ : F (A)→ F (B) with inverse g̃. As F is full, there
exist morphisms f : A → B and g : B → A such that F (f) = f̃ and F (g) = g̃. Then, F (g ◦ f) =
F (g) ◦ F (f) = g̃ ◦ f̃ = idF (A) = F (idA), so by faithfulness, g ◦ f = idA. Again, exchanging f and g in
the previous yields f ◦ g = idB , so f and g are isomorphisms and hence A ∼= B. ■

Note that the converse of this theorem does not hold in that functors that create or reflect isomorphisms
are not necessarily full or faithful.

These two conditions may seem similar, but they do not imply each other in general. For instance, let
C be a category in which every object is isomorphic, but there exist non-isomorphism morphisms, e.g.
the category Setn of sets of cardinality n. Because every object is isomorphic, any functor F : C → D
to any category D trivially creates isomorphisms, but will not, in general, reflect isomorphisms.
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52.2.5 Natural Transformations

Given categories and functors C D ,
F

G
a natural transformation is a mapping C D

F

G

η or

η : F ⇒ G between functors.

The functors F and G map objects and morphisms in C to objects and morphisms in D , so to define
a mapping F ⇒ G, we want to associate the images of objects and morphisms under F to their images
under G. For objects, this just means that if X is in C , then F (X) should be associated with G(X) –
this is just a morphism in homD(F (X),G(X)). So, the natural transformation η associates each object
X ∈ ob(C ) to a morphism hX : F (X)→ G(X) called the component of η at X.

C D

F (X)

X

G(X)

F

G

ηXη [Kit22]

However, there could be many morphisms F (X) → G(X) we could choose. We need a way of selecting
these components that is consistent throughout the whole category.

Consider a morphism f : A → B in C . Under F and G, we have the images F (f) : F (A) → F (B) and
G(f) : G(A) → G(B). Along with the components ηA : F (A) → G(A) and ηB : F (B) → G(B), this
completes the square

C D

A F (A) G(A)

B F (B) G(B)

ηA

ηB

F (f) G(f)f

F

G

F

G

η

η

(∃!)? [Kit22]

In this diagram, there are two paths from F (A) to G(B), namely, ηB ◦F (f), and G(f) ◦ ηA, and without
any further conditions on the components of η, these paths may be distinct. However, if we require that
these paths are equal – that the diagram commutes – then this forces our selection of components to be
consistent throughout the whole category. This coherency condition is called the naturality requirement.

So, overall, a natural transformation a natural transformation η : F ⇒ G between functors F,G : C → D

is a collection of morphisms
(
F (X)

ηX−−→ G(X)
)
X∈ob(C )

indexed by the objects of C such that the
following diagram commutes:

A F (A) G(A)

B F (B) G(B)

ηA

ηB

F (f) G(f)f

That is, ηB ◦ F (f) = G(f) ◦ ηA for all f : A→ B in hom(C ).

Natural transformations are collections of morphisms between the images of two functors that are canon-
ical or consistent in some way in that they preserve some of the functoriality. Informally, a construction
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involving a collection of mappings between objects is said to be “natural” if those mappings can be
extended to some natural transformation over the whole category, and “unnatural” otherwise. Often,
unnatural constructions depend on some arbitrary choice e.g. of basis, generator, relations, etc. while
natural constructions are independent of these choices.

Consider the following diagram of categories, functors, and natural transformations:

C DG

F

H

α

β

From the diagram, it would seem that we should be able to compose α and β to obtain a natural
transformation β ◦ α : F ⇒ H. Such a composition is called a vertical composition.∗

Consider an object X in C . The components of α and β at X are the morphisms αX : F (X) → G(X)
and βX : G(X) → H(X) – these morphisms are compatible in that we can compose them, so we can
define the component (β ◦ α)X to be βX ◦ αX : F (X) → H(X). For naturality, consider the following
diagram:

A F (A) G(A) H(A)

B F (B) G(B) H(B)

αA

αB

F (f) G(f)f

βB

βA

H(f)

α and β are natural transformations, so each square individually commutes, and hence the outer square
also commutes, so β ◦ α is natural, as required.

The collection of natural transformations between functors between two fixed categories C and D , under
vertical composition, forms the functor category [C ,D ] (also written as DC ) that has functors from C to
D as objects, natural transformations as morphisms, and vertical composition as composition. Identities
in this category are given by identity natural transformations that associate every object with the identity
morphism on their image.

An isomorphism in a functor category is then called a natural isomorphism. That is, if η : F ⇒ G and
ϑ : G⇒ F are natural transformations such that ϑ ◦ η = idF and η ◦ ϑ = idG, then η and ϑ are natural
isomorphisms, and we write η−1 for ϑ. If two functors F and G are naturally isomorphic, then we write
F ∼= G, or, we say that F (X) ∼= G(X) naturally in X whenever we need to bind a variable.

Note that the statement “F (X) ∼= G(X)” is a statement about the objects F (X) and G(X) in D , while
“F (X) ∼= G(X) naturally in X” is a much stronger statement about the functors F and G in [C ,D ]. In
particular, F (X) ∼= G(X) naturally in X not only requires that there are isomorphisms F (X) ∼= G(X)
for every X, but also that these individual isomorphisms can be selected in some consistent way such
that all naturality diagrams commute; it is entirely possible for F (X) ∼= G(X) to hold for all X, but for
no such selection of isomorphisms to exist and for F ̸∼= G.

Example (Dual Vector Spaces). In linear algebra, the dual V ∗ of a vector space V over a field K is the
vector space of linear functionals V → K equipped with pointwise addition and scalar multiplication.

It is well known that any finite-dimensional vector space V is isomorphic to its dual V ∗, and also to
the dual of its dual, or the double dual, V ∗∗ = (V ∗)∗, the space of linear functionals V ∗ → K. These

∗ There is also a related notion of horizontal composition that combines natural transformations

C D E

F

G

α

F ′

G′

β into a natural transformation α ⋄ β : F ′ ◦ F ⇒ G′ ◦G that we will not use.
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isomorphisms follow from a standard construction that, given a basis of V , yields a dual basis of V ∗

of the same dimension. However, in many ways, V ∗∗ has a lot more in common with V than the dual
V ∗ does, and we can make this idea precise by showing that the collection of isomorphisms V ∼= V ∗∗ is
natural in the sense that it can be extended to a natural transformation, while the isomorphisms V ∼= V ∗

cannot.

There is a contravariant functor (−)∗ : Vectop → Vect that sends vector spaces V to their dual V ∗,
and linear maps f : U → V to their transpose f∗ : V ∗ → U∗, defined by precomposing linear functionals
ω ∈ V ∗ by f to obtain ω ◦ f ∈ U∗. Applying this functor again yields the covariant double dual functor
(−)∗∗ : VectK → VectK that maps vector spaces V to their double dual V ∗∗. Note that the elements of
V ∗ are themselves functions V → K, so the elements of V ∗∗ are functionals that send functions V → K
to elements in K.

One obvious way to map these functionals to elements is just to supply the functions in V ∗ with an input
v ∈ V – that is, for any ω ∈ V ∗, we have ω(v) ∈ K by definition, so the evaluation mapping ω 7→ ω(v) is
an element of V ∗∗. So, for each vector space V , we have a linear map ηV : V → V ∗∗ that sends vectors to
their associated evaluation mappings [Per21]. We show that these maps are natural in the formal sense.

Let f : V →W be a linear transformation, and consider the following diagram:

V V ∗∗

W W ∗∗

f

ηV

ηW

f∗∗

Let v ∈ V and ω ∈W ∗. Along the lower path, we have,[
ηW
(
f(v)

)]
(ω) = ω

(
f(v)

)
and along the upper path, we have,[

f∗∗
(
ηV (v)

)]
(ω) =

[
ηV (v) ◦ f∗

]
(ω)

=
[
ηV (v)

](
f∗(ω)

)
=
[
ηV (v)

]
(ω ◦ f)

= (ω ◦ f)(v)
= ω

(
f(v)

)
so the diagram commutes. If we view the objects on the left side of the commutative square as the images
of objects under the identity functor, then we see that every map ηV is a morphism idVectK (V )→ (V )∗∗,
so the entire collection (ηV )V ∈ob(VectK) defines a natural transformation idVectK ⇒ (−)∗∗, with the
above diagram verifying naturality.

For finite-dimensional spaces, η is furthermore a isomorphism; if we restrict our attention to the finite-
dimensional case in the subcategory FinVectK , then η defines a natural isomorphism idVectK

∼= (−)∗∗.
In contrast, the dual V ∗ is not naturally isomorphic to V , even in finite dimensions, simply because the
single dual functor (−)∗ is contravariant and lives in a different functor category than the identity. Even
if we extend the notion of naturality to cover contravariance, there is a deeper reason why the single
dual is not natural or “canonical”, unlike η:
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Consider the case where f is an endomorphism, interpreted as a change of basis:

V V ∗∗

V V ∗∗

f

ηV

ηV

f∗∗

What this diagram is saying is that if we change the basis of V , and also the basis of V ∗∗ with the induced
function f∗∗, then the map η is completely unaffected: that is, η does not depend on the choice of basis
[Per21]. In contrast, every isomorphism V → V ∗ that can be constructed (even in finite dimensions) will
depend on some choice of basis of V , and moreover, changing the basis of V does not change the basis
of V ∗ in a way that is compatible with these isomorphisms. △

Natural transformations can also be composed with functors, in a sense. Let F,G : C → D and H :
D → E be functors, and η : F ⇒ G be a natural transformation. The whiskering H · η of H by η is the
natural transformation H ◦ F ⇒ H ◦G defined by (H · η)X = H(ηX).

C D X C X

F

G

H

H◦F

H◦G

η H·η

(This is a special case of the horizontal composition where one of the natural transformations is the
identity natural transformation, so H · η = η ⋄ idH .)

52.2.6 Equivalence of Categories
We have seen numerous examples of structures and structure-preserving maps forming categories, and
the same holds true for categories and functors themselves: the collection of small categories and functors
forms a large category, Cat.∗

If there is an isomorphism between two categories C and D in Cat, then C and D are isomorphic
categories – categories which differ only in the labelling of their objects and morphisms.

C D
F

G

G ◦ F = idC and F ◦G = idD

Again, we write C ∼= D if there exists an isomorphism between C and D . Like with other isomorphic
objects, results about one immediately gives identical results about the other, but unfortunately, iso-
morphism of categories tends to be too strong of a requirement in that very few useful categories are
isomorphic to each other.

However, as mentioned earlier, we care about different degrees of likeness for different types of data. For
elements of a set, this notion is strict equality, while for objects in a category, this notion is isomorphism.
Applying this idea to a functor category, we see that natural isomorphism is the appropriate degree of
likeness for functors.

Now, looking back at the definition of isomorphic categories above, we notice that the compositions of F
and G are required to be equal to the identity functors, but as we have just seen, this degree of likeness
is unreasonably strict. For functors, we really should be using natural isomorphisms, and indeed, if we

∗ There is not a simple category of all categories for the same reason that there is no set of all sets, but given a choice
of Grothendieck universe, a similar category can be constructed, and is denoted CAT.
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only require the compositions to be naturally isomorphic to the identity functor, we obtain a weaker but
much more useful notion of likeness called equivalence of categories.

C D
F

G

G ◦ F ∼= idC and F ◦G ∼= idD

In this case, we say that C and D are equivalent, and we write C ≃ D . We also call the functors F and
G equivalences.

Example. Consider the category FinVectk of finite-dimensional vector spaces over a field k, and the
category Mat(k), where morphisms are matrices with entries in k, and objects are the dimensions of
those matrices (so, if n and m are objects, then hom(n,m) is the collection of m × n matrices). That
FinVectk and Mat(k) are not isomorphic categories can be deduced by observing that there are no
isomorphic objects in Mat(k) – but, these categories are clearly related in some way as matrices are
well known to represent linear transformations, and indeed, these categories are not isomorphic, but
equivalent, with the equivalence FinVectk → Matk sending each vector space to its dimension, and
each linear transformation to its corresponding matrix. Each choice of basis for each vector space
provides a different equivalence, also demonstrating that an equivalence is not unique. △

Example. Up to isomorphism, every thin category is a preordered set, but up to equivalence, every thin
category is a partially ordered set. △

52.2.7 The Yoneda Lemma
Let 1 = {•} be the set with one element. For any set X, a function 1 → X amounts to selecting an
element of X since the only data required to uniquely characterise such a function is just the image of
• in X. Similarly, in any space X, the functions 1→ X (where 1 is the one-point space) are essentially
just points in X. In fact, in arbitrary categories with terminal objects 1, we will define a map 1→ X to
be an element of X.

We can extend this idea of “objects as functions” by picking different choices of domain spaces. For
instance, the functions [0,1] → X are just paths in X; the functions N → X are the sequences in X;
and the functions S1 → X are the topological loops in X. In some of these cases, these are even the
definitions of these constructions.

More generally, given an object A in a category C , a generalised element of A is any morphism with
codomain A, and the domain of such a morphism is called the domain of variation of the element [Kos12].
We also alternatively call a morphism S → A a generalised element of A with shape S [Lei14]. Note that
there really isn’t any mathematical difference between a “generalised element” and a morphism, but the
change in naming represents a change in perspective, as above.

Note, however, that this is more than just a semantic trick; this concept of treating objects as special
cases of functions – or more generally, of morphisms – is a fundamental idea in category and structural
set theory, and arguably the most important result in category theory [Rie17], which we display below,
expands on this idea.

Now, we can exhibit basic objects like points or paths as certain types of maps, but how can we apply
this idea to arbitrary objects X? That is, we have captured certain basic features within X with the
maps 1 → X, [0,1] → X, S1 → X, etc., but is it possible to characterise the entirety of X itself using
these maps? A priori, there is no reason we should expect that the entire structure of X is contained
within these maps. This is the content of the next result.

Lemma 52.2.8 (Yoneda). Let C be a locally small category. Then,

hom[C ,Set](hA,F ) ∼= F (A)

naturally in F ∈ ob([C ,Set]) and A ∈ ob(C ).
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Proof. [Kit22, abridged] We give a proof of the isomorphism only.

Let f : A → B be a morphism, η : hA ⇒ F be a natural transformation, and consider the naturality
diagram of η:

hA(A) F (A)

hA(B) F (B)

hA(f)

ηB

F (f)

ηA

We chase the identity idA ∈ hom(A,A) = hA(A) around the diagram:

idA ηA(idA)

f ηB(f) = F (f)
(
ηA(idA)

)
hA(f)

ηA

ηB

F (f)

The input to the function on the right side is always ηA(idA), implying that any natural transfor-
mation hA ⇒ F is completely determined by its value at idA. This naturally induces a function
ϕ : hom[C ,Set](hA,F ) → F (A) defined by η 7→ ηA(idA). Conversely, given an element u ∈ F (A), we
can define the components of a unique natural transformation η : hA ⇒ F by ηB(f) = F (f)(u), where
f : A → B, defining a mapping ψ : F (A) → hom[C ,Set](hA,F ). Then, ψ

(
ϕ(η)

)
= ψ

(
ηA(idA)

)
= η, and

ϕ
(
ψ(u)

)
= ϕ(η) = ηA(idA) = u, so the functions are mutually inverse, hence defining an isomorphism

F (A) ∼= hom[C ,Set](hA,F ).

For a proof of the naturality of this isomorphism, see [Kit22]. ■

If we take F to be another hom-functor in the Yoneda lemma, we obtain:

hom[C ,Set](hA,hB) ∼= hB(A) = homC (B,A)

so the natural transformations hA ⇒ hB are in bijection with the morphisms B → A. This assignment
of natural transformations from morphisms is the action of the contravariant functor h• : C op → [C ,Set]
defined on objects by h•(A) = hA. In fact, we have already seen this functor – h• is exactly the partial
application of the hom-bifunctor hom(−,−) in the first argument (e.g., h•(A) = hom(−,−)(A,−) =
hom(A,−) = hA). Dually, we can also partially apply the hom-bifunctor in the second argument to
obtain the covariant functor h• : C → [C op,Set].

The Yoneda lemma then says that the functors h• and h• give embeddings of C op and C into [C ,Set] and
[C op,Set], respectively – there is a copy of every (locally small) category contained within the collection
of functors between its dual and Set.

These functors are called the covariant and contravariant Yoneda embeddings, and are often collectively
denoted H, with context disambiguating between the two.

Theorem 52.2.9 (Yoneda Embedding). Let C be a locally small category. Then, the Yoneda embeddings
H : C ↪→ [C op,Set] and H : C op ↪→ [C ,Set] are embeddings – that is, H is fully faithful, and injective
on objects up to isomorphism.

Proof. See [Kit22]. ■

From functoriality, the Yoneda embeddings imply that if X ∼= Y , then hom(X,−) ∼= hom(Y,−) and
hom(−,X) ∼= hom(−,Y ). More notably, full faithfulness also implies the converse – that is, the Yoneda
embeddings create isomorphisms:
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Corollary 52.2.9.1. If hom(X,−) ∼= hom(Y,−) or hom(−,X) ∼= hom(−,Y ), then X ∼= Y .

That is, the maps in to and maps out from an object contain exactly as much information as the object
itself; the collections of these maps are isomorphic if and only if the associated objects are, so objects
are completely characterised by their generalised elements.

52.3 Universal Properties

52.3.1 Terminal and Initial Objects
An object T ∈ ob(C ) is terminal if for every object X ∈ ob(C ) there exists a unique morphism X → T .
Dually, an object I ∈ ob(C ) is initial if for every object X ∈ ob(C ), there exists a unique morphism
I → X (or equivalently, if it is terminal in C op). Terminal and initial objects are also sometimes
collectively called universal objects, with context disambiguating between the two cases.

In Set, any singleton set 1 = {•} is terminal as for any set X, a function X → 1 exists, defined by
mapping every element of X to •, and is unique as there are is only one possible target for every input.
Conversely, the empty set is initial as for any set X, the empty function ∅→ X exists and is unique.

In many categories of structured sets such as Set, Top, Ring, and Grp, terminal objects are often
singleton sets, so terminal objects are often denoted by 1. Initial objects are slightly less well-behaved,
but are often the empty set, as is in Set or Top,∗ and are often denoted by 0.

Terminal and initial objects may not necessarily exist; for instance, in the preorder category (N, ≤), 0
is initial, but no terminal object exists; and in (Z, ≤), terminal and initial objects both fail to exist.
However, if initial or terminal objects do exist, then they are unique up to unique isomorphism – that
is, if C and C ′ are distinct and terminal (initial), then there is a unique isomorphism C → C ′ – and we
say that they are essentially unique.

Theorem 52.3.1. Terminal (initial) objects are essentially unique.

Proof. Suppose C and C ′ are distinct and terminal. Because C is terminal, the morphisms f : C ′ → C
and idC : C → C are unique, and because C ′ is terminal, the morphisms g : C → C ′ and idC′ : C ′ → C ′

are unique. Then, the compositions g◦f and f ◦g must be identities, so they form a unique isomorphism.
The essential uniqueness of initial objects follows from duality. ■

Terminal and initial objects can, however, coincide. For instance, in Grp, the trivial group is both
terminal and initial. In these cases, the object is called a null or zero object.

52.3.2 Representability
By the Yoneda lemma, objects are determined entirely by the maps into or out from them; informally,
a universal property is a description of these maps.

Terminal and initial objects are examples of objects characterised by universal properties – in this case,
the universal property that the maps to or from them exist uniquely – and in fact, we can reverse this
somewhat by saying that an object has a universal property, or is universal, if we can find some category
in which it is initial or terminal.

Universal properties are a way of describing the “best”, “largest”, “smallest”, “most ” etc. object in
a category – or in the case of terminal and initial objects, the “final” and “first” objects – and the exact
notion of “best” will define different types of objects.

∗ Rings and groups require identities, so the empty set is not in Ring or Grp. Instead, the initial object in Ring is Z;
and in Grp, the trivial group.
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Through almost the exact same reasoning as for terminal and initial objects, objects characterised by
universal properties are essentially unique (though we will prove this more formally soon). This also
provides another way of proving that a collection of objects are isomorphic; just find a universal property
they satisfy in common.

Once a universal property of some object has been identified, we often then ignore the specifics of how it
was constructed in the first place, as the universal property alone is sufficient information to recover the
object essentially uniquely. This allows us to more easily work with constructions that have unwieldy
definitions but simple universal properties.

Now, the maps into or out from an object A are captured by the hom-functors hA and hA (or more
concisely, by the Yoneda functors H(A)), so a unversal property is a description of these functors. We
formally give this description in terms of an isomorphism.

A covariant or contravariant functor F from a locally small category C to Set is representable if
F ∼= H(A) for some A ∈ ob(C ) (where the Yoneda embedding necessarily matches the variance of
F ). The object A, along with the natural transformation F ⇒ H(A) is then called a representation of
F . Representable functors then carry information about the hom-functors they are isomorphic to, hence
encoding a universal property about their representing object.

We rephrase the universal property of initial objects using representations as an example. Let ∆1 : C →
Set be the constant functor that sends every object in C to a fixed singleton set 1, and every morphism
to the identity function id1. Then, an object A is initial if and only if hA ∼= ∆1. The natural isomorphism
requires that hom(A,B) contains exactly a single morphism for every object B, which is precisely our
previous definition of an object being initial. Equivalently, we could say that a category C has an initial
object if and only if the constant functor ∆1 : C → Set is representable.

Theorem 52.3.2. [Rie17] Let X and Y be objects of a locally small category C . If either the covariant or
contravariant functors represented by X and Y are naturally isomorphic, then X and Y are isomorphic.

Proof. The Yoneda embeddings are fully faithful, and hence create isomorphisms. It follows that an
isomorphism between represented functors must be induced by a unique isomorphism between the rep-
resenting objects. ■

In particular, if X and Y represent the same functor, then X and Y are isomorphic; and moreover,
this isomorphism is unique. That is to say, the object representing a functor is essentially unique, thus
extending the claim from terminal and inital objects to all objects characterised by universal properties.

We will now explore some of the many important constructions that can be characterised in this way.

52.3.3 Products
Let X and Y be objects in a category C . We should intuitively expect that any notion of a product
should consist of another object P ∈ ob(C ) that is related to X and Y ; that is, an object equipped with
a pair of morphisms, called projections, to X and Y :

P

X Y

π1 π2

This resulting diagram shape of one object pointing to two others is called a span.
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But not just any object with maps to X and Y can be the product – we need the product to be universal;
or, the “best” one possible. The notion of “best” here is that for all other spans

A

X Y

g h

we require for there to exist a unique factorisation through P . That is, there exists a unique morphism
f : A→ P such that the following diagram commutes:

A

P

X Y

g h

π1 π2

∃!f

and we say that A factors through P . We then write X × Y for the product object P , and ⟨g,h⟩ for the
unique morphism f , and we call g and h the components of the pairing ⟨g,h⟩. This latter notation is
justified as f is uniquely determined by g and h, as prescribed by the universal property. Conversely,
given any map into a product, we can reconstruct its components by postcomposing it by each projection
map.

There are notable similarities to terminal objects with this definition, in that we require a unique mor-
phism to exist; P appears to be “terminal” with respect to other objects that have maps to X and Y .
(We formalise this observation later §52.4.3, with the notion of a category of cones.)

Just like with terminal objects, products do not always exist in any given category. For instance, for any
pair of distinct objects in a discrete category, there is no way to form a span connecting the two objects,
as every morphism in a discrete category is an identity, so these products do not exist. However, if the
product does exist, then it is essentially unique due to the universal property.

Example (Products in Set). The Cartesian product X × Y is a categorical product.

The Cartesian product X×Y comes naturally equipped with two projection mappings to the component
sets defined by (x,y) 7→ x and (x,y) 7→ y. Now, suppose there is another set A with maps X g←− A h−→ Y .
Let a ∈ A, so g(a) ∈ X and h(a) ∈ Y . To make the diagram commute, the obvious – and only – choice
for f : A→ X × Y is to have f(a) =

(
g(a),h(a)

)
.

For uniqueness, suppose there exists another another mapping f ′ : A → X × Y such that the product
diagram commutes, and let f ′(a) = (x,y). Then, by commutativity, g(a) =

(
π1 ◦ f ′

)
(a) = π1(x,y) = x,

and similarly, h(a) =
(
π2 ◦ f ′

)
(a) = π2(x,y) = y, so f ′(a) =

(
g(a),h(a)

)
= f(a), and the factorisation is

unique. △

Note that this characterisation of the Cartesian product as a categorical product makes no mention of the
elements of A×B at all (or any other set), depending entirely on mappings between sets, and specifically
on how the product interacts with other sets; thus formulating the Cartesian product structurally.

Example (Products in Top). If we take A to be the one-point space 1, then the maps g, h, and f are
just elements of X, P = X × Y , and Y , respectively. The product then says that there is a bijection

homTop(1,X × Y ) ∼= homTop(1,X)× homTop(1,Y )
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so the points of X × Y correspond to the points in the Cartesian product of the underlying sets of X
and Y . Then, if A is the set X × Y equipped with different topologies, the existence of f then requires
that sets in A are open whenever they are open in P , so the topological product P must have the
coarsest topology on X×Y possible such that the projection maps are still continuous, thus defining the
product topology. This similarly extends to infinite products of topological spaces (Xi)i∈I , where the
topology on the product space

∏
i∈I Xi is defined to be the coarsest topology such that each projection

πj :
∏
i∈I Xi → Xj is continuous.

△

Example (Products in Cat). A product category C ×D of two small categories C and D is a categorical
product in the category Cat of small categories. △

Consider a pair of morphisms g : A → X and h : B → Y . We can construct the product A × B and
X × Y to obtain:

A×B

A B

X × Y

X Y

π1 π2

p1 p2

g h

g×h

Now, notice that the compositions g ◦ π1 and h ◦ π2 forms a span into X and Y , so by the universal
property of the product, there exists a unique map A × B → X × Y . Again, this map is entirely
determined by g and h, so we write g × h for this product morphism. Note that this is distinct from the
pairing ⟨g,h⟩, which is a map from a single object into a product, while a morphism of the form g× h is
a map from a product into another product.

It may be helpful to consider these morphisms in Set: as before, a pairing function ⟨f,g⟩ : A→ X×Y acts
on elements a ∈ A by ⟨f,g⟩(a) = (f(a),g(a)). On the other hand, a product function s×t : A×B → X×Y
acts on pairs (a,b) ∈ A×B pointwise, (s× t)(a,b) =

(
s(a),t(b)

)
.

Another special case of the product is given by taking the product of an object X with itself, forming
the span with two other copies of X using the projection maps:

X ×X

X X

π1 π2

Another span can be given by three copies of X equipped with a pair of identity maps:

X

X X

idX idX

By the universal property of the product, there must exist a unique morphism X → X ×X such that
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the following diagram commutes:
X

X ×X

X X

idX idX

π1 π2

∆X

This morphism is called the diagonal morphism of X, denoted by ⟨idX, idX⟩, ∆, or ∆X .

For example, in Set, the diagonal function is given by the function x 7→ (x,x) that sends every element
to the corresponding diagonal subset of the Cartesian square.

The diagonal morphism also provides a link between the product morphism and the pairing morphism:
suppose we have a product A× B, and a pair of maps f : X → A and g : X → B. Then, the following
diagram commutes:

X X ×X

A×B

f×g

∆X

⟨f,g⟩

52.3.3.1 Coproducts

We can dualise the notion of a product into a coproduct (or categorical sum) by reversing the direction
of all morphisms in the previous definition. Given two objects X and Y , the coproduct is an object P
equipped with insertion maps,

P

X Y

ι1 ι2

with the universal property that for all objects and maps

A

X Y

g h

of the same shape (a cospan), there exists a unique factorisation of P through A. That is, there exists a
unique map f : P → A such that the following diagram commutes:

A

P

X Y

g h

ι1 ι2

∃!f
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Then, we write X ⨿ Y , or less commonly X + Y , for P , and [g,h] for the copairing map f .

Example (Coproducts in Set). The disjoint union X ⊔ Y is a categorical coproduct.

The obvious choice for the insertion maps is just to send every element of X and Y to their embedded
copy in X ⊔ Y . For the map f , consider an element x ∈ X, and its image g(x) ∈ A. The insertion map
ι1 sends x to its copy in X ⊔ Y , so for the left triangle to commute, this copy needs to be mapped to
g(x) by f , and similarly for every copy of y ∈ Y in X ⊔ Y . So, we define f : X ⊔ Y → A by,

f(u) =

{
g(u) u ∈ X
h(u) u ∈ Y

Again, this is the only possible map we could define that makes the diagram commute, so the disjoint
union of sets is a categorical coproduct. △

52.3.4 Pullbacks
Let C be a category, and consider the following span:

Y

X Z

t

s

The pullback or fibred product of this diagram is an object P ∈ ob(C ) equipped with a pair of projection
maps π1 : P → X and π2 : P → Y such that the pullback square below commutes:

P Y

X Z

t

s

π1

π2

⌟

But again, not just any object P with maps to X and Y will suffice; we want the “best” such square
amongst all similar diagrams. The notion of “best” here is the same as for products; every other similar
square should uniquely factorise through P . That is, for any commutative square

A Y

X Z

t

s

g

h

in C , there must exist a unique map f : A→ P such that

A

P Y

X Z

t

s

g

h

π1

π2

∃!f

⌟
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commutes. The symbol ⌟ marks the square as a pullback and not as a simple commutative square – that
is, that P , π1, and π2 satisfy a universal property. We then say that π1 is the pullback of t along s, and
similarly, that π2 is the pullback of s along t, and the object P is then also written as X ×Z Y . The
pullback of a morphism along itself is also called the kernel pair of that morphism.

Note that if Z is terminal, then the entire diagram commutes trivially as every map from any given object
into the terminal object must be equal, so the pullback in this case is exactly the ordinary product. Or,
put another way, the product X × Y is just the pullback of X → 1 and Y → 1.

Example (Pullbacks in Set). We need to pick a set for P and a pair of projection maps such that the
lower right square of the diagram commutes in the best possible way.

If we ignore the maps to Z for a moment, we could simply pick P to be the product X × Y . The maps
to Z then add the extra constraints in that when mapping elements from X to Z and Y to Z, they must
be equal. So, intuitively, we’d might think that the pullback of a diagram X

s−→ Z
t←− Y in Set should

be:

P =
{
(x,y) ∈ X × Y : s(x) = t(y)

}
with π1 and π2 given by the standard projection maps, as they were for products.

To verify universality of this construction, suppose there is another set A with maps X g←− A h−→ Y such
that the outer square commutes. Let a ∈ A, so g(a) ∈ X and h(a) ∈ Y . To make the two triangles
commute, this forces f to be defined by f(a) =

(
g(a),h(a)

)
. We then need to check that the image of f

is within P ; that is, that s
(
g(a)

)
= t
(
h(b)

)
. But this is just the commutativity requirement of the outer

square, which holds by assumption. △

Example (Preimages). The preimage of a set under a function can be exhibited as a type of pullback:

Given a function f : X → Y , and a subset B ⊆ Y , we can use the inclusion map ι : B ↪→ Y to form the
span

B

X Y
f

ι

The pullback of this diagram is then given by the preimage of B, with the projection π1 given by the
inclusion mapping j : f−1[B] ↪→ X, and the projection π2 given by the restriction of f to f−1[B]:

f−1[B] B

X Y
f

ι

f
∣∣∣
f-1[B]

j

⌟

△

Theorem 52.3.3. Monomorphisms are stable under pullback. That is, if s is a monomorphism, then
π2 is also a monomorphism. Similarly, if t is a monomorphism, then so is π1.

Proof. Let s : X ↣ Z be a monomorphism, and suppose there is an object A with two maps p,q : A→ P
such that π2 ◦ p = π2 ◦ q. Then, t ◦ π2 ◦ p = t ◦ π2 ◦ q, and the commutativity of the pullback square
yields s ◦ π1 ◦ p = s ◦ π1 ◦ q. Since s is monic, we then have π1 ◦ p = π1 ◦ q.
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So, A has a pair of morphisms toX and Y , given by (π1◦p = π1◦q) : A→ X and (π1◦p = π1◦q) : A→ Y ,
and hence forms a commutative square with Z. But, by the universal property of the pullback, this square
must factor uniquely through P , so the map A → P is unique, and hence p = q, so π2 is monic. The
proof for t and π1 is similar. ■

52.3.4.1 Pushouts

Dually, the pushout of a cospan diagram

Y

X Zs

t

is an object P ∈ ob(C ) with morphisms ι1 : X → P and ι2 : Y → P such that the pushout square below
commutes and is universal:

P Y

X Zs

t

ι2

ι1

⌟

That is, for any other commutative square

A Y

X Zs

t

h

g

there exists a unique map f : P → A such that

A

P Y

X Zs

t

ι2

ι1

h

g

∃!f

⌟

commutes. Again, the cokernel pair of a morphism is the pushout of the morphism against itself.

Corollary 52.3.3.1. Epimorphisms are stable under pushout.

Proof. Dual of previous theorem. ■

Example (Pushouts in Set). As for pullbacks, ignoring Z yields P = X ⊔ Y , with ι1 and ι2 the usual
insertion maps. The commutativity of the pushout square then requires that for any z ∈ Z, s(z) is equal
to t(z) in X ⊔ Y ; However, by construction, these elements are never equal in a disjoint union.
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To force this equality, we quotient out by the equivalence relation ∼ generated by s(z) ∼ t(z) for all
z ∈ Z, so the pushout is given by A ⊔B

/
∼. △

Example (Unions and Intersections). Consider two sets X and Y , and their intersection X ∩ Y and
(ordinary) union X ∪ Y . The intersection is naturally equipped with inclusions into X and Y , and
similarly, X and Y have inclusions into X ∪ Y . The induced square is then simultaneously a pullback
and a pushout:

X ∩ Y Y

X X ∪ Y

⌟

⌟

△

52.3.5 Equalisers
A fork is a collection of objects and morphisms such that the following diagram commutes:

A X Y
s

t

g

That is, this diagram is a fork if and only if s ◦ g = t ◦ g, and we say that g equalises s and t.

Let X and Y be objects in a category C with parallel morphisms s,t : X → Y :

X Y
s

t

The equaliser of s and t is an object E equipped with a map ι : E → X such that the following diagram
is a fork, and is universal:

E X Y
s

t

ι

That is, every other fork through X and Y beginning at an object A factors uniquely through E:

A

E X Y
s

t

g

ι

∃!f

and we write eq(s,t) for E.

Example (Equalisers in Set). In set theory, the notion of an equaliser is often defined to be the set of
values upon which two functions agree. That is, given two functions f,g : X → Y , the equaliser is the
subset

{
x ∈ X : f(x) = g(x)

}
of X. This function equaliser is a categorical equaliser, with ι given by

the obvious inclusion map.

△

Example (Kernels). Let G and H be groups, and let ε : G → H be the trivial homomorphism defined
by g 7→ idH for all g ∈ G. The equaliser of ε and any group homomorphism ϕ : G → H is exactly the
kernel of ϕ equipped with the inclusion mapping ker(ϕ) ↪→ G:

ker(ϕ) G H
ε

ϕ

ι

△
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Theorem 52.3.4. The equaliser of two morphisms is monic.

Proof. [Gol84, adapted] Let ι : E → X equalise s,t : X → Y , and let g,h : A → E be morphisms such
that ι ◦ g = ι ◦ h, so the following diagram commutes:

A E X Y
s

t

ι
g

h

Then,

s ◦ (ι ◦ g) = (s ◦ ι) ◦ g
= (t ◦ ι) ◦ g
= t ◦ (ι ◦ g)

so ι ◦ g equalises s and t and defines a fork A→ X ⇒ Y . By the universal property of the equaliser, this
fork must then factorise uniquely through E, so the map A→ E that makes the diagram

A

E X Y
s

t

ι

ι◦g
g=h

commute is unique and hence ι is monic. ■

A morphism that is the equaliser of some pair of parallel morphisms is called a regular monomorphism.
As shown above, regular monomorphisms are monomorphisms, but the converse does not always hold.
For instance, in Top, the monomorphisms are injective continuous functions, while the regular monomor-
phisms are topological embeddings (injective continuous functions that are homeomorphic on their image
equipped with the subspace topology).

52.3.6 Coequalisers
Dualising, a cofork is a collection of objects and morphisms such that the following diagram commutes:

X Y A
s

t

g

and we say that g coequalises s and t.

The coequaliser of a pair of parallel morphisms s,t : X ⇒ Y is an object C equipped with a map
π : Y → C such that the following diagram is a universal cofork:

X Y C
s

t

π

and we write coeq(s,t) for C.

Dual to regular monomorphisms, a morphism that is the coequaliser of some pair of parallel morphisms
is called a regular epimorphism. By the dual of the previous theorem, every regular epimorphism is an
epimorphism, but again, the converse does not necessarily hold.
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52.4 Limits

In the previous constructions, we have started with some initial data – for products; a discrete pair of
objects; for pullouts, a span; for equalisers, a parallel pair of morphisms – and we construct a new object
equipped with maps to the given data in the most “general” way possible. That is, any other similar
object will factor through our universal construction.

The notion of a limit unifies these three constructions. But first, we more precisely formulate how this
initial data is specified.

52.4.1 Diagrams
So far, we have been frequently representing collections of objects and morphisms with the use of directed
graphs, which we called diagrams. We formalise this notion in more detail now.

Recall that elements of a set X is can be viewed as functions 1→ X. Analogously, objects in a category
C can be viewed as a functor 1 → C from the trivial category 1 – the functor just sends the unique
object of 1 to some object of C . A morphism in C can then similarly be viewed as a functor 2 → C ,
where 2 is the arrow category [ • → • ] – such a functor then picks out two objects, and a morphism
between them. More generally, this suggests that we can view any collection of objects and morphisms
to be a functor from some indexing category to the target category:

A diagram (of shape I ) in a category C is a functor D : I → C , where I is called the indexing
category. If the indexing category I is small, then the diagram D is said to be small.

The directed graph representations used previously is then obtained by drawing the images of these
functors, and functoriality requires that any compositions that exist in I also exist in this image graph,
so the resulting graph is always commutative.

Theorem 52.4.1. Functors preserve commutative diagrams.

Proof. A commutative diagram in C is given by a functor D : I → C . Given any functor F : C → D ,
the composition F ◦D : I → D is by definition a commutative diagram in D . ■

We proved this result earlier by applying the functor to pairs of paths between objects and moving
composition operations about with functoriality, but with this characterisation of diagrams, the result is
easily apparent.

One important type of diagram is as follows: let C and I be categories, and let I be small; then, for
any object C ∈ ob(C ), the constant functor (or constant diagram) ∆C : I → C maps every object in
I to C, and every morphism in I to idC , similarly to an ordinary constant set function.

The assignment of objects to their constant functors is itself functorial; the diagonal functor ∆ : C →
[I ,C ] sends every object C ∈ ob(C) to the constant functor ∆C : I → C , and every morphism
f : A → B to a natural transformation ∆f : ∆A → ∆B that takes the same value f at every object in
I .

For an explanation to the diagonal functor’s name, consider the case where I = 2 is the discrete
category on two objects. First, note that any functor 2 → C simply picks out pairs of objects of C , so
[2,C ] ∼= C ×C . This gives the binary diagonal functor, ∆ : C → C ×C , defined by ∆(X) = (X,X) and
∆(f) = ⟨f,f⟩ for objects X and morphisms f .

For objects X, the pair (X,X) is really just the image of a constant functor from 2 to C , consistent
with the above, and for morphisms f , the pairing ⟨f,f⟩ is similarly just the components of a natural
transformation ∆X ⇒ ∆X. This may seem similar to diagonal morphisms as defined earlier (§52.3.3),
and in fact, diagonal functors are exactly the diagonal morphisms in Cat.
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52.4.2 Cones
A cone over a diagram F : I → C with summit X ∈ ob(C ) is a natural transformation ϕ : ∆X → F ,
and the components of this natural transformation are called the legs of the cone.

It may be helpful here to think of a natural transformation purely in terms of its components. That
is, a cone over a diagram F : I → C is an assignment of a morphism ϕJ : X → F (J) for each
object J ∈ ob(I ) in the diagram. Because one of the functors sends everything to a single object,
the naturality square is contracted into a triangle; so, naturality is just the requirement that for every
morphism f : J → K in I , the following triangle in C commutes:

X

F (J) F (K)

ϕJ ϕK

F (f)

As an example, suppose I = 2× 2, so the diagram in C is some commutative square:

I C

0 1 A B

2 3 C D

F

(Here, F (0) = A, F (1) = B, etc.) A cone over this diagram with summit X is a collection of morphisms
from X to each object of the diagram:

I C

0 1

2 3

X

A B

C D

F

∆X

subject to the constraint that every triangle in the diagram involving two legs of the cone commutes.
(The visual appearance of the resulting diagram also lends this construction its name.)

As with every other categorical construction, we can dualise the notion of a cone. A cocone under a
diagram F : I → C with nadir X ∈ ob(C ) is a natural transformation ψ : F → ∆X. The standard
visualisation here is to place the object X below the diagram, drawing morphisms down to it from above.

A B

C D

X
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For a slight technicality, we’ve been saying that a cone with summit X over a diagram F : I → C is a
natural transformation ∆X ⇒ F , which is perfectly fine for almost all use cases, because X is completely
determined by ϕ whenever I is non-empty. However, if this is the case, then ∆X and F are both the
empty functor, which has nothing to do with X, so the natural transformation doesn’t actually contain
enough information to recover X.

For this reason, a cone is more properly a pair (X,ϕ), so that the summit is specified separately. This
also necessitates a small modification to ∆X – to account for the case of the empty diagram, we use not
the constant functor, but instead the unique functor from I to the terminal category 1 = {•} composed
with the inclusion ιX : 1 → C defined by • 7→ X – but for non-empty diagrams, they function exactly
as we have described previously.

We will interchangably refer to a (co)cone both as a natural transformation ϕ, and as a pair (X,ϕ) that
includes the summit/nadir separately, depending on context.

52.4.3 Universal Cones
Let F : I → C be a diagram. The limit of F is the universal cone ϕ : ∆X ⇒ F over the diagram F ,
and we denote the summit X of this cone by limF . Dually, the colimit is the universal cocone under
F , with nadir denoted colimF . By a slight abuse of language, sometimes, we call the summit X of this
universal cone “the limit” by itself, but the limit is properly the entire data of the cone. To distinguish
the two notions, we call this universal cone the limit cone, and the summit the limit object, or just limit.

The notion of universality for cones is again of unique factorisation; a cone over a diagram D with summit
X is universal if every other cone over D with summit X ′ factors through it uniquely. That is, there
exists a unique morphism f : X ′ → X

X ′

X

A B

C D

∃!f

such that every leg of the non-universal cone factors through the corresponding leg of the universal cone,
so the triangle

X ′

X

F (J)

f ϕ′
J

ϕJ

commutes for all J ∈ ob(I ). Comparing X ′ and X with the constant functors ∆X ′ and ∆X, we see
that f must be given by the single component of the constant natural transformation ∆f .

In this case, we also call f a cone morphism, as it defines a way of mapping between cones. In fact, this
allows us to define a category of cones – if F : I → C is a diagram, then the collection of cones and
cone morphisms over that diagram forms a category. Associativity is inherited from C , and identities
are given by identity morphisms on the summits.
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This allows us to characterise limits as terminal objects in the category of cones over a diagram. This
justifies the use of the phrasing “the limit”, rather than “a limit”, as any two ostensibly distinct limits
over the same diagram will be isomorphic up to unique isomorphism:

Theorem 52.4.2. (Co)limits are essentially unique.

That is, given any two universal cones ϕ : ∆X ⇒ F and ψ : ∆Y ⇒ F over the same diagram F : I → C ,
there is a unique cone isomorphism ∆X ∼= ∆Y (a cone morphism in the sense described above that
additionally has an inverse).

Proof. A limit of F is a terminal object in the category of cones over F . But by Theorem 52.3.1, terminal
objects are essentially unique. Essential uniqueness of colimits follows from duality. ■

Conversely, if we begin with a map f : X ′ → X, where X is the summit of a limit cone ϕ : ∆X ⇒ F ,
then the universal property says that the induced natural transformation ψ : ∆X ′ ⇒ F with components
defined by precomposing every component of ϕ with f is also a cone, and furthermore, the uniqueness
of the factorisation through a limit cone implies that this association between maps into X and cones
over F is a bijection.∗ More concisely,

Theorem 52.4.3. The maps into a limit object limF are precisely the cones over the diagram F .

52.4.4 Examples
Consider the most trivial possible case of I being the empty category, so all diagrams F : I → C are
empty. A cone over the empty diagram with summit X is just the object X with no other data, so the
limit of this diagram is then just an object such that any cone – which is just another object – factors
through it uniquely. That is, there is a unique morphism to the limit object from every other object.
This is exactly the terminal object of C , so the limit of the empty diagram is the terminal object. Dually,
a cocone under the empty diagram with nadir X is again just the object X with no other data, so the
colimit of the empty diagram is the initial object.

If we take I to be the trivial category, then a diagram F : I → C consists of a single object, say, X1.
A cone over F with summit X is then just the object X equipped with a morphism to X1 that every
other object uniquely factors through it. But, we can just take X = X1, as every object factors through
the identity on X1, so the limit is just the object itself. The colimit is also just the object X1, for the
same reason.

If I is the discrete category on two objects, then a cone over F : I → C with summit X is the object
X equipped with a pair of morphisms to the diagram:

X

X1 X2

The limit is then the object through which every other similar span factors – which is exactly the product
of the two objects in the diagram, so a product is a special case of a limit. Similarly, the colimit of the
two object diagram is a universal cospan, or, the coproduct.

We can generalise the binary (co)product to take n input objects by taking I to be the discrete category
on n objects. The limit of the resulting diagram with objects (Xi)i∈I is then the n-ary product, written

∗ The precomposition here may be reminiscent of the Yoneda embeddings; in fact, this assignment is functorial, and
limits can be expressed as a type of representation, though we will not be doing this here.
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as
∏
i∈I Xi, and similarly, the colimit is the n-ary coproduct, written as

∐
i∈I Xi.∏

i∈I

Xi

· · · X−2 X−1 X0 X1 X2 · · ·

∐
i∈I

Xi

π−2 π−1 π0 π1
π2

ι−2 ι−1 ι0 ι1 ι2

This generalisation encompasses the previous two examples as well; the empty and trivial categories can
be viewed as discrete categories on zero and one objects, respectively, so the nullary product of the empty
family is exactly the terminal object (which is one of the reasons why the terminal object is denoted 1),
and the unary product is just the original input object.

If we instead take the limit of a span • → • ← •, we obtain the diagram:

limF •

• •

π0

π2

π1

The projection π0 can be omitted as it is implied by commutativity, so the limit cone is just a commutative
square. The universal property then says that every similar square factors through limF , so this diagram
is exactly the pullback of the two morphisms in the original span. Similarly, the colimit of a span
• ← • → • is then the pushout of the two morphisms.

We can also take the limit over a parallel pair of morphisms •⇒ • to obtain the equaliser:

limF

• •
t

f

s

ι

Commutativity implies that ι forms a fork with s and t, and that f can be omitted to obtain the usual
equaliser diagram. Colimits over parallel pairs then similarly yield coequalisers.

52.4.5 Completeness
Diagrams can be of any shape, but limits over arbitrary diagrams do not always exist in arbitrary
categories. For example, we have already seen that products of distinct objects do not exist in discrete
categories due to a lack of morphisms to use as projections.

A category C has limits of shape I if every diagram F of shape I in C admits a limit in C . Similar
variations on this wording can be applied to special classes of limits like products (“C has products”)
[Lei14]. One important case is of small limits, where the indexing category of the diagram is small.

A category C is complete if it has all small limits. That is, if it has limits of shape I for every small
category I . Dually, C is cocomplete if it has all small colimits. If a category is both complete and
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cocomplete, it is bicomplete. The condition of having all (large) limits is too strong of a condition for
any useful categories to satisfy, so we often do not consider it.

A weaker form of completeness is of finite completeness – a category is finite if it has finitely many
morphisms (which also implies that there are finitely many objects), and a finite limit is a limit of shape
I for a finite indexing category I . A category C is then finitely complete if it has all finite limits, finitely
cocomplete if it has all finite colimits, and finitely bicomplete if it is finitely complete and cocomplete.

Theorem (Existence Theorem for Limits).

• If a category C has all products and binary equalisers, then C is complete.

• If C has binary products, a terminal object and binary equalisers, then C is finitely complete.

Proof. Let C be a category with all products and equalisers, and let F : I → C be a diagram. If we
ignore all morphisms in I , then the limit of F would just be the product

∏
I∈I F (I). The morphisms

then add the additional constraints that for each morphism f : A→ B in I , the triangle∏
I∈I

F (I)

F (A) F (B)
F (f)

πA

πB

must commute.

We construct another product
∏

(f :A→B) in I F (B) indexed over the morphisms in I . Now, recall that
a map from an object X into a product

∏
Xi is determined entirely by the component maps X → Xi.

The two routes
∏
I∈I F (I) → F (B) through the triangle above, given by πB and F (f) ◦ πA, can be

reindexed by morphisms in I to obtain:

s(f :A→B) = πB

t(f :A→B) = F (f) ◦ πA

and hence these components define a pair of maps into the product indexed by morphisms:∏
I∈I

F (I)
∏

(f :A→B) in I

F (B)
s

t

Because we want the triangles of the form given above to commute, these paths should be equal, so we
construct the equaliser L p−→

∏
I F (I) of s and t. We claim that the components of p form a limit cone

on F .

First, note that s◦p = t◦p are morphisms into a product, so their components also agree by the universal
property of the product. Writing π′ for the projections of

∏
f F (B), we have,

s ◦ p = t ◦ p
π′
f ◦ s ◦ p = π′

f ◦ t ◦ p
sf ◦ p = tf ◦ p
πB ◦ p = F (f) ◦ πA ◦ p

pB = F (f) ◦ pA
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which is exactly the commutativity requirement of a cone, so the components of p form a cone ϕ : ∆L⇒
F . Any other cone ψ : ∆L′ ⇒ F must induce a map that equalises s and t, so L′ factors through L by
the universal property of the equaliser, and hence ϕ is a limit cone.

L′

L
∏
I∈I

F (I)
∏

(f :A→B) in I

F (B)
s

t
p

p′

∃!

We have now expressed an arbitrary limit in terms of products and equalisers, so C is complete.

Now suppose that C only admits products that are binary. By induction, C also has n-ary products
for finite n ≥ 1, and since C has a terminal object (the nullary product), it has all finite products.
The previous argument then applies, but only for finite indexing categories, and hence C is finitely
complete. ■

The converse of the propositions are also clearly true, so the implications are biconditional; (finite)
completeness is equivalent to having (finite) products and binary equalisers.

52.4.6 Limits and Functors
Let D : I → C be a diagram in C with limit object X and limit cone ϕ. A functor F : C → D preserves
this limit if F (X) is the limit object of the composite diagram F ◦D : I → D , and the whiskering F ·ϕ
(that is, the natural transformation with components defined by (F · ϕ)A = F (ϕA)) is a limit cone on
F ◦D.

Theorem 52.4.4. The hom-bifunctor hom(−,−) : C op × C → Set preserves limits in both arguments.

This means that, for example, hom(X,A)× hom(X,B) ∼= hom(X,A×B) and hom(A,X)× hom(B,X) ∼=
hom(A⨿B,X), with the product being transformed into a coproduct in the first argument by contravari-
ance.

Proof. Recall that the morphisms into a limit object limD correspond to the cones over the diagram D
(Theorem 52.4.3). More specifically, the morphisms X → limD are the cones over D with apex X, so
we have

homC (X, limD) ∼= hom[I ,C ](∆X,D) (52.1)

naturally in X.

If we have C = Set and X = 1 in the previous, then

homSet(1, limD) ∼= hom[I ,Set](∆1,D)

limD ∼= hom[I ,Set](∆1,D) (2)

so the set of cones over a diagram with apex 1 is precisely the limit of that diagram.

Now, consider a cone ϕ over the composite diagram hom(X,−) ◦ D = hom
(
X,D(−)

)
: I → Set with

apex 1. Every morphism f : I → J between objects I,J in I induces a function hom(idX ,f) = f ◦ (−)
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from hom
(
X,D(I)

)
to hom

(
X,D(J)

)
, so such a cone is a collection of components such that the triangle

1

hom
(
X,D(I)

)
hom

(
X,D(J)

)
f◦(−)

ϕI ϕJ

commutes for all I,J ∈ ob(I ) and f ∈ homI (I,J).

Because 1 is a singleton set, the component ϕI effectively just selects a single function from the hom-set
hom

(
X,D(I)

)
. We can alteratively interpret this as ϕ assigning a function ψI : X → D(I) to each object

I such that f ◦ ψI = ψJ for all objects I,J in I i.e., such that

X

D(I) D(J)
f

ψI ψJ

commutes, which is exactly a cone over D. Thus, the set of cones over F with apex X is isomorphic to
the set of cones over the hom-sets hom

(
X,D(−)

)
with apex 1:

hom[I ,C ](∆X,D) ∼= hom[I ,Set]
(
∆1,homC

(
X,D(−)

))
(3)

Combining the above, we deduce that homC (X, limD) is the limit of

So combining the previous isomorphisms, we have,

homC (X, limD) ∼= hom[I ,C ](∆X,D) [by (1)]
∼= hom[I ,Set]

(
∆1,homC

(
X,D(−)

))
[by (3)]

∼= lim
(
hom

(
X,D(−)

))
[by (2) in reverse]

Preservation of limits in the first argument follows from duality. ■

52.5 Adjunctions

Let C D
L

R
be categories and opposing functors. We say that L is left adjoint to R, and that L is

right adjoint to R, if,

homC (L(A),B) ∼= homD(A,R(B))

naturally in A ∈ ob(C ) and B ∈ ob(D), and we write L ⊣ R to denote this relationship.

The image of a morphism under this isomorphism is called its adjoint transposition. For a morphism
f : A → R(B) in C , its adjoint transposition L(A) → B in D is called its left adjunct, and is denoted
f ♯, and similarly, the adjoint transposition of a morphism g : L(A)→ B in D is called its right adjunct,
and is denoted g♭.

Note that the functors L and R are adjoint, while the morphisms f and f ♯ or g♭ and g are adjunct
[Mac13].
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Adjoint functors correspond to a weak form of equivalence between categories, in that every equivalence
functor and its inverse are adjoint, and conversely, if L and R are both fully faithful, then they form an
equivalence of categories.

Example.

• The functor C → 1 to the trivial category has a right adjoint if and only if C has a terminal object,
and a left adjoint if and only if C has an initial object.

• If C has binary products, then the cartesian product bifunctor −×− : C ×C → C is right adjoint
to the diagonal functor ∆ : C → C × C .

• A so-called forgetful functor is a functor that does nothing to objects and morphisms apart from
“forgetting” some of the structure of the original category. For instance, the forgetful functor
U : Grp → Set sends groups to their underlying sets – “forgetting” the group structure – and
group homomorphisms to themselves, but considered as functions. The left adjoint to a forgetful
functor from a category of algebraic objects to Set is given by the functor that constructs the free
object of the appropriate type on any given set.

△

Theorem 52.5.1. A left or right adjoint, if it exists, is unique up to natural isomorphism.

Proof. We give the proof for the uniqueness of a right adjoint. The uniqueness of left adjoints follows
similarly.

Suppose R1,R2 : C → D are right adjoint to L : D → C , so for each object D in D , we have the natural
isomorphisms of functors

hom
(
−,R1(D)

) ∼= hom
(
L(−),D

) ∼= hom
(
−,R2(D)

)
also natural in D. By the Yoneda lemma, this isomorphism is induced by an isomorphism R1(D) ∼=
R2(D). As the Yoneda embedding is fully faithful, R1(D) ∼= R2(D) is also natural in D, and we have
R1
∼= R2. ■

Theorem 52.5.2. Left adjoints preserve colimits and right adjoints preserve limits.

Proof. Let (L ⊣ R) : C → D be a pair of adjoint functors, and let F : I → D be a diagram in D whose
limit limF exists. Then, for every C in C ,

homC

(
C,R(limF )

) ∼= homD

(
L(C), limF

)
∼= limhomD

(
L(C),F (−)

)
∼= limhomC

(
C,(R ◦ F )(−)

)
∼= homC

(
C, lim(R ◦ F )

)
with all isomorphisms natural in C, so by the Yoneda lemma, R(limF ) ∼= lim(R ◦F ). That left adjoints
preserve colimits follows from duality. ■

52.6 Subobjects

Recall that an element x ∈ X is simply a map x : 1 → X, where 1 is terminal. We have also seen the
notion of a generalised element of shape S in which we identify certain features of a space with maps
S → X into the space, but can also abstract the notion of a subset into categories other than Set in a
similar way.
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Note that the notion of a subset in material set theories is not isomorphism invariant: for instance,
consider the sets {1}, {2}, {cat}, and X = {1,2,3}. We have that {1} ⊆ X and {2} ⊆ X are distinct
subsets of X, and {cat} ̸⊆ X, but these singleton sets are all isomorphic! Categories don’t care about
how we label elements (and in arbitrary categories, it currently doesn’t make sense to ask about elements
of objects anyway).

What we do care about is how these sets embed into X or not – just as elements of sets are not themselves
sets, subsets of sets are also not sets.

Consider the class of monomorphisms into an object, X. We can define a preorder on this class as follows.
Let f : A ↣ X and g : B ↣ X be monomorphisms into X. Then, let f ≤ g if f factors through g –
that is, there exists a morphism h : A→ B such that f = g ◦ h (h is necessarily unique if it exists, since
g is monic, and must also be a monomorphism, as f is monic). If both f ≤ g and g ≤ f , or equivalently,
if h is an isomorphism, then f and g are isomorphic morphisms, and we write f ∼= g.

A subobject of an object X is then an isomorphism class of monomorphisms into X. If S : A↣ X is a
monomorphism into X, then we write [S] ⊆ X for the isomorphism class/subset represented by S. As a
small abuse of notation, we sometimes pick a representative monomorphism S and just write S ⊆ X.

If we interpret this definition in Set, a monomorphism f : A↣ X describes (or rather, represents) the
subset f(A), which, as a set, is isomorphic to A via f . Note that the object A is entirely irrelevant here;
a different function g : A ↣ X with image distinct from f represents a different subset from f ; and
conversely, a function h : B ↣ X that agrees with f will witness the same subset as f . (In fact, they
will be isomorphic, and will reside in the same isomorphism class, as we’d might hope.)

This is what distinguishes, say, {1} from {2} in the context of being a subset of X = {1,2,3}; these
subsets are distinct because the ways they embed into X do not admit a factorisation in both directions
– being a subobject is not really a relation on objects, but rather on morphisms.

This definition also helps to resolve some problems in material set theories. For instance, one question
that inevitably arises in material set theory, is to ask whether Z is a really subset of R or not. The former
is a set of equivalence classes of von Neumann ordinals (or Zermelo ordinals, etc.), while the latter is a
set of Dedekind cuts (or equivalence classes of Cauchy sequences, or elements of a complete ordered field,
etc.), so it seems that Z cannot be a subset of R – but when integers and real numbers are interpreted in
the conventional non-set-theoretic way, every integer is clearly a real number. (This is also very similar
in flavour to our earlier question of whether 3 ∈ 17 or not.)

The structural viewpoint says that it doesn’t make sense to ask whether Z ⊆ R or not because their
elements are the same or not, but instead to ask if there is some map Z→ R that witnesses that Z ⊆ R.
Note that the maps Z→ R also depend on the structure being considered, or rather, the ambient category
– if Z and R are being considered as, say, groups or rings (i.e. objects in Grp or Ring, respectively),
then we can only ask if there are any group or ring homomorphisms (i.e. morphisms in the respective
category) that provide a reason for us to write Z ⊆ R, in the context of being a subgroup or subring.

Furthermore, this definition includes information about how an object embeds into another, rather than
just that it does in some unspecified way. This definition of a subobject in more general categories of
structured sets is also often more natural than the set-theoretic notion of having the underlying set of a
structure be a subset of some larger structure (as well as generalising to non-concrete categories).

This does, however, have the somewhat odd side effect that, for example, {0,1} ⊆ Z is not the same as
the subset {0,1} ⊆ R because one is an isomorphism class of monomorphisms into Z, and the other of
monomorphisms into R. However, they are related in that we can lift the former isomorphism class to
the latter with a suitable function Z → R. This further reflects the structural idea that objects should
be characterised by their connections to other objects – the ambient containing set is different, so these
subsets hold different structures and are hence distinct entities.

Now, the ≤ relation on monomorphisms is only a preorder as it is not antisymmetric: f ≤ g and g ≤ f
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only imply that f and g are isomorphic and not strictly equal. However, since subobjects are isomorphism
classes of monomorphisms, isomorphic morphisms do induce strictly equal subobjects, so the preorder ≤
induces a partial order ⊆X on the subobjects of X. Again, we often pick representative monomorphisms
A and B and abbreviate [A] ⊆X [B] to just A ⊆X B. This notion of containment of subsets is inherently
local to subsets of an ambient set X, unlike in a material set theory, where the subset relation, being
defined in terms of the global membership relation, is compatible with any two arbitrary sets.

Importantly, the subset relation ⊆X between two subobjects of X is distinct from the symbol ⊆ indicating
that a subobject belongs to a true object X. The former is a relation, local to the collection of subobjects
of some given object, while the latter is just notation for a class of morphisms.

For the notion of membership on subsets, we say that x is a member of a and write x ∈ a if x ∈ X,
a : S ↣ X is a subset of X, and there exists an element x̄ ∈ S such that a(x̄) = x:

S

1 X

ax̄

x

That is, x is a member of a if x lifts through a. Again, membership for subsets is only defined locally
within a containing set S, unlike in a material set theory, so it doesn’t make sense to ask whether x ∈ y
or not for arbitrary sets x and y.

We can also dualise the notion of a subobject. The collection of epimorphisms from an object X are
similarly preordered by factorisation – that is, we write f ≤ g for epimorphisms f : X ↠ A and
g : X ↠ B if there exists a (necessarily unique and epic) morphism h : A→ B such that f = h ◦ g, and
two epimorphisms are isomorphic if they factor through each other, or equivalently, if h is an isomorphism.
A quotient object of X is then an isomorphism class of epimorphisms from X.

One important kind of subobject is given by the notion of an image. In Set, we can identify the image
of a function f : A→ B with a particular subset of B, namely, the subset consisting of all the elements
of B of the form f(a) for some a ∈ A. We can describe this situation more generally, without reference
to elements, as follows.

The image of a morphism f : A→ B is the minimal subobject of B through which f factorises universally

into a composition A e−→ im(f)
m
↣ B. That is, f = m ◦ e, and for every other factorisation A e′−→ S

m′

↣ B,
we have im(f) ⊆B S. Then, the morphism e : A→ im(f) is called the corestriction of f .

Dually, the coimage of a morphism is the image of the corresponding morphism in the opposite category,
or equivalently, the maximal quotient object of A through which f factors through universally.

52.6.1 The Subobject Classifier
For Set in particular, another way to characterise a subset A of a given set X is as a function χA : X → 2,
where 2 = {⊤,⊥}, by taking χA to be the indicator function of A defined by

χA(x) =

{
⊤ x ∈ A
⊥ x /∈ A

So, there is a bijection between the subobjects A ↣ X and the functions χA : X → 2 given by
χA 7→ A = χ−1

A

[
{⊤}

]
. Now, recall that preimages are a special case of pullbacks, so this bijection says
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that for every subset A ⊆ X, there is a unique function χ : X → 2 such that

A = f−1
[
{⊤}

]
1

X 2χ

⊤

!

⌟

is a pullback [Lei11]. Nothing here is really specific to Set, so we can abstract this diagram into any
arbitrary category that admits pullbacks and has a terminal object to obtain the following definition:

A subobject classifier in a category C is an object Ω and map ⊤ : 1→ Ω such that every monomorphism
m : A ↣ X is the pullback of ⊤ along a unique morphism χm : X → Ω called the characteristic
morphism.

That is, for every monomorphism m : A↣ X, there exists a unique morphism χm : X → Ω such that

A 1

X Ω

⊤

χm

m

!

⌟

is a pullback square.

The object Ω is then called the object of truth values, a morphismX → Ω a truth value, and the morphism
⊤ : 1→ Ω the truth value true.

In a concrete category, commutativity of the square, χm ◦m = ⊤◦ !, intuitively means that χm is “true”
everywhere over the image of m. The diagram being a pullback then means that A is the “largest”
subobject of X with this property, so χm is true exactly in the image of A, and if we have any other
object with a map into X that makes χm similarly true, then it will factor uniquely through m.

We give another characterisation of a subobject classifier [Lei11].

For any object X ∈ ob(C ), we write SubC (X), or just Sub(X), to denote the collection of subobjects
of X. If this collection is a set (as opposed to a proper class) for every object in a category, then the
category is called well-powered.

Suppose C has finite limits and is locally small. Then, every map f : X → Y in C induces a map
f∗ : Sub(Y ) → Sub(X) between the subobject posets in the reverse direction by pullback. That is,
if g : B ↣ Y is a subobject in Sub(Y ), then it is a monomorphism, and because pullbacks preserve
monomorphisms, the pullback

X ×Y B B

X Y
f

g

⌟

π1

π2

of g along f is another monomorphism into X, which is just a subobject in Sub(X). This defines a
functor Sub : C op → Set.

A subobject classifier is then exactly a representation of this functor.

Recall that for Sub to be representable, there must exist an object Ω such that Sub(X) ∼= homC (X,Ω)
naturally in X. This intuitively corresponds to the previous idea that the subsets of X correspond to
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maps X → 2 (this also implies that C is well-powered), and furthermore, that this correspondence is
canonical. This holds similarly in arbitrary categories, in that the subobjects of an object X naturally
correspond to morphisms X → Ω; hence the name subobject classifier.

Subobject posets also allow us to abstract various other familiar operations on subsets.

The pullback of (two representative monomorphisms of) two subobjects A↣ X and B↣ X is denoted
A∩X B or A∧X B, and is called the intersection or meet of the two subobjects, and dually, the pushout
of the two subobjects is denoted A∪XB or A∨XB, and is called the union or join of the two subobjects.
(When the object X is clear, the subscripts are often suppressed.)

These definitions are based on operations in the ambient category, C ; namely that of pullbacks and
pushouts, but it turns out that these intersections and unions can be expressed entirely internally to the
subobject poset:

Theorem 52.6.1. The pullback of two subobjects of X in C is their product in SubC (X) interpreted as
a thin category, and similarly, their pushout in C is their coproduct in SubC (X).

Proof. Monomorphisms are stable under pullback, so the pullback of two objects is also a subobject in
Sub(X). The universal property of the pullback then says that it factors through every other pair of
monomorphisms into X, which is exactly a product in Sub(X). The proof for unions is similar.∗ ■

Intuitively, the intersection of two subobjects with representing monomorphisms f and g in Sub(X)
should be the maximal subobject that factors through both f and g, which is exactly their meet, f ∧ g,
in the order-theoretic sense – but meets are exactly the products in a thin category. Similarly, the union
of the representatives f and g should intuitively be the minimal subobject that f and g both factor
through, which is exactly their order-theoretic join, f ∨ g.

The above correspondence between pullbacks in C and products in Sub(X) allow us to transport some
properties of C into this thin subobject poset category: if C is finitely (co-,bi-)complete, then the
collection of subobjects is not just a poset, but is furthermore a meet-semilattice (join-semilattice, lattice,
respectively). Given some favourable conditions† which we will assume, these meets and joins also
distribute over each other, so the collection of subobjects is additionally a distributive lattice.

A Boolean category is a category in which every subobject A↣ X has a complement subobject B↣ X
such that A ∧ B ∼= ∅ is initial in the subobject lattice, and A ∨ B ∼= X – that is, the subobject lattice
Sub(X) of any object X is a Boolean lattice.

52.6.2 Power Objects
We can also abstract the notion of a power set into categories other than Set. In set theory, the power
set P(A), also written perhaps more suggestively as 2A, of a set A is the set of all subsets of A. This is
a definition reliant on the set-theoretic subset relation, which is not a categorical notion, so we want to
find a way to characterise 2A with the maps to or from it.

Also note that the notion of a power object is far more specific to Set than subobjects are. For instance,
there isn’t really a notion of a “power group”, in that the collection of all subgroups of a group does not
have group structure itself – collections of subobjects in this sense generally do not inherit the structure
required to be an object in their own right.

The idea here is that the functions B → 2A are naturally isomorphic to subobjects of A×B:

hom(B,2A) ∼= Sub(A×B)

∗ But not dual. Dualising this proof yields a result about unions in the poset of epimorphisms of X.
† The category must be at least a coherent category, which we have not discussed, but all the categories we will see later

will be coherent. In particular, topoi are always coherent.
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Or equivalently, that the power set of a set A is exactly a representation of the functor Sub(A×−). This
is already a complete description of power sets that generalises to arbitrary categories, but we can again
give a more concrete definition in terms of pullbacks.

Consider a set B, along with a function f : B → 2A that maps elements of B to subsets of A. This
induces a relation R ⊆ A×B that identifies which elements of A belong to the images of elements in B:

R =
{
(a,b) ∈ A×B : a ∈ f(b)

}
That is, aRb if and only if a ∈ f(b). There is also the canonical relation ∈A ⊆ A × 2A that identifies
which elements of A belong to which subsets S of A:

∈A =
{
(a,S) ∈ A× 2A : a ∈ S

}
So a ∈A S if and only if... a ∈ S.

Now, we can define a function R → ∈A by applying f to the second component of elements in R, so
(a,b) ∈ R if and only if

(
a,f(b)

)
∈ (∈A). Then, we see that R is the preimage of ∈A by idA × f (with

the appropriate restrictions), so we have the following pullback:

R = f−1[∈A] ∈A

A×B A× 2A
idA×f

idA×f
∣∣∣
R

⌟

Again, we can abstract this diagram into other categories.

A power object of an object A consists of an object ΩA and a monomorphism ∈A↣ A×ΩA such that for
every other object B and monomorphism m : R↣ A×B, there exists a unique morphism χm : B → ΩA

such that
R ∈A

A×B A× ΩA
idA×χm

m

⌟

is a pullback square.

Now, the notation 2A suggests a connection between how we classified subsets of A with maps A → 2
before, and in fact, this definition is compatible with the notion of a subobject classifier in that if A ∼= 1
is terminal, then 1 × Ω1 ∼= Ω and idA × χm ∼= χm, so the pullback reduces to the subobject classifier
pullback square from before, and the power object of a terminal object is exactly the subobject classifier.
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52.7 Monoidal Categories

A monoidal category is a category that has properties similar to an algebraic monoid; it is equipped with
a binary endofunctor that satisfies the monoid axioms in a certain sense.

A monoidal category (C ,⊗ ,I,α,λ,ρ) consists of:

• A category C ;

• A bifunctor ⊗ : C × C → C called the tensor product, written in infix notation;

• A designated object I in C called the unit ;

• A natural isomorphism α :
(
(−)⊗ (−)

)
⊗ (−) ⇒ (−)⊗

(
(−)⊗ (−)

)
with components of the form

αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C) called the associator ;

• A natural isomorphism λ : I ⊗ (−) ⇒ (−) with components of the form λA : (I ⊗ A) → A called
the left unitor ;

• A natural isomorphism ρ : (−) ⊗ I ⇒ (−) with components of the form ρA : (A ⊗ I) → A called
the right unitor ;

subject to the coherence conditions that the following diagrams commute:

• the triangle identity :

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

αA,I,B

ρA⊗idB idA ⊗λA

• the pentagon identity :

(A⊗B)⊗ (C ⊗D)

((A⊗B)⊗ C)⊗D A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)αA,B⊗C,D

αA,B,C⊗idD

αA⊗B,C,D αA,B,C⊗D

idA⊗αB,C,D

The tensor product being a bifunctor means that the category is closed with respect to the tensor product,
while the left and right unitors say that I ⊗ A ∼= A and A ⊗ I ∼= A for any object A, so I acts as the
identity of the tensor product. The associator then says that (A⊗B)⊗C ∼= A⊗ (B ⊗C) for all objects
A, B, and C, so the tensor product is also associative. This is all the structure that a monoid demands,
so, why do we have the additional coherence conditions?

The analogue of this expression in a monoidal category is an object of the form (A ⊗ I) ⊗ B; the right
unitor guarantees that the unit I acts like the identity, giving A⊗ I ∼= A, so (A⊗ I)⊗B ∼= A⊗B, but
again, we could use the associator to first rebracket (A ⊗ I) ⊗ B ∼= A ⊗ (I ⊗ B) before reducing with
the left unitor. However, there’s no reason why we should expect that these two orderings will produce
exactly equal objects. The triangle identity is exactly the condition that this equality does hold, and
similarly, the pentagon identity guarantees that every way we rebracket an expression yields isomorphic
objects.
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For similar reasons, monoidal categories also admit several notions of commutativity. A braided monoidal
category is a monoidal category equipped with an additional natural isomorphism with components of
the form βA,B : A⊗B → B⊗A called the braiding, subject to two additional coherence conditions called
the hexagon identities that ensure compatibility with the associator.

The tensor product in a braided monoidal category is then commutative in the sense that reversing the
order of a tensor product yields isomorphic objects, as given by the braiding. However, applying the
braiding twice may yield objects that are not strictly equal, but only isomorphic. If these objects are
strictly equal – that is, βA,B ◦ βB,A = idA⊗B – then the category is furthermore a symmetric monoidal
category. The tensor product in a symmetric monoidal category is then “as commutative as possible”.

One special case of a monoidal category is if the monoidal structure is given by the categorical product;
such a category is called a cartesian monoidal category. Because categorical products are essentially
unique, every cartesian monoidal category is necessarily symmetric monoidal.

Example. Set is monoidal, with the tensor product given by the categorical product, so Set is cartesian
monoidal. Note that (A × B) × C ̸= A × (B × C), but there is an obvious isomorphism between them
that we can use as the associator. Similarly, the unitors are given by the isomorphisms 1 × A ∼= A and
A× 1 ∼= A. △

Categories can often be monoidal in multiple ways; for instance, Set is also monoidal if we take the tensor
product to be the categorical coproduct (we say that Set is cocartesian monoidal). Again, we don’t have
strict equality here, with (A⊔B)⊔C ̸= A⊔ (B⊔C), but there is again a canonical isomorphism between
the two objects. The unitors are then given by the isomorphisms ∅ ⊔A ∼= A and A ⊔∅ ∼= A.

For another example, the category VectK of vector spaces over a field K is also monoidal in multiple
ways, with the tensor product given by either the traditional tensor product, or the direct sum of vector
spaces. In this case, these two structures are actually compatible in that the tensor product distributes
over the direct sum, giving the category an additional semiring structure.

52.8 Internalisation

Recall the standard definition of a group:

A group (G,∗) is a set G equipped with a binary operation ∗ : G×G→ G that is associative,
admits an identity element e ∈ G (is unitary), and every element g ∈ G has an inverse
g−1 ∈ G under ∗.

At this point, we should be used to viewing various mathematical constructions as morphisms, and we
might be tempted to do the same here. The binary operation is already a function, and the identity
element can, as usual, also be viewed as a function e : 1 → G. Similarly, we have the function (−)−1 :
G→ G that sends an element to its inverse.

Now, because G is a set and e, ∗, and (−)−1 are set functions, the associativity, identity, and inverse
axioms can be entirely encoded by the requirement that certain diagrams in Set relating the three
functions commute [nLa23b]:

• Unitality:
G× 1 G×G 1×G

G

id×e

∼=
∗ ∼=

e×id
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• Associativity:
G×G×G G×G

G×G G

∗×id

id×∗

∗

∗

• Inverses:

G G

1 G×G 1 G×G

G G×G G G×G

∆

(−)−1×id

∃!

e

∗

∆∃!

∗

e
id×(−)−1

For instance, in Set, we can interpret the two paths in the left inverse diagram as the chains of functions
g 7→ (g,g) 7→ (g−1,g) 7→ g−1 ∗ g and g 7→ 1 7→ e, so commutativity says that g−1 ∗ g = e.

However, we should notice that this characterisation of groups does not explicitly refer to the elements
within the group – all the requirements are now to do with how the group interacts with these three
functions. Furthermore, the only structure of Set that is used in the above characterisation is the
existence of finite products. This is not specific to Set, and indeed, there is no reason why this definition
needs to be tied to Set at all; all the previous diagrams make sense in any arbitrary category that admits
these limits, even if we cannot necessarily interpret G to be a set in that category.

An internal group in a category C that admits finite products is an object G equipped with morphisms
e : 1→ G (where 1 is terminal in C ), ∗ : G×G→ G, and (−)−1 : G→ G such that the diagrams above
commute.

If C is Set, then we just have the definition of an ordinary group; if C = Top, we obtain topological
groups; if C = Man∞, we obtain Lie groups; if C = Grp, we obtain abelian groups, etc.

This process of abstracting a structure like a group into an object or objects within a general category is
called internalisation – and we can do this with many other constructions, creating internal monoids,∗
rings, lattices, etc. For instance, the subobject classifier in a Boolean category is exactly an internal
Boolean algebra.

These diagrams can also be dualised to obtain so-called cogroups, comonoids, corings, etc. but these
dual objects often do not correspond to any standard algebraic structures [For02], though cogroups do
arise naturally in algebraic topology. For example, the n-sphere Sn is precisely a cogroup object in the
homotopy category of pointed topological spaces, and is related to why the higher homotopy groups are
in fact groups. Categories themselves can also be internalised within categories with sufficient pullbacks.
For instance, small categories are precisely the categories internal to Set. In general, the more structure
the ambient category has, the more that is able to be internalised.

We can abstract further and replace the products with tensor products to produce internal objects in
general monoidal categories. For instance, an internal monoid in Ab with monoidal structure given by
the tensor product ⊗Z, is precisely a ring(!); and an internal monoid in VectK , with monoidal structure
given by the tensor product ⊗K of vector spaces, is exactly a K-algebra, etc.

∗ Dropping the commutative diagram for inverses in the above definition of an internal group yields this particular
construction.
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52.8.1 Internal Homs
Clearly, internalisation is very useful, as it unifies many seemingly distinct constructions. But for now,
we are interested in the internalisation of a categorical hom-set. We begin by abstracting the similar
notion of a function set.

Given two sets A and B, the collection of functions from A to B form a set [A,B], called the function
set. We consider the functions into [A,B] from another set X.

Such a function takes an argument fromX, and returns a function A→ B. We can alternatively interpret
this as a function that takes an argument from both X and A, and returns an element in B, so there is
a bijection between functions X → [A,B] and X ×A→ B.∗

This allows us to easily abstract a function set into any arbitrary category that admits products as
follows: given a pair of objects A and B, the internal hom-object, or just internal hom, is an object [A,B]
such that

hom(X,[A,B]) ∼= hom(X ×A,B)

naturally in X. This assignment of objects to internal hom objects is also functorial, defining the
internal hom-functor [−,−] : C op ×C → C that sends pairs of objects to their internal homs, much like
the ordinary hom-bifunctor.

Replacing the product in the above with a tensor product, internal hom-functors further generalise to
categories that may not admit products.

If a monoidal category admits all internal hom objects, it is called a closed monoidal category. More
precisely, a monoidal category is closed monoidal if for every object A, the functor (−)⊗A : C → C that
sends objects to their right tensor product by A has a right adjoint, [A,−] : C → C , that sends objects
to the internal hom out from A. That is,

hom(X,[A,B]) ∼= hom(X ⊗A,B)

naturally in all three variables. These categories are “closed” in the sense that taking hom-sets leaves
you within the category.

If the category is further cartesian monoidal, then it is called a cartesian closed category.

Example. Any locally small category has at most a set of morphisms between any pair of objects – which
is an object of Set. Set itself is locally small, so the hom-set between every pair of objects is just another
object of Set (specifically, the function set between them), so Set has all internal homs, and is hence
closed monoidal. Set is also cartesian monoidal, and so is furthermore cartesian closed. △

In cartesian closed categories, the internal hom [A,B] is also written as BA and is called an exponential
object. This notation is compatible with the notation ΩA for power objects (when they exist), as the
power object of A is precisely the exponential object of A into the subobject classifier Ω, and this can be
taken as an alternative definition of the power object. More generally, this notation is also compatible
with the categorical product in that we have A1 ∼= A, A2 ∼= A×A (where 2 := 1⨿1), etc. In more detail,

hom(X,A2) ∼= hom(X × (1⨿ 1),A)
∼= hom((X × 1)⨿ (X × 1),A)
∼= hom(X × 1,A)× hom(X × 1,A)
∼= hom(X,A)× hom(X,A)
∼= hom(X,A×A)

so by the Yoneda lemma, A2 ∼= A×A (and so on, by induction).

∗ Particularly in computer science and formal logic, the reverse direction of this bijection is called currying, and is related
to the notion of partial application.
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This compatibility with categorical products allows for a more concise characterisation of cartesian closed
categories: a category is cartesian closed if and only if it has finite products, and the right cartesian
product functor (−)×A admits a right adjoint (−)A for every object A. That is, for every pair of objects
A and B, there is an object BA such that

hom(X,BA) ∼= hom(X ×A,B)

naturally in all three variables. The left adjunct f ♭ : X → BA of a morphism f : X×A→ B is also called
the exponential transpose of f , and similarly, the right adjunct is called the exponential cotranspose.

In the special case where X ∼= 1 is terminal, this isomorphism becomes

hom(1,BA) ∼= hom(1×A,B) ∼= hom(A,B)

In other words, the elements of BA (that is, the morphisms 1 → BA) are naturally isomorphic to the
morphisms A→ B, so the exponential object BA can be thought of as the “object of morphisms A→ B”,
much like a function set in Set. Given a morphism f : A → B, we write [f ] for its isomorphic copy or
“label” in BA.

Another interesting case is given by X = BA, with the isomorphism then being:

hom(BA,BA) ∼= hom(BA ×A,B)

The image of the identity map on BA is called the evaluation map, denoted by ev : BA × A → B.
Concretely, in Set, or more generally on generalised elements, the evaluation map is given by evaluating
a function [f ] ∈ BA at a value a ∈ A; ([f ],a) 7→ f(a), hence the name.

The evaluation map also satisfies the universal property that given any object X and map e : X×A→ B,
there is a unique morphism u : X → BA such that ev ◦ (u× idA) = e:

X ×A

BA ×A B

idA×u
e

ev

52.9 ETCS

52.9.1 Topoi
The notion of a topos (plural topoi) was first introduced in algebraic geometry by Grothendieck in the
early 1960s as a generalisation of sheaves of sets in topology. Every topological space induces a topos,
and conversely, every topos, as defined by Grothendieck, behaves much like a generalised topological
space. These topoi are called Grothendieck topoi, and are now prevalent in modern algebraic geometry.

A more general notion of a topos was soon developed by Lawvere and Tierny over the same decade,
which we will now introduce.

An (elementary or Lawvere–Tierny) topos is a category that:

• is finitely complete;

• is cartesian closed;

• has a subobject classifier.
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This definition seems rather short for a structure we claim to be so important – and it is, deceptively
so; a topos carries a vast amount of additional rich structure that just happens to follow from these few
axioms. We give a few basic properties of topoi.

Lemma 52.9.1. Every monomorphism in a topos is regular. That is, every monomorphism occurs as
the equaliser of some pair of parallel morphisms.

Proof. Let m : X → Y be a monomorphism. Then, it is a subobject of Y , so it is classified by the unique
map χm : X → Ω that makes the following diagram a pullback square:

X 1

Y Ω

⊤

χm

m

!A

⌟

We claim that m is the equaliser of χm and ⊤ ◦ !Y (where !Y is the unique map Y → 1): Let f : A→ Y
also equalise χm and ⊤ ◦ !Y , i.e. χm ◦ f = ⊤ ◦ !Y ◦ f . Our maps are now:

A

X 1

Y Ω

g
!A

f

!X

m ⊤
!Y

χm

⌟

Because 1 is terminal, !Y ◦ f =!A, so we have χm ◦ f = ⊤ ◦ !A and the outer square commutes, so the
universal property of the pullback yields a unique map g : A→ X making the whole diagram commute.

By commutativity of the left triangle, f = m ◦ g, and hence

A

X Y Ω

g
f

m

χm

⊤◦!Y

commutes, so m is an equaliser, as required. ■

Corollary 52.9.1.1. Topoi are balanced. That is, every bimorphism is an isomorphism.

Proof. From the previous lemma, every bimorphism in a topos is an epic regular monomorphism.

Let f : E → A be an epic regular monomorphism. As f is a regular monomorphism, it is the equaliser
of a pair of parallel morphisms g,h : A→ B, so we have g ◦ f = h ◦ f . Since f is epic, we have g = h.

The equaliser of g = h is the identity map, and by the universal property of the equaliser, E must factor
through A essentially uniquely, so f : E → A must be this isomorphism. ■
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Despite starting with only a finitely complete category, the subobject classifier and cartesian closed
structure together also imply that a topos also has all finite colimits:

Theorem 52.9.2. [Par74] Every topos is finitely cocomplete.

We also have a result stating that morphisms in a topos satisfy a epi-mono factorisation structure:

Theorem 52.9.3 (Image Factorisation). In a topos, every arrow factors essentially uniquely through its
image into the composition of an epimorphism with a monomorphism.

Proof. [MM12] Let f : A→ B be a morphism. We construct the following diagram in stages.

A M B X

A N B Y

e

f

m

x

y

u

g h

s

t

First, construct the cokernel pair x,y : B → X of f , and let m : M → B be the equaliser of x and y.
By the universal property of the equaliser, f factors uniquely through the equaliser m, so f = m ◦ e for
some e : A→M . Note that, as an equaliser, m is monic.

Now, suppose f also factorises as f = h ◦ g with h monic. As every monomorphism in a topos is regular,
h is the equaliser of some pair of morphisms s,t : B → Y , so we have s ◦ h = t ◦ h, and precomposing by
g yields s ◦ f = t ◦ f . Then, because x,y is the cokernel pair of f , X factors through Y via a unique map
u : X → Y , giving

s ◦m = u ◦ x ◦m
= u ◦ y ◦m
= t ◦m

so m also equalises s and t and therefore factors uniquely through h. As h is arbitrary, we have that m
is the minimal subobject of B and hence M = im(f). It remains to show that e is epic.

Perform this construction again on e to obtain the chain

A im(e) im(f) Be′ m′ m

equal to f . In particular, f factors through the monomorphism (subobject) m ◦m′, so the image also
factors through m ◦m′, as it is the minimal subobject, so m = (m ◦m′) ◦ v for some v :M → im(e). It
follows that m′ ◦ v = idM , so m′ is an isomorphism.

As before, m′ is the equaliser of the cokernel pair x′, y′ of e. But, because m′ is an isomorphism, we have
x′ = y′, so the cokernel pair of e is x′, x′, and hence e is epic, as required. ■

The prototypical example of a topos is Set, but Set also has a couple of special properties it does not
share with most other topoi, which we will explore soon. On the other hand, the existence of terminal
objects allow us to consider elements of objects in arbitrary topoi; the subobject classifier Ω allows us
to consider subobjects; and exponentials allow us to consider objects of morphisms from one object to
another, as well as power objects in the form of exponentials of the subobject classifier; so, along with
finite completeness and the cartesian closed structure, arbitrary topoi behave in many ways like Set.

In particular, this means that almost all categorical constructions in Set can readily be internalised in
an arbitrary topos, and many theorems about these constructions similarly apply to their internalised
variants. In this sense, topoi are just a kind of well-behaved generalised space in which objects behave
“like sets”.
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52.9.2 Set
We give some characteristics of Set that distinguish it from other topoi [Lei11], appealing only to
“obvious” properties that sets and functions should satisfy.

Firstly, Set is non-trivial: that is, Set ̸≃ 1. Another way to characterise this property is that the
terminal and inital objects of Set both exist, and are not isomorphic:

(i) 0 ̸∼= 1.

In Set, the terminal object 1 also has another special property: if the parallel morphisms f,g : X → Y
are such that every map x : 1→ X equalises f and g, then f = g.

More generally, an object S is called a separator or is said to separate morphisms if for every pair of
parallel morphisms f,g : X → Y , if f ◦ s = g ◦ s for every s : S → X, then f = g. So, if a category
admits a separator, then just by looking at (compositions with) the generalised elements of shape S, we
can distinguish all morphisms in that category.

The next property of Set is then:

(ii) The terminal object 1 is a separator.

In Set, however, this has an additional important interpretation: recall that maps 1→ X are elements
of X, so, given a function f : X → Y , the composition f ◦ x : 1 → Y is an element of Y , which we
might choose to write as f(x). Thus, not only are elements a special case of functions, but evaluation
of functions is a special case of composition. The property above then says that if f(x) = g(x) for all
x, then f and g are the same function – this is saying that functions have no internal identity, and are
completely defined by their effects on elements (and implicitly, the data of their (co)domains). This
property is similar to the axiom of extensionality in zfc, but for functions instead of sets.

A topos that satisfies properties (i) and (ii) is called a well-pointed topos.

The next property quite specific to Set is, roughly speaking, the existence of the natural numbers. To
state this more formally, we need to characterise the natural numbers categorically. One feature of the
natural numbers that we often use, particularly with induction, is that they support recursive definitions.

Given a set X, and an element x ∈ X, every function r : X → X generates a unique sequence of elements
(xi)

∞
i=1 ⊆ X such that x0 = x and xn+1 = r(xn). Note that such a sequence is indexed by the natural

numbers, so this yields a correspondence between applications of r to x, and applications of the successor
function to 0 in the subscripts. Moreover, a sequence in X is just a generalised element of shape N, or
a morphism f : N→ X, so this is really a statement about the natural numbers. If we write s : N→ N
for the successor function, then the previous just says that the following diagram commutes:

N N

1

X X

f

0

x

s

r

f

where 1 is terminal.

A natural numbers object in a category C is a triple (N,0,s) consisting of an object N ∈ ob(C ), a
morphism 0 : 1→ N from the terminal object 1, and a successor morphism s : N→ N with the universal
property that all other similar triples (X,x,r) factor through (N,0,s) uniquely. That is, there exists a
unique morphism f : N → X such that the previous diagram commutes. This universal property also
means that natural numbers objects are essentially unique, so we are safe to speak about the natural
numbers.

Notes on Mathematics | 1094



Category Theory II ETCS

The sequence f given by this axiom is said to be defined by simple recursion with starting value x and
transition rule r.

Arithmetic operations N × N → N, such as addition, multiplication, exponentiation, etc. can then be
defined in terms of their exponential transpositions N → NN by simple recursion. For instance, the
following diagram defines addition of natural numbers:

N N

1

NN NN

+♭

0

id♭
N

s

sN

+♭ [Kos12, adapted]

Commutativity of the left triangle says that adding zero is the identity function, so 0 + n = n, and
commutativity of the square on the right says (s ◦ n) +m = s ◦ (n +m), which is precisely the Peano
definition of addition.

The third distinguishing property of Set is then:

(iii) Set has a natural numbers object.

The last special property of Set that we will need is that every surjective function f : A↠ B has a right
section – a function s : B → A such that f ◦ s = idB . This can be stated in categorical terms as:

(iv) Epimorphisms split.

The function s is defined by assigning each element b ∈ B an element from f−1[b], (which is non-empty
as f is surjective). However, this implies the existence of a choice function for any arbitrary f and thus,
the statement that every epimorphism splits is precisely the Axiom of Choice. More generally, a category
is said to satisfy the Axiom of Choice, or to have Choice, if every epimorphism splits.

So, the content of this section can be stated concisely as:

Sets and set functions form a well-pointed topos
with natural numbers object and Choice.

The category of sets of course has more properties than this; for instance, power objects always exist; the
category is balanced; the subobject classifier has two objects, Ω ∼= 2 := 1⨿ 1; and the topos is Boolean,
etc. but these properties all follow from the previous conditions.

The question is now, what conditions do we need to enforce on sets and set functions to ensure that they
do form such a topos?

One answer is of course, zfc – and indeed, any model of zfc will satisfy these properties, so the category
of zfc sets will satisfy the above.

This is the answer many mathematicians recognise and know in the back of their mind, but often do
not like to concern themselves with, because the axioms of zfc are generally quite far removed from the
study of mathematics – the specific axioms seem unimportant compared to the need for the end result
to satisfy these requirements.

This answer is thus rather unsatisfying, or even irrelevant, because all of the above requirements were
derived from “obvious” properties of sets that we often use – extensionality of functions, existence of
natural numbers, etc. At no point did we have to consult with a list of axioms to decide these properties,
because they all follow from our informal idea of what sets should be and how set functions should
behave.
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In particular, this means that anything that satisfies the above requirements will behave like a set. This
is the idea behind the alternative answer given by Lawvere in his Elementary Theory of the Category of
Sets, or etcs: we take these properties as our axioms. That is, we do not require that sets satisfy the
axioms of zfc, but instead require that sets and set functions form a well-pointed topos with natural
numbers object and Choice.

At this point, one may think that there is some circularity here: that etcs depends on the notion of a
category, which itself depends on the notion of “collections” of objects and morphisms, which seem quite
similar to “sets”.

The straightforward formalist response is that category theory (and specialisations thereof, like etcs)
and zfc are first-order theories, so they are all just collections of sentences in the first-order language
over some signature – at a fully formalised level, none of these theories mention or depend on any prior
notion of sets, because they are just alphabets of symbols, together with lists of axioms.

However, outside of formal logic, we usually don’t think of theories in this way – as manipulations of
strings of abstract symbols – but instead as descriptions of some universe of interest. This answer may
thus be somewhat unsatisfactory in that it doesn’t answer the question intuitively, so an alternative
explanation for etcs in particular is that, although motivated by category-theoretic ideas, etcs does
not intrinsically depend on the notion of a category – category theory is just a convenient language with
which we can express the axioms of etcs concisely. It is certainly possible to state the axioms of etcs
without mentioning categories at all.

For reference, the axioms stated without mentioning categories are, informally,

1. Function composition is associative and has identities
2. There exists an empty set
3. There exists a set with one element
4. Functions are completely characterised by their actions on elements
5. Given sets X and Y , we may form the Cartesian product X × Y
6. Given sets X and Y , we may form the set Y X of functions from X to Y
7. Given a function f : X → Y and y ∈ Y , we may form the fibre f−1[y]
8. The subsets of a set X correspond to the functions X → {0,1}
9. The natural numbers form a set

10. Every surjection admits a section

Stated in this way, the comparison with zfc is now more obvious: zfc says “there are things called sets;
there is a binary relation ∈ defined on sets; and some axioms hold.”, and etcs says “there are things
called sets; for every pair of sets there are things called functions; there is a (partial) binary operation
◦ on functions called composition; and some axioms hold.” In neither case do we specify what these
“things” are, nor do we suppose that these “things” form any structure like a set or category beyond what
the axioms demand. The point is, circularity is no more of a problem for etcs than it is for zfc.

As noted in [Lei12], the axioms of etcs as stated above also appear to be more fundamental in some
way than zfc. Suppose that one day, we find that zfc had been proved to be inconsistent: that some
logician had started with the axioms of zfc, and had irrefutably derived a logical contradiction from
them. It is likely that most mathematicians, being generally detached from zfc in the first place, would
not be deeply bothered by this fact, and could continue on, generally confident that their theorems and
results still hold true in the sense that their negations do not.

In contrast, the axioms of etcs are modelled on core properties of sets and functions that we often use –
a proof that etcs were inconsistent would be devastating. We would no longer be able to safely assume
that function composition is associative, that products or function sets exist, etc.

As an aside, note that in this paper, we are describing etcs as a two-sorted first-order theory, roughly
meaning that we have two distinct “kinds” of things – namely, objects (sets) and morphisms (functions).
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Many introductions to logic, however, only discuss single-sorted theories (like zfc, or fragments thereof),
so some may object to this usage of a two-sorted theory. Fortunately, it is in fact possible to express
etcs as a single-sorted theory, where objects in the sense of the two-sorted theory are just a special type
of morphism in the single-sorted theory. Specifically, objects are in bijection with identity morphisms, so
they can be treated as a special case of morphisms. We then just add a source, target, and composition
predicate to our underlying logic to obtain the desired single-sorted theory.

While we will not be discussing this style of axiomatisation, it is interesting that the primitive notion of
this theory is not of sets, as in zfc, but of functions – this is yet another illustration of the structural
idea that connections are more important than objects.

52.9.3 Constructing the Universe
We prove some standard set theory machinery used for constructing common mathematical objects and
the rest of the set-theoretic universe. Most of the proofs in this section have been roughly adapted from
[LC05], with most modifications due to differences in definitions and conventions. (In particular, the
etcs axioms are very different.)

We have already constructed (local) intersections and unions as meets and joins in the subobject lattice,
but we would like to extend this to indexed families of sets. In fact, we can prove (a structural version
of) zfc’s axiom of the union in etcs.

First, recall that a subobject m : A ↣ X is classified by a characteristic morphism χm : X → Ω such
that

A 1

X Ω

⊤

χm

m

!

⌟

is a pullback square. Then, given a subset α : I ↣ ΩX of the power object of X, i.e., an indexed family
of subsets of X, the union of the αi is then a subset a :

⋃
α → X of X such that for any x ∈ X, there

exists an index i ∈ I such that the function labelled by α(i) sends x to ⊤ ∈ Ω. That is,

x ∈ a↔ ∃i ∈ I : evΩX (α(i),x) = ⊤

where evΩX is the evaluation map on ΩX , and ⊤ : 1→ Ω is the truth value true.

Theorem 52.9.4 (Indexed Unions). Given α : I ↣ ΩX , the union
⋃
α as defined above exists.

Proof. Taking the exponential transpose, α♭ : I ×X → Ω, the desired property of
⋃
α simplifies to:

x ∈ a↔ ∃i ∈ I : α♭(i,x) = ⊤

First, construct the equaliser of α♭ and ⊤ ◦ !I×X , and consider the projection π2 : I ×X → X:

E I ×X Ω

⋃
α X

k

q

α♭

⊤◦!I×X

π2

a

By image factorisation (Theorem 52.9.3), the composition π2 ◦ k : E → X factors through its image
(essentially uniquely) into the epimorphism q and monomorphism a.
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Let x ∈ a, i.e., x is a function 1→ X and there exists a lift x̄ ∈
⋃
α of x. Then, since q is an epimorphism,

there exists x̂ ∈ E such that q(x̂) = x̄, so we have x = a ◦ q ◦ x̂ = π2 ◦ k ◦ x̂.

I

E I ×X 1 Ω

⋃
α X

1

k

q

π1

!I×X

α♭

π2

⊤

a

x̂

x̄

x

Now, define i := π1 ◦ k ◦ x̂. Then,

α♭(i,x) = α♭(π1 ◦ k ◦ x̂,π2 ◦ k ◦ x̂)
= α♭ ◦ k ◦ x̂
= ⊤ ◦ !I×X ◦ k ◦ x̂
= ⊤

since !I×X ◦ k ◦ x̂ : 1 → 1 is necesssarily the identity. So, if x ∈ a, then there exists i := π1 ◦ k ◦ x̂ ∈ I
such that α♭(i,x) = ⊤, as required.

For the reverse implication, suppose there exists an index i ∈ I such that α♭(i,x) = ⊤. Then, by the
universal property of the equaliser, there is some x̂ ∈ E such that k(x̂) = (i,x). Then, applying q to x̂,
we have x ∈ a, as required. ■

Next, we prove that primitive recursion can be performed in etcs, allowing the construction of a vast
class of important functions. For instance, multiplication, division, the factorial function, the exponential
function, and the function that returns the nth prime are all primitive recursive; in fact, most of the
computable functions encountered in mathematics are primitive recursive.

Theorem 52.9.5 (Primitive Recursion). Given a pair of morphisms f0 : A→ B and u : N×A×B → B,
there is a unique morphism f : N×A→ B such that for all n ∈ N and a ∈ A,

• f(0,a) = f0(a);

• f
(
s(n),a

)
= u

(
n,a,f(n,a)

)
.

Proof. Primitive recursion is more complicated than the simple recursion given by the natural numbers
object in two main ways.

Firstly, the values of f depend not only on n ∈ N, but also on the members a of the parameter object A.
To simplify, we instead find the exponential transpose of f . That is, the function f ♭ : N→ BA such that

• f ♭(0) = [f0];

• For all n ∈ N and a ∈ A, ev
(
y(s(n)),a

)
= u

(
n,a, ev(f ♭(n),a)

)
, where ev is the evaluation map for

BA.
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The next complication is that the transition rule now depends not only on the value of the previous step,
but also on the number n of previous steps that have already been taken. For this, we instead construct
a sequence F : N→ N×BA of ordered pairs where the first coordinate is just used to track the number
of previous steps.

In other words, we define by simple recursion the graph of f ♭, and from there, we can then recover f ♭
by composing with a projection map. Explicitly, we require

• F (0) =
〈
0,f ♭(0)

〉
=
〈
0,[f0]

〉
;

• For all n ∈ N and a ∈ A,

(i) (π1 ◦ F )
(
s(n)

)
= s(n);

(ii) ev
(
(π2 ◦ F )(s(n)),a

)
= u

(
n,a, ev

(
(π2 ◦ F )(n),a

))
.

By the universal property of the natural numbers object, the existence of F can be given by finding a
map r : N×BA → N×BA such that for any n ∈ N, [h] ∈ BA, and a ∈ A,

(i) (π1 ◦ r)(n,[h]) = s(n);

(ii) ev
(
(π2 ◦ r)(n,[h]),a

)
= u

(
n,a, ev([h],a)

)
.

We claim that such a map is given by r := ⟨s ◦ π1,G♭⟩, where G♭ is the exponential transpose of the map
G : A× N×BA → B defined by the chain:

A×N×BA
∆A×idN × idBA−−−−−−−−−−→ (A×A)×N×BA

associator α,
braiding β∼= N×A× (BA ×A) idN × idA ×ev−−−−−−−−→ N×A×B u−→ B

(Multiple associator components have been omitted to significantly simplify the chain.)

We verify that r satisfies the two desired properties:

(i) (π1 ◦ r)(n,[h]) = (s ◦ π1)(n,h)
= s
(
π1(n,h)

)
= s(n)

(ii) ev
(
(π2 ◦ r)(n,[h]),a

)
= ev(G♭(n,[h]),a)

= G(a,n,[h])

=
(
u ◦ (idN× idA× ev) ◦ (α,β. . .) ◦ (∆A × idN× idBA)

)
(a,n,[h])

=
(
u ◦ (idN× idA× ev) ◦ (α,β. . .)

)(
(a,a),n,[h]

)
=
(
u ◦ (idN× idA× ev)

)(
n,a,([h],a)

)
= u

(
n,a, ev([h],a)

)
as required.

Finally, uniqueness is given by function extensionality. ■

Note that existence only depends on finite completeness, exponentials, and the existence of the natural
numbers object, and uniqueness on well-pointedness, so primitive recursion can actually be performed in
much more general categories than just those that are models of etcs; for instance, the functor category
[C ,Set] for any small category C .

Next, we verify that the natural numbers object in fact behaves as we would like:

Theorem 52.9.6 (Peano Postulates). The natural numbers object (N,0,s) satisfies the Peano postulates.
That is,
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(i) The successor function s : N→ N is monic;

(ii) If m = s(n) for some n ∈ N, then m ̸= 0;

(iii) If S ⊆ N and for all n ∈ N : n ∈ S → s(n) ∈ S, then S = idN.

Proof.

(i) The predecessor function p can be defined by primitive recursion with f0(−) = 0 and u(n,−,−) = n.
The parameter object A isn’t actually used here, so suppressing it from the arguments, primitive
recursion gives

• p(0) = 0;

• p(s(n)) = n.

Since s has a left-inverse, it is injective and hence monic.

(ii) Suppose 0 = s(n) for some n ∈ N. Then,

n = p
(
s(n)

)
= p(0)

= 0

so s(0) = 0.

Let X be some set, x ∈ X an element, and r : X → X an endofunction on X, and let f : N→ X be
the unique morphism given by the universal property of the natural numbers object. As N factors
through X, we have f(0) = x and r ◦ f = f ◦ s, so,

r(x) = (r ◦ f)(0)
= (f ◦ s)(0)
= f(0)

= x

Since x ∈ X is arbitrary, r = idX (as x : 1→ X equalises r and idX and 1 is a separator), and since
X is arbitrary, this implies that every endofunction is an identity function, which is a contradiction.

(iii) Let S : A ↣ N be a (representing monomorphism of a) subset of N with 0 ∈ S, i.e., there exists
0̄ ∈ A such that S(0̄) = 0; and such that ∀n ∈ N : n ∈ S → s(n) ∈ S.

The latter requirement implies that S is contained in its preimage s−1[S], so the map sending the
lift to n to the lift of s(n) is total, and extends to a morphism t : A→ A, satisfying S ◦ t = s ◦ S.

By simple recursion, 0̄ and t define a unique sequence f : N→ A such that f(0) = 0̄ and (f ◦s)(n) =
(t ◦ f)(n) for all n ∈ N.

Then, we have (S ◦ f)(0) = S(0̄) = 0 and

(S ◦ f) ◦ s = S ◦ (f ◦ s)
= S ◦ (t ◦ f)
= (S ◦ t) ◦ f
= (s ◦ S) ◦ f
= s ◦ (S ◦ f)

The identity idN also satisfies these equations, so S ◦ f = idN by uniqueness of the map given by
recursion. Then, for any n ∈ N, we have n = (S ◦ f)(n) = S

(
f(n)

)
, so f(n) is a lift of n and hence

n ∈ S.
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■

In particular, this third point allows us to perform induction in any model of etcs.

At this point, we have now developed sufficient machinery to construct much of modern set theory –
Cantor’s theorem, the Cantor–Schröder–Bernstein theorem, Zorn’s lemma, etc. – as well as embedding
the rest of mathematics into sets. Most of the set-theoretic universe at this point is constructed similarly
to zfc, constructing new sets by taking products and quotients of existing sets.

We end with a metatheorem that quantifies how strongly the axioms of etcs characterise its models:

Theorem 52.9.7. [New14] If C and S are models of etcs, then C ≃ S, with the equivalence given by
the adjoint functors T ⊣ homS(1,−), where

T (X) :=
∐
x∈X

1

52.10 Discussion

52.10.1 Relative Strength
etcs is slightly weaker than zfc, in the sense that there are statements provable in zfc that are not
provable in etcs, but only to a slight extent, as these statements are generally beyond the interest of
even most researching mathematicians (outside of those studying set theory/model theory/foundations).
Undergraduate mathematics in particular (again, outside of a course on zfc) also assumes no properties
of sets beyond etcs, so it would seem that etcs is more than sufficient for most practical applications
– in exchange for a very slightly weaker ontology, we obtain a great deal of conceptual clarity.

However, if one still needs these extra statements, then etcs can be extended to encompass them. This is
not unusual for a set of axioms; for instance, the (generalised) continuum hypothesis has been famously
proven to be independent from zfc, and is often taken as an additional axiom on top of zfc when
working with large cardinals in set theory.

The relationship between etcs and zfc has been well-studied, and it is known that etcs is equivalent
to the fragment of zfc called Restricted Zermelo with Choice [Lei11][MM12], and it is also known what
extra conditions need to be added on top of etcs to obtain an axiom system with strength equivalent to
zfc (in the formal sense that a proposition is provable in this extended etcs if and only if it is provable
in zfc).

This condition missing from etcs is some form of an axiom of collection – axiom schemata that permit
the construction of certain new sets from existing sets. These axiom schemata hence contribute to the
size of the universe of constructible sets substantially, but conversely, this expansiveness is often not of
particular importance in the practice of “ordinary” mathematics, so the omission of collection in etcs is
not damaging for most applications [nLa23c].

In zfc, a form of a collection axiom is given by the axiom schema of replacement – informally, given a
first-order formula φ, and a set x, we are permitted to form the set {φ(y) : y ∈ x}.

etcs can similarly be extended with a collection axiom, which is exhibited as a form of cocompleteness
[Osi74]. Informally, the axiom of collection in etcs+c states that the category of sets has all coproducts∐
i∈I Xi of families (Xi)i∈I of sets specified by first-order formulae. With this additional axiom, etcs+c

is then equivalent to the entirety of zfc.

For another example, we can also augment etcs with the Continuum Hypothesis, just like with zfc. An
elementary topos with collection is said to satisfy the Continuum Hypothesis (CH) if for all objects X,
if there exists monomorphisms N↣ X ↣ ΩN, then there exists either a monomorphism X ↣ N , or a
monomorphism ΩN ↣ X, where N is the natural numbers object and Ω is the subobject classifier.
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If the topos is Boolean, as in the case of any topos that satisfies etcs, then (a categorical version of) the
Cantor–Schröder–Bernstein theorem holds, so the existence of these latter two monomorphisms imply
that there exists either an isomorphism X ∼= N, or an isomorphism X ∼= ΩN (not necessarily equal to
either monomorphism in either case), thus recovering the ordinary set-theoretic Continuum Hypothesis.

52.10.2 Material and Structural Sets
etcs and zfc both deal with “sets”, but these notions are so distinct that it seems unhelpful to call them
both by the same name. We will call a set in the style of zfc a material-set and a set in the style of
etcs a structural-set.

In zfc, we have the axiom of extensionality, which says that two material-sets are equal if and only if
they have exactly the same elements. That is, material-sets are determined entirely by their elements.
However, in etcs, a weak extensionality principle is given by the Yoneda lemma: structural-sets are
characterised only up to isomorphism by their generalised elements. However, we often only ask if two
sets contained within a larger ambient set are equal. In that case, the strong extensionality principle for
functions given by well-pointedness characterises structural-(sub)sets up to true equality.

Because elements of structural-sets are functions, this means that they themselves are never structural-
sets, unlike in zfc, where elements of material-sets are always themselves material-sets. This is perhaps
closer to how we often use sets in ordinary mathematics; we never actually treat, say, the (real, natural,
etc.) number “3” as a set itself.

In the introduction, we saw an argument of Benacerraf’s that numbers cannot be sets, since numbers
have no properties beyond arithmetic relations amongst themselves, and sets do have properties other
than that. In this view, the natural numbers are envisioned as elements of an abstract structure, where
elements have no properties beyond what is endowed upon them by that structure.

In zfc, we define N to be some particular material-set, say {∅,{∅},{∅,{∅}}, . . .}, with all the arithmetic
relations constructed on top of the chosen encoding, but this yields unwanted additional properties, like
3 ∈ 17 (or not, given a different encoding) that we have to ignore.

In contrast, the natural numbers object in etcs is a structural-set N, equipped with an element 0 and
a successor function s. Natural arithmetic is expressed in terms of the zero element 0 and the successor
function s, so natural numbers, or elements of this abstract structure, have arithmetic relations between
each other, but no additional properties beyond that.

More generally, any structural-set is precisely an abstract structure in this sense. An element x ∈ X – a
function x : 1→ X – has no identity or internal content except that it is an element of X, and is distinct
from other elements of X.

Another effect of this is that, elements of structural sets, being functions, must also always be inherently
attached to a set, unlike elements of material-sets, which are themselves objects that may exist in
isolation; in etcs, we can never refer to any element as existing by itself as some kind of free-floating
Platonic essence, void of any connecting structure.

Given a material-set X, then for any other set A, we can ask whether A ∈ X or not, regardless of any
prior relations between A and X. This statement, “A ∈ X”, is then a proposition in the formal sense:
that is, it has a truth value, can be proven, can be combined with logical connectives, quantified over,
etc.

In contrast, if X is a structural-set, then there are some things which are intrinsically elements of X,
namely, the functions 1→ X. If a thing is not given as an element of X, then it is not an element of X,
and similarly, an element 1→ X cannot also be an element 1→ Y of a different structural-set Y .

Thus, the statement A ∈ X is not something one would ever prove about two pre-existing objects A and
X. Consequently, the statement x ∈ X is not a proposition in a structural set theory.
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As an illustration of this difference, consider the statement “for all x ∈ R, x2 ≥ 0” [Shu13]. If R is a
material-set, then this statement could be read as “for all things x, if x ∈ R, then x2 ≥ 0”. Formally, the
corresponding sentence in first order logic is ∀x : x ∈ R→ x2 ≥ 0.

However, if R is a structural-set, then x ∈ R is a logical atom and cannot be the premise of an implication.
Thus, the statement should be read as “it is a property of every real number that its square is non-
negative.”

Arguably, this is closer to how quantification is used in practice: we generally don’t mean, “it is a
property of any and all things in mathematics that if it happens to be a real number, then its square is
non-negative.” For instance, under the material interpretation, one particular instance of “for all x ∈ R,
x2 ≥ 0” is, “if the ring Q[x] happens to be a real number, then its square is non-negative”, which could
be reasonably agreed is a statement that most mathematicians would not naturally regard part of the
content of “for all x ∈ R, x2 ≥ 0”.

Conversely, sometimes, we do want to regard A ∈ X as a proposition. For instance [Shu13], if L is the
set of complex numbers with real part 1

2 , then we are very interested in proving that “for all z ∈ C,
if ζ(z) = 0 and z is not an even negative integer, then z ∈ L”. In this statement, the first ∈ is read
structurally – z is given to be a complex number – while the second ∈ is read materially; being the
consequent of an implication, z ∈ L should certainly be read as a proposition.

The observation here is that L is a subset of C: z is already given to be an element of the structural-set
C (i.e. it is a function 1→ C), so it is possible to ask whether it happens to belong to this subset L (does
it lift through the function witnessing L ⊆ C?). As seen earlier, function extensionality characterises
subsets up to true equality, so etcs supports this use of material-subsets and propositional membership.

All this previous discussion also applies similarly to the subset relation: like elements, subobjects are
(classes of) morphisms, so the statement A ⊆ X for structural-sets X is similarly not a proposition –
it is just notation for a class of monomorphisms with codomain X. However, the relation ⊆X between
subsets of a fixed set X can be used propositionally since it is a proper relation, so etcs also supports
propositional containment.

There are, however, some constructions that are somewhat less natural as structural-sets – in particular,
function sets and power sets. In etcs, function sets are given by exponential objects. We have a natural
isomorphism

hom(1,BA) ∼= hom(A,B)

characterising the elements of BA as being isomorphic to functions A → B; but, this is only an iso-
morphism, and not true equality – elements of BA are not literally functions A → B, instead only
being “labels” for them. To access the functions they reference, we need to invoke the evaluation map
ev : BA ×A→ B.

Power sets have a similar problem to function sets in etcs: the elements of a power set are characterised
by the isomorphism

hom(1,ΩA) ∼= Sub(A)

but this is again only up to isomorphism and not true equality, so elements of ΩA are also only “labels”
for subsets of A. This is one place where material-sets really are more conceptually clear: the elements
of a material-power set P(X) are genuine subsets of X.

On the other hand, function sets are also rather unnatural in zfc: we first have to pick an arbitrary
encoding of an ordered pair, then define a function to be a special type of set of ordered pairs. This
chain of encodings also results in lots of undesirable side-effects. At least in etcs, the set of labels is
given by a universal property and is hence isomorphism invariant.
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52.10.3 Types
The problem here is that zfc concerns itself exclusively with material-sets, and etcs with structural-
sets, when in mathematics, we often need to work with both. The awkwardness in these constructions,
comes predominantly from forcing us to interpret structural-sets within a framework that only supports
material-sets, or the reverse.

There are various solutions to this. For one, we could just keep adding more and more primitive notions
to our systems until we have everything we need, i.e., add atoms to zfc, and define the naturals to be
a set of atoms; add functions to avoid encoding ordered pairs, etc., or, add a membership predicate to
etcs. However, a more systematic approach is to be desired.

It turns out that such a foundational system already exists, namely, type theory. In particular, variants
such as Martin–Löf dependent type theory (MLTT) or Homotopy Type Theory (HoTT).

Type theories generally work like structural set theories. For instance, we have types which behave very
much like structural-sets, and “elements” of types are called terms, and we write the type declaration
x : X for a term x of type X.

Just like with the structural usage of the ∈ relation, a type declaration is not a proposition, as terms are
intrinsically of some given immutable type, just like elements are intrinsically attached to structural-sets.
Instead, these kinds of statements are called judgements – meta-assertions that cannot be proven within
the theory.

Terms may also have some internal structure, unlike elements of structural-sets, though they do not have
to, also unlike elements of material-sets, and the kind of internal structure they may have is controlled by
their type. Then, type constructors can be used similarly to “adding primitive notions” to a set theory,
i.e., a type constructor for ordered pairs, etc.

It turns out that category theory is also the natural language for the semantics of type theory; and
conversely, type theory is a natural language for the syntax of category theory. This is beyond the scope
of this discussion, but informally, we may interpret the objects of a category as types, and a subobject
ϕ↣ A can be regarded as a proposition by interpreting ϕ as the collection of terms of type A for which
ϕ is true. Logical operations are then given by various limits in the subobject lattice.

This type system associated to each category is called that category’s internal logic, and different kinds of
categories induce different kinds of internal logics. For instance, Boolean categories induce type theories
equivalent to classical first-order logics, while elementary topoi generate constructive higher-order logics.
In particular, the internal logic of an ∞-topos is a model of a variant of Homotopy Type Theory.

Conversely, any type theory can be converted into a category by constructing objects from types, subob-
jects from relations, morphisms from functions, etc. It turns out that set theories can also be embedded
within type theories, and type theories can also be embedded within sets: sets, categories, and types,
can all be implemented within each other; one explicit construction is given in [Awo11].

52.10.4 Final Remarks
Once we have membership, functions, unions, quotients, products, etc. in whichever choice of set-
theoretic foundations, the following development of mathematics is mostly the same: at a certain point,
once basic mathematical structures have been constructed and encoded, for all practical purposes, it
matters not if one begins with zfc or etcs.

After all, asking “is 3 ∈ 17?” is not really a problem of practical concern in zfc. However, it is still
pedagogically fruitful to ask such questions. One advantage of teaching etcs as a foundation is that it
introduces the notions of isomorphisms and universal properties to students early on. It can also clarify
why some material constructions are constructed in the way they are (i.e. “they are arbitrary choices of
models of a (co)limit”, “they satisfy the relevant structural property”, etc.), even if we do not choose to
use etcs in practice.
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Beyond this, the significance of etcs is not from its use (or non-use) as a foundation of mathematics,
but moreso from the research into topos theory that followed. etcs was one of the first attempts of a
categorical analysis of logic, and though it did not see much use as a foundation itself, the more general
theory of topoi that followed is now the main language of categorical logic.
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work in progress from this point onwards

53.1 The Algebra of Logic

53.1.1 Boolean and Heyting Algebras
In order theory, a poset (L, ≤) is a meet-semilattice if every pair of elements a,b ∈ L has a least upper
bound or meet a ∧ b; a join-semilattice if every pair of elements a,b ∈ L has a greatest lower bound
or join a ∨ b; and a lattice if it is simultaneously a meet-semilattice and join-semilattice. A lattice is
furthermore bounded if there exist elements 0,1 ∈ L such that 0 ≤ x ≤ 1 for all x ∈ L.

Because order-theoretic meets and joins are just (co)products, we can characterise lattices in purely cat-
egorical terms as follows: a lattice L is a thin category which has binary (co)products, and is furthermore
bounded if it also has terminal and initial objects (or equivalently, a bounded lattice is a thin category
that has finite (co)products).

The order-theoretic and categorical lattice are the kind of lattice we have been using so far, but we can
also characterise lattices as a type of algebraic structure:

A lattice is an algebraic structure (L, ∧ ,∨), consisting of a set L, and two commutative and associative
binary operations ∧,∨ : L× L→ L, such that for all a,b ∈ L,

• a ∨ (a ∧ b) = a;

• a ∧ (a ∨ b) = a.

and the lattice is furthermore bounded if there exist two distinguished elements 0,1 ∈ L, such that

• a ∧ 1 = a;

• a ∨ 0 = a.

The existence of all meets and joins in a order-theoretic lattice imply that ∧ and ∨ are binary operations,
and it can be verified that they satisfy the axioms of an algebraic lattice, and conversely, the binary
operations of an algebraic lattice induce a relation given by a ≤ b if a = a ∧ b or b = a ∨ b; and again,
it is easy to verify that this relation is a partial ordering whose meets and joins are compatible with
the binary operations. The three definitions are hence equivalent, but the algebraic definition is more
convenient for modification:

A lattice is distributive if the binary operations ∨ and ∧ distribute over each other. That is, for all
a,b,c ∈ L,

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

(Note that any lattice satisfying one of the two conditions above must necessarily also satisfy the other,
so only one of the above needs to be verified when checking whether a lattice is distributive or not.)

In a bounded lattice L, the complement of an element a ∈ L is an element x such that

• a ∧ x = 0;

• a ∨ x = 1.

A lattice is complemented if every element a has a complement, denoted as ¬a.

Lemma 53.1.1. A complement in a distributive lattice is unique if it exists.

Proof. Suppose x and x′ are complements of a. Then,

x′ = 1 ∧ x′

= (a ∨ x) ∧ x′
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= (a ∧ x′) ∨ (x ∧ x′)
= 0 ∨ (x ∧ x′)
= (x ∧ a) ∨ (x ∧ x′)
= x ∧ (a ∨ x′)
= x ∧ 1

= x ■

The meet and join symbols are notably the same as the symbols for logical conjunction and disjunction,
and in fact, classical propositional logic can be modelled as a kind of lattice:

A Boolean algebra is a complemented distributive bounded lattice. In the two-element Boolean algebra,
interpreting 0 as false; 1 as true; ∨ as disjunction; ∧ as conjunction; and ¬ as logical negation, algebraic
expressions in these symbols correspond to logical statements, in that two algebraic expressions are equal
if and only if their corresponding logical statements are logically equivalent.

In classical logic, we define the implication operation a → b as ¬a ∨ b, but we also could have started
with a lattice equipped with an implication operation, and derive the complement operation from there,
rather than the reverse:

A Heyting algebra is a bounded lattice equipped with a binary operation → such that c ≤ a→ b if and
only if c ∧ a ≤ b for all a,b,c.

This means that, by definition, a Heyting algebra is the weakest structure in which modus ponens
(a,a → b ⊢ b) is a sound inference rule. We also have that 1 ≤ 0 → a for any a, or “any statement a is
implied by a contradiction 0”, corresponding to the logical principle of explosion.

Heyting algebras can also be characterised categorically: a Heyting algebra is a bounded lattice that
is cartesian closed when considered as a category, and the exponential ba is written as a → b. From
the definition of an exponential, we also have that implication a → (−) is precisely the right adjoint to
the meet (or product) functor (−) ∧ a, so hom(c,a → b) ∼= hom(c ∧ a, b) naturally in all 3 variables; or
equivalently, c ≤ a→ b if and only if c ∧ a ≤ b, recovering the usual algebraic characterisation.

Also note that,

Theorem 53.1.2. Every Boolean algebra is a Heyting algebra.

Proof. The meet functor is a left adjoint so it preserves colimits, and in particular, coproducts, so meets
distribute over joins in a Heyting algebra, and by duality, joins distribute over meets, so a Heyting
algebra is necessarily a distributive lattice. It remains to show that the implication in a Boolean algebra
defined by ¬a ∨ b satisfies the requirements for a Heyting algebra.

For the forward direction, suppose c ≤ ¬a ∨ b. Then,

c ∧ a ≤ (¬a ∨ b) ∧ a
≤ (¬a ∧ a) ∨ (b ∧ a)
≤ 0 ∨ (b ∧ a)
≤ b ∧ a
≤ b

For the reverse direction, suppose c ∧ a ≤ b. Then,

c = c ∧ 1

= c ∧ (¬a ∨ a)
= (c ∧ ¬a) ∨ (c ∧ a)
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≤ (c ∧ ¬a) ∨ b
≤ ¬a ∨ b ■

Negations can also be defined in Heyting algebras as

¬a := a→ 0

(and logically, this can be interpreted as “¬a is the proposition that assuming a would imply a contradic-
tion”), but this time, negations are not exactly equivalent to their Boolean counterparts of complements.
However, the reuse of the notation is justified by:

Theorem 53.1.3. The complement of an element in a Heyting algebra is, if it exists, its negation.

That is, a complement may not exist for an element a in a Heyting algebra, but if it does, then it is
precisely the negation ¬a. Conversely, a negation ¬a always exists but is not necessarily always the
complement of a. For this reason, the negation is sometimes called the pseudo-complement.

Proof. Suppose x is a complement of a, so,

a ∧ x = 0

x ≤ a→ 0

x ≤ ¬a

and also,

¬a = ¬a ∨ 1

= ¬a ∧ (a ∨ x)
= (¬a ∧ a) ∨ (¬a ∧ x)
= 0 ∨ (¬a ∧ x)
= ¬a ∧ x
≤ x

so x = ¬a. ■

Like complements, we have a ∧ ¬a = 0 for negations, and a ≤ ¬¬a, but not ¬¬a ≤ a in general, so in
Heyting algebras, ¬¬a = a does not generally hold. That is, unlike in Boolean algebras, double negation
elimination does not hold in Heyting algebras. Another statement of Boolean algebra that does not hold
in Heyting algebras is a ∨ ¬a = 1: the law of the excluded middle also fails in Heyting algebras.

Theorem 53.1.4. A Heyting algebra is a Boolean algebra if and only if either of the following equivalent
statements are satisfied:

• ∀a : ¬¬a = a;

• ∀a : a ∨ ¬a = 1.

Proof. [MM12] Since complements are unique in a Boolean algebra, a is the complement of ¬a, so
¬¬a = a. Conversely, if ¬¬a = a in a Heyting algebra, then,

a ∨ ¬a = ¬¬(a ∨ ¬a)
= ¬(¬a ∧ ¬¬a)
= ¬(¬a ∧ a)
= ¬0
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= 1

a∧¬a = 0 holds dually, so ¬a is a complement of a and the lattice is Boolean. The proof for a∨¬a = 1
is analogous. ■

Because of this, the Boolean and Heyting algebras model different axiomatic systems of logic. Boolean
algebras, as discussed, model classical logic; Heyting algebras instead model intuitionistic logic.

53.1.2 Intuitionistic Logic
Intuitionistic logic can be viewed as a fragment of classical logic in which the double negation elimination
and law of excluded middle axioms do not hold. Intuitionistic logic is also sometimes called constructive
logic, because it more closely follows the approach behind a constructive proof.

Beyond merely being an axiomatic system of symbolic logic, intuitionistic logic also corresponds to a
philosophy of mathematics called intuitionism or constructivism.

Intuitionism says that mathematical objects and structures do not exist unless explicitly constructed.
(Compare to (set-theoretic) Platonism in the introduction.) Acccording to intuitionism, mathematicians
do not work in an ideal Platonic universe, discovering hidden, preexisting truths, but instead create the
ontology themselves. Hence, to prove something in intuitionistic logic is to construct it explicitly.

In classical logic, the inference rules and operations have been carefully designed to preserve truth values
with respect to proof. In intuitionistic logic, the inference rules instead preserve justification with respect
to evidence and construction.

Because of this change in objective, the meanings of the logical symbols ∧, ∨, ¬, and→ also change. The
standard Brouwer-Heyting-Kolmogorov (BHK) interpretation of intuitionistic logic assigns the following
meanings to the symbols:

• A proof of p ∧ q is a pair of proofs of p and q.

• A proof of p ∨ q is either a proof of p or a proof of q.

• A proof of p→ q is a function that transforms a proof of p into a proof of q.

• A proof of ¬p is a proof of p→ ⊥, or a function that transforms a proof of p into a proof of ⊥.

• There is no proof of ⊥.

In all of the above, “proof” may also be read as “construction”.

For example, the identity function is a proof of the formula p → p for any p. In contrast, ¬¬p expands
to (p→ ⊥)→ ⊥, which in general has no proof. More colloquially, a proof of ¬¬p is a proof that there is
no proof that there is no proof of p, which is not the same as a proof of p, so double negation elimination
¬¬p ⊢ p fails to hold intuitionistically.

On the other hand, the law of non-contradiction ¬(p ∧ ¬p) expands to
(
p ∧ (p → ⊥)

)
→ ⊥. A proof of

this statement is a function that transforms the pair ⟨a, b⟩ – where a is a proof of p and b is a proof of
p→ ⊥ (i.e., a function that transforms a proof of p into a proof of ⊥) – into a proof of ⊥. The function
⟨a,b⟩ 7→ b(a) does this, hence proving the law of non-contradiction intuitionistically.

Theorem 53.1.5. For any object A in a topos E, the subobject poset Sub(A) is a Heyting algebra.
Furthermore, this structure is natural in the sense that for every morphism f : A→ B, the induced map
f∗ : Sub(A)→ Sub(B) is a homomorphism of Heyting algebras.

Now, recall that there is a natural isomorphism Sub(A) ∼= hom(A,Ω) (natural in A), so the set of
morphisms from any object into the subobject classifier also has the structure of a Heyting algebra.
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53.1.3 TEMP
Let us consider the operations of intersection and union of subobjects.

Recall that the intersection and union of subobjects make the subobject poset Sub(X) of any object X
a lattice.

Because Sub(X) ∼= hom(X,Ω), these operations ∩,∪ : Sub(X) × Sub(X) → Sub(X) induce functions
hom(X,Ω)× hom(X,Ω)→ hom(X,Ω). Furthermore, ∼= hom(X,Ω× Ω)

An ordinary predicate of type A is a generalised element of Ω of shape A – that is, a morphism φ : A→ Ω
– or equivalently, an ordinary element φ′ : 1→ ΩA, or a subobject [φ] : S ⊆ A.

A generalised predicate of type A is a generalised element of ΩA of shape X – a morphism φ′ : X → ΩA

– or equivalently, a generalised element φ : X ×A→ Ω, or a subobject [φ] : S ⊆ X ×A.

53.1.4 Categorical Logic

53.1.5 Internal Lattices
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53.1.6 Structures and Interpretations
Here, we will discuss the formalisation of the language of a mathematical theory. Mathematical theories
discuss mathematical structures (or an “object of interest”), but also depend on a metamathematical
language and interpretation which provides the context with which these structures can be analysed.

The formalisation of mathematical theories was originally motivated by the discovery of paradoxes in
foundational set theory, but now also provides a way for us to express a mathematical theory in an
abstract form that allows it to be interpreted (or modelled) in other contexts, e.g. a theory originally
expressed in terms of sets can be formalised, abstracted, and interpreted in, say, a topos.

A structure U = (U,P,F ) is a universe consisting of [Kos12]

• a set of individuals or constants (e.g. elements of a group);

• a set of properties of or relations on individuals (e.g. equality of elements in a group);

• a set of functions on atoms (e.g. group composition).

A formal language is a list of symbols from a collection called an alphabet that concatenate into strings
according to some grammar or syntax rules. Note, however, that a formal language by itself only specifies
the syntax of these strings, and not their semantics.

Example. The following list of syntax rules describes a formal language L over the alphabet Σ =
{0,1,2,3,4,5,6,7,8,9,+ , =}:

• Every non-empty string that does not contain “+” or “=” and does not start with “0” is in L.

• The string “0” is in L.

• A string containing “=” is in L if and only if there is exactly one “=”, and it separates two valid
strings of L.

• A string containing “+” but not “=” is in L if and only if every “+” in the string separates two
valid strings of L.

• No string is in L unless implied by the previous rules.

The strings “2+2 = 4” and “12+34+5 = 678” are in L, but the string + = +12 = is not. This formal
language expresses natural numbers, well-formed additions, and well-formed addition equalities, but it
only expresses what they look like (syntax) and not what they mean (semantics). △

A theory of any given structure (the collection of all statements about that structure) forms a formal
language. The symbols in the alphabet of a formal language L corresponding to a structure can be more
finely classified into:

• propositional variables;

• n-ary predicative or relational symbols;

• n-ary function symbols;

• auxiliary signs (like commas and brackets).

Propositional variables vary over particular individuals of a structure. Predicative symbols are intended
to represent properties of the structure, and are intended to return a truth value (such as “=” either
being true or false in arithmetic), while function symbols are those intended to return other constants
(such as “+”). In particular, nullary or constant function symbols are identified with constants.

So in the above example of “2+2 = 4”, if we think of this as a sentence describing natural addition, then
“2” and “4” are both constants (constant function symbols), “+” is a function symbol, “=” is a predicative
symbol, and there are no propositional variables. Again, however, note that a formal language only
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specifies the syntax of sentences: there is nothing indicating that the symbol “2” represents the natural
number two, the symbol “+” means addition, “2 + 2 = 4” is true, etc.

Strings in L consisting of variables, predicatives, and functions are called a formulae, and strings consist-
ing of just variables and functions are called terms. A sentence is a formula with propositional variables
replaced with specific constants.

An assignment of meanings to symbols in a formal language is called an interpretation. We can interpret
the language L over a structure UN = (N, = ,+) as follows:

• “2” and “4” mean the natural numbers two and four, respectively;

• “+” means the addition of natural numbers;

• “=” means the equality relation over the natural numbers.

so for example, the sentence “2 + 2 = 4” would be true in this interpretation.

Another interpretation could also be given by:

• “2” and “4” mean the natural numbers two and four, respectively;

• “+” means the subtraction of natural numbers;

• “=” means the equality relation over the natural numbers.

or even:

• “2” and “4” mean “a person” and “lunch”, respectively;

• “+” means “talks to”;

• “=” means “while eating”

In the former interpretation, “2 + 2 = 4” is now false, and in the latter, the string doesn’t even have a
meaningful truth value.

Logical connectives like ¬, ∧, or ∨ can also be expressed as a kind of predicative symbol.

The first order formal propositional language LFOFP consists of an alphabet Σ given by,

• individual variable symbols (x,y,z, . . .);

• n-ary function symbols (= , ≤ , . . .);

• n-ary predicative symbols (¬, ∧ , ∨ ,→ , . . .);

• unary quantifier symbols (∀,∃, . . .);

• auxiliary (e.g. commas, brackets).

a set T of terms such that

• all individual variables and constants belong to T ;

• all terms built from function symbols substituted with elements of T belong to T .

and a set F of formulae such that

• all predicative symbols with arguments substituted by elements of T belong to F ;

• all connectives with arguments substituted by elements of F belong to F ;

• all quantifiers with arguments substituted by individual variables and acting on formulae of F
belong to F .
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But again, this formal language needs to be equipped with some extra data in the form of inference rules
in order to perform logical deduction. More precisely, the inference rules are a set of operations that,
given a sequence of formulae in L called premises, return a formula called a (logical) consequence. The
map sending every set X of formulae to the set C(X) of its logical consequences is called the consequence
operator. The pair (L,C) is then called a formal deductive system. A set A of formulae assumed to be
true (i.e., that constrains the possible interpretations) is called a set of axioms. The triple (L,C,A) is
then called a formal theory, and the formulae in C(A) are called the theorems of that theory.

... WIP

53.1.7 Lindenbaum-Tarski Algebras

53.1.8 Sieves and Sheaves
Let us dispense with the axioms of etcs for the following sections, and consider a general topos.

Let E1 and E2 be topoi. A geometric morphism g : E1 → E2 is a pair of adjoint functors g∗ ⊣ g∗ between
E1 and E2 such that g∗ preserves finite limits (and g∗ preserves finite colimits).

A sieve on an object X in C op is a collection S of morphisms with codomain X that is closed under
precomposition. That is, if f ∈ S and g : A → X, then f ◦ g ∈ S. A maximal or principal sieve on X,
denoted ↑ X is then the collection of all morphisms into X.

53.1.9 Internal Logic of a Topos
Recall that the subobject classifier can be characterised as a representation of the functor Sub : C opSet
that sends objects X to their subobjects posets Sub(X), for a well-powered category C :

homC (−,Ω) ∼= Sub(−)

In other words, external operations on subobject posets correspond naturally to internal operations on
Ω.

Now, by the Yoneda lemma, the natural isomorphism

η : hom(−,Ω)⇒ Sub(−)

is determined entirely by its value at the identity idΩ, namely ηΩ(idΩ) (this follows almost identically to
(the dual of) the proof of Lemma Lemma 52.2.8).

In fact, we’ve already seen an example of this: the intersection operation.

The intersection operation is a binary operation on a subobject poset,

∩X : Sub(X)× Sub(X)→ Sub(X)

It turns out that these binary operations assemble into a natural endotransformation. In more detail,
by the isomorphism above, we may replace Sub(X) by hom-functors

∩X : hom(X,Ω)× hom(X,Ω)→ hom(X,Ω)

and as the hom-functor preserves limits in its second argument, we have

∩X : hom(X,Ω× Ω)⇒ hom(X,Ω)

and we can see that ∩X is really a natural transformation between these hom-sets involving Ω.
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Because the intersection operation takes two subobjects in Sub(X) to return another subobject in
Sub(X), we can consider it as a binary operation ∩X : Sub(X) × Sub(X) → Sub(X). Because Sub(−)
is a functor, it turns out that these binary operations assemble into a natural endotransformation.

In more detail: recall that the subobject classifier can be characterised as a representation of the functor
Sub : C op → Set that sends objects to their subobject posets, where C is a well-powered category. That
is,

homC (X,Ω) ∼= Sub(X)

naturally in X.

So, the components

∩X : Sub(X)× Sub(X)→ Sub(X)

correspond to transformations

hom(X,Ω)× hom(X,Ω)→ hom(X,Ω)

One important interpretation of this representation is that “external” operations on Sub(X) naturally
correspond to “internal” operations on Ω. More precisely, the isomorphism

ϕ : homC (−,Ω)→ Sub(−)

is completely determined by its value at idΩ, namely ϕΩ(idΩ),∗ which is just a subset of Ω, or more
specifically, the monomorphism ⊤ : 1 → Ω. In other words, the Yoneda lemma implies that operations
on subobject posets Sub(X) are entirely determined by their action on ⊤.

For instance, by the representation of Sub(−), the “external” intersection natural transformation ∩ :
Sub(−)× Sub(−)→ Sub(−) corresponds to a natural transformation

ϕ : hom(−,Ω)× hom(−,Ω) = hom(−,Ω× Ω)→ hom(−,Ω) (53.1)

and the Yoneda lemma then tells us that this natural transformation is furthermore determined entirely
by ϕΩ(idΩ) a function Ω× Ω→ Ω. In fact, this function is exactly the meet operation, ∧.

∗ This follows similarly to the proof of the (dual) Yoneda Lemma Lemma 52.2.8, noting that homC (−,Ω) = hΩ.
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Index

(G,w), 941
(V,F), 970
(V,I), 970
C
(
[a,b]

)
, 660

Cn (graph theory), 942
D4, 291
E(G), 187, 236, 941
GLn(R), 310
H-free (graph theory), 943
Kn (graph theory), 942
Kn,k (graph theory), 942
L-perfect matching, 961
Lp norm, 660
M -alternating chain, 963
M -augmenting chain, 963
Mm×n(R), 310
Nth roots of unity, 310
N(v) (graph theory), 942
O (Landau symbol), 936
Pn (graph theory), 942
SL2(Z), 310
SLn(R), 310
SOn(R), 310
T -join, 969
V (G), 187, 236, 941
V ∗, 974
∆-TSP, 988
Γ axioms, 41
Grp, 1023
Ω (Landau symbol), 937
Ω (probability), 919
Σ, 974
Sym(A), 310
Θ (Landau symbol), 937
Top, 1025
ℵ0, 72
α-conversion, 1009
α(λ), 518
β-reduction, 1009, 1010
⊥E, 42

χ′(G), 980
χ(G), 980
ℓp norm, 659
η-reduction, 1009, 1010
∃E, 42
∃I, 42
∀E, 42
∀I, 42
γ(λ), 518
γk(λ), 518
hom(C ), 1021, 1049
ı̂, 473
inf S, 284, 581
ȷ̂, 473
κ(s) (curvature), 837
λ calculus, 1006
λ term, 1008
↔ EL, 42
↔ ER, 42
↔ I, 42
¬¬E, 42
¬¬I, 42
¬E, 42
¬I, 42
ZSNF, 556
Z/mZ, 258
Zm, 258
B(s) (binormal), 837
N(s) (principle normal), 837
(P )(S), 970
c, 77
µA, 515
∇f (gradient), 847
∇ (calculus), 839
∇ · F (divergence), 847
∇× F (curl), 847
ob(C ), 1021, 1049
ω (ordinal), 62, 75
ω1, 78
L(G) (line graph), 963



INDEX INDEX

Opt, 979
curlF, 847
divF, 847
grad f , 847
pred, 1014
succ, 1013
→ EL, 42
→ ER, 42
→ I, 42
σ-formulae, 36
σ-structure, 36
supS, 284, 581
τ (torsion), 838
Map(A), 310
⊤I, 42
ε, 974
ε-net, 699
ε0 (ordinal), 78
∨E, 42
∨EL, 42
∨ER, 42
∨IL, 42
∨IR, 42
∧EL, 42
∧ER, 42
∧I, 42
cA, 515
f -augmenting path, 956
k-edge connected, 958
k-factor approximation algorithm, 979
k-multicombinations, 159
k-multisubsets, 159
k-permutations, 158
k-regular (graph theory), 187, 237, 941
k-strong set, 942
k-vertex connected, 959
l-clique, 942
s-t-cut, 955
s-t-flow, 955
2-SAT, 977
3-SAT, 977

Abel’s theorem, 917
abelian group, 297, 551
absolute approximation algorithm, 979
absolute complement, 56
absolute value, 564
absolute value rule, 573
absolutely convergent, 598
absorption, 58, 921
absorption (inference rule), 39
abstraction (lambda calculus), 1008
active node (network flow), 955

addition (inference rule), 39
additivity, 475
adjacent (graph theory), 941
adjoint (linear operators), 544
adjoint graph, 963
aleph null, 72
algebra of convergent sequences, 574
algebra of limits (functions), 609
algebra of limits (sequences), 574
algebra of sets, 920
algebraic closure, 286
algebraic multiplicity, 518
algebraic number, 275, 337, 342
algebraic structure, 287
algebraic topology, 705
almost never, 930
almost surely, 930
alpha conversion, 1009
alphabet, 35, 974
alternating (bilinear forms), 535
alternating chain, 943, 963
alternating group, 309, 310
alternating harmonic series, 597
alternating series, 597
AM-GM inequality, 87, 567
AND, 23, 1012
angle trisection, 338
annihilator, 280
anonymous function, 65, 1007
antecedent, 23, 37
antisymmetric (bilinear forms), 535
antisymmetric (matrix), 535
antisymmetric (relation), 66
antisymmetric preorder, 66
antisymmetry, 282
application (lambda calculus), 1008
approximation algorithm, 979
arbitrary change of coordinates, 844
arborescence, 942
arc (graph theory), 187, 236, 941
arc length function, 837
arc length parametrisation, 837
Archimedean property, 284
arithmetic mean, 567
arithmetic of null sequences, 573
arity, 34, 65
Arzelà-Ascoli, 698
Arzelà-Ascoli theorem, 696
associate (relation), 341
associativity, 277, 296
asymmetric (relation), 66
asymmetric encryption, 268
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asymmetric preorder, 67
asymptotic behaviour, 936
asymptotic behaviour (differential equation),

900
asymptotic notation, 936
asymptotics, 655
atom, 22
augment f along P by γ, 956
augmentation (matrix), 488
augmentation property (matroid), 972
augmented matrix, 488
augmenting chain, 963
augmenting graph, 964
automorphism, 304
automorphism group, 304
autonomous (differential equation), 896
auxiliary equation (differential equation), 901
axiom of binary union, 102
axiom of choice, 59, 62
axiom of extensionality, 59, 102
axiom of foundation, 59
axiom of induction, 59, 80
axiom of infinity, 59, 61
axiom of pairing, 59, 60, 102
axiom of regularity, 59, 68
axiom of replacement, 59
axiom of the empty set, 59, 102
axiom of the power set, 59, 62
axiom of the union, 59
axiom of union, 61, 102, 103, 105
axiom schema of collection, 59
axiom schema of induction, 80
axiom schema of replacement, 61, 116
axiom schema of restricted comprehension, 60
axiom schema of separation, 60
axiom schema of specification, 60
axiom schema of substitution, 35
axioms, 37

backward-forward induction, 87
Baire category theorem, 702, 703
Baire space, 702
Banach fixed point theorem, 694
Banach space, 691
barber paradox, 55
base, 670
base case, 81
Basel problem, 599
bases, 670
basis, 670
basis (independence system), 970
basis vector, 473
basis-superset oracle, 972

Bayes’ theorem, 989
Bellman-Ford algorithm, 952, 953
Berge’s theorem, 963
Bernoulli trial, 930
Bernoulli’s inequality, 578
Bernoulli’s weak law of large numbers, 933
beta-reduction, 1009, 1010
BFS, 945, 946
biconditional, 24
biconditional elimination, 42
biconditional introduction, 42
bicontinuous map, 668
big O notation, 936
big Omega notation, 937
bijection, 65
bilinear form, 535
bilinear map, 533
bin packing, 983
bin packing problem, 984
binary operation, 296
binary relation, 63
binomial distribution, 930
binormal vector, 837
bipartite graph, 942, 960
Bolzano-Weierstrass theorem, 583
Boole’s inequality, 988
Boolean, 24, 1011
Boolean algebra, 69, 920
Boolean satisfiability, 976
bound variable, 31, 1009
boundary (topology), 672, 674
bounded (metric space), 662
bounded (sequences), 569
boundedness of convergent sequences, 574
boundedness theorem (series), 592
box topology, 672
breadth first search, 945, 946
Brooks’ theorem, 981
bubble sort, 939
Bézout coefficients, 255
Bézout’s identity, 255

canonical basis, 473
canonical homomorphism (groups), 315
Cantor, 72

diagonalisation, 77
zig-zag argument, 72, 128

Cantor set, 675
Cantor’s diagonalisation argument, 77
Cantor’s zig-zag argument, 72, 128
capacity constraint (network flow), 955
cardinality, 56
carrier set, 287
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Cartesian coordinate, 842
Cartesian product, 62, 63
case analysis, 29, 45
Cauchy property, 584
Cauchy sequence, 584
Cauchy two-line notation, 307
Cayley table, 293
Cayley’s theorem (graph theory), 950
Cayley-Hamilton theorem, 515
ceiling function, 563
ceiling term, 577
central limit theorem, 934
central quadric, 547
centre (phase portrait), 908, 909
certificate, 975
change of basis, 496
change of basis matrix, 498
change of coordinates (integration), 842
change of coordinates (linear algebra), 496
characteristic (ring theory), 339
characteristic equation, 515
characteristic equation (differential equation),

901
characteristic equation (matrix), 505
characteristic polynomial, 515
characteristic polynomial (matrix), 505
child node, 942
Chinese postman problem, 968
Chinese remainder theorem, 261
choice function, 62
chromatic index, 980
chromatic number, 980
Church numerals, 1013
circle group, 310
circuit (independence system), 970
circulation, 850
class, 1022
clause, 40, 976
claw graph, 942
claw-free graph, 963
Cleverclog’s test, 584
clique, 942
clique number, 942
clopen set, 662
closed (curve), 836
closed ball, 658, 662
closed interval rule, 576
closed set, 670
closed unit ball, 658
closed walk, 941
closure (operations), 296
closure (topology), 672

CNF, 40, 976
coarse (topology), 670
cocountable topology, 670
codimension, 492
codomain, 63
cofinite topology, 670
column operation, 483
column space, 481
combinations, 157
Combinatorial optimisation, 936
combinatorics, 157
common divisor, 254
common multiples, 255
commutative diagram, 500, 1024
commutative monoid, 287
commutative ring, 330
commutativity, 277, 296
compact

locally compact regular, 702
locally relatively, 702
strongly locally, 702
weakly locally, 702

compact space, 681, 713
compactness, 681, 713
comparability, 63, 282
comparison test (series), 593
complement graph, 943
complement law, 920, 921
complement laws, 58
complementary function (differential equation),

898, 901
complementary relation, 64
complementary subspace, 492
complete (logic), 38
complete (metric spaces), 690
complete (normed space), 691
complete bipartite graph, 942
complete graph, 942
completely metrisable, 690
completeness

Bolzano Weierstrass theorem, 583, 591
Cauchy criterion, 585, 591
greatest lower bound property, 590
infinite decimal sequences, 586, 591
least upper bound property, 284, 579, 590
monotonic convergence theorem

(decreasing), 582, 591
monotonic convergence theorem

(increasing), 582, 590
completeness (logic)

semantic, 37, 38
syntactic, 37
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completeness (real numbers), 284, 579
completeness theorem, 37
completion (topology), 693
complexity analysis, 936
composite, 252
composition (category theory), 1021, 1049
composition (functions), 65
composition law (category theory), 1022
composition relation, 64
compound propositions, 22
computable function, 1007
conclusion, 37
conditional probability, 922
conditionally convergent, 598
congruence, 257
congruence class, 258
congruence relation, 67, 259
congruency (matrices), 535
conjugate graph, 963
conjugation (group action), 318
conjunction, 23
conjunction elimination, 39, 42
conjunction introduction, 39, 42
conjunctive normal form, 40, 976
connected (relation), 66
connected (topology), 684
connected component (graph theory), 942
connected component (topology), 688
connected graph, 942
connected vertices (graph theory), 941
consequent, 23, 37
conservative (vector field), 847
conservative vector field, 882
consistency, 20
consistent, 20
constant, 34
constructible number, 337
construction (proof technique), 45
constructive dilemma, 39
continuity, 665, 696
continuity correction, 934
continuous (at a point), 665
continuous function, 676
continuum, 77
continuum hypothesis, 78
contour line, 838
contraction mapping, 694
Contraction Mapping theorem, 694
contradiction, 26
contradiction (proof technique), 45
contraposition, 28
contraposition (proof technique), 45

contrapositive, 28
convergence (sequences), 573
convergence test (sequences), 584, 585
convergent sequence, 571, 573
converges almost surely, 933
converges in distribution, 932
converges in probability, 933
converges strongly, 933
converges weakly, 932
converse, 28
converse relation, 64
conversion, 28
convex set, 658
convolution, 917
coordinate system, 496

arbitrary, 844
Cartesian, 842
cylindrical, 842
polar, 842
spherical, 843

coprime, 255
coset

groups, 310
vector spaces, 492

countable, 72
countably infinite, 72
counterexample, 45
cover (topology), 681, 713
critical point, 839
critically damped, 901
cubic graph, 237
curl, 847
currying, 1007
curvature, 837
curve, 835
cut (graph theory), 943
cycle (graph theory), 941
cycle (graphic) matroid, 971
cycle graph, 942
cycle notation, 308
cyclic group, 305
cylindrical coordinates, 842

De Moivre-Laplace theorem, 934
De Morgan’s laws, 32, 58, 670, 921
decidablity, 37
decision problem, 974, 975
decoupling (differential equation), 906
decreasing, 569
Dedekind cut, 71
deducible, 37
Deduction theorem, 41
deficient node (network flow), 955
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degenerate sink, 908, 909
degenerate source, 908, 909
degree (graph theory), 187, 237, 941
degree (planar graphs), 981
degree 1 homogeneity, 475
degree sequence, 237, 941
Delian problem, 338
dense, 674
dense set, 579
dependent (variable), 895
dependent element (independence system), 970
depth first search, 945
derangement, 164
derivative notation

Lagrange, 896
Leibniz, 895
Newton, 896

derivative test
second derivative test, 839
second partial derivative test, 840

destructive dilemma, 39
determinant, 479, 486
DFS, 945
diagonal matrix, 507
diagonalisation, 508, 906
difference equation, 902
differential equation, 895
differential equation (matrix), 531
differential operator, 510
differentiation under the integral sign, 917
digraph, 187, 236, 941
dihedral group, 309
Dijkstra’s algorithm, 951
Dijstra’s algorithm, 950
dimension, 475
Diophantine equations, 159
direct proof, 45
direct sum, 491
direct sum (matrices), 518
directed graph, 187, 236, 941
directional derivative, 839
disconnected (topology), 684
discrete density function, 925
discrete initial value problem, 530
discrete metric, 661
discrete probability, 988
discrete probability space, 919
discrete topology, 670
disjoint, 56
disjoint (cycles), 308
disjunction, 22

exclusive, 23

inclusive, 22
disjunction elimination, 39, 42
disjunction introduction, 39, 42
disjunctive normal form, 40, 976
disjunctive syllogism, 39
distributivity, 280
divergence, 847
divergence theorem, 849
divergence-free vector field, 884
divergent sequence, 573
diverges, 570
divident, 252
divides, 251, 340
divisibility, 251
divisible, 251
division algorithm, 253
division ring, 337
divisor, 252
DNF, 40, 976
domain, 63
domain (abstract algebra), 336
domain (underlying set), 287
dominate (graph theory), 942
dominating (graph theory), 237
domination law, 58, 921
dot product, 536
double integration, 840
double negation elimination, 42
double negation introduction, 42
double tree algorithm, 988
doubling the cube, 338
downward-closedness (independence system),

970
dyadic rationals, 288, 331
dyadic relation, 63

edge (graph theory), 187, 236, 941
edge capacity, 954
edge colouring, 980
edge contraction, 942
edge deletion, 942
edge-chromatic number, 980
edge-connectivity, 960
eigenbasis, 508, 906
eigenvalue, 905
eigenvector, 502, 905
element, 53
elementary event, 919
elementary matrix, 483
elimination rules, 42
embedded (curve), 836
empty set, 54
empty string, 974
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encryption, 267
endomorphism, 304
endorelation, 64
enumerative combinatorics, 157
epimorphism, 551
equality predicate, 34
equicontinuous, 696

at a point, 696
pointwise, 696
uniform, 696

equilibrium point (differential equation), 899
equivalence (linear algebra), 502
equivalence (topological), 667
equivalence class, 67
equivalence relation, 67
equivalent (norms), 659
equivalent (relations), 67
equivalent matrix, 502
eta-reduction, 1009, 1010
Euclid’s lemma, 252, 257
Euclidean algorithm, 254
Euclidean metric, 661
Euclidean norm, 658
Euclidean space, 539
Euler substitution, 914
Euler’s handshaking lemma, 943
Euler’s method (differential equations), 900
Euler’s product formula, 265
Euler’s theorem, 967
Euler’s theorem (Euler characteristic), 981
Euler’s theorem (graph theory), 941
Euler’s theorem (number theory), 265, 266
Euler’s totient function, 265
Eulerian circuit, 941, 967
Eulerian graph, 941, 967
Eulerian walk, 941, 967
even permutation, 309
event space, 919, 988
eventually, 575
excess function (network flow), 955
exchange property (matroid), 972
exclusive disjunction, 23
existence and uniqueness (differential

equation), 896, 904
existential generalisation, 42, 43
existential instantiation, 42, 44
existential quantifier, 31
expected value, 925, 989
exponential series, 532
extended Euclidean algorithm, 256
extended law of total probability, 923
extended real number system, 71

extension (set definition), 54
extension (structure), 287

face (planar graphs), 981
factor, 252
factor group, 313
factorial, 158
factorisation, 267
factorisation domain, 342
family of sets, 55
FD, 342
feasible element (independence system), 970
feasible flow, 955
Fermat’s little theorem, 264
Feynman’s trick, 917
FF (algorithm), 985
FFD (algorithm), 986
field, 276, 337
field axioms, 276, 490
fine (topology), 670
finite abelian group, 562
finite field, 281
finitely generated abelian group, 551
first fit algorithm, 985
first fit decreasing algorithm, 986
first isomorphism theorem (groups), 315
first isomorphism theorem (rings), 336
First Moment Method, 989
first-order logic, 30
five colour theorem, 983
fixed point

stable (differential equation), 899
stable (recurrence relation), 903
structurally stable (differential equation),

899, 900
unstable (differential equation), 899
unstable (recurrence relation), 903

fixed point (differential equation), 899
fixed point (lambda calculus), 1018
Fleury’s algorithm, 967
floor function, 563
floor term, 577
flow (network), 955
flow conservation rule, 955
flow decomposition theorem, 957
flow network, 955
fold, 49
Ford-Fulkerson algorithm, 956
forest, 942
formal language, 35, 975, 1008
formula extension, 36
four colour theorem, 983
fractional part function, 564
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free abelian, 553
free basis, 554
free monoid constructor, 974
free variable, 31
FTA, 266

algebra, 653
arithmetic, 266

full generalised eigenspace, 517
full rank, 481
function composition, 65
function symbol, 34
functional (relations), 64
functional programming, 55
functionally complete (logic), 24
functions, 64
functor, 1025
fundamental solution (variation of parameters),

913
fundamental theorem of algebra, 653
fundamental theorem of arithmetic, 266
fundamental theorem of calculus, 897
fundamental theorem of finitely generated

abelian groups, 561
fundamental theorem of linear algebra, 496

Gale-Shapley algorithm, 965
Galois field, 281, 337
Gauss summation, 81
Gaussian distribution, 932
Gaussian elimination, 486, 488
Gaussian integers, 331
gcd, 254, 341
general linear group, 310
general recursion, 1018
general solution (differential equation), 898
generalised Arzelà-Ascoli theorem, 701
generalised eigenspace, 515, 517
generalised eigenvector, 517
generalised geometric multiplicity, 518
generating set, 305
generator, 305
generator (ideals), 271
geometric distribution, 931
geometric mean, 567
geometric multiplicity, 518
geometric progression, 594
geometric series, 594
grad, 839
gradient, 839
gradient field, 882
Gram-Schmidt orthogonalisation, 539
Gram-Schmidt orthonormalisation, 539
Gram-Schmidt process, 539

graph, 187, 236, 941
graph metric, 661
graph operation

edge contraction, 942
edge deletion, 942
vertex deletion, 942

graph theory, 236
graph traversal, 945
graphical (degree sequence), 941
greatest common divisor, 254, 341
greatest lower bound, 284, 581
Grelling-Nelson paradox, 55
group, 297, 550

abelian, 551
group action, 290, 293
group homomorphism, 302
group presentation, 560
growth property (matroid), 972
Gödel, 37, 53

completeness theorem, 37
incompleteness theorem, 37, 53

half angle substitution, 914
Hall’s condition, 962
Hall’s theorem, 961
HAMILTONIAN CYCLE, 978
Hamiltonian cycle, 941
Hamming distance, 661
harmonic comb, 688
harmonic mean, 568
harmonic series, 594
Hausdorff, 675
Hausdorff property, 675
head normal form, 1011
height (tree), 942
Heine–Borel theorem, 681, 683
hereditary property (independence system), 970
hereditary set, 54
Hermitian interpolation, 529
Hessian matrix, 840
highest common factor, 341
HM-GM-AM-QM inequality, 568
homeomorphism, 668, 680
homeomorphism (metric spaces), 668
homeomorphism (topology), 680
homogeneous (differential equation), 896
homogeneous relation, 64
homology theory, 746
homomorphism, 302
hypercomplex numbers, 276
hypergeometric distribution, 931
hypergraph, 236
hypothesis, 37
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hypothetical syllogism, 39

ideal, 334
ideal numbers, 270
ideals, 270, 334
idempotency, 58, 565, 920
identity element, 277
identity law, 58, 920
identity law (category theory), 1022
identity morphism, 1022, 1049
if and only if, 24
iff, 24
image, 65
image (column space), 481
image (groups), 314
implication, 23, 41
implication elimination, 42
implication introduction, 42
improper node, 908, 909
in a cut (graph theory), 943
in-neighbour, 941
inaccessible cardinal, 79
incident (graph theory), 187, 237, 941
inclusion-exclusion principle, 921
inclusive disjunction, 22
incomplete (metric spaces), 690
incompleteness theorem, 37, 53
incompressible vector field, 884
increasing, 569
indegree, 187, 237, 941
independence number, 942
independence oracle, 972
independence system, 970
independent (probability), 923
independent (variable), 895
independent element (independence system),

970
independent set, 942, 960
index, 49, 311
indicator function, 72
indiscrete topology, 670
induced metric, 661
induced subgraph, 942
induced subspace (topology), 672
induced topology, 672
induction

backward-forward, 87
strong, 85
transfinite, 90
weak, 80

induction (proof technique), 45
induction hypothesis, 81
inductive step, 81

inequality rule (sequences), 576
infeasible element (independence system), 970
inference rule, 19, 37
infimum, 284, 581
infinite graph, 236
infinitesimal, 284
initial value problem, 530
injection, 65
injective, 64
inner product, 536
instance (decision problem), 975
instantiation (proof technique), 45
integer part function, 564
integer partition, 274
integers, 71
integral (network flow), 955
integral basis, 554
integral domain, 336
integral flow theorem, 957
integral test, 596
integral test for convergence, 596
integral test for divergence, 597
integrating factor, 898
integration by parts, 910
intension (set definition), 55
interior, 672, 673
interpretation, 35
interpretation function, 35
intersection, 55
intersection (ideals), 272
intersection relation, 64
interval, 685
interval property, 565
introduction rules, 42
intuitionistic logic, 59
invalid, 38
invariant, 290
invariant (quadratic forms), 538
inverse, 28
inverse element, 277
inversion, 28
inversion (orientation), 480
invertible (matrix), 481
involution law, 58, 921
irrational numbers, 275
irreducible, 341
irreflexive, 66
isolated, 237
isolated point, 674
isometric spaces, 668
isometry, 668
isomorphic, 303
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isomorphism, 288, 303, 714, 1024, 1052
isomorphism (category theory), 819, 1024
isomorphism (graph theory), 942
isosurface, 838
iteration, 49

Jacobian matrix, 844, 904
JCF decomposition, 521
join, 68
Jordan basis, 518
Jordan block, 517
Jordan box, 519
Jordan canonical form, 515, 518
Jordan chain, 517
Jordan normal form, 515, 518
jungle river metric, 661

kernel, 482
kernel (groups), 314
Kleene star, 974
KNAPSACK, 983
knapsack problem, 983
Kruskal’s algorithm, 948
Kuratowski–Wagner theorem, 982
Kőnig’s lemma, 954
Kőnig’s theorem, 961

Lagrange (prime) notation, 896
Lagrange interpolation, 529
Lagrange’s theorem, 311
lambda calculus, 1006
lambda term, 1008
Landau symbol, 936
Laplace transformation, 915
large time limit, 900
lattice, 68
law of bivalence, 29
law of large numbers, 932

Bernoulli’s weak law, 933
strong law, 934
weak law, 933

law of non-contradiction, 29
law of the excluded middle, 29
law of total probability, 923, 989
lcm, 255, 341
leading coefficient, 339
leaf node, 187, 237, 941
least common element, 341
least common multiple, 255
least residues modulo n, 259
least upper bound, 284, 581
least upper bound property, 284
Lebesgue measure, 930

Lebesgue number, 683, 713
left ideal, 334
left identity, 277
left inverse, 278
left radical, 535
Leibniz (quotient) notation, 895
Leibniz integration rule, 917
level set, 838
limit (sequence), 572, 573
limit ordinal, 68
limit point (topology), 674
line graph, 963
line integral, 850
linear (differential equation), 896
linear approximation, 839
linear approximation (multivariable), 839
linear combination, 473
linear independence (abelian groups), 554
linear map, 475
linear transformation, 475
linearity, 475
linearly dependent, 474
linearly independent, 474
lion hunting, 583
Lipschitz constant, 665, 694
Lipschitz continuous, 665
Lipschitz equivalent metrics, 667
literal, 22
local compactness, 702
local linearisation (differential equation), 909
locally compact regular, 702
locally finite graph, 954
locally relatively compact, 702
locally small (category), 1022
logic

formula, 35
predicate, 30
propositional, 22
second-order, 34
sentences, 35

logical complement, 28
logical connectives, 22, 25
logical equivalence, 26, 27
logical symbol, 36
logically entails, 37
loop, 1017
loop (graph theory), 236, 941
Lovász Local Lemma, 990
lower bound, 284, 570, 581

Manhattan norm, 658
many-to-many, 64
many-to-one, 64
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Markov’s inequality, 989
master theorem, 939
matching (graph theory), 943, 960
matching (stable marriage), 965
matching number, 943, 960
material biconditional, 24
material conditional, 23
material equivalence, 24
material implication, 23
matrix, 476
matrix determinant, 479, 486
matrix exponentials, 530
matrix exponents, 528
matrix function, 528
matrix inverse, 486
matrix powers, 528
matrix-matrix multiplication, 478
matrix-vector multiplication, 475
matroid, 971
matroid intersection problem, 973
max-flow min-cut theorem, 957
maximal, 69, 941
maximal ideal, 342
maximal matching, 943
maximisation problem, 971
maximum, 69, 941
maximum flow, 955
maximum independent set, 962, 963
maximum matching, 960
maximum norm, 658, 692
maximum weight matching, 963
MAXIMUM-CLIQUE, 979
MAXIMUM-INDEPENDENT-SET, 979
meagre, 674
mean, 567

AM-GM inequality, 87, 567
arithmetic, 567
geometric, 567
harmonic, 568
HM-GM-AM-QM inequality, 568
Pythagorean, 568
quadratic, 568

measure, 480
Measure theory, 935
measure theory, 929
mediant, 580
meet, 68
Menger’s theorem

edge connectivity, 958
vertex connectivity, 959

merge sort, 939
metalanguage, 26

method of undetermined coefficients, 902
metric, 660

discrete, 661
Euclidean, 661
graph, 661
Hamming, 661
jungle river, 661
standard, 661

metric closure (graph theory), 987
metric continuity, 665
metric space, 661
metric subspace, 661
METRIC TSP, 988
metrisable topology, 670
mimimal, 69, 940
minimal polynomial, 342, 515
minimal vertex cover, 943
minimisation problem, 971
minimum, 69, 940
minimum s-t-flow, 955
minimum cost spanning tree, 948
minimum weight T -join problem, 969
minimum weight perfect matching, 963
MINIMUM-VERTEX-COVER, 979
Minkowski’s inequality, 659, 660
minor graph, 982
mixed graph, 236
model, 36
models, 20
modular arithmetic, 257
modular group, 310
module, 550
modulus, 257
modulus of uniform continuity, 665
modus ponendo tollens, 39
modus ponens, 30, 39
modus tollendo ponens, 39
modus tollens, 39
monic polynomial, 339, 515
monoid, 287
monomial, 339
monomorphism, 551
monotonic, 569
monotonic convergence theorem (sequences),

582
monotonic subsequence theorem, 577
monotonicity, 569
morphism, 1021
morphism composition, 1022, 1049
multigraph, 236, 941
multinomial distribution, 931
multiplication principle, 157
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multiplicative inverse (congruences), 260
multiplicativity, 565
multiset, 62
multiset permutations, 158
mutual independence, 923
mutually exclusive, 919
mutually exclusve, 56

NkF (algorithm), 985
natural deduction, 42
natural frequency, 902
natural homomorphism (groups), 315
naïve set theory, 53
necessary, 24
negation, 22, 25, 28
negation elimination, 42
negation introduction, 39, 42
negative, 282
negative binomial distribution, 931
neighbour (graph theory), 941
neighbourhood, 672
neighbourhood (graph theory), 237, 941
nested quantifiers, 33
network (graph theory), 954
network flow, 954
next fit algorithm, 984
next-k-fit algorithm, 985
NF (algorithm), 984
no-instance, 975
Noether’s theorem, 295
non-degeneracy, 281
non-degeneracy condition, 337
non-deterministic polynomial time, 976
non-elementary integral, 918
non-logical symbol, 36
non-negative, 282
non-oriented (curve), 835
non-positive, 282
non-recurring, 589
non-strict preorder, 66
nondegenerate (matrix), 481
nonsingular, 481
norm, 657

Lp, 660
ℓp, 659
Euclidean, 658
manhattan, 658
maximum, 658, 692
supremum, 692
taxicab, 658
uniform, 658

normal distribution, 932
normal form (lambda calculus), 1011

normal subgroup, 311
normalisation (lambda calculus), 1011
normed space, 657
normed subspace, 660
NOT, 22, 1012
nowhere dense, 674
NP, 976
NP-complete, 976
NP-hard, 976
null sequence, 572
null sequence test, 593
null space, 482
nullity, 482
number field, 343
number systems, 275
number theory, 251

object (category theory), 1021
object language, 26
octonion, 276
odd permutation, 309
ODE, 896
of the first category, 674
one-to-many, 64
one-to-one, 64
one-to-one correspondence, 65
open (in metric space), 662
open ball, 658, 662
open cover, 681, 713
open neighbourhood, 672
open set, 669
open set convergence, 664
open unit bal, 658
open walk, 941
operand, 296
operator, 509
optimal (stable matching), 966
OR, 22, 1012
oracle, 975
order (diffential equation), 896
order (graph theory), 187, 237, 941
order-type, 76
ordered field, 287
ordinal, 72, 75
ordinary differential equation, 896
orientation, 480
oriented (curve), 835
oriented (graph), 187, 236, 941
orthogonal (linear maps), 541
orthogonal (matrix), 541
orthogonal diagonalisation, 537
orthogonal transformations, 541
orthonormal, 539
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orthonormal basis, 539
osculating circle, 837
out-neighbour, 941
outdegree, 187, 237, 941
overdamped, 901

P (complexity class), 976
pairing function, 73
pairwise independence, 923
parallel edge, 236, 941
parametric surface, 848
parametrisation (curve), 835
parent node, 942
partial derivative, 838
partial differential equation, 896
partial order, 67

non-strict, 67
strict, 67

particular integral, 898, 901
partite (graph theory), 942
PARTITION, 984
partition, 56, 684
partition matroid, 973
partition problem, 984
path (graph theory), 237, 941
path connected space, 689
path graph, 942
path-connected (topology), 689
PDE, 896
Peano, 21, 46
Peano axioms, 89
pendant, 237
perfect matching, 943, 960
performance ratio (approximation algorithms),

979
permutation (group theory), 307
permutations (combinatorics), 157
pessimal (stable matching), 966
phase portrait, 907

centre, 908, 909
degenerate sink, 908, 909
degenerate source, 908, 909
improper node, 908, 909
saddle point, 907, 909
stable fixed point, 908, 909
stable improper node, 908, 909
stable node, 907, 909
stable spiral, 908, 909
stable star, 908, 909
unstable fixed point, 908, 909
unstable improper node, 908, 909
unstable node, 907, 909
unstable spiral, 908, 909

unstable star, 908, 909
Picard–Lindelöf theorem, 695
PID, 340
pigeonhole principle, 944
pivot, 483
planar graph, 981
pointwise equicontinuity, 696
pointwise equicontinuous, 696
Poisson distribution, 931
Poisson limit theorem, 934
polar coordinate, 842
polynomial, 339
polynomial division, 339
polynomial reduction, 976
polynomial ring, 330
polynomial time, 976
polynomial time solvability, 974
polynomial transformation, 976
positive, 282
positive definite (quadratic forms), 539
power set, 56, 970
powers, 578
precede, 66
precedence, 24
precompact metric space, 699
precompact topological space, 702
predecessor function, 1014
predicate, 30
predicate (lambda calculus), 1011
predicate logic, 21, 30
predicate variable, 34
preimage, 666
premise, 23, 37
preorder, 66
Prim’s algorithm, 948, 949
prime, 252
prime (domains), 342
prime factorisation, 266, 267
principal ideal, 334
principal ideal domain, 340
principle normal vector, 837
principle of explosion, 20
private key, 268
Probabilistic Method, 989

First Moment Method, 989
Lovász Local Lemma, 990
Second Moment Method, 989

probability density function, 926
probability distribution, 925
probability function, 988
probability mass function, 925
probability measure, 919
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probability space, 919, 988
product rule (null sequences), 573
product rule (sequences), 575
product topology, 672
projective topology, 678
proof, 37
proof techniques, 44
proper class, 1022
proper subgroup, 302
proper subspace, 491
proposition, 22

complement, 28
contrapositive, 28
converse, 28
inverse, 28

propositional logic, 21, 22
provability, 37, 41
pseudograph, 236, 941
pseudometric, 703
PTIME, 976
public key, 268
public-key cryptography, 268
pure set, 54
Pythagorean means, 568

QR decomposition, 542
quadratic form, 536
quadrature of the circle, 338
quadric (hypersurface), 545
quantification, 30, 31
quantifier, 31

existential, 31
unique existential, 32
universal, 31

quasiorder, 66
quaternions, 275
quotient, 252
quotient group, 313
quotient map, 492
quotient map (groups), 315
quotient map (rings), 336
quotient ring, 335
quotient rule (sequences), 575
quotient vector space, 492

radical (bilinear forms), 535
radius of curvature, 837
Ramsey number, 945
random variable, 925
rank, 481
rank (abelian groups), 553
rank (bilinear forms), 535
rank (independence system), 970

rank-nullity theorem, 483, 493, 494
ratio test, 599
rational numbers, 71
ray (graph theory), 941
real numbers, 71

completeness, 284, 579
least upper bound property, 284
order axioms, 282

recurrence relation, 530, 902
recurring, 589
recursive definition, 80
redex, 1009
reduce (second-order function), 49
reduced row echelon form, 484
reduct, 1009
reduction (lambda calculus), 1009
reduction formula (integration), 914
reflexive, 66
reflexivity, 282
regular (parametrisation), 836
relation, 63
relative complement, 55
relatively compact, 702
relatively prime, 255
relaxation (algorithms), 951
remainder, 252
representative, 258
residual (Baire category theorem), 703
residual capacity, 956
residual network, 955
residue, 258
residue class (ring theory), 335
residue class modular arithmetic, 258
resolution, 39
resolvent, 40
resonance, 902
reverse edge, 955
reverse triangle inequality, 566
Riemann series Theorem, 600
Riemann zeta function, 592
Riemann’s Rearrangement Theorem, 600
right ideal, 334
right identity, 277
right inverse, 278
right radical, 535
ring, 330
root (graph theory), 942
root mean square, 568
rooted tree, 942
roots, 578
round towards zero function, 564
row echelon form, 483
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row operation, 483
row reduction, 483, 486, 488
row space, 481
RSA encryption, 267
Russell’s paradox, 31, 55

saddle point, 907, 909
sample space, 919, 988
sandwich theorem (null sequences), 573
sandwich theorem (sequences), 575
sandwich theorem with shift rule, 576
SAT, 976, 977
satisfiability, 976
satisfiability problem, 977
scalar, 473, 489
scalar field, 847
scalar multiplication, 491
scalar potential, 882
scalar product, 536
scalar-valued (function), 835
scaling invariance, 282
scoping, 1008
SDR, 961
second derivative test, 839
Second Moment Method, 989
second partial derivative test, 840
second-order logic, 34
self-complementary graph, 943
self-conjugate subgroup, 311
selfadjoint operator, 544
semantics, 35
semi-Eulerian graph, 941, 967
semigroup, 287
semiprime, 252
semiring, 287
separated (topology), 685
sequence, 568
sequence space, 659
sequential closure, 664
sequential continuity, 665
sequentially compact, 684
set

absolute complement, 56
cardinality, 56
dense, 579
hereditary, 54
intersection, 55
membership, 53
operations, 55
partition, 56, 684
power set, 56
relative complement, 55
subset, 56

symmetric difference, 56
union, 55

set comprehension, 55
set operations, 55
set system, 970
set theory, 53, 95
set-builder notation, 55, 56
set-theoretic difference, 55
sets, 53
shift rule (sequences), 576
shift rule (series), 592
shortest path algorithm, 950
sibling node, 942
signature, 36
signature (quadratic forms), 538
signum function, 564
similar matrix, 502
simple (curve), 836
simple graph, 236, 941
simple group, 311
simple induction, 80
simplification (inference rule), 39
singular, 481
singular value, 547
singular value decomposition, 547, 548
sink node (network), 954
six colour theorem, 982
skew symmetry constraint (network flow), 955
small (category), 1022
small (class), 1022
Smith normal form, 484, 555
smooth (curve), 836
SMP, 965
solenoidal vector field, 884
soundness, 38
source node (network), 954
span, 474
span (free abelian groups), 551
spanning set, 474
spanning tree, 942
special linear group, 310
special orthogonal group, 310
spectral theorem, 544
spherical coordinates, 843
squaring the circle, 338
SSP, 983
stable fixed point (differential equation), 899
stable fixed point (phase portrait), 908, 909
stable fixed point (recurrence relation), 903
stable improper node, 908, 909
stable marriage problem, 965
stable matching, 965
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stable matching problem, 965
stable node, 907, 909
stable spiral, 908, 909
stable star (phase portrait), 908, 909
standard basis, 473
standard basis (Z-modules), 553
standard metric, 661
standard norm, 658
standard normal distribution, 932
standardisation (normal distribution), 932
star graph, 942
stars and bars, 159
stationary point (differential equation), 899
steady state solution, 902
Steiner point, 986
Steiner tree, 986
Steiner tree problem, 986
Steinitz exchange lemma, 493
stochastic convergence, 932

converges almost surely, 933
converges in distribution, 932
converges in probability, 933

Stokes’ theorem, 851
strict preorder, 66
strictly decreasing, 569
strictly increasing, 569
strong induction, 85
strong law of large numbers, 934
strong partial order, 67
strongly connected, 66
strongly locally compact, 702
structurally unstable, 899
sub-basis, 671
subalgebra, 287
subcover, 681, 713
subgraph, 942
subgroup, 301
subring, 330
subsequence, 577
subset, 56

non-strict, 56
proper, 56

subset sum problem, 983
SUBSET-SUM, 983
subspace, 491
subspace topology, 672
substition (inference rule), 42
substitution (lambda calculus), 1010
substitution rule, 35
substructure, 287
successor function (lambda calculus), 1013
successor function (set theory), 34, 46, 70

sufficient, 24
sum rule (null sequences), 573
sum rule (sequences), 575
sum rule (series), 591
summation, 49
superstructure, 287
supremum, 284, 581
supremum norm, 692
sure convergence, 933
surface integral, 848
surjection, 65
surjective, 64
syllogism

disjunctive, 39
hypothetical, 39

Sylvester’s theorem, 538
symbol

logical, 36
non-logical, 36

symbols, 35
symmetric (bilinear forms), 535
symmetric (matrix), 535
symmetric (relation), 66
symmetric cryptography, 268
symmetric difference, 56
symmetric group, 309
symmetric preorder, 66
symmetric-key cryptography, 268
symmetry, 290
syntax, 35
synthetic basis, 671
system of distinct representatives, 961
system of linear equations, 486

tabular integration by parts, 910
tan substitution, 914
tautology, 26
taxicab norm, 658
tends to (minus) infinity, 570
tends to (sequences), 573
tends to zero, 572
terminal (Steiner tree), 986
terminating, 589
theorems (logic), 20
theory, 19, 35
three prisoner’s problem, 924
topological invariant, 680
topological product, 672, 679
topological property, 669, 680
topological space, 669
topological subspace, 672
topologically equivalent metrics, 667
topologist’s sine curve, 688
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topology, 657, 669
cocountable, 670
cofinite, 670
discrete, 670
indiscrete, 670
metrisable, 670
projective, 678
subspace, 672
trivial, 670
Zariski, 670

torsion, 837, 838
total, 64
total order, 67
totally bounded metric space, 699
totally bounded set, 669
totative, 265
tournament (graph theory), 942
trail (graph theory), 941
transcendental number, 275, 338, 342
transfinite induction, 68, 90
transformation composition, 477
transient behaviour (differential equation), 902
transitivity, 66, 282
translational invariance, 282
transposition, 308
travelling salesman problem, 979
traversable, 941, 967
tree (graph theory), 942
triangle inequality, 566

reverse, 566
trichotomy, 282
triple integration, 841
trivial group, 287, 301
trivial ring, 287, 330
trivial subspace, 491
trivial topology, 670
truth tables, 25
TSP, 979
tuple, 62
turnstyle, 37
two line notation, 307
two-sided ideal, 334
Tychonov’s theorem, 683
type theory, 60

UFD, 342
uncountable ordinal, 78
undamped, 901
underdamped, 901
uniform continuity, 696
uniform equicontinuity, 696
uniform matroid, 971
uniform norm, 658

uniform probability measure, 926
continuous, 927
finite discrete, 926

uniformly bounded, 696
uniformly continuous, 684
uniformly equicontinuous, 696
unimodular matrix, 555
unimodular operation, 556
unimodular Smith normal form, 555, 556
union, 55
union relation, 64
unique existential quantifier, 32
unique factorisation domain, 342
uniqueness quantifier, 32
unit, 252
unit (ring theory), 336
unit group, 336
unit tangent, 837
unit-speed parametrisation, 837
universal generalisation, 42, 43, 45
universal instantiation, 42, 43
universal property, 1021
universal property of the free abelian group,

554
universal quantifier, 31
universe of discourse, 31, 54
unrestricted comprehension, 55
unstable fixed point (differential equation), 899
unstable fixed point (phase portrait), 908, 909
unstable fixed point (recurrence relation), 903
unstable improper node, 908, 909
unstable node, 907, 909
unstable spiral, 908, 909
unstable star (phase portrait), 908, 909
upper bound, 284, 570, 581
urelement, 54

vacuous truth, 24
valency, 187, 237, 941
validity, 38
valuation, 976
value (network flow), 955
Van der Pol oscillator, 910
Vandermonde polynomial, 309
variable, 31

bound, 31
free, 31

variable assignment, 1011
variance, 925
variation of parameters, 902, 913
variational principles, 656
vector, 473
vector addition, 491
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vector field, 847
vector matroid, 971
vector space, 473, 491
vector-valued (function), 835
vertex (graph theory), 187, 236, 941
vertex colouring, 980
vertex cover, 943, 961
vertex cover number, 961
vertex deletion, 942
vertex split, 964
vertex-connectivity, 960
Vizing’s theorem, 981
von Neumann ordinal, 61, 70
von Neumann universe, 21, 70

walk (graph theory), 941
weak head normal form, 1011
weak induction, 80
weak law of large numbers, 933
weak partial order, 67
weakly locally compact, 702
Weierstrass substitution, 914
weight (graph theory), 941
weighted graph, 941
well-formed, 35
well-founded, 67
well-founded induction, 68
well-ordered set, 68
well-ordering, 68
well-ordering principle, 89, 141
witch’s hat, 627
witness, 975
WLLN, 933
word, 974

Wronskian determinant, 913
Wronskian matrix, 913

XNOR, 24
XOR, 23

yes-instance, 975

Z
axiom of extensionality, 59
axiom of infinity, 59
axiom of pairing, 59
axiom of the power set, 59
axiom of the union, 59
axiom schema of separation, 59

Zariski topology, 670
Zermelo-Fraenkel, 53, 59
zero divisor, 336
zero ring, 330
zeroth-order logic, 22
zeta function, 592
ZF, 59
ZFC, 53, 59

axiom of choice, 62
axiom of extensionality, 59, 102
axiom of infinity, 61
axiom of pairing, 60, 102
axiom of power set, 103
axiom of regularity, 59, 68
axiom of the empty set, 102
axiom of the power set, 62
axiom of union, 61, 102, 105
axiom schema of replacement, 61, 116
axiom schema of specification, 60

Zorn’s lemma, 91
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